blob: 18addb54bb16b2c283cd06b3119bcaa7fd5d2050 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera2-Parameters"
#define ATRACE_TAG ATRACE_TAG_CAMERA
// #define LOG_NDEBUG 0
#include <utils/Log.h>
#include <utils/Trace.h>
#include <utils/Vector.h>
#include <utils/SortedVector.h>
#include <math.h>
#include <stdlib.h>
#include <cutils/properties.h>
#include "Parameters.h"
#include "system/camera.h"
#include "hardware/camera_common.h"
#include <android/hardware/ICamera.h>
#include <media/MediaProfiles.h>
#include <media/mediarecorder.h>
namespace android {
namespace camera2 {
Parameters::Parameters(int cameraId,
int cameraFacing) :
cameraId(cameraId),
cameraFacing(cameraFacing),
info(NULL),
mDefaultSceneMode(ANDROID_CONTROL_SCENE_MODE_DISABLED) {
}
Parameters::~Parameters() {
}
status_t Parameters::initialize(CameraDeviceBase *device, int deviceVersion) {
status_t res;
if (device == nullptr) {
ALOGE("%s: device is null!", __FUNCTION__);
return BAD_VALUE;
}
const CameraMetadata& info = device->info();
if (info.entryCount() == 0) {
ALOGE("%s: No static information provided!", __FUNCTION__);
return BAD_VALUE;
}
Parameters::info = &info;
mDeviceVersion = deviceVersion;
res = buildFastInfo(device);
if (res != OK) return res;
res = buildQuirks();
if (res != OK) return res;
Size maxPreviewSize = { MAX_PREVIEW_WIDTH, MAX_PREVIEW_HEIGHT };
// Treat the H.264 max size as the max supported video size.
MediaProfiles *videoEncoderProfiles = MediaProfiles::getInstance();
Vector<video_encoder> encoders = videoEncoderProfiles->getVideoEncoders();
int32_t maxVideoWidth = 0;
int32_t maxVideoHeight = 0;
for (size_t i = 0; i < encoders.size(); i++) {
int width = videoEncoderProfiles->getVideoEncoderParamByName(
"enc.vid.width.max", encoders[i]);
int height = videoEncoderProfiles->getVideoEncoderParamByName(
"enc.vid.height.max", encoders[i]);
// Treat width/height separately here to handle the case where different
// profile might report max size of different aspect ratio
if (width > maxVideoWidth) {
maxVideoWidth = width;
}
if (height > maxVideoHeight) {
maxVideoHeight = height;
}
}
// This is just an upper bound and may not be an actually valid video size
Size videoSizeUpperBound = {maxVideoWidth, maxVideoHeight};
if (fastInfo.supportsPreferredConfigs) {
maxPreviewSize = getMaxSize(getPreferredPreviewSizes());
videoSizeUpperBound = getMaxSize(getPreferredVideoSizes());
}
res = getFilteredSizes(maxPreviewSize, &availablePreviewSizes);
if (res != OK) return res;
res = getFilteredSizes(videoSizeUpperBound, &availableVideoSizes);
if (res != OK) return res;
// Select initial preview and video size that's under the initial bound and
// on the list of both preview and recording sizes
previewWidth = 0;
previewHeight = 0;
for (size_t i = 0 ; i < availablePreviewSizes.size(); i++) {
int newWidth = availablePreviewSizes[i].width;
int newHeight = availablePreviewSizes[i].height;
if (newWidth >= previewWidth && newHeight >= previewHeight &&
newWidth <= MAX_INITIAL_PREVIEW_WIDTH &&
newHeight <= MAX_INITIAL_PREVIEW_HEIGHT) {
for (size_t j = 0; j < availableVideoSizes.size(); j++) {
if (availableVideoSizes[j].width == newWidth &&
availableVideoSizes[j].height == newHeight) {
previewWidth = newWidth;
previewHeight = newHeight;
}
}
}
}
if (previewWidth == 0) {
ALOGE("%s: No initial preview size can be found!", __FUNCTION__);
return BAD_VALUE;
}
videoWidth = previewWidth;
videoHeight = previewHeight;
params.setPreviewSize(previewWidth, previewHeight);
params.setVideoSize(videoWidth, videoHeight);
params.set(CameraParameters::KEY_PREFERRED_PREVIEW_SIZE_FOR_VIDEO,
String8::format("%dx%d",
previewWidth, previewHeight));
{
String8 supportedPreviewSizes;
for (size_t i = 0; i < availablePreviewSizes.size(); i++) {
if (i != 0) supportedPreviewSizes += ",";
supportedPreviewSizes += String8::format("%dx%d",
availablePreviewSizes[i].width,
availablePreviewSizes[i].height);
}
ALOGV("Supported preview sizes are: %s", supportedPreviewSizes.string());
params.set(CameraParameters::KEY_SUPPORTED_PREVIEW_SIZES,
supportedPreviewSizes);
String8 supportedVideoSizes;
for (size_t i = 0; i < availableVideoSizes.size(); i++) {
if (i != 0) supportedVideoSizes += ",";
supportedVideoSizes += String8::format("%dx%d",
availableVideoSizes[i].width,
availableVideoSizes[i].height);
}
ALOGV("Supported video sizes are: %s", supportedVideoSizes.string());
params.set(CameraParameters::KEY_SUPPORTED_VIDEO_SIZES,
supportedVideoSizes);
}
camera_metadata_ro_entry_t availableFpsRanges =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES, 2);
if (!availableFpsRanges.count) return NO_INIT;
previewFormat = HAL_PIXEL_FORMAT_YCrCb_420_SP;
params.set(CameraParameters::KEY_PREVIEW_FORMAT,
formatEnumToString(previewFormat)); // NV21
previewTransform = degToTransform(0,
cameraFacing == CAMERA_FACING_FRONT);
{
String8 supportedPreviewFormats;
SortedVector<int32_t> outputFormats = getAvailableOutputFormats();
bool addComma = false;
for (size_t i=0; i < outputFormats.size(); i++) {
if (addComma) supportedPreviewFormats += ",";
addComma = true;
switch (outputFormats[i]) {
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_YUV422SP;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_YUV420SP;
break;
case HAL_PIXEL_FORMAT_YCbCr_422_I:
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_YUV422I;
break;
case HAL_PIXEL_FORMAT_YV12:
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_YUV420P;
break;
case HAL_PIXEL_FORMAT_RGB_565:
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_RGB565;
break;
case HAL_PIXEL_FORMAT_RGBA_8888:
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_RGBA8888;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_888:
// Flexible YUV allows both YV12 and NV21
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_YUV420P;
supportedPreviewFormats += ",";
supportedPreviewFormats +=
CameraParameters::PIXEL_FORMAT_YUV420SP;
break;
// Not advertizing JPEG, RAW16, etc, for preview formats
case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED:
case HAL_PIXEL_FORMAT_RAW16:
case HAL_PIXEL_FORMAT_BLOB:
addComma = false;
break;
default:
ALOGW("%s: Camera %d: Unknown preview format: %x",
__FUNCTION__, cameraId, outputFormats[i]);
addComma = false;
break;
}
}
params.set(CameraParameters::KEY_SUPPORTED_PREVIEW_FORMATS,
supportedPreviewFormats);
}
previewFpsRange[0] = fastInfo.bestStillCaptureFpsRange[0];
previewFpsRange[1] = fastInfo.bestStillCaptureFpsRange[1];
// PREVIEW_FRAME_RATE / SUPPORTED_PREVIEW_FRAME_RATES are deprecated, but
// still have to do something sane for them
// NOTE: Not scaled like FPS range values are.
int previewFps = fpsFromRange(previewFpsRange[0], previewFpsRange[1]);
params.set(CameraParameters::KEY_PREVIEW_FRAME_RATE,
previewFps);
// PREVIEW_FPS_RANGE
// -- Order matters. Set range after single value to so that a roundtrip
// of setParameters(getParameters()) would keep the FPS range in higher
// order.
params.set(CameraParameters::KEY_PREVIEW_FPS_RANGE,
String8::format("%d,%d",
previewFpsRange[0] * kFpsToApiScale,
previewFpsRange[1] * kFpsToApiScale));
{
String8 supportedPreviewFpsRange;
for (size_t i=0; i < availableFpsRanges.count; i += 2) {
if (!isFpsSupported(availablePreviewSizes,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, availableFpsRanges.data.i32[i+1])) {
continue;
}
if (supportedPreviewFpsRange.length() > 0) {
supportedPreviewFpsRange += ",";
}
supportedPreviewFpsRange += String8::format("(%d,%d)",
availableFpsRanges.data.i32[i] * kFpsToApiScale,
availableFpsRanges.data.i32[i+1] * kFpsToApiScale);
}
params.set(CameraParameters::KEY_SUPPORTED_PREVIEW_FPS_RANGE,
supportedPreviewFpsRange);
}
{
SortedVector<int32_t> sortedPreviewFrameRates;
String8 supportedPreviewFrameRates;
for (size_t i=0; i < availableFpsRanges.count; i += 2) {
// from the [min, max] fps range use the max value
int fps = fpsFromRange(availableFpsRanges.data.i32[i],
availableFpsRanges.data.i32[i+1]);
if (!isFpsSupported(availablePreviewSizes,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, fps)) {
continue;
}
// de-dupe frame rates
if (sortedPreviewFrameRates.indexOf(fps) == NAME_NOT_FOUND) {
sortedPreviewFrameRates.add(fps);
}
else {
continue;
}
if (sortedPreviewFrameRates.size() > 1) {
supportedPreviewFrameRates += ",";
}
supportedPreviewFrameRates += String8::format("%d",
fps);
ALOGV("%s: Supported preview frame rates: %s",
__FUNCTION__, supportedPreviewFrameRates.string());
}
params.set(CameraParameters::KEY_SUPPORTED_PREVIEW_FRAME_RATES,
supportedPreviewFrameRates);
}
Vector<Size> availableJpegSizes = getAvailableJpegSizes();
if (!availableJpegSizes.size()) return NO_INIT;
pictureWidth = availableJpegSizes[0].width;
pictureHeight = availableJpegSizes[0].height;
if (fastInfo.supportsPreferredConfigs) {
Size suggestedJpegSize = getMaxSize(getPreferredJpegSizes());
pictureWidth = suggestedJpegSize.width;
pictureHeight = suggestedJpegSize.height;
}
pictureWidthLastSet = pictureWidth;
pictureHeightLastSet = pictureHeight;
pictureSizeOverriden = false;
params.setPictureSize(pictureWidth,
pictureHeight);
{
String8 supportedPictureSizes;
for (size_t i=0; i < availableJpegSizes.size(); i++) {
if (i != 0) supportedPictureSizes += ",";
supportedPictureSizes += String8::format("%dx%d",
availableJpegSizes[i].width,
availableJpegSizes[i].height);
}
params.set(CameraParameters::KEY_SUPPORTED_PICTURE_SIZES,
supportedPictureSizes);
}
params.setPictureFormat(CameraParameters::PIXEL_FORMAT_JPEG);
params.set(CameraParameters::KEY_SUPPORTED_PICTURE_FORMATS,
CameraParameters::PIXEL_FORMAT_JPEG);
camera_metadata_ro_entry_t availableJpegThumbnailSizes =
staticInfo(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES, 4);
if (!availableJpegThumbnailSizes.count) return NO_INIT;
// Pick the largest thumbnail size that matches still image aspect ratio.
ALOG_ASSERT(pictureWidth > 0 && pictureHeight > 0,
"Invalid picture size, %d x %d", pictureWidth, pictureHeight);
float picAspectRatio = static_cast<float>(pictureWidth) / pictureHeight;
Size thumbnailSize =
getMaxSizeForRatio(
picAspectRatio,
&availableJpegThumbnailSizes.data.i32[0],
availableJpegThumbnailSizes.count);
jpegThumbSize[0] = thumbnailSize.width;
jpegThumbSize[1] = thumbnailSize.height;
params.set(CameraParameters::KEY_JPEG_THUMBNAIL_WIDTH,
jpegThumbSize[0]);
params.set(CameraParameters::KEY_JPEG_THUMBNAIL_HEIGHT,
jpegThumbSize[1]);
{
String8 supportedJpegThumbSizes;
for (size_t i=0; i < availableJpegThumbnailSizes.count; i += 2) {
if (i != 0) supportedJpegThumbSizes += ",";
supportedJpegThumbSizes += String8::format("%dx%d",
availableJpegThumbnailSizes.data.i32[i],
availableJpegThumbnailSizes.data.i32[i+1]);
}
params.set(CameraParameters::KEY_SUPPORTED_JPEG_THUMBNAIL_SIZES,
supportedJpegThumbSizes);
}
jpegThumbQuality = 90;
params.set(CameraParameters::KEY_JPEG_THUMBNAIL_QUALITY,
jpegThumbQuality);
jpegQuality = 90;
params.set(CameraParameters::KEY_JPEG_QUALITY,
jpegQuality);
jpegRotation = 0;
params.set(CameraParameters::KEY_ROTATION,
jpegRotation);
gpsEnabled = false;
gpsCoordinates[0] = 0.0;
gpsCoordinates[1] = 0.0;
gpsCoordinates[2] = 0.0;
gpsTimestamp = 0;
gpsProcessingMethod = "unknown";
// GPS fields in CameraParameters are not set by implementation
wbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
params.set(CameraParameters::KEY_WHITE_BALANCE,
CameraParameters::WHITE_BALANCE_AUTO);
camera_metadata_ro_entry_t availableWhiteBalanceModes =
staticInfo(ANDROID_CONTROL_AWB_AVAILABLE_MODES, 0, 0, false);
if (!availableWhiteBalanceModes.count) {
params.set(CameraParameters::KEY_SUPPORTED_WHITE_BALANCE,
CameraParameters::WHITE_BALANCE_AUTO);
} else {
String8 supportedWhiteBalance;
bool addComma = false;
for (size_t i=0; i < availableWhiteBalanceModes.count; i++) {
if (addComma) supportedWhiteBalance += ",";
addComma = true;
switch (availableWhiteBalanceModes.data.u8[i]) {
case ANDROID_CONTROL_AWB_MODE_AUTO:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_AUTO;
break;
case ANDROID_CONTROL_AWB_MODE_INCANDESCENT:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_INCANDESCENT;
break;
case ANDROID_CONTROL_AWB_MODE_FLUORESCENT:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_FLUORESCENT;
break;
case ANDROID_CONTROL_AWB_MODE_WARM_FLUORESCENT:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_WARM_FLUORESCENT;
break;
case ANDROID_CONTROL_AWB_MODE_DAYLIGHT:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_DAYLIGHT;
break;
case ANDROID_CONTROL_AWB_MODE_CLOUDY_DAYLIGHT:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_CLOUDY_DAYLIGHT;
break;
case ANDROID_CONTROL_AWB_MODE_TWILIGHT:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_TWILIGHT;
break;
case ANDROID_CONTROL_AWB_MODE_SHADE:
supportedWhiteBalance +=
CameraParameters::WHITE_BALANCE_SHADE;
break;
// Skipping values not mappable to v1 API
case ANDROID_CONTROL_AWB_MODE_OFF:
addComma = false;
break;
default:
ALOGW("%s: Camera %d: Unknown white balance value: %d",
__FUNCTION__, cameraId,
availableWhiteBalanceModes.data.u8[i]);
addComma = false;
break;
}
}
params.set(CameraParameters::KEY_SUPPORTED_WHITE_BALANCE,
supportedWhiteBalance);
}
effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
params.set(CameraParameters::KEY_EFFECT,
CameraParameters::EFFECT_NONE);
camera_metadata_ro_entry_t availableEffects =
staticInfo(ANDROID_CONTROL_AVAILABLE_EFFECTS, 0, 0, false);
if (!availableEffects.count) {
params.set(CameraParameters::KEY_SUPPORTED_EFFECTS,
CameraParameters::EFFECT_NONE);
} else {
String8 supportedEffects;
bool addComma = false;
for (size_t i=0; i < availableEffects.count; i++) {
if (addComma) supportedEffects += ",";
addComma = true;
switch (availableEffects.data.u8[i]) {
case ANDROID_CONTROL_EFFECT_MODE_OFF:
supportedEffects +=
CameraParameters::EFFECT_NONE;
break;
case ANDROID_CONTROL_EFFECT_MODE_MONO:
supportedEffects +=
CameraParameters::EFFECT_MONO;
break;
case ANDROID_CONTROL_EFFECT_MODE_NEGATIVE:
supportedEffects +=
CameraParameters::EFFECT_NEGATIVE;
break;
case ANDROID_CONTROL_EFFECT_MODE_SOLARIZE:
supportedEffects +=
CameraParameters::EFFECT_SOLARIZE;
break;
case ANDROID_CONTROL_EFFECT_MODE_SEPIA:
supportedEffects +=
CameraParameters::EFFECT_SEPIA;
break;
case ANDROID_CONTROL_EFFECT_MODE_POSTERIZE:
supportedEffects +=
CameraParameters::EFFECT_POSTERIZE;
break;
case ANDROID_CONTROL_EFFECT_MODE_WHITEBOARD:
supportedEffects +=
CameraParameters::EFFECT_WHITEBOARD;
break;
case ANDROID_CONTROL_EFFECT_MODE_BLACKBOARD:
supportedEffects +=
CameraParameters::EFFECT_BLACKBOARD;
break;
case ANDROID_CONTROL_EFFECT_MODE_AQUA:
supportedEffects +=
CameraParameters::EFFECT_AQUA;
break;
default:
ALOGW("%s: Camera %d: Unknown effect value: %d",
__FUNCTION__, cameraId, availableEffects.data.u8[i]);
addComma = false;
break;
}
}
params.set(CameraParameters::KEY_SUPPORTED_EFFECTS, supportedEffects);
}
antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
params.set(CameraParameters::KEY_ANTIBANDING,
CameraParameters::ANTIBANDING_AUTO);
camera_metadata_ro_entry_t availableAntibandingModes =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES, 0, 0, false);
if (!availableAntibandingModes.count) {
params.set(CameraParameters::KEY_SUPPORTED_ANTIBANDING,
CameraParameters::ANTIBANDING_OFF);
} else {
String8 supportedAntibanding;
bool addComma = false;
for (size_t i=0; i < availableAntibandingModes.count; i++) {
if (addComma) supportedAntibanding += ",";
addComma = true;
switch (availableAntibandingModes.data.u8[i]) {
case ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF:
supportedAntibanding +=
CameraParameters::ANTIBANDING_OFF;
break;
case ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ:
supportedAntibanding +=
CameraParameters::ANTIBANDING_50HZ;
break;
case ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ:
supportedAntibanding +=
CameraParameters::ANTIBANDING_60HZ;
break;
case ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO:
supportedAntibanding +=
CameraParameters::ANTIBANDING_AUTO;
break;
default:
ALOGW("%s: Camera %d: Unknown antibanding value: %d",
__FUNCTION__, cameraId,
availableAntibandingModes.data.u8[i]);
addComma = false;
break;
}
}
params.set(CameraParameters::KEY_SUPPORTED_ANTIBANDING,
supportedAntibanding);
}
sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
params.set(CameraParameters::KEY_SCENE_MODE,
CameraParameters::SCENE_MODE_AUTO);
camera_metadata_ro_entry_t availableSceneModes =
staticInfo(ANDROID_CONTROL_AVAILABLE_SCENE_MODES, 0, 0, false);
if (!availableSceneModes.count) {
params.remove(CameraParameters::KEY_SCENE_MODE);
} else {
String8 supportedSceneModes(CameraParameters::SCENE_MODE_AUTO);
bool addComma = true;
bool noSceneModes = false;
for (size_t i=0; i < availableSceneModes.count; i++) {
if (addComma) supportedSceneModes += ",";
addComma = true;
switch (availableSceneModes.data.u8[i]) {
case ANDROID_CONTROL_SCENE_MODE_DISABLED:
noSceneModes = true;
break;
case ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY:
// Face priority can be used as alternate default if supported.
