blob: 5a03a0dd8e59a28d78c1ac096cd2ea10c3baf20d [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "AudioResamplerSinc"
//#define LOG_NDEBUG 0
#define __STDC_CONSTANT_MACROS
#include <malloc.h>
#include <pthread.h>
#include <string.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <audio_utils/primitives.h>
#include "AudioResamplerSinc.h"
#if defined(__clang__) && !__has_builtin(__builtin_assume_aligned)
#define __builtin_assume_aligned(p, a) \
(((uintptr_t(p) % (a)) == 0) ? (p) : (__builtin_unreachable(), (p)))
#endif
#if defined(__arm__) && !defined(__thumb__)
#define USE_INLINE_ASSEMBLY (true)
#else
#define USE_INLINE_ASSEMBLY (false)
#endif
#if defined(__aarch64__) || defined(__ARM_NEON__)
#ifndef USE_NEON
#define USE_NEON (true)
#endif
#else
#define USE_NEON (false)
#endif
#if USE_NEON
#include <arm_neon.h>
#endif
#define UNUSED(x) ((void)(x))
namespace android {
// ----------------------------------------------------------------------------
/*
* These coeficients are computed with the "fir" utility found in
* tools/resampler_tools
* cmd-line: fir -l 7 -s 48000 -c 20478
*/
const uint32_t AudioResamplerSinc::mFirCoefsUp[] __attribute__ ((aligned (32))) = {
#include "AudioResamplerSincUp.h"
};
/*
* These coefficients are optimized for 48KHz -> 44.1KHz
* cmd-line: fir -l 7 -s 48000 -c 17189
*/
const uint32_t AudioResamplerSinc::mFirCoefsDown[] __attribute__ ((aligned (32))) = {
#include "AudioResamplerSincDown.h"
};
// we use 15 bits to interpolate between these samples
// this cannot change because the mul below rely on it.
static const int pLerpBits = 15;
static pthread_once_t once_control = PTHREAD_ONCE_INIT;
static readCoefficientsFn readResampleCoefficients = NULL;
/*static*/ AudioResamplerSinc::Constants AudioResamplerSinc::highQualityConstants;
/*static*/ AudioResamplerSinc::Constants AudioResamplerSinc::veryHighQualityConstants;
void AudioResamplerSinc::init_routine()
{
// for high quality resampler, the parameters for coefficients are compile-time constants
Constants *c = &highQualityConstants;
c->coefsBits = RESAMPLE_FIR_LERP_INT_BITS;
c->cShift = kNumPhaseBits - c->coefsBits;
c->cMask = ((1<< c->coefsBits)-1) << c->cShift;
c->pShift = kNumPhaseBits - c->coefsBits - pLerpBits;
c->pMask = ((1<< pLerpBits)-1) << c->pShift;
c->halfNumCoefs = RESAMPLE_FIR_NUM_COEF;
// for very high quality resampler, the parameters are load-time constants
veryHighQualityConstants = highQualityConstants;
// Open the dll to get the coefficients for VERY_HIGH_QUALITY
void *resampleCoeffLib = dlopen("libaudio-resampler.so", RTLD_NOW);
ALOGV("Open libaudio-resampler library = %p", resampleCoeffLib);
if (resampleCoeffLib == NULL) {
ALOGE("Could not open audio-resampler library: %s", dlerror());
return;
}
readResampleFirNumCoeffFn readResampleFirNumCoeff;
readResampleFirLerpIntBitsFn readResampleFirLerpIntBits;
readResampleCoefficients = (readCoefficientsFn)
dlsym(resampleCoeffLib, "readResamplerCoefficients");
readResampleFirNumCoeff = (readResampleFirNumCoeffFn)
dlsym(resampleCoeffLib, "readResampleFirNumCoeff");
