blob: 3bd93f853f8756c47f293119dba07d0e0892b0ac [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <getopt.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/stat.h>
#include <vector>
#include <audio_effects/effect_aec.h>
#include <audio_effects/effect_agc.h>
#include <audio_effects/effect_agc2.h>
#include <audio_effects/effect_ns.h>
#include <audio_utils/channels.h>
#include <log/log.h>
// This is the only symbol that needs to be imported
extern audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM;
//------------------------------------------------------------------------------
// local definitions
//------------------------------------------------------------------------------
// types of pre processing modules
enum PreProcId {
PREPROC_AGC, // Automatic Gain Control
PREPROC_AGC2, // Automatic Gain Control 2
PREPROC_AEC, // Acoustic Echo Canceler
PREPROC_NS, // Noise Suppressor
PREPROC_NUM_EFFECTS
};
enum PreProcParams {
ARG_HELP = 1,
ARG_INPUT,
ARG_OUTPUT,
ARG_FAR,
ARG_FS,
ARG_CH_MASK,
ARG_AGC_TGT_LVL,
ARG_AGC_COMP_LVL,
ARG_AEC_DELAY,
ARG_NS_LVL,
ARG_AGC2_GAIN,
ARG_AGC2_LVL,
ARG_AGC2_SAT_MGN,
ARG_FILE_CHANNELS,
ARG_MONO_MODE
};
struct preProcConfigParams_t {
int samplingFreq = 16000;
audio_channel_mask_t chMask = AUDIO_CHANNEL_IN_MONO;
int nsLevel = 0; // a value between 0-3
int agcTargetLevel = 3; // in dB
int agcCompLevel = 9; // in dB
float agc2Gain = 0.f; // in dB
float agc2SaturationMargin = 2.f; // in dB
int agc2Level = 0; // either kRms(0) or kPeak(1)
int aecDelay = 0; // in ms
int fileChannels = 1;
int monoMode = 0;
};
const effect_uuid_t kPreProcUuids[PREPROC_NUM_EFFECTS] = {
{0xaa8130e0, 0x66fc, 0x11e0, 0xbad0, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // agc uuid
{0x89f38e65, 0xd4d2, 0x4d64, 0xad0e, {0x2b, 0x3e, 0x79, 0x9e, 0xa8, 0x86}}, // agc2 uuid
{0xbb392ec0, 0x8d4d, 0x11e0, 0xa896, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // aec uuid
{0xc06c8400, 0x8e06, 0x11e0, 0x9cb6, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // ns uuid
};
constexpr audio_channel_mask_t kPreProcConfigChMask[] = {
AUDIO_CHANNEL_IN_MONO,
AUDIO_CHANNEL_IN_STEREO,
AUDIO_CHANNEL_IN_FRONT_BACK,
AUDIO_CHANNEL_IN_6,
AUDIO_CHANNEL_IN_2POINT0POINT2,
AUDIO_CHANNEL_IN_2POINT1POINT2,
AUDIO_CHANNEL_IN_3POINT0POINT2,
AUDIO_CHANNEL_IN_3POINT1POINT2,
AUDIO_CHANNEL_IN_5POINT1,
AUDIO_CHANNEL_IN_VOICE_UPLINK_MONO,
AUDIO_CHANNEL_IN_VOICE_DNLINK_MONO,
AUDIO_CHANNEL_IN_VOICE_CALL_MONO,
};
constexpr int kPreProcConfigChMaskCount = std::size(kPreProcConfigChMask);
void printUsage() {
printf("\nUsage: ");
printf("\n <executable> [options]\n");
printf("\nwhere options are, ");
printf("\n --input <inputfile>");
printf("\n path to the input file");
printf("\n --output <outputfile>");
printf("\n path to the output file");
printf("\n --help");
printf("\n Prints this usage information");
printf("\n --fs <sampling_freq>");
printf("\n Sampling frequency in Hz, default 16000.");
printf("\n --ch_mask <channel_mask>\n");
printf("\n 0 - AUDIO_CHANNEL_IN_MONO");
printf("\n 1 - AUDIO_CHANNEL_IN_STEREO");
printf("\n 2 - AUDIO_CHANNEL_IN_FRONT_BACK");
printf("\n 3 - AUDIO_CHANNEL_IN_6");
printf("\n 4 - AUDIO_CHANNEL_IN_2POINT0POINT2");