// Per API contract it shouldn't override the user set flash,
// white balance and focus modes.
mDefaultSceneMode = availableSceneModes.data.u8[i];
// Not in old API
addComma = false;
break;
case ANDROID_CONTROL_SCENE_MODE_ACTION:
supportedSceneModes +=
CameraParameters::SCENE_MODE_ACTION;
break;
case ANDROID_CONTROL_SCENE_MODE_PORTRAIT:
supportedSceneModes +=
CameraParameters::SCENE_MODE_PORTRAIT;
break;
case ANDROID_CONTROL_SCENE_MODE_LANDSCAPE:
supportedSceneModes +=
CameraParameters::SCENE_MODE_LANDSCAPE;
break;
case ANDROID_CONTROL_SCENE_MODE_NIGHT:
supportedSceneModes +=
CameraParameters::SCENE_MODE_NIGHT;
break;
case ANDROID_CONTROL_SCENE_MODE_NIGHT_PORTRAIT:
supportedSceneModes +=
CameraParameters::SCENE_MODE_NIGHT_PORTRAIT;
break;
case ANDROID_CONTROL_SCENE_MODE_THEATRE:
supportedSceneModes +=
CameraParameters::SCENE_MODE_THEATRE;
break;
case ANDROID_CONTROL_SCENE_MODE_BEACH:
supportedSceneModes +=
CameraParameters::SCENE_MODE_BEACH;
break;
case ANDROID_CONTROL_SCENE_MODE_SNOW:
supportedSceneModes +=
CameraParameters::SCENE_MODE_SNOW;
break;
case ANDROID_CONTROL_SCENE_MODE_SUNSET:
supportedSceneModes +=
CameraParameters::SCENE_MODE_SUNSET;
break;
case ANDROID_CONTROL_SCENE_MODE_STEADYPHOTO:
supportedSceneModes +=
CameraParameters::SCENE_MODE_STEADYPHOTO;
break;
case ANDROID_CONTROL_SCENE_MODE_FIREWORKS:
supportedSceneModes +=
CameraParameters::SCENE_MODE_FIREWORKS;
break;
case ANDROID_CONTROL_SCENE_MODE_SPORTS:
supportedSceneModes +=
CameraParameters::SCENE_MODE_SPORTS;
break;
case ANDROID_CONTROL_SCENE_MODE_PARTY:
supportedSceneModes +=
CameraParameters::SCENE_MODE_PARTY;
break;
case ANDROID_CONTROL_SCENE_MODE_CANDLELIGHT:
supportedSceneModes +=
CameraParameters::SCENE_MODE_CANDLELIGHT;
break;
case ANDROID_CONTROL_SCENE_MODE_BARCODE:
supportedSceneModes +=
CameraParameters::SCENE_MODE_BARCODE;
break;
case ANDROID_CONTROL_SCENE_MODE_HDR:
supportedSceneModes +=
CameraParameters::SCENE_MODE_HDR;
break;
default:
ALOGW("%s: Camera %d: Unknown scene mode value: %d",
__FUNCTION__, cameraId,
availableSceneModes.data.u8[i]);
addComma = false;
break;
}
}
if (!noSceneModes) {
params.set(CameraParameters::KEY_SUPPORTED_SCENE_MODES,
supportedSceneModes);
} else {
params.remove(CameraParameters::KEY_SCENE_MODE);
}
}
bool isFlashAvailable = false;
camera_metadata_ro_entry_t flashAvailable =
staticInfo(ANDROID_FLASH_INFO_AVAILABLE, 0, 1, false);
if (flashAvailable.count) {
isFlashAvailable = flashAvailable.data.u8[0];
}
camera_metadata_ro_entry_t availableAeModes =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_MODES, 0, 0, false);
flashMode = Parameters::FLASH_MODE_OFF;
if (isFlashAvailable) {
params.set(CameraParameters::KEY_FLASH_MODE,
CameraParameters::FLASH_MODE_OFF);
String8 supportedFlashModes(CameraParameters::FLASH_MODE_OFF);
supportedFlashModes = supportedFlashModes +
"," + CameraParameters::FLASH_MODE_AUTO +
"," + CameraParameters::FLASH_MODE_ON +
"," + CameraParameters::FLASH_MODE_TORCH;
for (size_t i=0; i < availableAeModes.count; i++) {
if (availableAeModes.data.u8[i] ==
ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE) {
supportedFlashModes = supportedFlashModes + "," +
CameraParameters::FLASH_MODE_RED_EYE;
break;
}
}
params.set(CameraParameters::KEY_SUPPORTED_FLASH_MODES,
supportedFlashModes);
} else {
// No flash means null flash mode and supported flash modes keys, so
// remove them just to be safe
params.remove(CameraParameters::KEY_FLASH_MODE);
params.remove(CameraParameters::KEY_SUPPORTED_FLASH_MODES);
}
camera_metadata_ro_entry_t minFocusDistance =
staticInfo(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE, 0, 1, false);
camera_metadata_ro_entry_t availableAfModes =
staticInfo(ANDROID_CONTROL_AF_AVAILABLE_MODES, 0, 0, false);
if (!minFocusDistance.count || minFocusDistance.data.f[0] == 0) {
// Fixed-focus lens
focusMode = Parameters::FOCUS_MODE_FIXED;
params.set(CameraParameters::KEY_FOCUS_MODE,
CameraParameters::FOCUS_MODE_FIXED);
params.set(CameraParameters::KEY_SUPPORTED_FOCUS_MODES,
CameraParameters::FOCUS_MODE_FIXED);
} else {
focusMode = Parameters::FOCUS_MODE_AUTO;
params.set(CameraParameters::KEY_FOCUS_MODE,
CameraParameters::FOCUS_MODE_AUTO);
String8 supportedFocusModes;
bool addComma = false;
camera_metadata_ro_entry_t focusDistanceCalibration =
staticInfo(ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION, 0, 0, false);
if (focusDistanceCalibration.count &&
focusDistanceCalibration.data.u8[0] !=
ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION_UNCALIBRATED) {
supportedFocusModes += CameraParameters::FOCUS_MODE_INFINITY;
addComma = true;
}
for (size_t i=0; i < availableAfModes.count; i++) {
if (addComma) supportedFocusModes += ",";
addComma = true;
switch (availableAfModes.data.u8[i]) {
case ANDROID_CONTROL_AF_MODE_AUTO:
supportedFocusModes +=
CameraParameters::FOCUS_MODE_AUTO;
break;
case ANDROID_CONTROL_AF_MODE_MACRO:
supportedFocusModes +=
CameraParameters::FOCUS_MODE_MACRO;
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
supportedFocusModes +=
CameraParameters::FOCUS_MODE_CONTINUOUS_VIDEO;
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
supportedFocusModes +=
CameraParameters::FOCUS_MODE_CONTINUOUS_PICTURE;
break;
case ANDROID_CONTROL_AF_MODE_EDOF:
supportedFocusModes +=
CameraParameters::FOCUS_MODE_EDOF;
break;
// Not supported in old API
case ANDROID_CONTROL_AF_MODE_OFF:
addComma = false;
break;
default:
ALOGW("%s: Camera %d: Unknown AF mode value: %d",
__FUNCTION__, cameraId, availableAfModes.data.u8[i]);
addComma = false;
break;
}
}
params.set(CameraParameters::KEY_SUPPORTED_FOCUS_MODES,
supportedFocusModes);
}
focusState = ANDROID_CONTROL_AF_STATE_INACTIVE;
shadowFocusMode = FOCUS_MODE_INVALID;
aeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
camera_metadata_ro_entry_t max3aRegions = staticInfo(ANDROID_CONTROL_MAX_REGIONS,
Parameters::NUM_REGION, Parameters::NUM_REGION);
if (max3aRegions.count != Parameters::NUM_REGION) return NO_INIT;
int32_t maxNumFocusAreas = 0;
if (focusMode != Parameters::FOCUS_MODE_FIXED) {
maxNumFocusAreas = max3aRegions.data.i32[Parameters::REGION_AF];
}
params.set(CameraParameters::KEY_MAX_NUM_FOCUS_AREAS, maxNumFocusAreas);
params.set(CameraParameters::KEY_FOCUS_AREAS,
"(0,0,0,0,0)");
focusingAreas.clear();
focusingAreas.add(Parameters::Area(0,0,0,0,0));
params.setFloat(CameraParameters::KEY_FOCAL_LENGTH, fastInfo.defaultFocalLength);
float horizFov, vertFov;
res = calculatePictureFovs(&horizFov, &vertFov);
if (res != OK) {
ALOGE("%s: Can't calculate field of views!", __FUNCTION__);
return res;
}
params.setFloat(CameraParameters::KEY_HORIZONTAL_VIEW_ANGLE, horizFov);
params.setFloat(CameraParameters::KEY_VERTICAL_VIEW_ANGLE, vertFov);
exposureCompensation = 0;
params.set(CameraParameters::KEY_EXPOSURE_COMPENSATION,
exposureCompensation);
camera_metadata_ro_entry_t exposureCompensationRange =
staticInfo(ANDROID_CONTROL_AE_COMPENSATION_RANGE, 2, 2);
if (!exposureCompensationRange.count) return NO_INIT;
params.set(CameraParameters::KEY_MAX_EXPOSURE_COMPENSATION,
exposureCompensationRange.data.i32[1]);
params.set(CameraParameters::KEY_MIN_EXPOSURE_COMPENSATION,
exposureCompensationRange.data.i32[0]);
camera_metadata_ro_entry_t exposureCompensationStep =
staticInfo(ANDROID_CONTROL_AE_COMPENSATION_STEP, 1, 1);
if (!exposureCompensationStep.count) return NO_INIT;
params.setFloat(CameraParameters::KEY_EXPOSURE_COMPENSATION_STEP,
(float)exposureCompensationStep.data.r[0].numerator /
exposureCompensationStep.data.r[0].denominator);
autoExposureLock = false;
autoExposureLockAvailable = false;
camera_metadata_ro_entry_t exposureLockAvailable =
staticInfo(ANDROID_CONTROL_AE_LOCK_AVAILABLE, 1, 1);
if ((0 < exposureLockAvailable.count) &&
(ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE ==
exposureLockAvailable.data.u8[0])) {
params.set(CameraParameters::KEY_AUTO_EXPOSURE_LOCK,
CameraParameters::FALSE);
params.set(CameraParameters::KEY_AUTO_EXPOSURE_LOCK_SUPPORTED,
CameraParameters::TRUE);
autoExposureLockAvailable = true;
} else {
params.set(CameraParameters::KEY_AUTO_EXPOSURE_LOCK_SUPPORTED,
CameraParameters::FALSE);
}
autoWhiteBalanceLock = false;
autoWhiteBalanceLockAvailable = false;
camera_metadata_ro_entry_t whitebalanceLockAvailable =
staticInfo(ANDROID_CONTROL_AWB_LOCK_AVAILABLE, 1, 1);
if ((0 < whitebalanceLockAvailable.count) &&
(ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE ==
whitebalanceLockAvailable.data.u8[0])) {
params.set(CameraParameters::KEY_AUTO_WHITEBALANCE_LOCK,
CameraParameters::FALSE);
params.set(CameraParameters::KEY_AUTO_WHITEBALANCE_LOCK_SUPPORTED,
CameraParameters::TRUE);
autoWhiteBalanceLockAvailable = true;
} else {
params.set(CameraParameters::KEY_AUTO_WHITEBALANCE_LOCK_SUPPORTED,
CameraParameters::FALSE);
}
meteringAreas.add(Parameters::Area(0, 0, 0, 0, 0));
params.set(CameraParameters::KEY_MAX_NUM_METERING_AREAS,
max3aRegions.data.i32[Parameters::REGION_AE]);
params.set(CameraParameters::KEY_METERING_AREAS,
"(0,0,0,0,0)");
zoom = 0;
zoomAvailable = false;
camera_metadata_ro_entry_t maxDigitalZoom =
staticInfo(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM, /*minCount*/1, /*maxCount*/1);
if (!maxDigitalZoom.count) return NO_INIT;
if (fabs(maxDigitalZoom.data.f[0] - 1.f) > 0.00001f) {
params.set(CameraParameters::KEY_ZOOM, zoom);
params.set(CameraParameters::KEY_MAX_ZOOM, NUM_ZOOM_STEPS - 1);
{
String8 zoomRatios;
float zoom = 1.f;
float zoomIncrement = (maxDigitalZoom.data.f[0] - zoom) /
(NUM_ZOOM_STEPS-1);
bool addComma = false;
for (size_t i=0; i < NUM_ZOOM_STEPS; i++) {
if (addComma) zoomRatios += ",";
addComma = true;
zoomRatios += String8::format("%d", static_cast<int>(zoom * 100));
zoom += zoomIncrement;
}
params.set(CameraParameters::KEY_ZOOM_RATIOS, zoomRatios);
}
params.set(CameraParameters::KEY_ZOOM_SUPPORTED,
CameraParameters::TRUE);
zoomAvailable = true;
} else {
params.set(CameraParameters::KEY_ZOOM_SUPPORTED,
CameraParameters::FALSE);
}
params.set(CameraParameters::KEY_SMOOTH_ZOOM_SUPPORTED,
CameraParameters::FALSE);
params.set(CameraParameters::KEY_FOCUS_DISTANCES,
"Infinity,Infinity,Infinity");
params.set(CameraParameters::KEY_MAX_NUM_DETECTED_FACES_HW,
fastInfo.maxFaces);
params.set(CameraParameters::KEY_MAX_NUM_DETECTED_FACES_SW,
0);
params.set(CameraParameters::KEY_VIDEO_FRAME_FORMAT,
CameraParameters::PIXEL_FORMAT_ANDROID_OPAQUE);
recordingHint = false;
params.set(CameraParameters::KEY_RECORDING_HINT,
CameraParameters::FALSE);
params.set(CameraParameters::KEY_VIDEO_SNAPSHOT_SUPPORTED,
CameraParameters::TRUE);
videoStabilization = false;
params.set(CameraParameters::KEY_VIDEO_STABILIZATION,
CameraParameters::FALSE);
camera_metadata_ro_entry_t availableVideoStabilizationModes =
staticInfo(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES, 0, 0,
false);
if (availableVideoStabilizationModes.count > 1) {
params.set(CameraParameters::KEY_VIDEO_STABILIZATION_SUPPORTED,
CameraParameters::TRUE);
} else {
params.set(CameraParameters::KEY_VIDEO_STABILIZATION_SUPPORTED,
CameraParameters::FALSE);
}
// Set up initial state for non-Camera.Parameters state variables
videoFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
videoDataSpace = HAL_DATASPACE_V0_BT709;
videoBufferMode = hardware::ICamera::VIDEO_BUFFER_MODE_DATA_CALLBACK_YUV;
playShutterSound = true;
enableFaceDetect = false;
enableFocusMoveMessages = false;
afTriggerCounter = 1;
afStateCounter = 0;
currentAfTriggerId = -1;
afInMotion = false;
precaptureTriggerCounter = 1;
takePictureCounter = 0;
previewCallbackFlags = 0;
previewCallbackOneShot = false;
previewCallbackSurface = false;
Size maxJpegSize = getMaxSize(getAvailableJpegSizes());
int64_t minFrameDurationNs = getJpegStreamMinFrameDurationNs(maxJpegSize);
slowJpegMode = false;
if (minFrameDurationNs > kSlowJpegModeThreshold) {
slowJpegMode = true;
// Slow jpeg devices does not support video snapshot without
// slowing down preview.
