| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <sys/stat.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <time.h> |
| #include <math.h> |
| #include <audio_utils/primitives.h> |
| #include <audio_utils/sndfile.h> |
| #include <utils/Vector.h> |
| #include <media/AudioBufferProvider.h> |
| #include <media/AudioResampler.h> |
| |
| using namespace android; |
| |
| static bool gVerbose = false; |
| |
| static int usage(const char* name) { |
| fprintf(stderr,"Usage: %s [-p] [-f] [-F] [-v] [-c channels]" |
| " [-q {dq|lq|mq|hq|vhq|dlq|dmq|dhq}]" |
| " [-i input-sample-rate] [-o output-sample-rate]" |
| " [-O csv] [-P csv] [<input-file>]" |
| " <output-file>\n", name); |
| fprintf(stderr," -p enable profiling\n"); |
| fprintf(stderr," -f enable filter profiling\n"); |
| fprintf(stderr," -F enable floating point -q {dlq|dmq|dhq} only"); |
| fprintf(stderr," -v verbose : log buffer provider calls\n"); |
| fprintf(stderr," -c # channels (1-2 for lq|mq|hq; 1-8 for dlq|dmq|dhq)\n"); |
| fprintf(stderr," -q resampler quality\n"); |
| fprintf(stderr," dq : default quality\n"); |
| fprintf(stderr," lq : low quality\n"); |
| fprintf(stderr," mq : medium quality\n"); |
| fprintf(stderr," hq : high quality\n"); |
| fprintf(stderr," vhq : very high quality\n"); |
| fprintf(stderr," dlq : dynamic low quality\n"); |
| fprintf(stderr," dmq : dynamic medium quality\n"); |
| fprintf(stderr," dhq : dynamic high quality\n"); |
| fprintf(stderr," -i input file sample rate (ignored if input file is specified)\n"); |
| fprintf(stderr," -o output file sample rate\n"); |
| fprintf(stderr," -O # frames output per call to resample() in CSV format\n"); |
| fprintf(stderr," -P # frames provided per call to resample() in CSV format\n"); |
| return -1; |
| } |
| |
| // Convert a list of integers in CSV format to a Vector of those values. |
| // Returns the number of elements in the list, or -1 on error. |
| int parseCSV(const char *string, Vector<int>& values) |
| { |
| // pass 1: count the number of values and do syntax check |
| size_t numValues = 0; |
| bool hadDigit = false; |
| for (const char *p = string; ; ) { |
| switch (*p++) { |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| hadDigit = true; |
| break; |
| case '\0': |
| if (hadDigit) { |
| // pass 2: allocate and initialize vector of values |
| values.resize(++numValues); |
| values.editItemAt(0) = atoi(p = optarg); |
| for (size_t i = 1; i < numValues; ) { |
| if (*p++ == ',') { |
| values.editItemAt(i++) = atoi(p); |
| } |
| } |
| return numValues; |
| } |
| // fall through |
| case ',': |
| if (hadDigit) { |
| hadDigit = false; |
| numValues++; |
| break; |
| } |
| // fall through |
| default: |
| return -1; |
| } |
| } |
| } |
| |
| int main(int argc, char* argv[]) { |
| const char* const progname = argv[0]; |
| bool profileResample = false; |
| bool profileFilter = false; |
| bool useFloat = false; |
| int channels = 1; |
| int input_freq = 0; |
| int output_freq = 0; |
| AudioResampler::src_quality quality = AudioResampler::DEFAULT_QUALITY; |
| Vector<int> Ovalues; |
| Vector<int> Pvalues; |
| |
| int ch; |
| while ((ch = getopt(argc, argv, "pfFvc:q:i:o:O:P:")) != -1) { |
| switch (ch) { |
| case 'p': |
| profileResample = true; |
| break; |
| case 'f': |
| profileFilter = true; |
| break; |
| case 'F': |
| useFloat = true; |
| break; |
| case 'v': |
| gVerbose = true; |
| break; |
| case 'c': |
| channels = atoi(optarg); |
| break; |
| case 'q': |
| if (!strcmp(optarg, "dq")) |
| quality = AudioResampler::DEFAULT_QUALITY; |
| else if (!strcmp(optarg, "lq")) |
| quality = AudioResampler::LOW_QUALITY; |
| else if (!strcmp(optarg, "mq")) |
| quality = AudioResampler::MED_QUALITY; |
| else if (!strcmp(optarg, "hq")) |
| quality = AudioResampler::HIGH_QUALITY; |
| else if (!strcmp(optarg, "vhq")) |
| quality = AudioResampler::VERY_HIGH_QUALITY; |
| else if (!strcmp(optarg, "dlq")) |
| quality = AudioResampler::DYN_LOW_QUALITY; |
| else if (!strcmp(optarg, "dmq")) |
| quality = AudioResampler::DYN_MED_QUALITY; |
| else if (!strcmp(optarg, "dhq")) |