readResampleFirLerpIntBits = (readResampleFirLerpIntBitsFn)
dlsym(resampleCoeffLib, "readResampleFirLerpIntBits");
if (!readResampleCoefficients || !readResampleFirNumCoeff || !readResampleFirLerpIntBits) {
readResampleCoefficients = NULL;
dlclose(resampleCoeffLib);
resampleCoeffLib = NULL;
ALOGE("Could not find symbol: %s", dlerror());
return;
}
c = &veryHighQualityConstants;
c->coefsBits = readResampleFirLerpIntBits();
c->cShift = kNumPhaseBits - c->coefsBits;
c->cMask = ((1<<c->coefsBits)-1) << c->cShift;
c->pShift = kNumPhaseBits - c->coefsBits - pLerpBits;
c->pMask = ((1<<pLerpBits)-1) << c->pShift;
// number of zero-crossing on each side
c->halfNumCoefs = readResampleFirNumCoeff();
ALOGV("coefsBits = %d", c->coefsBits);
ALOGV("halfNumCoefs = %d", c->halfNumCoefs);
// note that we "leak" resampleCoeffLib until the process exits
}
// ----------------------------------------------------------------------------
#if !USE_NEON
static inline
int32_t mulRL(int left, int32_t in, uint32_t vRL)
{
#if USE_INLINE_ASSEMBLY
int32_t out;
if (left) {
asm( "smultb %[out], %[in], %[vRL] \n"
: [out]"=r"(out)
: [in]"%r"(in), [vRL]"r"(vRL)
: );
} else {
asm( "smultt %[out], %[in], %[vRL] \n"
: [out]"=r"(out)
: [in]"%r"(in), [vRL]"r"(vRL)
: );
}
return out;
#else
int16_t v = left ? int16_t(vRL) : int16_t(vRL>>16);
return int32_t((int64_t(in) * v) >> 16);
#endif
}
static inline
int32_t mulAdd(int16_t in, int32_t v, int32_t a)
{
#if USE_INLINE_ASSEMBLY
int32_t out;
asm( "smlawb %[out], %[v], %[in], %[a] \n"
: [out]"=r"(out)
: [in]"%r"(in), [v]"r"(v), [a]"r"(a)
: );
return out;
#else
return a + int32_t((int64_t(v) * in) >> 16);
#endif
}
static inline
int32_t mulAddRL(int left, uint32_t inRL, int32_t v, int32_t a)
{
#if USE_INLINE_ASSEMBLY
int32_t out;
if (left) {
asm( "smlawb %[out], %[v], %[inRL], %[a] \n"
: [out]"=r"(out)
: [inRL]"%r"(inRL), [v]"r"(v), [a]"r"(a)
: );
} else {
asm( "smlawt %[out], %[v], %[inRL], %[a] \n"
: [out]"=r"(out)
: [inRL]"%r"(inRL), [v]"r"(v), [a]"r"(a)
: );
}
return out;
#else
int16_t s = left ? int16_t(inRL) : int16_t(inRL>>16);
return a + int32_t((int64_t(v) * s) >> 16);
#endif
}
#endif // !USE_NEON
// ----------------------------------------------------------------------------
AudioResamplerSinc::AudioResamplerSinc(
int inChannelCount, int32_t sampleRate, src_quality quality)
: AudioResampler(inChannelCount, sampleRate, quality),
mState(0), mImpulse(0), mRingFull(0), mFirCoefs(0)
{
/*
* Layout of the state buffer for 32 tap:
*
* "present" sample beginning of 2nd buffer
* v v
* 0 01 2 23 3
* 0 F0 0 F0 F
* [pppppppppppppppInnnnnnnnnnnnnnnnpppppppppppppppInnnnnnnnnnnnnnnn]
* ^ ^ head
*
* p = past samples, convoluted with the (p)ositive side of sinc()
* n = future samples, convoluted with the (n)egative side of sinc()
* r = extra space for implementing the ring buffer
*
*/
mVolumeSIMD[0] = 0;
mVolumeSIMD[1] = 0;
// Load the constants for coefficients
int ok = pthread_once(&once_control, init_routine);
if (ok != 0) {
ALOGE("%s pthread_once failed: %d", __func__, ok);
}
mConstants = (quality == VERY_HIGH_QUALITY) ?
