blob: bf4d1c8e43d5d63a395ae16ecc48e1d910c20461 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-HeicCompositeStream"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include <linux/memfd.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <android/hardware/camera/device/3.5/types.h>
#include <libyuv.h>
#include <gui/Surface.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <mediadrm/ICrypto.h>
#include <media/MediaCodecBuffer.h>
#include <media/stagefright/foundation/ABuffer.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include <media/stagefright/MediaCodecConstants.h>
#include "common/CameraDeviceBase.h"
#include "utils/ExifUtils.h"
#include "HeicEncoderInfoManager.h"
#include "HeicCompositeStream.h"
using android::hardware::camera::device::V3_5::CameraBlob;
using android::hardware::camera::device::V3_5::CameraBlobId;
namespace android {
namespace camera3 {
HeicCompositeStream::HeicCompositeStream(wp<CameraDeviceBase> device,
wp<hardware::camera2::ICameraDeviceCallbacks> cb) :
CompositeStream(device, cb),
mUseHeic(false),
mNumOutputTiles(1),
mOutputWidth(0),
mOutputHeight(0),
mMaxHeicBufferSize(0),
mGridWidth(HeicEncoderInfoManager::kGridWidth),
mGridHeight(HeicEncoderInfoManager::kGridHeight),
mGridRows(1),
mGridCols(1),
mUseGrid(false),
mAppSegmentStreamId(-1),
mAppSegmentSurfaceId(-1),
mMainImageStreamId(-1),
mMainImageSurfaceId(-1),
mYuvBufferAcquired(false),
mProducerListener(new ProducerListener()),
mDequeuedOutputBufferCnt(0),
mLockedAppSegmentBufferCnt(0),
mCodecOutputCounter(0),
mGridTimestampUs(0) {
}
HeicCompositeStream::~HeicCompositeStream() {
// Call deinitCodec in case stream hasn't been deleted yet to avoid any
// memory/resource leak.
deinitCodec();
mInputAppSegmentBuffers.clear();
mCodecOutputBuffers.clear();
mAppSegmentStreamId = -1;
mAppSegmentSurfaceId = -1;
mAppSegmentConsumer.clear();
mAppSegmentSurface.clear();
mMainImageStreamId = -1;
mMainImageSurfaceId = -1;
mMainImageConsumer.clear();
mMainImageSurface.clear();
}
bool HeicCompositeStream::isHeicCompositeStream(const sp<Surface> &surface) {
ANativeWindow *anw = surface.get();
status_t err;
int format;
if ((err = anw->query(anw, NATIVE_WINDOW_FORMAT, &format)) != OK) {
String8 msg = String8::format("Failed to query Surface format: %s (%d)", strerror(-err),
err);
ALOGE("%s: %s", __FUNCTION__, msg.string());
return false;
}
int dataspace;
if ((err = anw->query(anw, NATIVE_WINDOW_DEFAULT_DATASPACE, &dataspace)) != OK) {
String8 msg = String8::format("Failed to query Surface dataspace: %s (%d)", strerror(-err),
err);
ALOGE("%s: %s", __FUNCTION__, msg.string());
return false;
}
return ((format == HAL_PIXEL_FORMAT_BLOB) && (dataspace == HAL_DATASPACE_HEIF));
}
status_t HeicCompositeStream::createInternalStreams(const std::vector<sp<Surface>>& consumers,
bool /*hasDeferredConsumer*/, uint32_t width, uint32_t height, int format,
camera3_stream_rotation_t rotation, int *id, const String8& physicalCameraId,
std::vector<int> *surfaceIds, int /*streamSetId*/, bool /*isShared*/) {
sp<CameraDeviceBase> device = mDevice.promote();
if (!device.get()) {
ALOGE("%s: Invalid camera device!", __FUNCTION__);
return NO_INIT;
}
status_t res = initializeCodec(width, height, device);
if (res != OK) {
ALOGE("%s: Failed to initialize HEIC/HEVC codec: %s (%d)",
__FUNCTION__, strerror(-res), res);
return NO_INIT;
}
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
mAppSegmentConsumer = new CpuConsumer(consumer, kMaxAcquiredAppSegment);
mAppSegmentConsumer->setFrameAvailableListener(this);
mAppSegmentConsumer->setName(String8("Camera3-HeicComposite-AppSegmentStream"));
mAppSegmentSurface = new Surface(producer);
mStaticInfo = device->info();
res = device->createStream(mAppSegmentSurface, mAppSegmentMaxSize, 1, format,
kAppSegmentDataSpace, rotation, &mAppSegmentStreamId, physicalCameraId, surfaceIds);
if (res == OK) {
mAppSegmentSurfaceId = (*surfaceIds)[0];
} else {
ALOGE("%s: Failed to create JPEG App segment stream: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
if (!mUseGrid) {
res = mCodec->createInputSurface(&producer);
if (res != OK) {
ALOGE("%s: Failed to create input surface for Heic codec: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
} else {
BufferQueue::createBufferQueue(&producer, &consumer);
mMainImageConsumer = new CpuConsumer(consumer, 1);
mMainImageConsumer->setFrameAvailableListener(this);
mMainImageConsumer->setName(String8("Camera3-HeicComposite-HevcInputYUVStream"));
}
mMainImageSurface = new Surface(producer);
res = mCodec->start();
if (res != OK) {
ALOGE("%s: Failed to start codec: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
std::vector<int> sourceSurfaceId;
//Use YUV_888 format if framework tiling is needed.