| quality = AudioResampler::DYN_HIGH_QUALITY; |
| else { |
| usage(progname); |
| return -1; |
| } |
| break; |
| case 'i': |
| input_freq = atoi(optarg); |
| break; |
| case 'o': |
| output_freq = atoi(optarg); |
| break; |
| case 'O': |
| if (parseCSV(optarg, Ovalues) < 0) { |
| fprintf(stderr, "incorrect syntax for -O option\n"); |
| return -1; |
| } |
| break; |
| case 'P': |
| if (parseCSV(optarg, Pvalues) < 0) { |
| fprintf(stderr, "incorrect syntax for -P option\n"); |
| return -1; |
| } |
| break; |
| case '?': |
| default: |
| usage(progname); |
| return -1; |
| } |
| } |
| |
| if (channels < 1 |
| || channels > (quality < AudioResampler::DYN_LOW_QUALITY ? 2 : 8)) { |
| fprintf(stderr, "invalid number of audio channels %d\n", channels); |
| return -1; |
| } |
| if (useFloat && quality < AudioResampler::DYN_LOW_QUALITY) { |
| fprintf(stderr, "float processing is only possible for dynamic resamplers\n"); |
| return -1; |
| } |
| |
| argc -= optind; |
| argv += optind; |
| |
| const char* file_in = NULL; |
| const char* file_out = NULL; |
| if (argc == 1) { |
| file_out = argv[0]; |
| } else if (argc == 2) { |
| file_in = argv[0]; |
| file_out = argv[1]; |
| } else { |
| usage(progname); |
| return -1; |
| } |
| |
| // ---------------------------------------------------------- |
| |
| size_t input_size; |
| void* input_vaddr; |
| if (argc == 2) { |
| SF_INFO info; |
| info.format = 0; |
| SNDFILE *sf = sf_open(file_in, SFM_READ, &info); |
| if (sf == NULL) { |
| perror(file_in); |
| return EXIT_FAILURE; |
| } |
| input_size = info.frames * info.channels * sizeof(short); |
| input_vaddr = malloc(input_size); |
| (void) sf_readf_short(sf, (short *) input_vaddr, info.frames); |
| sf_close(sf); |
| channels = info.channels; |
| input_freq = info.samplerate; |
| } else { |
| // data for testing is exactly (input sampling rate/1000)/2 seconds |
| // so 44.1khz input is 22.05 seconds |
| double k = 1000; // Hz / s |
| double time = (input_freq / 2) / k; |
| size_t input_frames = size_t(input_freq * time); |
| input_size = channels * sizeof(int16_t) * input_frames; |
| input_vaddr = malloc(input_size); |
| int16_t* in = (int16_t*)input_vaddr; |
| for (size_t i=0 ; i<input_frames ; i++) { |
| double t = double(i) / input_freq; |
| double y = sin(M_PI * k * t * t); |
| int16_t yi = floor(y * 32767.0 + 0.5); |
| for (int j = 0; j < channels; j++) { |
| in[i*channels + j] = yi / (1 + j); |
| } |
| } |
| } |
| size_t input_framesize = channels * sizeof(int16_t); |
| size_t input_frames = input_size / input_framesize; |
| |
| // For float processing, convert input int16_t to float array |
| if (useFloat) { |
| void *new_vaddr; |
| |
| input_framesize = channels * sizeof(float); |
| input_size = input_frames * input_framesize; |
| new_vaddr = malloc(input_size); |
| memcpy_to_float_from_i16(reinterpret_cast<float*>(new_vaddr), |
| reinterpret_cast<int16_t*>(input_vaddr), input_frames * channels); |
| free(input_vaddr); |
| input_vaddr = new_vaddr; |
| } |
| |
| // ---------------------------------------------------------- |
| |
| class Provider: public AudioBufferProvider { |
| const void* mAddr; // base address |
| const size_t mNumFrames; // total frames |
| const size_t mFrameSize; // size of each frame in bytes |
| size_t mNextFrame; // index of next frame to provide |
| size_t mUnrel; // number of frames not yet released |
| const Vector<int> mPvalues; // number of frames provided per call |
| size_t mNextPidx; // index of next entry in mPvalues to use |
| public: |
| Provider(const void* addr, size_t frames, size_t frameSize, const Vector<int>& Pvalues) |
| : mAddr(addr), |
| mNumFrames(frames), |
| mFrameSize(frameSize), |
| mNextFrame(0), mUnrel(0), mPvalues(Pvalues), mNextPidx(0) { |
| } |
| virtual status_t getNextBuffer(Buffer* buffer) { |
| size_t requestedFrames = buffer->frameCount; |
| if (requestedFrames > mNumFrames - mNextFrame) { |
| buffer->frameCount = mNumFrames - mNextFrame; |
| } |
| if (!mPvalues.isEmpty()) { |
| size_t provided = mPvalues[mNextPidx++]; |