// TODO: support video size video snapshot only?
params.set(CameraParameters::KEY_VIDEO_SNAPSHOT_SUPPORTED,
CameraParameters::FALSE);
}
isZslReprocessPresent = false;
camera_metadata_ro_entry_t availableCapabilities =
staticInfo(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
if (0 < availableCapabilities.count) {
const uint8_t *caps = availableCapabilities.data.u8;
for (size_t i = 0; i < availableCapabilities.count; i++) {
if (ANDROID_REQUEST_AVAILABLE_CAPABILITIES_PRIVATE_REPROCESSING ==
caps[i]) {
isZslReprocessPresent = true;
break;
}
}
}
isDistortionCorrectionSupported = false;
camera_metadata_ro_entry_t distortionCorrectionModes =
staticInfo(ANDROID_DISTORTION_CORRECTION_AVAILABLE_MODES);
for (size_t i = 0; i < distortionCorrectionModes.count; i++) {
if (distortionCorrectionModes.data.u8[i] !=
ANDROID_DISTORTION_CORRECTION_MODE_OFF) {
isDistortionCorrectionSupported = true;
break;
}
}
if (isDeviceZslSupported || slowJpegMode ||
property_get_bool("camera.disable_zsl_mode", false)) {
ALOGI("Camera %d: Disabling ZSL mode", cameraId);
allowZslMode = false;
} else {
allowZslMode = isZslReprocessPresent;
}
ALOGI("%s: allowZslMode: %d slowJpegMode %d", __FUNCTION__, allowZslMode, slowJpegMode);
state = STOPPED;
paramsFlattened = params.flatten();
return OK;
}
String8 Parameters::get() const {
return paramsFlattened;
}
status_t Parameters::buildFastInfo(CameraDeviceBase *device) {
camera_metadata_ro_entry_t activeArraySize =
staticInfo(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE, 2, 4);
if (!activeArraySize.count) return NO_INIT;
int32_t arrayWidth;
int32_t arrayHeight;
if (activeArraySize.count == 2) {
ALOGW("%s: Camera %d: activeArraySize is missing xmin/ymin!",
__FUNCTION__, cameraId);
arrayWidth = activeArraySize.data.i32[0];
arrayHeight = activeArraySize.data.i32[1];
} else if (activeArraySize.count == 4) {
arrayWidth = activeArraySize.data.i32[2];
arrayHeight = activeArraySize.data.i32[3];
} else return NO_INIT;
fastInfo.supportsPreferredConfigs =
info->exists(ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS);
// We'll set the target FPS range for still captures to be as wide
// as possible to give the HAL maximum latitude for exposure selection
camera_metadata_ro_entry_t availableFpsRanges =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES, 2);
if (availableFpsRanges.count < 2 || availableFpsRanges.count % 2 != 0) {
return NO_INIT;
}
// Get supported preview fps ranges, up to default maximum.
Vector<Size> supportedPreviewSizes;
Vector<FpsRange> supportedPreviewFpsRanges;
Size previewSizeBound = { MAX_PREVIEW_WIDTH, MAX_PREVIEW_HEIGHT };
if (fastInfo.supportsPreferredConfigs) {
previewSizeBound = getMaxSize(getPreferredPreviewSizes());
}
status_t res = getFilteredSizes(previewSizeBound, &supportedPreviewSizes);
if (res != OK) return res;
for (size_t i=0; i < availableFpsRanges.count; i += 2) {
if (!isFpsSupported(supportedPreviewSizes,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, availableFpsRanges.data.i32[i+1]) ||
availableFpsRanges.data.i32[i+1] > MAX_DEFAULT_FPS) {
continue;
}
FpsRange fpsRange = {availableFpsRanges.data.i32[i], availableFpsRanges.data.i32[i+1]};
supportedPreviewFpsRanges.add(fpsRange);
}
if (supportedPreviewFpsRanges.size() == 0) {
ALOGE("Supported preview fps range is empty");
return NO_INIT;
}
int32_t bestStillCaptureFpsRange[2] = {
supportedPreviewFpsRanges[0].low, supportedPreviewFpsRanges[0].high
};
int32_t curRange =
bestStillCaptureFpsRange[1] - bestStillCaptureFpsRange[0];
for (size_t i = 1; i < supportedPreviewFpsRanges.size(); i ++) {
int32_t nextRange =
supportedPreviewFpsRanges[i].high -
supportedPreviewFpsRanges[i].low;
if ( (nextRange > curRange) || // Maximize size of FPS range first
(nextRange == curRange && // Then minimize low-end FPS
bestStillCaptureFpsRange[0] > supportedPreviewFpsRanges[i].low)) {
bestStillCaptureFpsRange[0] = supportedPreviewFpsRanges[i].low;
bestStillCaptureFpsRange[1] = supportedPreviewFpsRanges[i].high;
curRange = nextRange;
}
}
camera_metadata_ro_entry_t availableFaceDetectModes =
staticInfo(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES, 0, 0,
false);
uint8_t bestFaceDetectMode =
ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
for (size_t i = 0 ; i < availableFaceDetectModes.count; i++) {
switch (availableFaceDetectModes.data.u8[i]) {
case ANDROID_STATISTICS_FACE_DETECT_MODE_OFF:
break;
case ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE:
if (bestFaceDetectMode !=
ANDROID_STATISTICS_FACE_DETECT_MODE_FULL) {
bestFaceDetectMode =
ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE;
}
break;
case ANDROID_STATISTICS_FACE_DETECT_MODE_FULL:
bestFaceDetectMode =
ANDROID_STATISTICS_FACE_DETECT_MODE_FULL;
break;
default:
ALOGE("%s: Camera %d: Unknown face detect mode %d:",
__FUNCTION__, cameraId,
availableFaceDetectModes.data.u8[i]);
return NO_INIT;
}
}
int32_t maxFaces = 0;
camera_metadata_ro_entry_t maxFacesDetected =
staticInfo(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT, 0, 1, false);
if (maxFacesDetected.count) {
maxFaces = maxFacesDetected.data.i32[0];
}
camera_metadata_ro_entry_t availableSceneModes =
staticInfo(ANDROID_CONTROL_AVAILABLE_SCENE_MODES, 0, 0, false);
camera_metadata_ro_entry_t sceneModeOverrides =
staticInfo(ANDROID_CONTROL_SCENE_MODE_OVERRIDES, 0, 0, false);
camera_metadata_ro_entry_t minFocusDistance =
staticInfo(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE, 0, 0, false);
bool fixedLens = minFocusDistance.count == 0 ||
minFocusDistance.data.f[0] == 0;
camera_metadata_ro_entry_t focusDistanceCalibration =
staticInfo(ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION, 0, 0,
false);
bool canFocusInfinity = (focusDistanceCalibration.count &&
focusDistanceCalibration.data.u8[0] !=
ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION_UNCALIBRATED);
res = getDefaultFocalLength(device);
if (res != OK) return res;
SortedVector<int32_t> availableFormats = getAvailableOutputFormats();
if (!availableFormats.size()) return NO_INIT;
if (sceneModeOverrides.count > 0) {
// sceneModeOverrides is defined to have 3 entries for each scene mode,
// which are AE, AWB, and AF override modes the HAL wants for that scene
// mode.
const size_t kModesPerSceneMode = 3;
if (sceneModeOverrides.count !=
availableSceneModes.count * kModesPerSceneMode) {
ALOGE("%s: Camera %d: Scene mode override list is an "
"unexpected size: %zu (expected %zu)", __FUNCTION__,
cameraId, sceneModeOverrides.count,
availableSceneModes.count * kModesPerSceneMode);
return NO_INIT;
}
for (size_t i = 0; i < availableSceneModes.count; i++) {
DeviceInfo::OverrideModes modes;
uint8_t aeMode =
sceneModeOverrides.data.u8[i * kModesPerSceneMode + 0];
switch(aeMode) {
case ANDROID_CONTROL_AE_MODE_ON:
modes.flashMode = FLASH_MODE_OFF;
break;
case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH:
modes.flashMode = FLASH_MODE_AUTO;
break;
case ANDROID_CONTROL_AE_MODE_ON_ALWAYS_FLASH:
modes.flashMode = FLASH_MODE_ON;
break;
case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE:
modes.flashMode = FLASH_MODE_RED_EYE;
break;
default:
ALOGE("%s: Unknown override AE mode: %d", __FUNCTION__,
aeMode);
modes.flashMode = FLASH_MODE_INVALID;
break;
}
modes.wbMode =
sceneModeOverrides.data.u8[i * kModesPerSceneMode + 1];
uint8_t afMode =
sceneModeOverrides.data.u8[i * kModesPerSceneMode + 2];
switch(afMode) {
case ANDROID_CONTROL_AF_MODE_OFF:
if (!fixedLens && !canFocusInfinity) {
ALOGE("%s: Camera %d: Scene mode override lists asks for"
" fixed focus on a device with focuser but not"
" calibrated for infinity focus", __FUNCTION__,
cameraId);
return NO_INIT;
}
modes.focusMode = fixedLens ?
FOCUS_MODE_FIXED : FOCUS_MODE_INFINITY;
break;
case ANDROID_CONTROL_AF_MODE_AUTO:
case ANDROID_CONTROL_AF_MODE_MACRO:
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
case ANDROID_CONTROL_AF_MODE_EDOF:
modes.focusMode = static_cast<focusMode_t>(afMode);
break;
default:
ALOGE("%s: Unknown override AF mode: %d", __FUNCTION__,
afMode);
modes.focusMode = FOCUS_MODE_INVALID;
break;
}
fastInfo.sceneModeOverrides.add(availableSceneModes.data.u8[i],
modes);
}
}
fastInfo.arrayWidth = arrayWidth;
fastInfo.arrayHeight = arrayHeight;
fastInfo.bestStillCaptureFpsRange[0] = bestStillCaptureFpsRange[0];
fastInfo.bestStillCaptureFpsRange[1] = bestStillCaptureFpsRange[1];
fastInfo.bestFaceDetectMode = bestFaceDetectMode;
fastInfo.maxFaces = maxFaces;
// Check if the HAL supports HAL_PIXEL_FORMAT_YCbCr_420_888
fastInfo.useFlexibleYuv = false;
for (size_t i = 0; i < availableFormats.size(); i++) {
if (availableFormats[i] == HAL_PIXEL_FORMAT_YCbCr_420_888) {
fastInfo.useFlexibleYuv = true;
break;
}
}
ALOGV("Camera %d: Flexible YUV %s supported",
cameraId, fastInfo.useFlexibleYuv ? "is" : "is not");
fastInfo.maxJpegSize = getMaxSize(getAvailableJpegSizes());
isZslReprocessPresent = false;
camera_metadata_ro_entry_t availableCapabilities =
staticInfo(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
if (0 < availableCapabilities.count) {
const uint8_t *caps = availableCapabilities.data.u8;
for (size_t i = 0; i < availableCapabilities.count; i++) {
if (ANDROID_REQUEST_AVAILABLE_CAPABILITIES_PRIVATE_REPROCESSING ==
caps[i]) {
isZslReprocessPresent = true;
break;
}
}
}
if (isZslReprocessPresent) {
Vector<StreamConfiguration> scs = getStreamConfigurations();
Size maxPrivInputSize = {0, 0};
for (const auto& sc : scs) {
if (sc.isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_INPUT &&
sc.format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
if (sc.width * sc.height > maxPrivInputSize.width * maxPrivInputSize.height) {
maxPrivInputSize = {sc.width, sc.height};
}
}
}
fastInfo.maxZslSize = maxPrivInputSize;
} else {
fastInfo.maxZslSize = {0, 0};
}
return OK;
}
status_t Parameters::buildQuirks() {
camera_metadata_ro_entry_t entry;
entry = info->find(ANDROID_QUIRKS_TRIGGER_AF_WITH_AUTO);
quirks.triggerAfWithAuto = (entry.count != 0 && entry.data.u8[0] == 1);
ALOGV_IF(quirks.triggerAfWithAuto, "Camera %d: Quirk triggerAfWithAuto enabled",
cameraId);
entry = info->find(ANDROID_QUIRKS_USE_ZSL_FORMAT);
quirks.useZslFormat = (entry.count != 0 && entry.data.u8[0] == 1);
ALOGV_IF(quirks.useZslFormat, "Camera %d: Quirk useZslFormat enabled",
cameraId);
entry = info->find(ANDROID_QUIRKS_METERING_CROP_REGION);
quirks.meteringCropRegion = (entry.count != 0 && entry.data.u8[0] == 1);
ALOGV_IF(quirks.meteringCropRegion, "Camera %d: Quirk meteringCropRegion"
" enabled", cameraId);
entry = info->find(ANDROID_QUIRKS_USE_PARTIAL_RESULT);
quirks.partialResults = (entry.count != 0 && entry.data.u8[0] == 1);
ALOGV_IF(quirks.partialResults, "Camera %d: Quirk usePartialResult"
" enabled", cameraId);
return OK;
}
camera_metadata_ro_entry_t Parameters::staticInfo(uint32_t tag,
size_t minCount, size_t maxCount, bool required) const {
camera_metadata_ro_entry_t entry = info->find(tag);
const camera_metadata_t *metaBuffer = info->getAndLock();
if (CC_UNLIKELY( entry.count == 0 ) && required) {
const char* tagSection = get_local_camera_metadata_section_name(tag,
metaBuffer);
if (tagSection == NULL) tagSection = "<unknown>";
const char* tagName = get_local_camera_metadata_tag_name(tag,
metaBuffer);
if (tagName == NULL) tagName = "<unknown>";
ALOGE("Error finding static metadata entry '%s.%s' (%x)",
tagSection, tagName, tag);
} else if (CC_UNLIKELY(
(minCount != 0 && entry.count < minCount) ||
(maxCount != 0 && entry.count > maxCount) ) ) {
const char* tagSection = get_local_camera_metadata_section_name(tag,
metaBuffer);
if (tagSection == NULL) tagSection = "<unknown>";
const char* tagName = get_local_camera_metadata_tag_name(tag,
metaBuffer);
if (tagName == NULL) tagName = "<unknown>";
ALOGE("Malformed static metadata entry '%s.%s' (%x):"
"Expected between %zu and %zu values, but got %zu values",
tagSection, tagName, tag, minCount, maxCount, entry.count);
}
info->unlock(metaBuffer);
return entry;
}
status_t Parameters::set(const String8& paramString) {
status_t res;
CameraParameters2 newParams(paramString);
// TODO: Currently ignoring any changes to supposedly read-only parameters
// such as supported preview sizes, etc. Should probably produce an error if
// they're changed.