int srcStreamFmt = mUseGrid ? HAL_PIXEL_FORMAT_YCbCr_420_888 :
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
res = device->createStream(mMainImageSurface, width, height, srcStreamFmt, kHeifDataSpace,
rotation, id, physicalCameraId, &sourceSurfaceId);
if (res == OK) {
mMainImageSurfaceId = sourceSurfaceId[0];
mMainImageStreamId = *id;
} else {
ALOGE("%s: Failed to create main image stream: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
mOutputSurface = consumers[0];
res = registerCompositeStreamListener(getStreamId());
if (res != OK) {
ALOGE("%s: Failed to register HAL main image stream", __FUNCTION__);
return res;
}
initCopyRowFunction(width);
return res;
}
status_t HeicCompositeStream::deleteInternalStreams() {
requestExit();
auto res = join();
if (res != OK) {
ALOGE("%s: Failed to join with the main processing thread: %s (%d)", __FUNCTION__,
strerror(-res), res);
}
deinitCodec();
if (mAppSegmentStreamId >= 0) {
sp<CameraDeviceBase> device = mDevice.promote();
if (!device.get()) {
ALOGE("%s: Invalid camera device!", __FUNCTION__);
return NO_INIT;
}
res = device->deleteStream(mAppSegmentStreamId);
mAppSegmentStreamId = -1;
}
if (mOutputSurface != nullptr) {
mOutputSurface->disconnect(NATIVE_WINDOW_API_CAMERA);
mOutputSurface.clear();
}
return res;
}
void HeicCompositeStream::onBufferReleased(const BufferInfo& bufferInfo) {
Mutex::Autolock l(mMutex);
if (bufferInfo.mError) return;
mCodecOutputBufferTimestamps.push(bufferInfo.mTimestamp);
ALOGV("%s: [%" PRId64 "]: Adding codecOutputBufferTimestamp (%zu timestamps in total)",
__FUNCTION__, bufferInfo.mTimestamp, mCodecOutputBufferTimestamps.size());
}
// We need to get the settings early to handle the case where the codec output
// arrives earlier than result metadata.