| printf("mPvalue[%zu]=%zu not %zu\n", mNextPidx-1, provided, buffer->frameCount); |
| if (provided < buffer->frameCount) { |
| buffer->frameCount = provided; |
| } |
| if (mNextPidx >= mPvalues.size()) { |
| mNextPidx = 0; |
| } |
| } |
| if (gVerbose) { |
| printf("getNextBuffer() requested %zu frames out of %zu frames available," |
| " and returned %zu frames\n", |
| requestedFrames, (size_t) (mNumFrames - mNextFrame), buffer->frameCount); |
| } |
| mUnrel = buffer->frameCount; |
| if (buffer->frameCount > 0) { |
| buffer->raw = (char *)mAddr + mFrameSize * mNextFrame; |
| return NO_ERROR; |
| } else { |
| buffer->raw = NULL; |
| return NOT_ENOUGH_DATA; |
| } |
| } |
| virtual void releaseBuffer(Buffer* buffer) { |
| if (buffer->frameCount > mUnrel) { |
| fprintf(stderr, "ERROR releaseBuffer() released %zu frames but only %zu available " |
| "to release\n", buffer->frameCount, mUnrel); |
| mNextFrame += mUnrel; |
| mUnrel = 0; |
| } else { |
| if (gVerbose) { |
| printf("releaseBuffer() released %zu frames out of %zu frames available " |
| "to release\n", buffer->frameCount, mUnrel); |
| } |
| mNextFrame += buffer->frameCount; |
| mUnrel -= buffer->frameCount; |
| } |
| buffer->frameCount = 0; |
| buffer->raw = NULL; |
| } |
| void reset() { |
| mNextFrame = 0; |
| } |
| } provider(input_vaddr, input_frames, input_framesize, Pvalues); |
| |
| if (gVerbose) { |
| printf("%zu input frames\n", input_frames); |
| } |
| |
| audio_format_t format = useFloat ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT; |
| int output_channels = channels > 2 ? channels : 2; // output is at least stereo samples |
| size_t output_framesize = output_channels * (useFloat ? sizeof(float) : sizeof(int32_t)); |
| size_t output_frames = ((int64_t) input_frames * output_freq) / input_freq; |
| size_t output_size = output_frames * output_framesize; |
| |
| if (profileFilter) { |
| // Check how fast sample rate changes are that require filter changes. |
| // The delta sample rate changes must indicate a downsampling ratio, |
| // and must be larger than 10% changes. |
| // |
| // On fast devices, filters should be generated between 0.1ms - 1ms. |
| // (single threaded). |
| AudioResampler* resampler = AudioResampler::create(format, channels, |
| 8000, quality); |
| int looplimit = 100; |
| timespec start, end; |
| clock_gettime(CLOCK_MONOTONIC, &start); |
| for (int i = 0; i < looplimit; ++i) { |
| resampler->setSampleRate(9000); |
| resampler->setSampleRate(12000); |
| resampler->setSampleRate(20000); |
| resampler->setSampleRate(30000); |
| } |
| clock_gettime(CLOCK_MONOTONIC, &end); |
| int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec; |
| int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec; |
| int64_t time = end_ns - start_ns; |
| printf("%.2f sample rate changes with filter calculation/sec\n", |
| looplimit * 4 / (time / 1e9)); |
| |
| // Check how fast sample rate changes are without filter changes. |
| // This should be very fast, probably 0.1us - 1us per sample rate |
| // change. |
| resampler->setSampleRate(1000); |
| looplimit = 1000; |
| clock_gettime(CLOCK_MONOTONIC, &start); |
| for (int i = 0; i < looplimit; ++i) { |
| resampler->setSampleRate(1000+i); |
| } |
| clock_gettime(CLOCK_MONOTONIC, &end); |
| start_ns = start.tv_sec * 1000000000LL + start.tv_nsec; |
| end_ns = end.tv_sec * 1000000000LL + end.tv_nsec; |
| time = end_ns - start_ns; |
| printf("%.2f sample rate changes without filter calculation/sec\n", |
| looplimit / (time / 1e9)); |
| resampler->reset(); |
| delete resampler; |
| } |
| |
| void* output_vaddr = malloc(output_size); |
| AudioResampler* resampler = AudioResampler::create(format, channels, |
| output_freq, quality); |
| |
| resampler->setSampleRate(input_freq); |
| resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT); |
| |
| if (profileResample) { |
| /* |
| * For profiling on mobile devices, upon experimentation |
| * it is better to run a few trials with a shorter loop limit, |
| * and take the minimum time. |
| * |
| * Long tests can cause CPU temperature to build up and thermal throttling |