&veryHighQualityConstants : &highQualityConstants;
}
AudioResamplerSinc::~AudioResamplerSinc() {
free(mState);
}
void AudioResamplerSinc::init() {
const Constants& c(*mConstants);
const size_t numCoefs = 2 * c.halfNumCoefs;
const size_t stateSize = numCoefs * mChannelCount * 2;
mState = (int16_t*)memalign(32, stateSize*sizeof(int16_t));
memset(mState, 0, sizeof(int16_t)*stateSize);
mImpulse = mState + (c.halfNumCoefs-1)*mChannelCount;
mRingFull = mImpulse + (numCoefs+1)*mChannelCount;
}
void AudioResamplerSinc::setVolume(float left, float right) {
AudioResampler::setVolume(left, right);
// convert to U4_28 (rounding down).
// integer volume values are clamped to 0 to UNITY_GAIN.
mVolumeSIMD[0] = u4_28_from_float(clampFloatVol(left));
mVolumeSIMD[1] = u4_28_from_float(clampFloatVol(right));
}
size_t AudioResamplerSinc::resample(int32_t* out, size_t outFrameCount,
AudioBufferProvider* provider)
{
// FIXME store current state (up or down sample) and only load the coefs when the state
// changes. Or load two pointers one for up and one for down in the init function.
// Not critical now since the read functions are fast, but would be important if read was slow.
if (mConstants == &veryHighQualityConstants && readResampleCoefficients) {
mFirCoefs = readResampleCoefficients( mInSampleRate <= mSampleRate );
} else {
mFirCoefs = (const int32_t *)
((mInSampleRate <= mSampleRate) ? mFirCoefsUp : mFirCoefsDown);
}
// select the appropriate resampler
switch (mChannelCount) {
case 1:
return resample<1>(out, outFrameCount, provider);
case 2:
return resample<2>(out, outFrameCount, provider);
default:
LOG_ALWAYS_FATAL("invalid channel count: %d", mChannelCount);
return 0;
}
}
template<int CHANNELS>
size_t AudioResamplerSinc::resample(int32_t* out, size_t outFrameCount,
AudioBufferProvider* provider)
{
const Constants& c(*mConstants);
const size_t headOffset = c.halfNumCoefs*CHANNELS;
int16_t* impulse = mImpulse;
uint32_t vRL = mVolumeRL;
size_t inputIndex = mInputIndex;
uint32_t phaseFraction = mPhaseFraction;
uint32_t phaseIncrement = mPhaseIncrement;
size_t outputIndex = 0;
size_t outputSampleCount = outFrameCount * 2;
size_t inFrameCount = getInFrameCountRequired(outFrameCount);
while (outputIndex < outputSampleCount) {
// buffer is empty, fetch a new one
while (mBuffer.frameCount == 0) {
mBuffer.frameCount = inFrameCount;
provider->getNextBuffer(&mBuffer);
if (mBuffer.raw == NULL) {
goto resample_exit;
}
const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
if (phaseIndex == 1) {
// read one frame
read<CHANNELS>(impulse, phaseFraction, mBuffer.i16, inputIndex);
} else if (phaseIndex == 2) {
// read 2 frames
read<CHANNELS>(impulse, phaseFraction, mBuffer.i16, inputIndex);
inputIndex++;
if (inputIndex >= mBuffer.frameCount) {