void HeicCompositeStream::onBufferRequestForFrameNumber(uint64_t frameNumber, int streamId,
const CameraMetadata& settings) {
ATRACE_ASYNC_BEGIN("HEIC capture", frameNumber);
Mutex::Autolock l(mMutex);
if (mErrorState || (streamId != getStreamId())) {
return;
}
mPendingCaptureResults.emplace(frameNumber, CameraMetadata());
camera_metadata_ro_entry entry;
int32_t orientation = 0;
entry = settings.find(ANDROID_JPEG_ORIENTATION);
if (entry.count == 1) {
orientation = entry.data.i32[0];
}
int32_t quality = kDefaultJpegQuality;
entry = settings.find(ANDROID_JPEG_QUALITY);
if (entry.count == 1) {
quality = entry.data.i32[0];
}
mSettingsByFrameNumber[frameNumber] = std::make_pair(orientation, quality);
}
void HeicCompositeStream::onFrameAvailable(const BufferItem& item) {
if (item.mDataSpace == static_cast<android_dataspace>(kAppSegmentDataSpace)) {
ALOGV("%s: JPEG APP segments buffer with ts: %" PRIu64 " ms. arrived!",
__func__, ns2ms(item.mTimestamp));
Mutex::Autolock l(mMutex);
if (!mErrorState) {
mInputAppSegmentBuffers.push_back(item.mTimestamp);
mInputReadyCondition.signal();
}
} else if (item.mDataSpace == kHeifDataSpace) {
ALOGV("%s: YUV_888 buffer with ts: %" PRIu64 " ms. arrived!",
__func__, ns2ms(item.mTimestamp));
Mutex::Autolock l(mMutex);
if (!mUseGrid) {
ALOGE("%s: YUV_888 internal stream is only supported for HEVC tiling",
__FUNCTION__);
return;
}
if (!mErrorState) {
mInputYuvBuffers.push_back(item.mTimestamp);
mInputReadyCondition.signal();
}
} else {
ALOGE("%s: Unexpected data space: 0x%x", __FUNCTION__, item.mDataSpace);
}
}
status_t HeicCompositeStream::getCompositeStreamInfo(const OutputStreamInfo &streamInfo,
const CameraMetadata& ch, std::vector<OutputStreamInfo>* compositeOutput /*out*/) {
if (compositeOutput == nullptr) {
return BAD_VALUE;
}
compositeOutput->clear();
bool useGrid, useHeic;
bool isSizeSupported = isSizeSupportedByHeifEncoder(
streamInfo.width, streamInfo.height, &useHeic, &useGrid, nullptr);
if (!isSizeSupported) {
// Size is not supported by either encoder.
return OK;
}
compositeOutput->insert(compositeOutput->end(), 2, streamInfo);
// JPEG APPS segments Blob stream info
(*compositeOutput)[0].width = calcAppSegmentMaxSize(ch);
(*compositeOutput)[0].height = 1;
(*compositeOutput)[0].format = HAL_PIXEL_FORMAT_BLOB;
(*compositeOutput)[0].dataSpace = kAppSegmentDataSpace;
(*compositeOutput)[0].consumerUsage = GRALLOC_USAGE_SW_READ_OFTEN;
// YUV/IMPLEMENTATION_DEFINED stream info
(*compositeOutput)[1].width = streamInfo.width;
(*compositeOutput)[1].height = streamInfo.height;
(*compositeOutput)[1].format = useGrid ? HAL_PIXEL_FORMAT_YCbCr_420_888 :
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
(*compositeOutput)[1].dataSpace = kHeifDataSpace;
(*compositeOutput)[1].consumerUsage = useHeic ? GRALLOC_USAGE_HW_IMAGE_ENCODER :
useGrid ? GRALLOC_USAGE_SW_READ_OFTEN : GRALLOC_USAGE_HW_VIDEO_ENCODER;
return NO_ERROR;
}
bool HeicCompositeStream::isSizeSupportedByHeifEncoder(int32_t width, int32_t height,
bool* useHeic, bool* useGrid, int64_t* stall, AString* hevcName) {
static HeicEncoderInfoManager& heicManager = HeicEncoderInfoManager::getInstance();
return heicManager.isSizeSupported(width, height, useHeic, useGrid, stall, hevcName);
}
bool HeicCompositeStream::isInMemoryTempFileSupported() {
int memfd = syscall(__NR_memfd_create, "HEIF-try-memfd", MFD_CLOEXEC);
if (memfd == -1) {
if (errno != ENOSYS) {
ALOGE("%s: Failed to create tmpfs file. errno %d", __FUNCTION__, errno);
}
return false;
}
close(memfd);
return true;
}
void HeicCompositeStream::onHeicOutputFrameAvailable(
const CodecOutputBufferInfo& outputBufferInfo) {
Mutex::Autolock l(mMutex);
ALOGV("%s: index %d, offset %d, size %d, time %" PRId64 ", flags 0x%x",
__FUNCTION__, outputBufferInfo.index, outputBufferInfo.offset,
outputBufferInfo.size, outputBufferInfo.timeUs, outputBufferInfo.flags);
if (!mErrorState) {
if ((outputBufferInfo.size > 0) &&
((outputBufferInfo.flags & MediaCodec::BUFFER_FLAG_CODECCONFIG) == 0)) {
mCodecOutputBuffers.push_back(outputBufferInfo);
mInputReadyCondition.signal();
} else {
ALOGV("%s: Releasing output buffer: size %d flags: 0x%x ", __FUNCTION__,
outputBufferInfo.size, outputBufferInfo.flags);
mCodec->releaseOutputBuffer(outputBufferInfo.index);
}
} else {
mCodec->releaseOutputBuffer(outputBufferInfo.index);
}
}
void HeicCompositeStream::onHeicInputFrameAvailable(int32_t index) {
Mutex::Autolock l(mMutex);
if (!mUseGrid) {
ALOGE("%s: Codec YUV input mode must only be used for Hevc tiling mode", __FUNCTION__);
return;
}
mCodecInputBuffers.push_back(index);
mInputReadyCondition.signal();
}
void HeicCompositeStream::onHeicFormatChanged(sp<AMessage>& newFormat) {
if (newFormat == nullptr) {
ALOGE("%s: newFormat must not be null!", __FUNCTION__);
return;
}
Mutex::Autolock l(mMutex);
AString mime;
AString mimeHeic(MIMETYPE_IMAGE_ANDROID_HEIC);
newFormat->findString(KEY_MIME, &mime);
if (mime != mimeHeic) {
// For HEVC codec, below keys need to be filled out or overwritten so that the
// muxer can handle them as HEIC output image.