printf("\n 5 - AUDIO_CHANNEL_IN_2POINT1POINT2");
printf("\n 6 - AUDIO_CHANNEL_IN_3POINT0POINT2");
printf("\n 7 - AUDIO_CHANNEL_IN_3POINT1POINT2");
printf("\n 8 - AUDIO_CHANNEL_IN_5POINT1");
printf("\n 9 - AUDIO_CHANNEL_IN_VOICE_UPLINK_MONO");
printf("\n 10 - AUDIO_CHANNEL_IN_VOICE_DNLINK_MONO ");
printf("\n 11 - AUDIO_CHANNEL_IN_VOICE_CALL_MONO ");
printf("\n default 0");
printf("\n --far <farend_file>");
printf("\n Path to far-end file needed for echo cancellation");
printf("\n --aec");
printf("\n Enable Echo Cancellation, default disabled");
printf("\n --ns");
printf("\n Enable Noise Suppression, default disabled");
printf("\n --agc");
printf("\n Enable Gain Control, default disabled");
printf("\n --agc2");
printf("\n Enable Gain Controller 2, default disabled");
printf("\n --ns_lvl <ns_level>");
printf("\n Noise Suppression level in dB, default value 0dB");
printf("\n --agc_tgt_lvl <target_level>");
printf("\n AGC Target Level in dB, default value 3dB");
printf("\n --agc_comp_lvl <comp_level>");
printf("\n AGC Comp Level in dB, default value 9dB");
printf("\n --agc2_gain <fixed_digital_gain>");
printf("\n AGC Fixed Digital Gain in dB, default value 0dB");
printf("\n --agc2_lvl <level_estimator>");
printf("\n AGC Adaptive Digital Level Estimator, default value kRms");
printf("\n --agc2_sat_mgn <saturation_margin>");
printf("\n AGC Adaptive Digital Saturation Margin in dB, default value 2dB");
printf("\n --aec_delay <delay>");
printf("\n AEC delay value in ms, default value 0ms");
printf("\n --fch <fileChannels>");
printf("\n number of channels in the input file");
printf("\n --mono <Mono Mode>");
printf("\n Mode to make data of all channels the same as first channel");
printf("\n");
}
constexpr float kTenMilliSecVal = 0.01;
int preProcCreateEffect(effect_handle_t* pEffectHandle, uint32_t effectType,
effect_config_t* pConfig, int sessionId, int ioId) {
if (int status = AUDIO_EFFECT_LIBRARY_INFO_SYM.create_effect(&kPreProcUuids[effectType],
sessionId, ioId, pEffectHandle);
status != 0) {
ALOGE("Audio Preprocessing create returned an error = %d\n", status);
return EXIT_FAILURE;
}
int reply = 0;
uint32_t replySize = sizeof(reply);
if (effectType == PREPROC_AEC) {
(**pEffectHandle)
->command(*pEffectHandle, EFFECT_CMD_SET_CONFIG_REVERSE, sizeof(effect_config_t),
pConfig, &replySize, &reply);
}
(**pEffectHandle)
->command(*pEffectHandle, EFFECT_CMD_SET_CONFIG, sizeof(effect_config_t), pConfig,
&replySize, &reply);
return reply;
}
int preProcSetConfigParam(uint32_t paramType, uint32_t paramValue, effect_handle_t effectHandle) {
int reply = 0;
uint32_t replySize = sizeof(reply);
uint32_t paramData[2] = {paramType, paramValue};
effect_param_t* effectParam = (effect_param_t*)malloc(sizeof(*effectParam) + sizeof(paramData));
memcpy(&effectParam->data[0], &paramData[0], sizeof(paramData));
effectParam->psize = sizeof(paramData[0]);
(*effectHandle)
->command(effectHandle, EFFECT_CMD_SET_PARAM, sizeof(effect_param_t), effectParam,
&replySize, &reply);
free(effectParam);
return reply;
}
int main(int argc, const char* argv[]) {
if (argc == 1) {
printUsage();
return EXIT_FAILURE;
}
// Print the arguments passed
for (int i = 1; i < argc; i++) {