inputIndex -= mBuffer.frameCount;
provider->releaseBuffer(&mBuffer);
} else {
read<CHANNELS>(impulse, phaseFraction, mBuffer.i16, inputIndex);
}
}
}
int16_t const * const in = mBuffer.i16;
const size_t frameCount = mBuffer.frameCount;
// Always read-in the first samples from the input buffer
int16_t* head = impulse + headOffset;
for (size_t i=0 ; i<CHANNELS ; i++) {
head[i] = in[inputIndex*CHANNELS + i];
}
// handle boundary case
while (CC_LIKELY(outputIndex < outputSampleCount)) {
filterCoefficient<CHANNELS>(&out[outputIndex], phaseFraction, impulse, vRL);
outputIndex += 2;
phaseFraction += phaseIncrement;
const size_t phaseIndex = phaseFraction >> kNumPhaseBits;
for (size_t i=0 ; i<phaseIndex ; i++) {
inputIndex++;
if (inputIndex >= frameCount) {
goto done; // need a new buffer
}
read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
}
}
done:
// if done with buffer, save samples
if (inputIndex >= frameCount) {
inputIndex -= frameCount;
provider->releaseBuffer(&mBuffer);
}
}
resample_exit:
mImpulse = impulse;
mInputIndex = inputIndex;
mPhaseFraction = phaseFraction;
return outputIndex / CHANNELS;
}
template<int CHANNELS>
/***
* read()
*
* This function reads only one frame from input buffer and writes it in
* state buffer
*
**/
void AudioResamplerSinc::read(
int16_t*& impulse, uint32_t& phaseFraction,
const int16_t* in, size_t inputIndex)
{
impulse += CHANNELS;
phaseFraction -= 1LU<<kNumPhaseBits;
const Constants& c(*mConstants);
if (CC_UNLIKELY(impulse >= mRingFull)) {
const size_t stateSize = (c.halfNumCoefs*2)*CHANNELS;
memcpy(mState, mState+stateSize, sizeof(int16_t)*stateSize);
impulse -= stateSize;
}
int16_t* head = impulse + c.halfNumCoefs*CHANNELS;
for (size_t i=0 ; i<CHANNELS ; i++) {
head[i] = in[inputIndex*CHANNELS + i];
}
}
template<int CHANNELS>
void AudioResamplerSinc::filterCoefficient(int32_t* out, uint32_t phase,
const int16_t *samples, uint32_t vRL)
{
// NOTE: be very careful when modifying the code here. register
// pressure is very high and a small change might cause the compiler
// to generate far less efficient code.
// Always sanity check the result with objdump or test-resample.
// compute the index of the coefficient on the positive side and
// negative side
const Constants& c(*mConstants);
const int32_t ONE = c.cMask | c.pMask;
uint32_t indexP = ( phase & c.cMask) >> c.cShift;
uint32_t lerpP = ( phase & c.pMask) >> c.pShift;
uint32_t indexN = ((ONE-phase) & c.cMask) >> c.cShift;
uint32_t lerpN = ((ONE-phase) & c.pMask) >> c.pShift;
const size_t offset = c.halfNumCoefs;
indexP *= offset;
indexN *= offset;
int32_t const* coefsP = mFirCoefs + indexP;
int32_t const* coefsN = mFirCoefs + indexN;
int16_t const* sP = samples;
int16_t const* sN = samples + CHANNELS;
size_t count = offset;