newFormat->setString(KEY_MIME, mimeHeic);
newFormat->setInt32(KEY_WIDTH, mOutputWidth);
newFormat->setInt32(KEY_HEIGHT, mOutputHeight);
if (mUseGrid) {
newFormat->setInt32(KEY_TILE_WIDTH, mGridWidth);
newFormat->setInt32(KEY_TILE_HEIGHT, mGridHeight);
newFormat->setInt32(KEY_GRID_ROWS, mGridRows);
newFormat->setInt32(KEY_GRID_COLUMNS, mGridCols);
}
}
newFormat->setInt32(KEY_IS_DEFAULT, 1 /*isPrimary*/);
int32_t gridRows, gridCols;
if (newFormat->findInt32(KEY_GRID_ROWS, &gridRows) &&
newFormat->findInt32(KEY_GRID_COLUMNS, &gridCols)) {
mNumOutputTiles = gridRows * gridCols;
} else {
mNumOutputTiles = 1;
}
mFormat = newFormat;
ALOGV("%s: mNumOutputTiles is %zu", __FUNCTION__, mNumOutputTiles);
mInputReadyCondition.signal();
}
void HeicCompositeStream::onHeicCodecError() {
Mutex::Autolock l(mMutex);
mErrorState = true;
}
status_t HeicCompositeStream::configureStream() {
if (isRunning()) {
// Processing thread is already running, nothing more to do.
return NO_ERROR;
}
if (mOutputSurface.get() == nullptr) {
ALOGE("%s: No valid output surface set!", __FUNCTION__);
return NO_INIT;
}
auto res = mOutputSurface->connect(NATIVE_WINDOW_API_CAMERA, mProducerListener);
if (res != OK) {
ALOGE("%s: Unable to connect to native window for stream %d",
__FUNCTION__, mMainImageStreamId);
return res;
}
if ((res = native_window_set_buffers_format(mOutputSurface.get(), HAL_PIXEL_FORMAT_BLOB))
!= OK) {
ALOGE("%s: Unable to configure stream buffer format for stream %d", __FUNCTION__,
mMainImageStreamId);
return res;
}
ANativeWindow *anwConsumer = mOutputSurface.get();
int maxConsumerBuffers;
if ((res = anwConsumer->query(anwConsumer, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
&maxConsumerBuffers)) != OK) {
ALOGE("%s: Unable to query consumer undequeued"
" buffer count for stream %d", __FUNCTION__, mMainImageStreamId);
return res;
}
// Cannot use SourceSurface buffer count since it could be codec's 512*512 tile
// buffer count.