| * to reduce CPU frequency. |
| * |
| * For frequency checks (index=0, or 1, etc.): |
| * "cat /sys/devices/system/cpu/cpu${index}/cpufreq/scaling_*_freq" |
| * |
| * For temperature checks (index=0, or 1, etc.): |
| * "cat /sys/class/thermal/thermal_zone${index}/temp" |
| * |
| * Another way to avoid thermal throttling is to fix the CPU frequency |
| * at a lower level which prevents excessive temperatures. |
| */ |
| const int trials = 4; |
| const int looplimit = 4; |
| timespec start, end; |
| int64_t time = 0; |
| |
| for (int n = 0; n < trials; ++n) { |
| clock_gettime(CLOCK_MONOTONIC, &start); |
| for (int i = 0; i < looplimit; ++i) { |
| resampler->resample((int*) output_vaddr, output_frames, &provider); |
| provider.reset(); // during benchmarking reset only the provider |
| } |
| clock_gettime(CLOCK_MONOTONIC, &end); |
| int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec; |
| int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec; |
| int64_t diff_ns = end_ns - start_ns; |
| if (n == 0 || diff_ns < time) { |
| time = diff_ns; // save the best out of our trials. |
| } |
| } |
| // Mfrms/s is "Millions of output frames per second". |
| printf("quality: %d channels: %d msec: %" PRId64 " Mfrms/s: %.2lf\n", |
| quality, channels, time/1000000, output_frames * looplimit / (time / 1e9) / 1e6); |
| resampler->reset(); |
| |
| // TODO fix legacy bug: reset does not clear buffers. |
| // delete and recreate resampler here. |
| delete resampler; |
| resampler = AudioResampler::create(format, channels, |
| output_freq, quality); |
| resampler->setSampleRate(input_freq); |
| resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT); |
| } |
| |
| memset(output_vaddr, 0, output_size); |
| if (gVerbose) { |
| printf("resample() %zu output frames\n", output_frames); |
| } |
| if (Ovalues.isEmpty()) { |
| Ovalues.push(output_frames); |
| } |
| for (size_t i = 0, j = 0; i < output_frames; ) { |
| size_t thisFrames = Ovalues[j++]; |
| if (j >= Ovalues.size()) { |
| j = 0; |
| } |
| if (thisFrames == 0 || thisFrames > output_frames - i) { |
| thisFrames = output_frames - i; |
| } |
| resampler->resample((int*) output_vaddr + output_channels*i, thisFrames, &provider); |
| i += thisFrames; |
| } |
| if (gVerbose) { |
| printf("resample() complete\n"); |
| } |
| resampler->reset(); |
| if (gVerbose) { |
| printf("reset() complete\n"); |
| } |
| delete resampler; |
| resampler = NULL; |
| |
| // For float processing, convert output format from float to Q4.27, |
| // which is then converted to int16_t for final storage. |
| if (useFloat) { |
| memcpy_to_q4_27_from_float(reinterpret_cast<int32_t*>(output_vaddr), |
| reinterpret_cast<float*>(output_vaddr), output_frames * output_channels); |
| } |
| |
| // mono takes left channel only (out of stereo output pair) |
| // stereo and multichannel preserve all channels. |
| int32_t* out = (int32_t*) output_vaddr; |
| int16_t* convert = (int16_t*) malloc(output_frames * channels * sizeof(int16_t)); |
| |
| const int volumeShift = 12; // shift requirement for Q4.27 to Q.15 |
| // round to half towards zero and saturate at int16 (non-dithered) |
| const int roundVal = (1<<(volumeShift-1)) - 1; // volumePrecision > 0 |
| |
| for (size_t i = 0; i < output_frames; i++) { |
| for (int j = 0; j < channels; j++) { |
| int32_t s = out[i * output_channels + j] + roundVal; // add offset here |
| if (s < 0) { |
| s = (s + 1) >> volumeShift; // round to 0 |
| if (s < -32768) { |
| s = -32768; |
| } |
| } else { |
| s = s >> volumeShift; |
| if (s > 32767) { |
| s = 32767; |
| } |
| } |
| convert[i * channels + j] = int16_t(s); |
| } |
| } |
| |
| // write output to disk |
| SF_INFO info; |
| info.frames = 0; |
| info.samplerate = output_freq; |
| info.channels = channels; |
| info.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16; |
| SNDFILE *sf = sf_open(file_out, SFM_WRITE, &info); |
| if (sf == NULL) { |
| perror(file_out); |
| return EXIT_FAILURE; |
| } |
| (void) sf_writef_short(sf, convert, output_frames); |
| sf_close(sf); |
| |
| return EXIT_SUCCESS; |
| } |