printf("%s ", argv[i]);
}
const char* inputFile = nullptr;
const char* outputFile = nullptr;
const char* farFile = nullptr;
int effectEn[PREPROC_NUM_EFFECTS] = {0};
struct preProcConfigParams_t preProcCfgParams {};
const option long_opts[] = {
{"help", no_argument, nullptr, ARG_HELP},
{"input", required_argument, nullptr, ARG_INPUT},
{"output", required_argument, nullptr, ARG_OUTPUT},
{"far", required_argument, nullptr, ARG_FAR},
{"fs", required_argument, nullptr, ARG_FS},
{"ch_mask", required_argument, nullptr, ARG_CH_MASK},
{"agc_tgt_lvl", required_argument, nullptr, ARG_AGC_TGT_LVL},
{"agc_comp_lvl", required_argument, nullptr, ARG_AGC_COMP_LVL},
{"agc2_gain", required_argument, nullptr, ARG_AGC2_GAIN},
{"agc2_lvl", required_argument, nullptr, ARG_AGC2_LVL},
{"agc2_sat_mgn", required_argument, nullptr, ARG_AGC2_SAT_MGN},
{"aec_delay", required_argument, nullptr, ARG_AEC_DELAY},
{"ns_lvl", required_argument, nullptr, ARG_NS_LVL},
{"aec", no_argument, &effectEn[PREPROC_AEC], 1},
{"agc", no_argument, &effectEn[PREPROC_AGC], 1},
{"agc2", no_argument, &effectEn[PREPROC_AGC2], 1},
{"ns", no_argument, &effectEn[PREPROC_NS], 1},
{"fch", required_argument, nullptr, ARG_FILE_CHANNELS},
{"mono", no_argument, &preProcCfgParams.monoMode, 1},
{nullptr, 0, nullptr, 0},
};
while (true) {
const int opt = getopt_long(argc, (char* const*)argv, "i:o:", long_opts, nullptr);
if (opt == -1) {
break;
}
switch (opt) {
case ARG_HELP:
printUsage();
return 0;
case ARG_INPUT: {
inputFile = (char*)optarg;
break;
}
case ARG_OUTPUT: {
outputFile = (char*)optarg;
break;
}
case ARG_FAR: {
farFile = (char*)optarg;
break;
}
case ARG_FS: {
preProcCfgParams.samplingFreq = atoi(optarg);
break;
}
case ARG_CH_MASK: {
int chMaskIdx = atoi(optarg);
if (chMaskIdx < 0 or chMaskIdx > kPreProcConfigChMaskCount) {
ALOGE("Channel Mask index not in correct range\n");
printUsage();
return EXIT_FAILURE;
}
preProcCfgParams.chMask = kPreProcConfigChMask[chMaskIdx];
break;
}
case ARG_AGC_TGT_LVL: {
preProcCfgParams.agcTargetLevel = atoi(optarg);
break;
}
case ARG_AGC_COMP_LVL: {
preProcCfgParams.agcCompLevel = atoi(optarg);
break;
}
case ARG_AGC2_GAIN: {
preProcCfgParams.agc2Gain = atof(optarg);
break;
}
case ARG_AGC2_LVL: {
preProcCfgParams.agc2Level = atoi(optarg);
break;
}
case ARG_AGC2_SAT_MGN: {
preProcCfgParams.agc2SaturationMargin = atof(optarg);
break;
}
case ARG_AEC_DELAY: {
preProcCfgParams.aecDelay = atoi(optarg);
break;
}
case ARG_NS_LVL: {
preProcCfgParams.nsLevel = atoi(optarg);
break;
}
case ARG_FILE_CHANNELS: {
preProcCfgParams.fileChannels = atoi(optarg);
break;
}
case ARG_MONO_MODE: {
preProcCfgParams.monoMode = 1;
break;
}
default:
break;
}
}
if (inputFile == nullptr) {
ALOGE("Error: missing input file\n");
printUsage();
return EXIT_FAILURE;
}
std::unique_ptr<FILE, decltype(&fclose)> inputFp(fopen(inputFile, "rb"), &fclose);
if (inputFp == nullptr) {
ALOGE("Cannot open input file %s\n", inputFile);
return EXIT_FAILURE;
}
std::unique_ptr<FILE, decltype(&fclose)> farFp(fopen(farFile, "rb"), &fclose);
std::unique_ptr<FILE, decltype(&fclose)> outputFp(fopen(outputFile, "wb"), &fclose);
if (effectEn[PREPROC_AEC]) {
if (farFile == nullptr) {