if ((res = native_window_set_buffer_count(
anwConsumer, kMaxOutputSurfaceProducerCount + maxConsumerBuffers)) != OK) {
ALOGE("%s: Unable to set buffer count for stream %d", __FUNCTION__, mMainImageStreamId);
return res;
}
if ((res = native_window_set_buffers_dimensions(anwConsumer, mMaxHeicBufferSize, 1)) != OK) {
ALOGE("%s: Unable to set buffer dimension %zu x 1 for stream %d: %s (%d)",
__FUNCTION__, mMaxHeicBufferSize, mMainImageStreamId, strerror(-res), res);
return res;
}
run("HeicCompositeStreamProc");
return NO_ERROR;
}
status_t HeicCompositeStream::insertGbp(SurfaceMap* /*out*/outSurfaceMap,
Vector<int32_t>* /*out*/outputStreamIds, int32_t* /*out*/currentStreamId) {
if (outSurfaceMap->find(mAppSegmentStreamId) == outSurfaceMap->end()) {
(*outSurfaceMap)[mAppSegmentStreamId] = std::vector<size_t>();
outputStreamIds->push_back(mAppSegmentStreamId);
}
(*outSurfaceMap)[mAppSegmentStreamId].push_back(mAppSegmentSurfaceId);
if (outSurfaceMap->find(mMainImageStreamId) == outSurfaceMap->end()) {
(*outSurfaceMap)[mMainImageStreamId] = std::vector<size_t>();
outputStreamIds->push_back(mMainImageStreamId);
}
(*outSurfaceMap)[mMainImageStreamId].push_back(mMainImageSurfaceId);
if (currentStreamId != nullptr) {
*currentStreamId = mMainImageStreamId;
}
return NO_ERROR;
}
void HeicCompositeStream::onShutter(const CaptureResultExtras& resultExtras, nsecs_t timestamp) {
Mutex::Autolock l(mMutex);
if (mErrorState) {
return;
}
if (mSettingsByFrameNumber.find(resultExtras.frameNumber) != mSettingsByFrameNumber.end()) {
ALOGV("%s: [%" PRId64 "]: frameNumber %" PRId64, __FUNCTION__,
timestamp, resultExtras.frameNumber);
mFrameNumberMap.emplace(resultExtras.frameNumber, timestamp);
mSettingsByTimestamp[timestamp] = mSettingsByFrameNumber[resultExtras.frameNumber];
mSettingsByFrameNumber.erase(resultExtras.frameNumber);
mInputReadyCondition.signal();
}
}
void HeicCompositeStream::compilePendingInputLocked() {
while (!mSettingsByTimestamp.empty()) {
auto it = mSettingsByTimestamp.begin();
mPendingInputFrames[it->first].orientation = it->second.first;
mPendingInputFrames[it->first].quality = it->second.second;
mSettingsByTimestamp.erase(it);
}
while (!mInputAppSegmentBuffers.empty()) {
CpuConsumer::LockedBuffer imgBuffer;
auto it = mInputAppSegmentBuffers.begin();
auto res = mAppSegmentConsumer->lockNextBuffer(&imgBuffer);
if (res == NOT_ENOUGH_DATA) {
// Can not lock any more buffers.
break;
} else if ((res != OK) || (*it != imgBuffer.timestamp)) {
if (res != OK) {
ALOGE("%s: Error locking JPEG_APP_SEGMENTS image buffer: %s (%d)", __FUNCTION__,
strerror(-res), res);
} else {
ALOGE("%s: Expecting JPEG_APP_SEGMENTS buffer with time stamp: %" PRId64
" received buffer with time stamp: %" PRId64, __FUNCTION__,
*it, imgBuffer.timestamp);
mAppSegmentConsumer->unlockBuffer(imgBuffer);
}
mPendingInputFrames[*it].error = true;
mInputAppSegmentBuffers.erase(it);
continue;
}
if ((mPendingInputFrames.find(imgBuffer.timestamp) != mPendingInputFrames.end()) &&
(mPendingInputFrames[imgBuffer.timestamp].error)) {
mAppSegmentConsumer->unlockBuffer(imgBuffer);
} else {
mPendingInputFrames[imgBuffer.timestamp].appSegmentBuffer = imgBuffer;
mLockedAppSegmentBufferCnt++;
}
mInputAppSegmentBuffers.erase(it);
}
while (!mInputYuvBuffers.empty() && !mYuvBufferAcquired) {
CpuConsumer::LockedBuffer imgBuffer;
auto it = mInputYuvBuffers.begin();
auto res = mMainImageConsumer->lockNextBuffer(&imgBuffer);
if (res == NOT_ENOUGH_DATA) {
// Can not lock any more buffers.