/** Extract and verify new parameters */
size_t i;
Parameters validatedParams(*this);
// PREVIEW_SIZE
newParams.getPreviewSize(&validatedParams.previewWidth,
&validatedParams.previewHeight);
if (validatedParams.previewWidth != previewWidth ||
validatedParams.previewHeight != previewHeight) {
if (state >= PREVIEW) {
ALOGE("%s: Preview size cannot be updated when preview "
"is active! (Currently %d x %d, requested %d x %d",
__FUNCTION__,
previewWidth, previewHeight,
validatedParams.previewWidth, validatedParams.previewHeight);
return BAD_VALUE;
}
for (i = 0; i < availablePreviewSizes.size(); i++) {
if ((availablePreviewSizes[i].width ==
validatedParams.previewWidth) &&
(availablePreviewSizes[i].height ==
validatedParams.previewHeight)) break;
}
if (i == availablePreviewSizes.size()) {
ALOGE("%s: Requested preview size %d x %d is not supported",
__FUNCTION__, validatedParams.previewWidth,
validatedParams.previewHeight);
return BAD_VALUE;
}
}
// RECORDING_HINT (always supported)
validatedParams.recordingHint = boolFromString(
newParams.get(CameraParameters::KEY_RECORDING_HINT) );
IF_ALOGV() { // Avoid unused variable warning
bool recordingHintChanged =
validatedParams.recordingHint != recordingHint;
if (recordingHintChanged) {
ALOGV("%s: Recording hint changed to %d",
__FUNCTION__, validatedParams.recordingHint);
}
}
// PREVIEW_FPS_RANGE
/**
* Use the single FPS value if it was set later than the range.
* Otherwise, use the range value.
*/
bool fpsUseSingleValue;
{
const char *fpsRange, *fpsSingle;
fpsSingle = newParams.get(CameraParameters::KEY_PREVIEW_FRAME_RATE);
fpsRange = newParams.get(CameraParameters::KEY_PREVIEW_FPS_RANGE);
/**
* Pick either the range or the single key if only one was set.
*
* If both are set, pick the one that has greater set order.
*/
if (fpsRange == NULL && fpsSingle == NULL) {
ALOGE("%s: FPS was not set. One of %s or %s must be set.",
__FUNCTION__, CameraParameters::KEY_PREVIEW_FRAME_RATE,
CameraParameters::KEY_PREVIEW_FPS_RANGE);
return BAD_VALUE;
} else if (fpsRange == NULL) {
fpsUseSingleValue = true;
ALOGV("%s: FPS range not set, using FPS single value",
__FUNCTION__);
} else if (fpsSingle == NULL) {
fpsUseSingleValue = false;
ALOGV("%s: FPS single not set, using FPS range value",
__FUNCTION__);
} else {
int fpsKeyOrder;
res = newParams.compareSetOrder(
CameraParameters::KEY_PREVIEW_FRAME_RATE,
CameraParameters::KEY_PREVIEW_FPS_RANGE,
&fpsKeyOrder);
LOG_ALWAYS_FATAL_IF(res != OK, "Impossibly bad FPS keys");
fpsUseSingleValue = (fpsKeyOrder > 0);
}
ALOGV("%s: Preview FPS value is used from '%s'",
__FUNCTION__, fpsUseSingleValue ? "single" : "range");
}
newParams.getPreviewFpsRange(&validatedParams.previewFpsRange[0],
&validatedParams.previewFpsRange[1]);
validatedParams.previewFpsRange[0] /= kFpsToApiScale;
validatedParams.previewFpsRange[1] /= kFpsToApiScale;
// Ignore the FPS range if the FPS single has higher precedence
if (!fpsUseSingleValue) {
ALOGV("%s: Preview FPS range (%d, %d)", __FUNCTION__,
validatedParams.previewFpsRange[0],
validatedParams.previewFpsRange[1]);
camera_metadata_ro_entry_t availablePreviewFpsRanges =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES, 2);
for (i = 0; i < availablePreviewFpsRanges.count; i += 2) {
if ((availablePreviewFpsRanges.data.i32[i] ==
validatedParams.previewFpsRange[0]) &&
(availablePreviewFpsRanges.data.i32[i+1] ==
validatedParams.previewFpsRange[1]) ) {
break;
}
}
if (i == availablePreviewFpsRanges.count) {
ALOGE("%s: Requested preview FPS range %d - %d is not supported",
__FUNCTION__, validatedParams.previewFpsRange[0],
validatedParams.previewFpsRange[1]);
return BAD_VALUE;
}
}
// PREVIEW_FORMAT
validatedParams.previewFormat =
formatStringToEnum(newParams.getPreviewFormat());
if (validatedParams.previewFormat != previewFormat) {
if (state >= PREVIEW) {
ALOGE("%s: Preview format cannot be updated when preview "
"is active!", __FUNCTION__);
return BAD_VALUE;
}
SortedVector<int32_t> availableFormats = getAvailableOutputFormats();
// If using flexible YUV, always support NV21/YV12. Otherwise, check
// HAL's list.
if (! (fastInfo.useFlexibleYuv &&
(validatedParams.previewFormat ==
HAL_PIXEL_FORMAT_YCrCb_420_SP ||
validatedParams.previewFormat ==
HAL_PIXEL_FORMAT_YV12) ) ) {
// Not using flexible YUV format, so check explicitly
for (i = 0; i < availableFormats.size(); i++) {
if (availableFormats[i] == validatedParams.previewFormat) break;
}
if (i == availableFormats.size()) {
ALOGE("%s: Requested preview format %s (0x%x) is not supported",
__FUNCTION__, newParams.getPreviewFormat(),
validatedParams.previewFormat);
return BAD_VALUE;
}
}
}
// PREVIEW_FRAME_RATE Deprecated
// - Use only if the single FPS value was set later than the FPS range
if (fpsUseSingleValue) {
int previewFps = newParams.getPreviewFrameRate();
ALOGV("%s: Preview FPS single value requested: %d",
__FUNCTION__, previewFps);
{
camera_metadata_ro_entry_t availableFrameRates =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES);
/**
* If recording hint is set, find the range that encompasses
* previewFps with the largest min index.
*
* If recording hint is not set, find the range with previewFps
* with the smallest min index.
*
* Either way, in case of multiple ranges, break the tie by
* selecting the smaller range.
*
* Always select range within 30fps if one exists.
*/
// all ranges which have previewFps
Vector<Range> candidateRanges;
Vector<Range> candidateFastRanges;
for (i = 0; i < availableFrameRates.count; i+=2) {
Range r = {
availableFrameRates.data.i32[i],
availableFrameRates.data.i32[i+1]
};
if (!isFpsSupported(availablePreviewSizes,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, r.max)) {
continue;
}
if (r.min <= previewFps && previewFps <= r.max) {
if (r.max <= MAX_DEFAULT_FPS) {
candidateRanges.push(r);
} else {
candidateFastRanges.push(r);
}
}
}
if (candidateRanges.isEmpty() && candidateFastRanges.isEmpty()) {
ALOGE("%s: Requested preview frame rate %d is not supported",
__FUNCTION__, previewFps);
return BAD_VALUE;
}
// most applicable range with targetFps
Vector<Range>& ranges =
candidateRanges.size() > 0 ? candidateRanges : candidateFastRanges;
Range bestRange = ranges[0];
for (i = 1; i < ranges.size(); ++i) {
Range r = ranges[i];
// Find by largest minIndex in recording mode
if (validatedParams.recordingHint) {
if (r.min > bestRange.min) {
bestRange = r;
}
else if (r.min == bestRange.min && r.max < bestRange.max) {
bestRange = r;
}
}
// Find by smallest minIndex in preview mode
else {
if (r.min < bestRange.min) {
bestRange = r;
}
else if (r.min == bestRange.min && r.max < bestRange.max) {
bestRange = r;
}
}
}
validatedParams.previewFpsRange[0] =
bestRange.min;
validatedParams.previewFpsRange[1] =
bestRange.max;
ALOGV("%s: New preview FPS range: %d, %d, recordingHint = %d",
__FUNCTION__,
validatedParams.previewFpsRange[0],
validatedParams.previewFpsRange[1],
validatedParams.recordingHint);
}
}
/**
* Update Preview FPS and Preview FPS ranges based on
* what we actually set.
*
* This updates the API-visible (Camera.Parameters#getParameters) values of
* the FPS fields, not only the internal versions.
*
* Order matters: The value that was set last takes precedence.
* - If the client does a setParameters(getParameters()) we retain
* the same order for preview FPS.
*/
if (!fpsUseSingleValue) {
// Set fps single, then fps range (range wins)
newParams.setPreviewFrameRate(
fpsFromRange(/*min*/validatedParams.previewFpsRange[0],
/*max*/validatedParams.previewFpsRange[1]));
newParams.setPreviewFpsRange(
validatedParams.previewFpsRange[0] * kFpsToApiScale,
validatedParams.previewFpsRange[1] * kFpsToApiScale);
} else {
// Set fps range, then fps single (single wins)
newParams.setPreviewFpsRange(
validatedParams.previewFpsRange[0] * kFpsToApiScale,
validatedParams.previewFpsRange[1] * kFpsToApiScale);
// Set this to the same value, but with higher priority
newParams.setPreviewFrameRate(
newParams.getPreviewFrameRate());
}
// PICTURE_SIZE
newParams.getPictureSize(&validatedParams.pictureWidth,
&validatedParams.pictureHeight);
if (validatedParams.pictureWidth != pictureWidth ||
validatedParams.pictureHeight != pictureHeight) {
Vector<Size> availablePictureSizes = getAvailableJpegSizes();
for (i = 0; i < availablePictureSizes.size(); i++) {
if ((availablePictureSizes[i].width ==
validatedParams.pictureWidth) &&
(availablePictureSizes[i].height ==
validatedParams.pictureHeight)) break;
}
if (i == availablePictureSizes.size()) {
ALOGE("%s: Requested picture size %d x %d is not supported",
__FUNCTION__, validatedParams.pictureWidth,
validatedParams.pictureHeight);
return BAD_VALUE;
}
}
// JPEG_THUMBNAIL_WIDTH/HEIGHT
validatedParams.jpegThumbSize[0] =
newParams.getInt(CameraParameters::KEY_JPEG_THUMBNAIL_WIDTH);
validatedParams.jpegThumbSize[1] =
newParams.getInt(CameraParameters::KEY_JPEG_THUMBNAIL_HEIGHT);
if (validatedParams.jpegThumbSize[0] != jpegThumbSize[0] ||
validatedParams.jpegThumbSize[1] != jpegThumbSize[1]) {
camera_metadata_ro_entry_t availableJpegThumbSizes =
staticInfo(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
for (i = 0; i < availableJpegThumbSizes.count; i+=2) {
if ((availableJpegThumbSizes.data.i32[i] ==
validatedParams.jpegThumbSize[0]) &&
(availableJpegThumbSizes.data.i32[i+1] ==
validatedParams.jpegThumbSize[1])) break;
}
if (i == availableJpegThumbSizes.count) {
ALOGE("%s: Requested JPEG thumbnail size %d x %d is not supported",
__FUNCTION__, validatedParams.jpegThumbSize[0],
validatedParams.jpegThumbSize[1]);
return BAD_VALUE;
}
}
// JPEG_THUMBNAIL_QUALITY
int quality = newParams.getInt(CameraParameters::KEY_JPEG_THUMBNAIL_QUALITY);
// also makes sure quality fits in uint8_t
if (quality < 0 || quality > 100) {
ALOGE("%s: Requested JPEG thumbnail quality %d is not supported",
__FUNCTION__, quality);
return BAD_VALUE;
}
validatedParams.jpegThumbQuality = quality;
// JPEG_QUALITY
quality = newParams.getInt(CameraParameters::KEY_JPEG_QUALITY);
// also makes sure quality fits in uint8_t
if (quality < 0 || quality > 100) {
ALOGE("%s: Requested JPEG quality %d is not supported",
__FUNCTION__, quality);
return BAD_VALUE;
}
validatedParams.jpegQuality = quality;
// ROTATION
validatedParams.jpegRotation =
newParams.getInt(CameraParameters::KEY_ROTATION);
if (validatedParams.jpegRotation != 0 &&
validatedParams.jpegRotation != 90 &&
validatedParams.jpegRotation != 180 &&
validatedParams.jpegRotation != 270) {
ALOGE("%s: Requested picture rotation angle %d is not supported",
__FUNCTION__, validatedParams.jpegRotation);
return BAD_VALUE;
}
// GPS
const char *gpsLatStr =
newParams.get(CameraParameters::KEY_GPS_LATITUDE);
if (gpsLatStr != NULL) {
const char *gpsLongStr =
newParams.get(CameraParameters::KEY_GPS_LONGITUDE);
const char *gpsAltitudeStr =
newParams.get(CameraParameters::KEY_GPS_ALTITUDE);
const char *gpsTimeStr =
newParams.get(CameraParameters::KEY_GPS_TIMESTAMP);
const char *gpsProcMethodStr =
newParams.get(CameraParameters::KEY_GPS_PROCESSING_METHOD);
if (gpsLongStr == NULL ||
gpsAltitudeStr == NULL ||
gpsTimeStr == NULL ||
gpsProcMethodStr == NULL) {
ALOGE("%s: Incomplete set of GPS parameters provided",
__FUNCTION__);
return BAD_VALUE;
}
char *endPtr;
errno = 0;
validatedParams.gpsCoordinates[0] = strtod(gpsLatStr, &endPtr);
if (errno || endPtr == gpsLatStr) {
ALOGE("%s: Malformed GPS latitude: %s", __FUNCTION__, gpsLatStr);
return BAD_VALUE;
}
errno = 0;
validatedParams.gpsCoordinates[1] = strtod(gpsLongStr, &endPtr);
if (errno || endPtr == gpsLongStr) {
ALOGE("%s: Malformed GPS longitude: %s", __FUNCTION__, gpsLongStr);
return BAD_VALUE;
}
errno = 0;
validatedParams.gpsCoordinates[2] = strtod(gpsAltitudeStr, &endPtr);
if (errno || endPtr == gpsAltitudeStr) {
ALOGE("%s: Malformed GPS altitude: %s", __FUNCTION__,
gpsAltitudeStr);
return BAD_VALUE;
}
errno = 0;
validatedParams.gpsTimestamp = strtoll(gpsTimeStr, &endPtr, 10);
if (errno || endPtr == gpsTimeStr) {
ALOGE("%s: Malformed GPS timestamp: %s", __FUNCTION__, gpsTimeStr);
return BAD_VALUE;
}
validatedParams.gpsProcessingMethod = gpsProcMethodStr;
validatedParams.gpsEnabled = true;
} else {
validatedParams.gpsEnabled = false;
}
// EFFECT
validatedParams.effectMode = effectModeStringToEnum(
newParams.get(CameraParameters::KEY_EFFECT) );
if (validatedParams.effectMode != effectMode) {
camera_metadata_ro_entry_t availableEffectModes =
staticInfo(ANDROID_CONTROL_AVAILABLE_EFFECTS);
for (i = 0; i < availableEffectModes.count; i++) {
if (validatedParams.effectMode == availableEffectModes.data.u8[i]) break;
}
if (i == availableEffectModes.count) {
ALOGE("%s: Requested effect mode \"%s\" is not supported",
__FUNCTION__,
newParams.get(CameraParameters::KEY_EFFECT) );
return BAD_VALUE;
}
}
// ANTIBANDING
validatedParams.antibandingMode = abModeStringToEnum(
newParams.get(CameraParameters::KEY_ANTIBANDING) );
if (validatedParams.antibandingMode != antibandingMode) {
camera_metadata_ro_entry_t availableAbModes =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES);
for (i = 0; i < availableAbModes.count; i++) {
if (validatedParams.antibandingMode == availableAbModes.data.u8[i])
break;
}
if (i == availableAbModes.count) {
ALOGE("%s: Requested antibanding mode \"%s\" is not supported",
__FUNCTION__,
newParams.get(CameraParameters::KEY_ANTIBANDING));
return BAD_VALUE;
}
}
// SCENE_MODE
validatedParams.sceneMode = sceneModeStringToEnum(
newParams.get(CameraParameters::KEY_SCENE_MODE), mDefaultSceneMode);
if (validatedParams.sceneMode != sceneMode &&
validatedParams.sceneMode !=
ANDROID_CONTROL_SCENE_MODE_DISABLED) {
camera_metadata_ro_entry_t availableSceneModes =
staticInfo(ANDROID_CONTROL_AVAILABLE_SCENE_MODES);
for (i = 0; i < availableSceneModes.count; i++) {
if (validatedParams.sceneMode == availableSceneModes.data.u8[i])
break;
}
if (i == availableSceneModes.count) {
ALOGE("%s: Requested scene mode \"%s\" is not supported",
__FUNCTION__,
newParams.get(CameraParameters::KEY_SCENE_MODE));
return BAD_VALUE;
}
}
bool sceneModeSet =
validatedParams.sceneMode != mDefaultSceneMode;
// FLASH_MODE
if (sceneModeSet) {
validatedParams.flashMode =
fastInfo.sceneModeOverrides.