ALOGE("Far end signal file required for echo cancellation \n");
return EXIT_FAILURE;
}
if (farFp == nullptr) {
ALOGE("Cannot open far end stream file %s\n", farFile);
return EXIT_FAILURE;
}
struct stat statInput, statFar;
(void)fstat(fileno(inputFp.get()), &statInput);
(void)fstat(fileno(farFp.get()), &statFar);
if (statInput.st_size != statFar.st_size) {
ALOGE("Near and far end signals are of different sizes");
return EXIT_FAILURE;
}
}
if (outputFile != nullptr && outputFp == nullptr) {
ALOGE("Cannot open output file %s\n", outputFile);
return EXIT_FAILURE;
}
int32_t sessionId = 1;
int32_t ioId = 1;
effect_handle_t effectHandle[PREPROC_NUM_EFFECTS] = {nullptr};
effect_config_t config;
config.inputCfg.samplingRate = config.outputCfg.samplingRate = preProcCfgParams.samplingFreq;
config.inputCfg.channels = config.outputCfg.channels = preProcCfgParams.chMask;
config.inputCfg.format = config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
// Create all the effect handles
for (int i = 0; i < PREPROC_NUM_EFFECTS; i++) {
if (int status = preProcCreateEffect(&effectHandle[i], i, &config, sessionId, ioId);
status != 0) {
ALOGE("Create effect call returned error %i", status);
return EXIT_FAILURE;
}
}
for (int i = 0; i < PREPROC_NUM_EFFECTS; i++) {
if (effectEn[i] == 1) {
int reply = 0;
uint32_t replySize = sizeof(reply);
(*effectHandle[i])
->command(effectHandle[i], EFFECT_CMD_ENABLE, 0, nullptr, &replySize, &reply);
if (reply != 0) {
ALOGE("Command enable call returned error %d\n", reply);
return EXIT_FAILURE;
}
}
}
// Set Config Params of the effects
if (effectEn[PREPROC_AGC]) {
if (int status = preProcSetConfigParam(AGC_PARAM_TARGET_LEVEL,
(uint32_t)preProcCfgParams.agcTargetLevel,
effectHandle[PREPROC_AGC]);
status != 0) {
ALOGE("Invalid AGC Target Level. Error %d\n", status);
return EXIT_FAILURE;
}
if (int status = preProcSetConfigParam(AGC_PARAM_COMP_GAIN,
(uint32_t)preProcCfgParams.agcCompLevel,
effectHandle[PREPROC_AGC]);
status != 0) {
ALOGE("Invalid AGC Comp Gain. Error %d\n", status);
return EXIT_FAILURE;
}
}
if (effectEn[PREPROC_AGC2]) {
if (int status = preProcSetConfigParam(AGC2_PARAM_FIXED_DIGITAL_GAIN,
(float)preProcCfgParams.agc2Gain,
effectHandle[PREPROC_AGC2]);
status != 0) {
ALOGE("Invalid AGC2 Fixed Digital Gain. Error %d\n", status);
return EXIT_FAILURE;
}
if (int status = preProcSetConfigParam(AGC2_PARAM_ADAPT_DIGI_LEVEL_ESTIMATOR,
(uint32_t)preProcCfgParams.agc2Level,
effectHandle[PREPROC_AGC2]);
status != 0) {
ALOGE("Invalid AGC2 Level Estimator. Error %d\n", status);
return EXIT_FAILURE;
}
if (int status = preProcSetConfigParam(AGC2_PARAM_ADAPT_DIGI_EXTRA_SATURATION_MARGIN,
(float)preProcCfgParams.agc2SaturationMargin,
effectHandle[PREPROC_AGC2]);
status != 0) {
ALOGE("Invalid AGC2 Saturation Margin. Error %d\n", status);
return EXIT_FAILURE;
}
}
if (effectEn[PREPROC_NS]) {
if (int status = preProcSetConfigParam(NS_PARAM_LEVEL, (uint32_t)preProcCfgParams.nsLevel,
effectHandle[PREPROC_NS]);
status != 0) {
ALOGE("Invalid Noise Suppression level Error %d\n", status);
return EXIT_FAILURE;
}
}
// Process Call
const int frameLength = (int)(preProcCfgParams.samplingFreq * kTenMilliSecVal);