#if !USE_NEON
int32_t l = 0;
int32_t r = 0;
for (size_t i=0 ; i<count ; i++) {
interpolate<CHANNELS>(l, r, coefsP++, offset, lerpP, sP);
sP -= CHANNELS;
interpolate<CHANNELS>(l, r, coefsN++, offset, lerpN, sN);
sN += CHANNELS;
}
out[0] += 2 * mulRL(1, l, vRL);
out[1] += 2 * mulRL(0, r, vRL);
#else
UNUSED(vRL);
if (CHANNELS == 1) {
int32_t const* coefsP1 = coefsP + offset;
int32_t const* coefsN1 = coefsN + offset;
sP -= CHANNELS*3;
int32x4_t sum;
int32x2_t lerpPN;
lerpPN = vdup_n_s32(0);
lerpPN = vld1_lane_s32((int32_t *)&lerpP, lerpPN, 0);
lerpPN = vld1_lane_s32((int32_t *)&lerpN, lerpPN, 1);
lerpPN = vshl_n_s32(lerpPN, 16);
sum = vdupq_n_s32(0);
int16x4_t sampleP, sampleN;
int32x4_t samplePExt, sampleNExt;
int32x4_t coefsPV0, coefsPV1, coefsNV0, coefsNV1;
coefsP = (const int32_t*)__builtin_assume_aligned(coefsP, 16);
coefsN = (const int32_t*)__builtin_assume_aligned(coefsN, 16);
coefsP1 = (const int32_t*)__builtin_assume_aligned(coefsP1, 16);
coefsN1 = (const int32_t*)__builtin_assume_aligned(coefsN1, 16);
for (; count > 0; count -= 4) {
sampleP = vld1_s16(sP);
sampleN = vld1_s16(sN);
coefsPV0 = vld1q_s32(coefsP);
coefsNV0 = vld1q_s32(coefsN);
coefsPV1 = vld1q_s32(coefsP1);
coefsNV1 = vld1q_s32(coefsN1);
sP -= 4;
sN += 4;
coefsP += 4;
coefsN += 4;
coefsP1 += 4;
coefsN1 += 4;
sampleP = vrev64_s16(sampleP);
// interpolate (step1)
coefsPV1 = vsubq_s32(coefsPV1, coefsPV0);
coefsNV1 = vsubq_s32(coefsNV1, coefsNV0);
samplePExt = vshll_n_s16(sampleP, 15);
// interpolate (step2)
coefsPV1 = vqrdmulhq_lane_s32(coefsPV1, lerpPN, 0);
coefsNV1 = vqrdmulhq_lane_s32(coefsNV1, lerpPN, 1);
sampleNExt = vshll_n_s16(sampleN, 15);
// interpolate (step3)
coefsPV0 = vaddq_s32(coefsPV0, coefsPV1);
coefsNV0 = vaddq_s32(coefsNV0, coefsNV1);
samplePExt = vqrdmulhq_s32(samplePExt, coefsPV0);
sampleNExt = vqrdmulhq_s32(sampleNExt, coefsNV0);
sum = vaddq_s32(sum, samplePExt);
sum = vaddq_s32(sum, sampleNExt);
}
int32x2_t volumesV, outV;
volumesV = vld1_s32(mVolumeSIMD);
outV = vld1_s32(out);
//add all 4 partial sums
int32x2_t sumLow, sumHigh;
sumLow = vget_low_s32(sum);
sumHigh = vget_high_s32(sum);
sumLow = vpadd_s32(sumLow, sumHigh);
sumLow = vpadd_s32(sumLow, sumLow);
sumLow = vqrdmulh_s32(sumLow, volumesV);
outV = vadd_s32(outV, sumLow);
vst1_s32(out, outV);
} else if (CHANNELS == 2) {
int32_t const* coefsP1 = coefsP + offset;
int32_t const* coefsN1 = coefsN + offset;
sP -= CHANNELS*3;
int32x4_t sum0, sum1;
int32x2_t lerpPN;
lerpPN = vdup_n_s32(0);
lerpPN = vld1_lane_s32((int32_t *)&lerpP, lerpPN, 0);
lerpPN = vld1_lane_s32((int32_t *)&lerpN, lerpPN, 1);
lerpPN = vshl_n_s32(lerpPN, 16);
sum0 = vdupq_n_s32(0);
sum1 = vdupq_n_s32(0);
int16x4x2_t sampleP, sampleN;
int32x4x2_t samplePExt, sampleNExt;
int32x4_t coefsPV0, coefsPV1, coefsNV0, coefsNV1;