valueFor(validatedParams.sceneMode).flashMode;
} else {
validatedParams.flashMode = FLASH_MODE_INVALID;
}
if (validatedParams.flashMode == FLASH_MODE_INVALID) {
validatedParams.flashMode = flashModeStringToEnum(
newParams.get(CameraParameters::KEY_FLASH_MODE) );
}
if (validatedParams.flashMode != flashMode) {
camera_metadata_ro_entry_t flashAvailable =
staticInfo(ANDROID_FLASH_INFO_AVAILABLE, 1, 1);
bool isFlashAvailable =
flashAvailable.data.u8[0] == ANDROID_FLASH_INFO_AVAILABLE_TRUE;
if (!isFlashAvailable &&
validatedParams.flashMode != Parameters::FLASH_MODE_OFF) {
ALOGE("%s: Requested flash mode \"%s\" is not supported: "
"No flash on device", __FUNCTION__,
newParams.get(CameraParameters::KEY_FLASH_MODE));
return BAD_VALUE;
} else if (validatedParams.flashMode == Parameters::FLASH_MODE_RED_EYE) {
camera_metadata_ro_entry_t availableAeModes =
staticInfo(ANDROID_CONTROL_AE_AVAILABLE_MODES);
for (i = 0; i < availableAeModes.count; i++) {
if (validatedParams.flashMode == availableAeModes.data.u8[i])
break;
}
if (i == availableAeModes.count) {
ALOGE("%s: Requested flash mode \"%s\" is not supported",
__FUNCTION__,
newParams.get(CameraParameters::KEY_FLASH_MODE));
return BAD_VALUE;
}
} else if (validatedParams.flashMode == -1) {
ALOGE("%s: Requested flash mode \"%s\" is unknown",
__FUNCTION__,
newParams.get(CameraParameters::KEY_FLASH_MODE));
return BAD_VALUE;
}
// Update in case of override, but only if flash is supported
if (isFlashAvailable) {
newParams.set(CameraParameters::KEY_FLASH_MODE,
flashModeEnumToString(validatedParams.flashMode));
}
}
// WHITE_BALANCE
if (sceneModeSet) {
validatedParams.wbMode =
fastInfo.sceneModeOverrides.
valueFor(validatedParams.sceneMode).wbMode;
} else {
validatedParams.wbMode = ANDROID_CONTROL_AWB_MODE_OFF;
}
if (validatedParams.wbMode == ANDROID_CONTROL_AWB_MODE_OFF) {
validatedParams.wbMode = wbModeStringToEnum(
newParams.get(CameraParameters::KEY_WHITE_BALANCE) );
}
if (validatedParams.wbMode != wbMode) {
camera_metadata_ro_entry_t availableWbModes =
staticInfo(ANDROID_CONTROL_AWB_AVAILABLE_MODES, 0, 0, false);
for (i = 0; i < availableWbModes.count; i++) {
if (validatedParams.wbMode == availableWbModes.data.u8[i]) break;
}
if (i == availableWbModes.count) {
ALOGE("%s: Requested white balance mode %s is not supported",
__FUNCTION__,
newParams.get(CameraParameters::KEY_WHITE_BALANCE));
return BAD_VALUE;
}
// Update in case of override
newParams.set(CameraParameters::KEY_WHITE_BALANCE,
wbModeEnumToString(validatedParams.wbMode));
}
// FOCUS_MODE
if (sceneModeSet) {
validatedParams.focusMode =
fastInfo.sceneModeOverrides.
valueFor(validatedParams.sceneMode).focusMode;
} else {
validatedParams.focusMode = FOCUS_MODE_INVALID;
}
if (validatedParams.focusMode == FOCUS_MODE_INVALID) {
validatedParams.focusMode = focusModeStringToEnum(
newParams.get(CameraParameters::KEY_FOCUS_MODE) );
}
if (validatedParams.focusMode != focusMode) {
validatedParams.currentAfTriggerId = -1;
if (validatedParams.focusMode != Parameters::FOCUS_MODE_FIXED) {
camera_metadata_ro_entry_t minFocusDistance =
staticInfo(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE, 0, 0,
false);
if (minFocusDistance.count && minFocusDistance.data.f[0] == 0) {
ALOGE("%s: Requested focus mode \"%s\" is not available: "
"fixed focus lens",
__FUNCTION__,
newParams.get(CameraParameters::KEY_FOCUS_MODE));
return BAD_VALUE;
} else if (validatedParams.focusMode !=
Parameters::FOCUS_MODE_INFINITY) {
camera_metadata_ro_entry_t availableFocusModes =
staticInfo(ANDROID_CONTROL_AF_AVAILABLE_MODES);
for (i = 0; i < availableFocusModes.count; i++) {
if (validatedParams.focusMode ==
availableFocusModes.data.u8[i]) break;
}
if (i == availableFocusModes.count) {
ALOGE("%s: Requested focus mode \"%s\" is not supported",
__FUNCTION__,
newParams.get(CameraParameters::KEY_FOCUS_MODE));
return BAD_VALUE;
}
}
}
validatedParams.focusState = ANDROID_CONTROL_AF_STATE_INACTIVE;
// Always reset shadow focus mode to avoid reverting settings
validatedParams.shadowFocusMode = FOCUS_MODE_INVALID;
// Update in case of override
newParams.set(CameraParameters::KEY_FOCUS_MODE,
focusModeEnumToString(validatedParams.focusMode));
} else {
validatedParams.currentAfTriggerId = currentAfTriggerId;
}
// FOCUS_AREAS
res = parseAreas(newParams.get(CameraParameters::KEY_FOCUS_AREAS),
&validatedParams.focusingAreas);
size_t maxAfRegions = (size_t)staticInfo(ANDROID_CONTROL_MAX_REGIONS,
Parameters::NUM_REGION, Parameters::NUM_REGION).
data.i32[Parameters::REGION_AF];
if (res == OK) res = validateAreas(validatedParams.focusingAreas,
maxAfRegions, AREA_KIND_FOCUS);
if (res != OK) {
ALOGE("%s: Requested focus areas are malformed: %s",
__FUNCTION__, newParams.get(CameraParameters::KEY_FOCUS_AREAS));
return BAD_VALUE;
}
// EXPOSURE_COMPENSATION
validatedParams.exposureCompensation =
newParams.getInt(CameraParameters::KEY_EXPOSURE_COMPENSATION);
camera_metadata_ro_entry_t exposureCompensationRange =
staticInfo(ANDROID_CONTROL_AE_COMPENSATION_RANGE);
if ((validatedParams.exposureCompensation <
exposureCompensationRange.data.i32[0]) ||
(validatedParams.exposureCompensation >
exposureCompensationRange.data.i32[1])) {
ALOGE("%s: Requested exposure compensation index is out of bounds: %d",
__FUNCTION__, validatedParams.exposureCompensation);
return BAD_VALUE;
}
if (autoExposureLockAvailable) {
validatedParams.autoExposureLock = boolFromString(
newParams.get(CameraParameters::KEY_AUTO_EXPOSURE_LOCK));
} else if (nullptr !=
newParams.get(CameraParameters::KEY_AUTO_EXPOSURE_LOCK)){
ALOGE("%s: Requested auto exposure lock is not supported",
__FUNCTION__);
return BAD_VALUE;
}
if (autoWhiteBalanceLockAvailable) {
validatedParams.autoWhiteBalanceLock = boolFromString(
newParams.get(CameraParameters::KEY_AUTO_WHITEBALANCE_LOCK));
} else if (nullptr !=
newParams.get(CameraParameters::KEY_AUTO_WHITEBALANCE_LOCK)) {
ALOGE("%s: Requested auto whitebalance lock is not supported",
__FUNCTION__);
return BAD_VALUE;
}
// METERING_AREAS
size_t maxAeRegions = (size_t)staticInfo(ANDROID_CONTROL_MAX_REGIONS,
Parameters::NUM_REGION, Parameters::NUM_REGION).
data.i32[Parameters::REGION_AE];
res = parseAreas(newParams.get(CameraParameters::KEY_METERING_AREAS),
&validatedParams.meteringAreas);
if (res == OK) {
res = validateAreas(validatedParams.meteringAreas, maxAeRegions,
AREA_KIND_METERING);
}
if (res != OK) {
ALOGE("%s: Requested metering areas are malformed: %s",
__FUNCTION__,
newParams.get(CameraParameters::KEY_METERING_AREAS));
return BAD_VALUE;
}
// ZOOM
if (zoomAvailable) {
validatedParams.zoom = newParams.getInt(CameraParameters::KEY_ZOOM);
if (validatedParams.zoom < 0
|| validatedParams.zoom >= (int)NUM_ZOOM_STEPS) {
ALOGE("%s: Requested zoom level %d is not supported",
__FUNCTION__, validatedParams.zoom);
return BAD_VALUE;
}
}
// VIDEO_SIZE
newParams.getVideoSize(&validatedParams.videoWidth,
&validatedParams.videoHeight);
if (validatedParams.videoWidth != videoWidth ||
validatedParams.videoHeight != videoHeight) {
if (state == RECORD) {
ALOGW("%s: Video size cannot be updated (from %d x %d to %d x %d)"
" when recording is active! Ignore the size update!",
__FUNCTION__, videoWidth, videoHeight, validatedParams.videoWidth,
validatedParams.videoHeight);
validatedParams.videoWidth = videoWidth;
validatedParams.videoHeight = videoHeight;
newParams.setVideoSize(videoWidth, videoHeight);
} else {
for (i = 0; i < availableVideoSizes.size(); i++) {
if ((availableVideoSizes[i].width ==
validatedParams.videoWidth) &&
(availableVideoSizes[i].height ==
validatedParams.videoHeight)) break;
}
if (i == availableVideoSizes.size()) {
ALOGE("%s: Requested video size %d x %d is not supported",
__FUNCTION__, validatedParams.videoWidth,
validatedParams.videoHeight);
return BAD_VALUE;
}
}
}
// VIDEO_STABILIZATION
validatedParams.videoStabilization = boolFromString(
newParams.get(CameraParameters::KEY_VIDEO_STABILIZATION) );
camera_metadata_ro_entry_t availableVideoStabilizationModes =
staticInfo(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES, 0, 0,
false);
if (validatedParams.videoStabilization &&
availableVideoStabilizationModes.count == 1) {
ALOGE("%s: Video stabilization not supported", __FUNCTION__);
}
/** Update internal parameters */
*this = validatedParams;
updateOverriddenJpegSize();
/** Update external parameters calculated from the internal ones */
// HORIZONTAL/VERTICAL FIELD OF VIEW
float horizFov, vertFov;
res = calculatePictureFovs(&horizFov, &vertFov);
if (res != OK) {
ALOGE("%s: Can't calculate FOVs", __FUNCTION__);
// continue so parameters are at least consistent
}
newParams.setFloat(CameraParameters::KEY_HORIZONTAL_VIEW_ANGLE,
horizFov);
newParams.setFloat(CameraParameters::KEY_VERTICAL_VIEW_ANGLE,
vertFov);
ALOGV("Current still picture FOV: %f x %f deg", horizFov, vertFov);
// Need to flatten again in case of overrides
paramsFlattened = newParams.flatten();
params = newParams;
slowJpegMode = false;
Size pictureSize = { pictureWidth, pictureHeight };
int64_t minFrameDurationNs = getJpegStreamMinFrameDurationNs(pictureSize);
if (previewFpsRange[1] > 1e9/minFrameDurationNs + FPS_MARGIN) {
slowJpegMode = true;
}
if (isDeviceZslSupported || slowJpegMode ||
property_get_bool("camera.disable_zsl_mode", false)) {
allowZslMode = false;
} else {
allowZslMode = isZslReprocessPresent;
}
ALOGV("%s: allowZslMode: %d slowJpegMode %d", __FUNCTION__, allowZslMode, slowJpegMode);
return OK;
}
status_t Parameters::updateRequest(CameraMetadata *request) const {
ATRACE_CALL();
status_t res;
/**
* Mixin default important security values
* - android.led.transmit = defaulted ON
*/
camera_metadata_ro_entry_t entry = staticInfo(ANDROID_LED_AVAILABLE_LEDS,
/*minimumCount*/0,
/*maximumCount*/0,
/*required*/false);
for(size_t i = 0; i < entry.count; ++i) {
uint8_t led = entry.data.u8[i];
switch(led) {
// Transmit LED is unconditionally on when using
// the android.hardware.Camera API
case ANDROID_LED_AVAILABLE_LEDS_TRANSMIT: {
uint8_t transmitDefault = ANDROID_LED_TRANSMIT_ON;
res = request->update(ANDROID_LED_TRANSMIT,
&transmitDefault, 1);
if (res != OK) return res;
break;
}
}
}
/**
* Construct metadata from parameters
*/
uint8_t metadataMode = ANDROID_REQUEST_METADATA_MODE_FULL;
res = request->update(ANDROID_REQUEST_METADATA_MODE,
&metadataMode, 1);
if (res != OK) return res;
camera_metadata_entry_t intent =
request->find(ANDROID_CONTROL_CAPTURE_INTENT);
if (intent.count == 0) return BAD_VALUE;
uint8_t distortionMode = ANDROID_DISTORTION_CORRECTION_MODE_OFF;
if (intent.data.u8[0] == ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE) {
res = request->update(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
fastInfo.bestStillCaptureFpsRange, 2);
distortionMode = ANDROID_DISTORTION_CORRECTION_MODE_HIGH_QUALITY;
} else {
res = request->update(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
previewFpsRange, 2);
distortionMode = ANDROID_DISTORTION_CORRECTION_MODE_FAST;
}
if (res != OK) return res;
if (isDistortionCorrectionSupported) {
res = request->update(ANDROID_DISTORTION_CORRECTION_MODE,
&distortionMode, 1);
if (res != OK) return res;
}
if (autoWhiteBalanceLockAvailable) {
uint8_t reqWbLock = autoWhiteBalanceLock ?