const int ioChannelCount = audio_channel_count_from_in_mask(preProcCfgParams.chMask);
const int fileChannelCount = preProcCfgParams.fileChannels;
const int ioFrameSize = ioChannelCount * sizeof(short);
const int inFrameSize = fileChannelCount * sizeof(short);
int frameCounter = 0;
while (true) {
std::vector<short> in(frameLength * ioChannelCount);
std::vector<short> out(frameLength * ioChannelCount);
std::vector<short> farIn(frameLength * ioChannelCount);
size_t samplesRead = fread(in.data(), inFrameSize, frameLength, inputFp.get());
if (samplesRead == 0) {
break;
}
if (fileChannelCount != ioChannelCount) {
adjust_channels(in.data(), fileChannelCount, in.data(), ioChannelCount, sizeof(short),
frameLength * inFrameSize);
if (preProcCfgParams.monoMode == 1) {
for (int i = 0; i < frameLength; ++i) {
auto* fp = &in[i * ioChannelCount];
std::fill(fp + 1, fp + ioChannelCount, *fp); // replicate ch 0
}
}
}
audio_buffer_t inputBuffer, outputBuffer;
audio_buffer_t farInBuffer{};
inputBuffer.frameCount = frameLength;
outputBuffer.frameCount = frameLength;
inputBuffer.s16 = in.data();
outputBuffer.s16 = out.data();
if (farFp != nullptr) {
samplesRead = fread(farIn.data(), inFrameSize, frameLength, farFp.get());
if (samplesRead == 0) {
break;
}
if (fileChannelCount != ioChannelCount) {
adjust_channels(farIn.data(), fileChannelCount, farIn.data(), ioChannelCount,
sizeof(short), frameLength * inFrameSize);
if (preProcCfgParams.monoMode == 1) {
for (int i = 0; i < frameLength; ++i) {
auto* fp = &farIn[i * ioChannelCount];
std::fill(fp + 1, fp + ioChannelCount, *fp); // replicate ch 0
}
}
}
farInBuffer.frameCount = frameLength;
farInBuffer.s16 = farIn.data();
}
for (int i = 0; i < PREPROC_NUM_EFFECTS; i++) {
if (effectEn[i] == 1) {
if (i == PREPROC_AEC) {
if (int status = preProcSetConfigParam(AEC_PARAM_ECHO_DELAY,
(uint32_t)preProcCfgParams.aecDelay,
effectHandle[PREPROC_AEC]);
status != 0) {
ALOGE("preProcSetConfigParam returned Error %d\n", status);
return EXIT_FAILURE;
}
}
if (int status = (*effectHandle[i])
->process(effectHandle[i], &inputBuffer, &outputBuffer);
status != 0) {
ALOGE("\nError: Process i = %d returned with error %d\n", i, status);
return EXIT_FAILURE;
}
if (i == PREPROC_AEC) {
if (int status = (*effectHandle[i])
->process_reverse(effectHandle[i], &farInBuffer,
&outputBuffer);
status != 0) {
ALOGE("\nError: Process reverse i = %d returned with error %d\n", i,
status);
return EXIT_FAILURE;
}
}
}
}
if (outputFp != nullptr) {
if (fileChannelCount != ioChannelCount) {
adjust_channels(out.data(), ioChannelCount, out.data(), fileChannelCount,
sizeof(short), frameLength * ioFrameSize);
}
size_t samplesWritten =
fwrite(out.data(), inFrameSize, outputBuffer.frameCount, outputFp.get());
if (samplesWritten != outputBuffer.frameCount) {
ALOGE("\nError: Output file writing failed");
break;
}
}
frameCounter += frameLength;
}
printf("frameCounter: [%d]\n", frameCounter);
// Release all the effect handles created
for (int i = 0; i < PREPROC_NUM_EFFECTS; i++) {
if (int status = AUDIO_EFFECT_LIBRARY_INFO_SYM.release_effect(effectHandle[i]);
status != 0) {
ALOGE("Audio Preprocessing release returned an error = %d\n", status);
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}