break;
} else if (res != OK) {
ALOGE("%s: Error locking YUV_888 image buffer: %s (%d)", __FUNCTION__,
strerror(-res), res);
mPendingInputFrames[*it].error = true;
mInputYuvBuffers.erase(it);
continue;
} else if (*it != imgBuffer.timestamp) {
ALOGW("%s: Expecting YUV_888 buffer with time stamp: %" PRId64 " received buffer with "
"time stamp: %" PRId64, __FUNCTION__, *it, imgBuffer.timestamp);
mPendingInputFrames[*it].error = true;
mInputYuvBuffers.erase(it);
continue;
}
if ((mPendingInputFrames.find(imgBuffer.timestamp) != mPendingInputFrames.end()) &&
(mPendingInputFrames[imgBuffer.timestamp].error)) {
mMainImageConsumer->unlockBuffer(imgBuffer);
} else {
mPendingInputFrames[imgBuffer.timestamp].yuvBuffer = imgBuffer;
mYuvBufferAcquired = true;
}
mInputYuvBuffers.erase(it);
}
while (!mCodecOutputBuffers.empty()) {
auto it = mCodecOutputBuffers.begin();
// Bitstream buffer timestamp doesn't necessarily directly correlate with input
// buffer timestamp. Assume encoder input to output is FIFO, use a queue
// to look up timestamp.
int64_t bufferTime = -1;
if (mCodecOutputBufferTimestamps.empty()) {
ALOGV("%s: Failed to find buffer timestamp for codec output buffer!", __FUNCTION__);
break;
} else {
// Direct mapping between camera timestamp (in ns) and codec timestamp (in us).
bufferTime = mCodecOutputBufferTimestamps.front();
mCodecOutputCounter++;
if (mCodecOutputCounter == mNumOutputTiles) {
mCodecOutputBufferTimestamps.pop();
mCodecOutputCounter = 0;
}
mPendingInputFrames[bufferTime].codecOutputBuffers.push_back(*it);
ALOGV("%s: [%" PRId64 "]: Pushing codecOutputBuffers (time %" PRId64 " us)",
__FUNCTION__, bufferTime, it->timeUs);
}
mCodecOutputBuffers.erase(it);
}
while (!mFrameNumberMap.empty()) {
auto it = mFrameNumberMap.begin();
mPendingInputFrames[it->second].frameNumber = it->first;
ALOGV("%s: [%" PRId64 "]: frameNumber is %" PRId64, __FUNCTION__, it->second, it->first);
mFrameNumberMap.erase(it);
}
while (!mCaptureResults.empty()) {
auto it = mCaptureResults.begin();
// Negative timestamp indicates that something went wrong during the capture result
// collection process.
if (it->first >= 0) {
if (mPendingInputFrames[it->first].frameNumber == std::get<0>(it->second)) {
mPendingInputFrames[it->first].result =
std::make_unique<CameraMetadata>(std::get<1>(it->second));
} else {
ALOGE("%s: Capture result frameNumber/timestamp mapping changed between "
"shutter and capture result!", __FUNCTION__);
}
}
mCaptureResults.erase(it);
}
// mErrorFrameNumbers stores frame number of dropped buffers.
auto it = mErrorFrameNumbers.begin();
while (it != mErrorFrameNumbers.end()) {
bool frameFound = false;
for (auto &inputFrame : mPendingInputFrames) {
if (inputFrame.second.frameNumber == *it) {
inputFrame.second.error = true;
frameFound = true;
break;
}
}
if (frameFound) {
it = mErrorFrameNumbers.erase(it);
} else {
ALOGW("%s: Not able to find failing input with frame number: %" PRId64, __FUNCTION__,
*it);
it++;
}
}
// Distribute codec input buffers to be filled out from YUV output
for (auto it = mPendingInputFrames.begin();
it != mPendingInputFrames.end() && mCodecInputBuffers.size() > 0; it++) {
InputFrame& inputFrame(it->second);
if (inputFrame.codecInputCounter < mGridRows * mGridCols) {
// Available input tiles that are required for the current input
// image.
size_t newInputTiles = std::min(mCodecInputBuffers.size(),
mGridRows * mGridCols - inputFrame.codecInputCounter);
for (size_t i = 0; i < newInputTiles; i++) {
CodecInputBufferInfo inputInfo =
{ mCodecInputBuffers[0], mGridTimestampUs++, inputFrame.codecInputCounter };
inputFrame.codecInputBuffers.push_back(inputInfo);
mCodecInputBuffers.erase(mCodecInputBuffers.begin());
inputFrame.codecInputCounter++;
}
break;
}
}
}
bool HeicCompositeStream::getNextReadyInputLocked(int64_t *currentTs /*out*/) {
if (currentTs == nullptr) {
return false;
}
bool newInputAvailable = false;
for (auto& it : mPendingInputFrames) {
// New input is considered to be available only if:
// 1. input buffers are ready, or
// 2. App segment and muxer is created, or
// 3. A codec output tile is ready, and an output buffer is available.