coefsP = (const int32_t*)__builtin_assume_aligned(coefsP, 16);
coefsN = (const int32_t*)__builtin_assume_aligned(coefsN, 16);
coefsP1 = (const int32_t*)__builtin_assume_aligned(coefsP1, 16);
coefsN1 = (const int32_t*)__builtin_assume_aligned(coefsN1, 16);
for (; count > 0; count -= 4) {
sampleP = vld2_s16(sP);
sampleN = vld2_s16(sN);
coefsPV0 = vld1q_s32(coefsP);
coefsNV0 = vld1q_s32(coefsN);
coefsPV1 = vld1q_s32(coefsP1);
coefsNV1 = vld1q_s32(coefsN1);
sP -= 8;
sN += 8;
coefsP += 4;
coefsN += 4;
coefsP1 += 4;
coefsN1 += 4;
sampleP.val[0] = vrev64_s16(sampleP.val[0]);
sampleP.val[1] = vrev64_s16(sampleP.val[1]);
// interpolate (step1)
coefsPV1 = vsubq_s32(coefsPV1, coefsPV0);
coefsNV1 = vsubq_s32(coefsNV1, coefsNV0);
samplePExt.val[0] = vshll_n_s16(sampleP.val[0], 15);
samplePExt.val[1] = vshll_n_s16(sampleP.val[1], 15);
// interpolate (step2)
coefsPV1 = vqrdmulhq_lane_s32(coefsPV1, lerpPN, 0);
coefsNV1 = vqrdmulhq_lane_s32(coefsNV1, lerpPN, 1);
sampleNExt.val[0] = vshll_n_s16(sampleN.val[0], 15);
sampleNExt.val[1] = vshll_n_s16(sampleN.val[1], 15);
// interpolate (step3)
coefsPV0 = vaddq_s32(coefsPV0, coefsPV1);
coefsNV0 = vaddq_s32(coefsNV0, coefsNV1);
samplePExt.val[0] = vqrdmulhq_s32(samplePExt.val[0], coefsPV0);
samplePExt.val[1] = vqrdmulhq_s32(samplePExt.val[1], coefsPV0);
sampleNExt.val[0] = vqrdmulhq_s32(sampleNExt.val[0], coefsNV0);
sampleNExt.val[1] = vqrdmulhq_s32(sampleNExt.val[1], coefsNV0);
sum0 = vaddq_s32(sum0, samplePExt.val[0]);
sum1 = vaddq_s32(sum1, samplePExt.val[1]);
sum0 = vaddq_s32(sum0, sampleNExt.val[0]);
sum1 = vaddq_s32(sum1, sampleNExt.val[1]);
}
int32x2_t volumesV, outV;
volumesV = vld1_s32(mVolumeSIMD);
outV = vld1_s32(out);
//add all 4 partial sums
int32x2_t sumLow0, sumHigh0, sumLow1, sumHigh1;
sumLow0 = vget_low_s32(sum0);
sumHigh0 = vget_high_s32(sum0);
sumLow1 = vget_low_s32(sum1);
sumHigh1 = vget_high_s32(sum1);
sumLow0 = vpadd_s32(sumLow0, sumHigh0);
sumLow0 = vpadd_s32(sumLow0, sumLow0);
sumLow1 = vpadd_s32(sumLow1, sumHigh1);
sumLow1 = vpadd_s32(sumLow1, sumLow1);
sumLow0 = vtrn_s32(sumLow0, sumLow1).val[0];
sumLow0 = vqrdmulh_s32(sumLow0, volumesV);
outV = vadd_s32(outV, sumLow0);
vst1_s32(out, outV);
}
#endif
}
template<int CHANNELS>
void AudioResamplerSinc::interpolate(
int32_t& l, int32_t& r,
const int32_t* coefs, size_t offset,
int32_t lerp, const int16_t* samples)
{
int32_t c0 = coefs[0];
int32_t c1 = coefs[offset];
int32_t sinc = mulAdd(lerp, (c1-c0)<<1, c0);
if (CHANNELS == 2) {
uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
l = mulAddRL(1, rl, sinc, l);
r = mulAddRL(0, rl, sinc, r);
} else {
r = l = mulAdd(samples[0], sinc, l);
}
}
// ----------------------------------------------------------------------------
} // namespace android