ANDROID_CONTROL_AWB_LOCK_ON : ANDROID_CONTROL_AWB_LOCK_OFF;
res = request->update(ANDROID_CONTROL_AWB_LOCK,
&reqWbLock, 1);
}
res = request->update(ANDROID_CONTROL_EFFECT_MODE,
&effectMode, 1);
if (res != OK) return res;
res = request->update(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
&antibandingMode, 1);
if (res != OK) return res;
// android.hardware.Camera requires that when face detect is enabled, the
// camera is in a face-priority mode. HAL3.x splits this into separate parts
// (face detection statistics and face priority scene mode). Map from other
// to the other.
bool sceneModeActive =
sceneMode != (uint8_t)ANDROID_CONTROL_SCENE_MODE_DISABLED;
uint8_t reqControlMode = ANDROID_CONTROL_MODE_AUTO;
if (enableFaceDetect || sceneModeActive) {
reqControlMode = ANDROID_CONTROL_MODE_USE_SCENE_MODE;
}
res = request->update(ANDROID_CONTROL_MODE,
&reqControlMode, 1);
if (res != OK) return res;
uint8_t reqSceneMode =
sceneModeActive ? sceneMode :
enableFaceDetect ? (uint8_t)ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY :
mDefaultSceneMode;
res = request->update(ANDROID_CONTROL_SCENE_MODE,
&reqSceneMode, 1);
if (res != OK) return res;
uint8_t reqFlashMode = ANDROID_FLASH_MODE_OFF;
uint8_t reqAeMode = ANDROID_CONTROL_AE_MODE_OFF;
switch (flashMode) {
case Parameters::FLASH_MODE_OFF:
reqAeMode = ANDROID_CONTROL_AE_MODE_ON; break;
case Parameters::FLASH_MODE_AUTO:
reqAeMode = ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH; break;
case Parameters::FLASH_MODE_ON:
reqAeMode = ANDROID_CONTROL_AE_MODE_ON_ALWAYS_FLASH; break;
case Parameters::FLASH_MODE_TORCH:
reqAeMode = ANDROID_CONTROL_AE_MODE_ON;
reqFlashMode = ANDROID_FLASH_MODE_TORCH;
break;
case Parameters::FLASH_MODE_RED_EYE:
reqAeMode = ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE; break;
default:
ALOGE("%s: Camera %d: Unknown flash mode %d", __FUNCTION__,
cameraId, flashMode);
return BAD_VALUE;
}
res = request->update(ANDROID_FLASH_MODE,
&reqFlashMode, 1);
if (res != OK) return res;
res = request->update(ANDROID_CONTROL_AE_MODE,
&reqAeMode, 1);
if (res != OK) return res;
if (autoExposureLockAvailable) {
uint8_t reqAeLock = autoExposureLock ?
ANDROID_CONTROL_AE_LOCK_ON : ANDROID_CONTROL_AE_LOCK_OFF;
res = request->update(ANDROID_CONTROL_AE_LOCK,
&reqAeLock, 1);
if (res != OK) return res;
}
res = request->update(ANDROID_CONTROL_AWB_MODE,
&wbMode, 1);
if (res != OK) return res;
float reqFocusDistance = 0; // infinity focus in diopters
uint8_t reqFocusMode = ANDROID_CONTROL_AF_MODE_OFF;
switch (focusMode) {
case Parameters::FOCUS_MODE_AUTO:
case Parameters::FOCUS_MODE_MACRO:
case Parameters::FOCUS_MODE_CONTINUOUS_VIDEO:
case Parameters::FOCUS_MODE_CONTINUOUS_PICTURE:
case Parameters::FOCUS_MODE_EDOF:
reqFocusMode = focusMode;
break;
case Parameters::FOCUS_MODE_INFINITY:
case Parameters::FOCUS_MODE_FIXED:
reqFocusMode = ANDROID_CONTROL_AF_MODE_OFF;
break;
default:
ALOGE("%s: Camera %d: Unknown focus mode %d", __FUNCTION__,
cameraId, focusMode);
return BAD_VALUE;
}
res = request->update(ANDROID_LENS_FOCUS_DISTANCE,
&reqFocusDistance, 1);
if (res != OK) return res;
res = request->update(ANDROID_CONTROL_AF_MODE,
&reqFocusMode, 1);
if (res != OK) return res;
size_t reqFocusingAreasSize = focusingAreas.size() * 5;
int32_t *reqFocusingAreas = new int32_t[reqFocusingAreasSize];
for (size_t i = 0, j = 0; i < reqFocusingAreasSize; i += 5, j++) {
if (focusingAreas[j].weight != 0) {
reqFocusingAreas[i + 0] =
normalizedXToArray(focusingAreas[j].left);
reqFocusingAreas[i + 1] =
normalizedYToArray(focusingAreas[j].top);
reqFocusingAreas[i + 2] =
normalizedXToArray(focusingAreas[j].right);
reqFocusingAreas[i + 3] =
normalizedYToArray(focusingAreas[j].bottom);
} else {
reqFocusingAreas[i + 0] = 0;
reqFocusingAreas[i + 1] = 0;
reqFocusingAreas[i + 2] = 0;
reqFocusingAreas[i + 3] = 0;
}
reqFocusingAreas[i + 4] = focusingAreas[j].weight;
}
res = request->update(ANDROID_CONTROL_AF_REGIONS,
reqFocusingAreas, reqFocusingAreasSize);
if (res != OK) return res;
delete[] reqFocusingAreas;
res = request->update(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
&exposureCompensation, 1);
if (res != OK) return res;
size_t reqMeteringAreasSize = meteringAreas.size() * 5;
int32_t *reqMeteringAreas = new int32_t[reqMeteringAreasSize];
for (size_t i = 0, j = 0; i < reqMeteringAreasSize; i += 5, j++) {
if (meteringAreas[j].weight != 0) {
reqMeteringAreas[i + 0] =
normalizedXToArray(meteringAreas[j].left);
reqMeteringAreas[i + 1] =
normalizedYToArray(meteringAreas[j].top);
reqMeteringAreas[i + 2] =
normalizedXToArray(meteringAreas[j].right);
reqMeteringAreas[i + 3] =
normalizedYToArray(meteringAreas[j].bottom);
// Requested size may be zero by rounding error with/without zooming.
// The ae regions should be at least 1 if metering width/height is not zero.
if (reqMeteringAreas[i + 0] == reqMeteringAreas[i + 2]) {
reqMeteringAreas[i + 2]++;
}
if (reqMeteringAreas[i + 1] == reqMeteringAreas[i + 3]) {
reqMeteringAreas[i + 3]++;
}
} else {
reqMeteringAreas[i + 0] = 0;
reqMeteringAreas[i + 1] = 0;
reqMeteringAreas[i + 2] = 0;
reqMeteringAreas[i + 3] = 0;
}
reqMeteringAreas[i + 4] = meteringAreas[j].weight;
}
res = request->update(ANDROID_CONTROL_AE_REGIONS,
reqMeteringAreas, reqMeteringAreasSize);
if (res != OK) return res;
// Set awb regions to be the same as the metering regions if allowed
size_t maxAwbRegions = (size_t)staticInfo(ANDROID_CONTROL_MAX_REGIONS,
Parameters::NUM_REGION, Parameters::NUM_REGION).
data.i32[Parameters::REGION_AWB];
if (maxAwbRegions > 0) {
if (maxAwbRegions >= meteringAreas.size()) {
res = request->update(ANDROID_CONTROL_AWB_REGIONS,
reqMeteringAreas, reqMeteringAreasSize);
} else {
// Ensure the awb regions are zeroed if the region count is too high.
int32_t zeroedAwbAreas[5] = {0, 0, 0, 0, 0};
res = request->update(ANDROID_CONTROL_AWB_REGIONS,
zeroedAwbAreas, sizeof(zeroedAwbAreas)/sizeof(int32_t));
}
if (res != OK) return res;
}
delete[] reqMeteringAreas;
CropRegion crop = calculateCropRegion(/*previewOnly*/ false);
int32_t reqCropRegion[4] = {
static_cast<int32_t>(crop.left),
static_cast<int32_t>(crop.top),
static_cast<int32_t>(crop.width),
static_cast<int32_t>(crop.height)
};
res = request->update(ANDROID_SCALER_CROP_REGION,
reqCropRegion, 4);
if (res != OK) return res;
uint8_t reqVstabMode = videoStabilization ?
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_ON :
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
res = request->update(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
&reqVstabMode, 1);
if (res != OK) return res;
uint8_t reqFaceDetectMode = enableFaceDetect ?
fastInfo.bestFaceDetectMode :
(uint8_t)ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
res = request->update(ANDROID_STATISTICS_FACE_DETECT_MODE,
&reqFaceDetectMode, 1);
if (res != OK) return res;
return OK;
}
status_t Parameters::updateRequestJpeg(CameraMetadata *request) const {
status_t res;
res = request->update(ANDROID_JPEG_THUMBNAIL_SIZE,
jpegThumbSize, 2);
if (res != OK) return res;
res = request->update(ANDROID_JPEG_THUMBNAIL_QUALITY,
&jpegThumbQuality, 1);
if (res != OK) return res;
res = request->update(ANDROID_JPEG_QUALITY,
&jpegQuality, 1);
if (res != OK) return res;
res = request->update(
ANDROID_JPEG_ORIENTATION,
&jpegRotation, 1);
if (res != OK) return res;
if (gpsEnabled) {
res = request->update(
ANDROID_JPEG_GPS_COORDINATES,
gpsCoordinates, 3);
if (res != OK) return res;
res = request->update(
ANDROID_JPEG_GPS_TIMESTAMP,
&gpsTimestamp, 1);
if (res != OK) return res;
res = request->update(
ANDROID_JPEG_GPS_PROCESSING_METHOD,
gpsProcessingMethod);
if (res != OK) return res;
} else {
res = request->erase(ANDROID_JPEG_GPS_COORDINATES);
if (res != OK) return res;
res = request->erase(ANDROID_JPEG_GPS_TIMESTAMP);
if (res != OK) return res;
res = request->erase(ANDROID_JPEG_GPS_PROCESSING_METHOD);
if (res != OK) return res;
}
return OK;
}
status_t Parameters::overrideJpegSizeByVideoSize() {
if (pictureSizeOverriden) {
ALOGV("Picture size has been overridden. Skip overriding");
return OK;
}
pictureSizeOverriden = true;
pictureWidthLastSet = pictureWidth;
pictureHeightLastSet = pictureHeight;
pictureWidth = videoWidth;
pictureHeight = videoHeight;
// This change of picture size is invisible to app layer.
// Do not update app visible params
return OK;
}
status_t Parameters::updateOverriddenJpegSize() {
if (!pictureSizeOverriden) {
ALOGV("Picture size has not been overridden. Skip checking");
return OK;
}
pictureWidthLastSet = pictureWidth;
pictureHeightLastSet = pictureHeight;
if (pictureWidth <= videoWidth && pictureHeight <= videoHeight) {
// Picture size is now smaller than video size. No need to override anymore
return recoverOverriddenJpegSize();
}
pictureWidth = videoWidth;
pictureHeight = videoHeight;
return OK;
}
status_t Parameters::recoverOverriddenJpegSize() {
if (!pictureSizeOverriden) {
ALOGV("Picture size has not been overridden. Skip recovering");
return OK;
}
pictureSizeOverriden = false;
pictureWidth = pictureWidthLastSet;
pictureHeight = pictureHeightLastSet;
return OK;
}
bool Parameters::isJpegSizeOverridden() {
return pictureSizeOverriden;
}
bool Parameters::useZeroShutterLag() const {
// If ZSL mode is disabled, don't use it
if (!allowZslMode) return false;
// If recording hint is enabled, don't do ZSL
if (recordingHint) return false;
// If still capture size is no bigger than preview or video size,
// don't do ZSL
if (pictureWidth <= previewWidth || pictureHeight <= previewHeight ||
pictureWidth <= videoWidth || pictureHeight <= videoHeight) {
return false;
}
// If still capture size is less than quarter of max, don't do ZSL
if ((pictureWidth * pictureHeight) <
(fastInfo.maxJpegSize.width * fastInfo.maxJpegSize.height / 4) ) {
return false;
}
return true;
}
status_t Parameters::getDefaultFocalLength(CameraDeviceBase *device) {
if (device == nullptr) {
ALOGE("%s: Camera device is nullptr", __FUNCTION__);
return BAD_VALUE;
}
camera_metadata_ro_entry_t hwLevel = staticInfo(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL);
if (!hwLevel.count) return NO_INIT;
fastInfo.isExternalCamera =
hwLevel.data.u8[0] == ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL;
camera_metadata_ro_entry_t availableFocalLengths =
staticInfo(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS, 0, 0, /*required*/false);
if (!availableFocalLengths.count && !fastInfo.isExternalCamera) return NO_INIT;
// Find focal length in PREVIEW template to use as default focal length.
if (fastInfo.isExternalCamera) {
fastInfo.defaultFocalLength = -1.0;
} else {
// Find smallest (widest-angle) focal length to use as basis of still
// picture FOV reporting.
fastInfo.defaultFocalLength = availableFocalLengths.data.f[0];
for (size_t i = 1; i < availableFocalLengths.count; i++) {
if (fastInfo.defaultFocalLength > availableFocalLengths.data.f[i]) {
fastInfo.defaultFocalLength = availableFocalLengths.data.f[i];
}
}
// Use focal length in preview template if it exists
CameraMetadata previewTemplate;
status_t res = device->createDefaultRequest(CAMERA3_TEMPLATE_PREVIEW, &previewTemplate);
if (res != OK) {
ALOGE("%s: Failed to create default PREVIEW request: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
camera_metadata_entry entry = previewTemplate.find(ANDROID_LENS_FOCAL_LENGTH);
if (entry.count != 0) {
fastInfo.defaultFocalLength = entry.data.f[0];
}
}
return OK;
}
const char* Parameters::getStateName(State state) {
#define CASE_ENUM_TO_CHAR(x) case x: return(#x); break;
switch(state) {
CASE_ENUM_TO_CHAR(DISCONNECTED)
CASE_ENUM_TO_CHAR(STOPPED)
CASE_ENUM_TO_CHAR(WAITING_FOR_PREVIEW_WINDOW)
CASE_ENUM_TO_CHAR(PREVIEW)
CASE_ENUM_TO_CHAR(RECORD)
CASE_ENUM_TO_CHAR(STILL_CAPTURE)
CASE_ENUM_TO_CHAR(VIDEO_SNAPSHOT)
default:
return "Unknown state!";
break;
}
#undef CASE_ENUM_TO_CHAR
}
int Parameters::formatStringToEnum(const char *format) {
return CameraParameters::previewFormatToEnum(format);
}
const char* Parameters::formatEnumToString(int format) {
const char *fmt;
switch(format) {
case HAL_PIXEL_FORMAT_YCbCr_422_SP: // NV16
fmt = CameraParameters::PIXEL_FORMAT_YUV422SP;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP: // NV21
fmt = CameraParameters::PIXEL_FORMAT_YUV420SP;
break;
case HAL_PIXEL_FORMAT_YCbCr_422_I: // YUY2
fmt = CameraParameters::PIXEL_FORMAT_YUV422I;
break;
case HAL_PIXEL_FORMAT_YV12: // YV12
fmt = CameraParameters::PIXEL_FORMAT_YUV420P;
break;
case HAL_PIXEL_FORMAT_RGB_565: // RGB565
fmt = CameraParameters::PIXEL_FORMAT_RGB565;
break;
case HAL_PIXEL_FORMAT_RGBA_8888: // RGBA8888
fmt = CameraParameters::PIXEL_FORMAT_RGBA8888;
break;
case HAL_PIXEL_FORMAT_RAW16:
ALOGW("Raw sensor preview format requested.");
fmt = CameraParameters::PIXEL_FORMAT_BAYER_RGGB;
break;
default:
ALOGE("%s: Unknown preview format: %x",
__FUNCTION__, format);
fmt = NULL;
break;
}
return fmt;
}
int Parameters::wbModeStringToEnum(const char *wbMode) {
return
!wbMode ?
ANDROID_CONTROL_AWB_MODE_AUTO :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_AUTO) ?
ANDROID_CONTROL_AWB_MODE_AUTO :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_INCANDESCENT) ?
ANDROID_CONTROL_AWB_MODE_INCANDESCENT :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_FLUORESCENT) ?
ANDROID_CONTROL_AWB_MODE_FLUORESCENT :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_WARM_FLUORESCENT) ?
ANDROID_CONTROL_AWB_MODE_WARM_FLUORESCENT :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_DAYLIGHT) ?
ANDROID_CONTROL_AWB_MODE_DAYLIGHT :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_CLOUDY_DAYLIGHT) ?
ANDROID_CONTROL_AWB_MODE_CLOUDY_DAYLIGHT :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_TWILIGHT) ?