// This makes sure that muxer gets created only when an output tile is
// generated, because right now we only handle 1 HEIC output buffer at a
// time (max dequeued buffer count is 1).
bool appSegmentReady = (it.second.appSegmentBuffer.data != nullptr) &&
!it.second.appSegmentWritten && it.second.result != nullptr &&
it.second.muxer != nullptr;
bool codecOutputReady = !it.second.codecOutputBuffers.empty();
bool codecInputReady = (it.second.yuvBuffer.data != nullptr) &&
(!it.second.codecInputBuffers.empty());
bool hasOutputBuffer = it.second.muxer != nullptr ||
(mDequeuedOutputBufferCnt < kMaxOutputSurfaceProducerCount);
if ((!it.second.error) &&
(it.first < *currentTs) &&
(appSegmentReady || (codecOutputReady && hasOutputBuffer) || codecInputReady)) {
*currentTs = it.first;
if (it.second.format == nullptr && mFormat != nullptr) {
it.second.format = mFormat->dup();
}
newInputAvailable = true;
break;
}
}
return newInputAvailable;
}
int64_t HeicCompositeStream::getNextFailingInputLocked(int64_t *currentTs /*out*/) {
int64_t res = -1;
if (currentTs == nullptr) {
return res;
}
for (const auto& it : mPendingInputFrames) {
if (it.second.error && !it.second.errorNotified && (it.first < *currentTs)) {
*currentTs = it.first;
res = it.second.frameNumber;
break;
}
}
return res;
}
status_t HeicCompositeStream::processInputFrame(nsecs_t timestamp,
InputFrame &inputFrame) {
ATRACE_CALL();
status_t res = OK;
bool appSegmentReady = inputFrame.appSegmentBuffer.data != nullptr &&
!inputFrame.appSegmentWritten && inputFrame.result != nullptr &&
inputFrame.muxer != nullptr;
bool codecOutputReady = inputFrame.codecOutputBuffers.size() > 0;
bool codecInputReady = inputFrame.yuvBuffer.data != nullptr &&
!inputFrame.codecInputBuffers.empty();
bool hasOutputBuffer = inputFrame.muxer != nullptr ||
(mDequeuedOutputBufferCnt < kMaxOutputSurfaceProducerCount);
ALOGV("%s: [%" PRId64 "]: appSegmentReady %d, codecOutputReady %d, codecInputReady %d,"
" dequeuedOutputBuffer %d", __FUNCTION__, timestamp, appSegmentReady,
codecOutputReady, codecInputReady, mDequeuedOutputBufferCnt);
// Handle inputs for Hevc tiling
if (codecInputReady) {
res = processCodecInputFrame(inputFrame);
if (res != OK) {
ALOGE("%s: Failed to process codec input frame: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
}
if (!(codecOutputReady && hasOutputBuffer) && !appSegmentReady) {
return OK;
}
// Initialize and start muxer if not yet done so. In this case,
// codecOutputReady must be true. Otherwise, appSegmentReady is guaranteed
// to be false, and the function must have returned early.
if (inputFrame.muxer == nullptr) {
res = startMuxerForInputFrame(timestamp, inputFrame);
if (res != OK) {
ALOGE("%s: Failed to create and start muxer: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
}
// Write JPEG APP segments data to the muxer.
if (appSegmentReady) {
res = processAppSegment(timestamp, inputFrame);
if (res != OK) {
ALOGE("%s: Failed to process JPEG APP segments: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
}
// Write media codec bitstream buffers to muxer.