ANDROID_CONTROL_AWB_MODE_TWILIGHT :
!strcmp(wbMode, CameraParameters::WHITE_BALANCE_SHADE) ?
ANDROID_CONTROL_AWB_MODE_SHADE :
-1;
}
const char* Parameters::wbModeEnumToString(uint8_t wbMode) {
switch (wbMode) {
case ANDROID_CONTROL_AWB_MODE_AUTO:
return CameraParameters::WHITE_BALANCE_AUTO;
case ANDROID_CONTROL_AWB_MODE_INCANDESCENT:
return CameraParameters::WHITE_BALANCE_INCANDESCENT;
case ANDROID_CONTROL_AWB_MODE_FLUORESCENT:
return CameraParameters::WHITE_BALANCE_FLUORESCENT;
case ANDROID_CONTROL_AWB_MODE_WARM_FLUORESCENT:
return CameraParameters::WHITE_BALANCE_WARM_FLUORESCENT;
case ANDROID_CONTROL_AWB_MODE_DAYLIGHT:
return CameraParameters::WHITE_BALANCE_DAYLIGHT;
case ANDROID_CONTROL_AWB_MODE_CLOUDY_DAYLIGHT:
return CameraParameters::WHITE_BALANCE_CLOUDY_DAYLIGHT;
case ANDROID_CONTROL_AWB_MODE_TWILIGHT:
return CameraParameters::WHITE_BALANCE_TWILIGHT;
case ANDROID_CONTROL_AWB_MODE_SHADE:
return CameraParameters::WHITE_BALANCE_SHADE;
default:
ALOGE("%s: Unknown AWB mode enum: %d",
__FUNCTION__, wbMode);
return "unknown";
}
}
int Parameters::effectModeStringToEnum(const char *effectMode) {
return
!effectMode ?
ANDROID_CONTROL_EFFECT_MODE_OFF :
!strcmp(effectMode, CameraParameters::EFFECT_NONE) ?
ANDROID_CONTROL_EFFECT_MODE_OFF :
!strcmp(effectMode, CameraParameters::EFFECT_MONO) ?
ANDROID_CONTROL_EFFECT_MODE_MONO :
!strcmp(effectMode, CameraParameters::EFFECT_NEGATIVE) ?
ANDROID_CONTROL_EFFECT_MODE_NEGATIVE :
!strcmp(effectMode, CameraParameters::EFFECT_SOLARIZE) ?
ANDROID_CONTROL_EFFECT_MODE_SOLARIZE :
!strcmp(effectMode, CameraParameters::EFFECT_SEPIA) ?
ANDROID_CONTROL_EFFECT_MODE_SEPIA :
!strcmp(effectMode, CameraParameters::EFFECT_POSTERIZE) ?
ANDROID_CONTROL_EFFECT_MODE_POSTERIZE :
!strcmp(effectMode, CameraParameters::EFFECT_WHITEBOARD) ?
ANDROID_CONTROL_EFFECT_MODE_WHITEBOARD :
!strcmp(effectMode, CameraParameters::EFFECT_BLACKBOARD) ?
ANDROID_CONTROL_EFFECT_MODE_BLACKBOARD :
!strcmp(effectMode, CameraParameters::EFFECT_AQUA) ?
ANDROID_CONTROL_EFFECT_MODE_AQUA :
-1;
}
int Parameters::abModeStringToEnum(const char *abMode) {
return
!abMode ?
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO :
!strcmp(abMode, CameraParameters::ANTIBANDING_AUTO) ?
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO :
!strcmp(abMode, CameraParameters::ANTIBANDING_OFF) ?
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF :
!strcmp(abMode, CameraParameters::ANTIBANDING_50HZ) ?
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ :
!strcmp(abMode, CameraParameters::ANTIBANDING_60HZ) ?
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ :
-1;
}
int Parameters::sceneModeStringToEnum(const char *sceneMode, uint8_t defaultSceneMode) {
return
!sceneMode ?
defaultSceneMode :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_AUTO) ?
defaultSceneMode :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_ACTION) ?
ANDROID_CONTROL_SCENE_MODE_ACTION :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_PORTRAIT) ?
ANDROID_CONTROL_SCENE_MODE_PORTRAIT :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_LANDSCAPE) ?
ANDROID_CONTROL_SCENE_MODE_LANDSCAPE :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_NIGHT) ?
ANDROID_CONTROL_SCENE_MODE_NIGHT :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_NIGHT_PORTRAIT) ?
ANDROID_CONTROL_SCENE_MODE_NIGHT_PORTRAIT :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_THEATRE) ?
ANDROID_CONTROL_SCENE_MODE_THEATRE :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_BEACH) ?
ANDROID_CONTROL_SCENE_MODE_BEACH :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_SNOW) ?
ANDROID_CONTROL_SCENE_MODE_SNOW :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_SUNSET) ?
ANDROID_CONTROL_SCENE_MODE_SUNSET :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_STEADYPHOTO) ?
ANDROID_CONTROL_SCENE_MODE_STEADYPHOTO :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_FIREWORKS) ?
ANDROID_CONTROL_SCENE_MODE_FIREWORKS :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_SPORTS) ?
ANDROID_CONTROL_SCENE_MODE_SPORTS :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_PARTY) ?
ANDROID_CONTROL_SCENE_MODE_PARTY :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_CANDLELIGHT) ?
ANDROID_CONTROL_SCENE_MODE_CANDLELIGHT :
!strcmp(sceneMode, CameraParameters::SCENE_MODE_BARCODE) ?
ANDROID_CONTROL_SCENE_MODE_BARCODE:
!strcmp(sceneMode, CameraParameters::SCENE_MODE_HDR) ?
ANDROID_CONTROL_SCENE_MODE_HDR:
-1;
}
Parameters::Parameters::flashMode_t Parameters::flashModeStringToEnum(
const char *flashMode) {
return
!flashMode ?
Parameters::FLASH_MODE_OFF :
!strcmp(flashMode, CameraParameters::FLASH_MODE_OFF) ?
Parameters::FLASH_MODE_OFF :
!strcmp(flashMode, CameraParameters::FLASH_MODE_AUTO) ?
Parameters::FLASH_MODE_AUTO :
!strcmp(flashMode, CameraParameters::FLASH_MODE_ON) ?
Parameters::FLASH_MODE_ON :
!strcmp(flashMode, CameraParameters::FLASH_MODE_RED_EYE) ?
Parameters::FLASH_MODE_RED_EYE :
!strcmp(flashMode, CameraParameters::FLASH_MODE_TORCH) ?
Parameters::FLASH_MODE_TORCH :
Parameters::FLASH_MODE_INVALID;
}
const char *Parameters::flashModeEnumToString(flashMode_t flashMode) {
switch (flashMode) {
case FLASH_MODE_OFF:
return CameraParameters::FLASH_MODE_OFF;
case FLASH_MODE_AUTO:
return CameraParameters::FLASH_MODE_AUTO;
case FLASH_MODE_ON:
return CameraParameters::FLASH_MODE_ON;
case FLASH_MODE_RED_EYE:
return CameraParameters::FLASH_MODE_RED_EYE;
case FLASH_MODE_TORCH:
return CameraParameters::FLASH_MODE_TORCH;
default:
ALOGE("%s: Unknown flash mode enum %d",
__FUNCTION__, flashMode);
return "unknown";
}
}
Parameters::Parameters::focusMode_t Parameters::focusModeStringToEnum(
const char *focusMode) {
return
!focusMode ?
Parameters::FOCUS_MODE_INVALID :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_AUTO) ?
Parameters::FOCUS_MODE_AUTO :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_INFINITY) ?
Parameters::FOCUS_MODE_INFINITY :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_MACRO) ?
Parameters::FOCUS_MODE_MACRO :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_FIXED) ?
Parameters::FOCUS_MODE_FIXED :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_EDOF) ?
Parameters::FOCUS_MODE_EDOF :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_CONTINUOUS_VIDEO) ?
Parameters::FOCUS_MODE_CONTINUOUS_VIDEO :
!strcmp(focusMode, CameraParameters::FOCUS_MODE_CONTINUOUS_PICTURE) ?
Parameters::FOCUS_MODE_CONTINUOUS_PICTURE :
Parameters::FOCUS_MODE_INVALID;
}
const char *Parameters::focusModeEnumToString(focusMode_t focusMode) {
switch (focusMode) {
case FOCUS_MODE_AUTO:
return CameraParameters::FOCUS_MODE_AUTO;
case FOCUS_MODE_MACRO:
return CameraParameters::FOCUS_MODE_MACRO;
case FOCUS_MODE_CONTINUOUS_VIDEO:
return CameraParameters::FOCUS_MODE_CONTINUOUS_VIDEO;
case FOCUS_MODE_CONTINUOUS_PICTURE:
return CameraParameters::FOCUS_MODE_CONTINUOUS_PICTURE;
case FOCUS_MODE_EDOF:
return CameraParameters::FOCUS_MODE_EDOF;
case FOCUS_MODE_INFINITY:
return CameraParameters::FOCUS_MODE_INFINITY;
case FOCUS_MODE_FIXED:
return CameraParameters::FOCUS_MODE_FIXED;
default:
ALOGE("%s: Unknown focus mode enum: %d",
__FUNCTION__, focusMode);
return "unknown";
}
}
status_t Parameters::parseAreas(const char *areasCStr,
Vector<Parameters::Area> *areas) {
static const size_t NUM_FIELDS = 5;
areas->clear();
if (areasCStr == NULL) {
// If no key exists, use default (0,0,0,0,0)
areas->push();
return OK;
}
String8 areasStr(areasCStr);
ssize_t areaStart = areasStr.find("(", 0) + 1;
while (areaStart != 0) {
const char* area = areasStr.string() + areaStart;
char *numEnd;
int vals[NUM_FIELDS];
for (size_t i = 0; i < NUM_FIELDS; i++) {
errno = 0;
vals[i] = strtol(area, &numEnd, 10);
if (errno || numEnd == area) return BAD_VALUE;
area = numEnd + 1;
}
areas->push(Parameters::Area(
vals[0], vals[1], vals[2], vals[3], vals[4]) );
areaStart = areasStr.find("(", areaStart) + 1;
}
return OK;
}
status_t Parameters::validateAreas(const Vector<Parameters::Area> &areas,
size_t maxRegions,
AreaKind areaKind) const {
// Definition of valid area can be found in
// include/camera/CameraParameters.h
if (areas.size() == 0) return BAD_VALUE;
if (areas.size() == 1) {
if (areas[0].left == 0 &&
areas[0].top == 0 &&
areas[0].right == 0 &&
areas[0].bottom == 0 &&
areas[0].weight == 0) {
// Single (0,0,0,0,0) entry is always valid (== driver decides)
return OK;
}
}
// fixed focus can only set (0,0,0,0,0) focus area
if (areaKind == AREA_KIND_FOCUS && focusMode == FOCUS_MODE_FIXED) {
return BAD_VALUE;
}
if (areas.size() > maxRegions) {
ALOGE("%s: Too many areas requested: %zu",
__FUNCTION__, areas.size());
return BAD_VALUE;
}
for (Vector<Parameters::Area>::const_iterator a = areas.begin();
a != areas.end(); a++) {
if (a->weight < 1 || a->weight > 1000) return BAD_VALUE;
if (a->left < -1000 || a->left > 1000) return BAD_VALUE;
if (a->top < -1000 || a->top > 1000) return BAD_VALUE;
if (a->right < -1000 || a->right > 1000) return BAD_VALUE;
if (a->bottom < -1000 || a->bottom > 1000) return BAD_VALUE;
if (a->left >= a->right) return BAD_VALUE;
if (a->top >= a->bottom) return BAD_VALUE;
}
return OK;
}
bool Parameters::boolFromString(const char *boolStr) {
return !boolStr ? false :
!strcmp(boolStr, CameraParameters::TRUE) ? true :
false;
}
int Parameters::degToTransform(int degrees, bool mirror) {
if (!mirror) {
if (degrees == 0) return 0;
else if (degrees == 90) return HAL_TRANSFORM_ROT_90;
else if (degrees == 180) return HAL_TRANSFORM_ROT_180;
else if (degrees == 270) return HAL_TRANSFORM_ROT_270;
} else { // Do mirror (horizontal flip)
if (degrees == 0) { // FLIP_H and ROT_0
return HAL_TRANSFORM_FLIP_H;
} else if (degrees == 90) { // FLIP_H and ROT_90
return HAL_TRANSFORM_FLIP_H | HAL_TRANSFORM_ROT_90;
} else if (degrees == 180) { // FLIP_H and ROT_180
return HAL_TRANSFORM_FLIP_V;
} else if (degrees == 270) { // FLIP_H and ROT_270
return HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_ROT_90;
}
}
ALOGE("%s: Bad input: %d", __FUNCTION__, degrees);
return -1;
}
int Parameters::cropXToArray(int x) const {
ALOG_ASSERT(x >= 0, "Crop-relative X coordinate = '%d' is out of bounds"
"(lower = 0)", x);
CropRegion previewCrop = calculateCropRegion(/*previewOnly*/ true);
ALOG_ASSERT(x < previewCrop.width, "Crop-relative X coordinate = '%d' "
"is out of bounds (upper = %f)", x, previewCrop.width);
int ret = x + previewCrop.left;
ALOG_ASSERT( (ret >= 0 && ret < fastInfo.arrayWidth),
"Calculated pixel array value X = '%d' is out of bounds (upper = %d)",
ret, fastInfo.arrayWidth);
return ret;
}
int Parameters::cropYToArray(int y) const {
ALOG_ASSERT(y >= 0, "Crop-relative Y coordinate = '%d' is out of bounds "
"(lower = 0)", y);
CropRegion previewCrop = calculateCropRegion(/*previewOnly*/ true);
ALOG_ASSERT(y < previewCrop.height, "Crop-relative Y coordinate = '%d' is "
"out of bounds (upper = %f)", y, previewCrop.height);
int ret = y + previewCrop.top;
ALOG_ASSERT( (ret >= 0 && ret < fastInfo.arrayHeight),
"Calculated pixel array value Y = '%d' is out of bounds (upper = %d)",
ret, fastInfo.arrayHeight);
return ret;
}
int Parameters::normalizedXToCrop(int x) const {
CropRegion previewCrop = calculateCropRegion(/*previewOnly*/ true);
return (x + 1000) * (previewCrop.width - 1) / 2000;
}
int Parameters::normalizedYToCrop(int y) const {
CropRegion previewCrop = calculateCropRegion(/*previewOnly*/ true);
return (y + 1000) * (previewCrop.height - 1) / 2000;
}
int Parameters::normalizedXToArray(int x) const {
// Work-around for HAL pre-scaling the coordinates themselves
if (quirks.meteringCropRegion) {
return (x + 1000) * (fastInfo.arrayWidth - 1) / 2000;
}
return cropXToArray(normalizedXToCrop(x));
}
int Parameters::normalizedYToArray(int y) const {
// Work-around for HAL pre-scaling the coordinates themselves
if (quirks.meteringCropRegion) {
return (y + 1000) * (fastInfo.arrayHeight - 1) / 2000;
}
return cropYToArray(normalizedYToCrop(y));
}
Parameters::CropRegion Parameters::calculatePreviewCrop(
const CropRegion &scalerCrop) const {
float left, top, width, height;
float previewAspect = static_cast<float>(previewWidth) / previewHeight;
float cropAspect = scalerCrop.width / scalerCrop.height;
if (previewAspect > cropAspect) {
width = scalerCrop.width;
height = cropAspect * scalerCrop.height / previewAspect;
left = scalerCrop.left;
top = scalerCrop.top + (scalerCrop.height - height) / 2;
} else {
width = previewAspect * scalerCrop.width / cropAspect;
height = scalerCrop.height;
left = scalerCrop.left + (scalerCrop.width - width) / 2;
top = scalerCrop.top;
}
CropRegion previewCrop = {left, top, width, height};
return previewCrop;
}
int Parameters::arrayXToNormalizedWithCrop(int x,
const CropRegion &scalerCrop) const {
// Work-around for HAL pre-scaling the coordinates themselves
if (quirks.meteringCropRegion) {
return x * 2000 / (fastInfo.arrayWidth - 1) - 1000;
} else {
CropRegion previewCrop = calculatePreviewCrop(scalerCrop);
return (x - previewCrop.left) * 2000 / (previewCrop.width - 1) - 1000;
}
}
int Parameters::arrayYToNormalizedWithCrop(int y,
const CropRegion &scalerCrop) const {
// Work-around for HAL pre-scaling the coordinates themselves
if (quirks.meteringCropRegion) {
return y * 2000 / (fastInfo.arrayHeight - 1) - 1000;
} else {
CropRegion previewCrop = calculatePreviewCrop(scalerCrop);
return (y - previewCrop.top) * 2000 / (previewCrop.height - 1) - 1000;
}
}
status_t Parameters::getFilteredSizes(Size limit, Vector<Size> *sizes) {
if (info == NULL) {
ALOGE("%s: Static metadata is not initialized", __FUNCTION__);
return NO_INIT;
}
if (sizes == NULL) {
ALOGE("%s: Input size is null", __FUNCTION__);
return BAD_VALUE;
}
sizes->clear();
Vector<StreamConfiguration> scs = getStreamConfigurations();
for (size_t i=0; i < scs.size(); i++) {
const StreamConfiguration &sc = scs[i];
if (sc.isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT &&
sc.format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
sc.width <= limit.width && sc.height <= limit.height) {
int64_t minFrameDuration = getMinFrameDurationNs(
{sc.width, sc.height}, HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED);
if (minFrameDuration > MAX_PREVIEW_RECORD_DURATION_NS) {
// Filter slow sizes from preview/record
continue;
}
sizes->push({sc.width, sc.height});
}
}
if (sizes->isEmpty()) {
ALOGE("generated preview size list is empty!!");
return BAD_VALUE;
}
return OK;
}
Parameters::Size Parameters::getMaxSizeForRatio(
float ratio, const int32_t* sizeArray, size_t count) {
ALOG_ASSERT(sizeArray != NULL, "size array shouldn't be NULL");
ALOG_ASSERT(count >= 2 && count % 2 == 0, "count must be a positive even number");
Size maxSize = {0, 0};
for (size_t i = 0; i < count; i += 2) {
if (sizeArray[i] > 0 && sizeArray[i+1] > 0) {
float curRatio = static_cast<float>(sizeArray[i]) / sizeArray[i+1];
if (fabs(curRatio - ratio) < ASPECT_RATIO_TOLERANCE && maxSize.width < sizeArray[i]) {
maxSize.width = sizeArray[i];
maxSize.height = sizeArray[i+1];
}
}
}
if (maxSize.width == 0 || maxSize.height == 0) {
maxSize.width = sizeArray[0];
maxSize.height = sizeArray[1];
ALOGW("Unable to find the size to match the given aspect ratio %f."
"Fall back to %d x %d", ratio, maxSize.width, maxSize.height);
}
return maxSize;
}
Parameters::Size Parameters::getMaxSize(const Vector<Parameters::Size> &sizes) {
Size maxSize = {-1, -1};
for (size_t i = 0; i < sizes.size(); i++) {
if (sizes[i].width > maxSize.width ||
(sizes[i].width == maxSize.width && sizes[i].height > maxSize.height )) {
maxSize = sizes[i];
}
}
return maxSize;
}
Vector<Parameters::StreamConfiguration> Parameters::getStreamConfigurations() {
const int STREAM_CONFIGURATION_SIZE = 4;
const int STREAM_FORMAT_OFFSET = 0;
const int STREAM_WIDTH_OFFSET = 1;
const int STREAM_HEIGHT_OFFSET = 2;
const int STREAM_IS_INPUT_OFFSET = 3;
Vector<StreamConfiguration> scs;
camera_metadata_ro_entry_t availableStreamConfigs =
staticInfo(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
for (size_t i = 0; i < availableStreamConfigs.count; i+= STREAM_CONFIGURATION_SIZE) {
int32_t format = availableStreamConfigs.data.i32[i + STREAM_FORMAT_OFFSET];
int32_t width = availableStreamConfigs.data.i32[i + STREAM_WIDTH_OFFSET];
int32_t height = availableStreamConfigs.data.i32[i + STREAM_HEIGHT_OFFSET];
int32_t isInput = availableStreamConfigs.data.i32[i + STREAM_IS_INPUT_OFFSET];
StreamConfiguration sc = {format, width, height, isInput};
scs.add(sc);
}
return scs;
}
int64_t Parameters::getJpegStreamMinFrameDurationNs(Parameters::Size size) {
return getMinFrameDurationNs(size, HAL_PIXEL_FORMAT_BLOB);
}
int64_t Parameters::getMinFrameDurationNs(Parameters::Size size, int fmt) {
const int STREAM_DURATION_SIZE = 4;
const int STREAM_FORMAT_OFFSET = 0;
const int STREAM_WIDTH_OFFSET = 1;
const int STREAM_HEIGHT_OFFSET = 2;
const int STREAM_DURATION_OFFSET = 3;
camera_metadata_ro_entry_t availableStreamMinDurations =
staticInfo(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS);
for (size_t i = 0; i < availableStreamMinDurations.count; i+= STREAM_DURATION_SIZE) {
int64_t format = availableStreamMinDurations.data.i64[i + STREAM_FORMAT_OFFSET];
int64_t width = availableStreamMinDurations.data.i64[i + STREAM_WIDTH_OFFSET];
int64_t height = availableStreamMinDurations.data.i64[i + STREAM_HEIGHT_OFFSET];
int64_t duration = availableStreamMinDurations.data.i64[i + STREAM_DURATION_OFFSET];
if (format == fmt && width == size.width && height == size.height) {
return duration;
}
}
return -1;
}
bool Parameters::isFpsSupported(const Vector<Size> &sizes, int format, int32_t fps) {
// Get min frame duration for each size and check if the given fps range can be supported.
for (size_t i = 0 ; i < sizes.size(); i++) {
int64_t minFrameDuration = getMinFrameDurationNs(sizes[i], format);
if (minFrameDuration <= 0) {
ALOGE("Min frame duration (%" PRId64") for size (%dx%d) and format 0x%x is wrong!",
minFrameDuration, sizes[i].width, sizes[i].height, format);
return false;
}
int32_t maxSupportedFps = 1e9 / minFrameDuration;
// Add some margin here for the case where the hal supports 29.xxxfps.
maxSupportedFps += FPS_MARGIN;
if (fps > maxSupportedFps) {
return false;
}
}
return true;
}
SortedVector<int32_t> Parameters::getAvailableOutputFormats() {
SortedVector<int32_t> outputFormats; // Non-duplicated output formats
Vector<StreamConfiguration> scs = getStreamConfigurations();
for (size_t i = 0; i < scs.size(); i++) {
const StreamConfiguration &sc = scs[i];
if (sc.isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT) {
outputFormats.add(sc.format);
}
}
return outputFormats;
}
Vector<Parameters::Size> Parameters::getAvailableJpegSizes() {
Vector<Parameters::Size> jpegSizes;
Vector<StreamConfiguration> scs = getStreamConfigurations();
for (size_t i = 0; i < scs.size(); i++) {
const StreamConfiguration &sc = scs[i];
if (sc.isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT &&
sc.format == HAL_PIXEL_FORMAT_BLOB) {
Size sz = {sc.width, sc.height};
jpegSizes.add(sz);
}
}
return jpegSizes;
}
Vector<Parameters::StreamConfiguration> Parameters::getPreferredStreamConfigurations(
int32_t usecaseId) const {
const size_t STREAM_CONFIGURATION_SIZE = 5;
const size_t STREAM_WIDTH_OFFSET = 0;
const size_t STREAM_HEIGHT_OFFSET = 1;
const size_t STREAM_FORMAT_OFFSET = 2;
const size_t STREAM_IS_INPUT_OFFSET = 3;
const size_t STREAM_USECASE_BITMAP_OFFSET = 4;
Vector<StreamConfiguration> scs;
if (fastInfo.supportsPreferredConfigs) {
camera_metadata_ro_entry_t availableStreamConfigs = staticInfo(
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS);
for (size_t i = 0; i < availableStreamConfigs.count; i+= STREAM_CONFIGURATION_SIZE) {
int32_t width = availableStreamConfigs.data.i32[i + STREAM_WIDTH_OFFSET];
int32_t height = availableStreamConfigs.data.i32[i + STREAM_HEIGHT_OFFSET];
int32_t format = availableStreamConfigs.data.i32[i + STREAM_FORMAT_OFFSET];
int32_t isInput = availableStreamConfigs.data.i32[i + STREAM_IS_INPUT_OFFSET];
int32_t supportedUsecases =
availableStreamConfigs.data.i32[i + STREAM_USECASE_BITMAP_OFFSET];
if (supportedUsecases & (1 << usecaseId)) {
StreamConfiguration sc = {format, width, height, isInput};
scs.add(sc);
}
}
}
return scs;
}
Vector<Parameters::Size> Parameters::getPreferredFilteredSizes(int32_t usecaseId,
int32_t format) const {
Vector<Parameters::Size> sizes;
Vector<StreamConfiguration> scs = getPreferredStreamConfigurations(usecaseId);
for (const auto &it : scs) {
if (it.format == format) {
sizes.add({it.width, it.height});
}
}
return sizes;
}
Vector<Parameters::Size> Parameters::getPreferredJpegSizes() const {
return getPreferredFilteredSizes(
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS_SNAPSHOT,
HAL_PIXEL_FORMAT_BLOB);
}
Vector<Parameters::Size> Parameters::getPreferredPreviewSizes() const {
return getPreferredFilteredSizes(
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS_PREVIEW,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED);
}
Vector<Parameters::Size> Parameters::getPreferredVideoSizes() const {
return getPreferredFilteredSizes(
ANDROID_SCALER_AVAILABLE_RECOMMENDED_STREAM_CONFIGURATIONS_RECORD,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED);
}
Parameters::CropRegion Parameters::calculateCropRegion(bool previewOnly) const {
float zoomLeft, zoomTop, zoomWidth, zoomHeight;
// Need to convert zoom index into a crop rectangle. The rectangle is
// chosen to maximize its area on the sensor
camera_metadata_ro_entry_t maxDigitalZoom =
staticInfo(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM);
// For each zoom step by how many pixels more do we change the zoom
float zoomIncrement = (maxDigitalZoom.data.f[0] - 1) /
(NUM_ZOOM_STEPS-1);
// The desired activeAreaWidth/cropAreaWidth ratio (or height if h>w)
// via interpolating zoom step into a zoom ratio
float zoomRatio = 1 + zoomIncrement * zoom;
ALOG_ASSERT( (zoomRatio >= 1.f && zoomRatio <= maxDigitalZoom.data.f[0]),
"Zoom ratio calculated out of bounds. Expected 1 - %f, actual: %f",
maxDigitalZoom.data.f[0], zoomRatio);
ALOGV("Zoom maxDigital=%f, increment=%f, ratio=%f, previewWidth=%d, "
"previewHeight=%d, activeWidth=%d, activeHeight=%d",
maxDigitalZoom.data.f[0], zoomIncrement, zoomRatio, previewWidth,
previewHeight, fastInfo.arrayWidth, fastInfo.arrayHeight);
if (previewOnly) {
// Calculate a tight crop region for the preview stream only
float previewRatio = static_cast<float>(previewWidth) / previewHeight;
/* Ensure that the width/height never go out of bounds
* by scaling across a diffent dimension if an out-of-bounds
* possibility exists.
*
* e.g. if the previewratio < arrayratio and e.g. zoomratio = 1.0, then by
* calculating the zoomWidth from zoomHeight we'll actually get a
* zoomheight > arrayheight
*/
float arrayRatio = 1.f * fastInfo.arrayWidth / fastInfo.arrayHeight;
if (previewRatio >= arrayRatio) {
// Adjust the height based on the width
zoomWidth = fastInfo.arrayWidth / zoomRatio;
zoomHeight = zoomWidth *
previewHeight / previewWidth;
} else {
// Adjust the width based on the height
zoomHeight = fastInfo.arrayHeight / zoomRatio;
zoomWidth = zoomHeight *
previewWidth / previewHeight;
}
} else {
// Calculate the global crop region with a shape matching the active
// array.
zoomWidth = fastInfo.arrayWidth / zoomRatio;
zoomHeight = fastInfo.arrayHeight / zoomRatio;
}
// center the zoom area within the active area
zoomLeft = (fastInfo.arrayWidth - zoomWidth) / 2;
zoomTop = (fastInfo.arrayHeight - zoomHeight) / 2;
ALOGV("Crop region calculated (x=%d,y=%d,w=%f,h=%f) for zoom=%d",
(int32_t)zoomLeft, (int32_t)zoomTop, zoomWidth, zoomHeight, this->zoom);
CropRegion crop = { zoomLeft, zoomTop, zoomWidth, zoomHeight };
return crop;
}
status_t Parameters::calculatePictureFovs(float *horizFov, float *vertFov)
const {
if (fastInfo.isExternalCamera) {
if (horizFov != NULL) {
*horizFov = -1.0;
}
if (vertFov != NULL) {
*vertFov = -1.0;
}
return OK;
}
camera_metadata_ro_entry_t sensorSize =
staticInfo(ANDROID_SENSOR_INFO_PHYSICAL_SIZE, 2, 2);
if (!sensorSize.count) return NO_INIT;
camera_metadata_ro_entry_t pixelArraySize =
staticInfo(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE, 2, 2);
if (!pixelArraySize.count) return NO_INIT;
float arrayAspect = static_cast<float>(fastInfo.arrayWidth) /
fastInfo.arrayHeight;
float stillAspect = static_cast<float>(pictureWidth) / pictureHeight;
ALOGV("Array aspect: %f, still aspect: %f", arrayAspect, stillAspect);
// The crop factors from the full sensor array to the still picture crop
// region
float horizCropFactor = 1.f;
float vertCropFactor = 1.f;
/**
* Need to calculate the still image field of view based on the total pixel
* array field of view, and the relative aspect ratios of the pixel array
* and output streams.
*
* Special treatment for quirky definition of crop region and relative
* stream cropping.
*/
if (quirks.meteringCropRegion) {
// Use max of preview and video as first crop
float previewAspect = static_cast<float>(previewWidth) / previewHeight;
float videoAspect = static_cast<float>(videoWidth) / videoHeight;
if (videoAspect > previewAspect) {
previewAspect = videoAspect;
}
// First crop sensor to preview aspect ratio
if (arrayAspect < previewAspect) {
vertCropFactor = arrayAspect / previewAspect;
} else {
horizCropFactor = previewAspect / arrayAspect;
}
// Second crop to still aspect ratio
if (stillAspect < previewAspect) {
horizCropFactor *= stillAspect / previewAspect;
} else {
vertCropFactor *= previewAspect / stillAspect;
}
} else {
/**
* Crop are just a function of just the still/array relative aspect
* ratios. Since each stream will maximize its area within the crop
* region, and for FOV we assume a full-sensor crop region, we only ever
* crop the FOV either vertically or horizontally, never both.
*/
horizCropFactor = (arrayAspect > stillAspect) ?
(stillAspect / arrayAspect) : 1.f;
vertCropFactor = (arrayAspect < stillAspect) ?
(arrayAspect / stillAspect) : 1.f;
}
/**
* Convert the crop factors w.r.t the active array size to the crop factors
* w.r.t the pixel array size.
*/
horizCropFactor *= (static_cast<float>(fastInfo.arrayWidth) /
pixelArraySize.data.i32[0]);
vertCropFactor *= (static_cast<float>(fastInfo.arrayHeight) /
pixelArraySize.data.i32[1]);
ALOGV("Horiz crop factor: %f, vert crop fact: %f",
horizCropFactor, vertCropFactor);
/**
* Basic field of view formula is:
* angle of view = 2 * arctangent ( d / 2f )
* where d is the physical sensor dimension of interest, and f is
* the focal length. This only applies to rectilinear sensors, for focusing
* at distances >> f, etc.
*/
if (horizFov != NULL) {
*horizFov = 180 / M_PI * 2 *
atanf(horizCropFactor * sensorSize.data.f[0] /
(2 * fastInfo.defaultFocalLength));
}
if (vertFov != NULL) {
*vertFov = 180 / M_PI * 2 *
atanf(vertCropFactor * sensorSize.data.f[1] /
(2 * fastInfo.defaultFocalLength));
}
return OK;
}
int32_t Parameters::fpsFromRange(int32_t /*min*/, int32_t max) const {
return max;
}
}; // namespace camera2
}; // namespace android