while (!inputFrame.codecOutputBuffers.empty()) {
res = processOneCodecOutputFrame(timestamp, inputFrame);
if (res != OK) {
ALOGE("%s: Failed to process codec output frame: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
}
if (inputFrame.pendingOutputTiles == 0) {
if (inputFrame.appSegmentWritten) {
res = processCompletedInputFrame(timestamp, inputFrame);
if (res != OK) {
ALOGE("%s: Failed to process completed input frame: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
} else if (mLockedAppSegmentBufferCnt == kMaxAcquiredAppSegment) {
ALOGE("%s: Out-of-order app segment buffers reaches limit %u", __FUNCTION__,
kMaxAcquiredAppSegment);
return INVALID_OPERATION;
}
}
return res;
}
status_t HeicCompositeStream::startMuxerForInputFrame(nsecs_t timestamp, InputFrame &inputFrame) {
sp<ANativeWindow> outputANW = mOutputSurface;
auto res = outputANW->dequeueBuffer(mOutputSurface.get(), &inputFrame.anb, &inputFrame.fenceFd);
if (res != OK) {
ALOGE("%s: Error retrieving output buffer: %s (%d)", __FUNCTION__, strerror(-res),
res);
return res;
}
mDequeuedOutputBufferCnt++;
// Combine current thread id, stream id and timestamp to uniquely identify image.
std::ostringstream tempOutputFile;
tempOutputFile << "HEIF-" << pthread_self() << "-"
<< getStreamId() << "-" << timestamp;
inputFrame.fileFd = syscall(__NR_memfd_create, tempOutputFile.str().c_str(), MFD_CLOEXEC);
if (inputFrame.fileFd < 0) {
ALOGE("%s: Failed to create file %s. Error no is %d", __FUNCTION__,
tempOutputFile.str().c_str(), errno);
return NO_INIT;
}
inputFrame.muxer = new MediaMuxer(inputFrame.fileFd, MediaMuxer::OUTPUT_FORMAT_HEIF);
if (inputFrame.muxer == nullptr) {
ALOGE("%s: Failed to create MediaMuxer for file fd %d",
__FUNCTION__, inputFrame.fileFd);
return NO_INIT;
}
res = inputFrame.muxer->setOrientationHint(inputFrame.orientation);
if (res != OK) {
ALOGE("%s: Failed to setOrientationHint: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
// Set encoder quality
{
sp<AMessage> qualityParams = new AMessage;
qualityParams->setInt32(PARAMETER_KEY_VIDEO_BITRATE, inputFrame.quality);
res = mCodec->setParameters(qualityParams);
if (res != OK) {
ALOGE("%s: Failed to set codec quality: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
ssize_t trackId = inputFrame.muxer->addTrack(inputFrame.format);
if (trackId < 0) {
ALOGE("%s: Failed to addTrack to the muxer: %zd", __FUNCTION__, trackId);
return NO_INIT;
}
inputFrame.trackIndex = trackId;
inputFrame.pendingOutputTiles = mNumOutputTiles;
res = inputFrame.muxer->start();
if (res != OK) {
ALOGE("%s: Failed to start MediaMuxer: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
ALOGV("%s: [%" PRId64 "]: Muxer started for inputFrame", __FUNCTION__,
timestamp);
return OK;
}
status_t HeicCompositeStream::processAppSegment(nsecs_t timestamp, InputFrame &inputFrame) {
size_t app1Size = 0;
auto appSegmentSize = findAppSegmentsSize(inputFrame.appSegmentBuffer.data,
inputFrame.appSegmentBuffer.width * inputFrame.appSegmentBuffer.height,
&app1Size);
if (appSegmentSize == 0) {
ALOGE("%s: Failed to find JPEG APP segment size", __FUNCTION__);
return NO_INIT;
}
std::unique_ptr<ExifUtils> exifUtils(ExifUtils::create());
auto exifRes = exifUtils->initialize(inputFrame.appSegmentBuffer.data, app1Size);
if (!exifRes) {
ALOGE("%s: Failed to initialize ExifUtils object!", __FUNCTION__);
return BAD_VALUE;
}
exifRes = exifUtils->setFromMetadata(*inputFrame.result, mStaticInfo,
mOutputWidth, mOutputHeight);
if (!exifRes) {
ALOGE("%s: Failed to set Exif tags using metadata and main image sizes", __FUNCTION__);
return BAD_VALUE;
}
exifRes = exifUtils->setOrientation(inputFrame.orientation);
if (!exifRes) {
ALOGE("%s: ExifUtils failed to set orientation", __FUNCTION__);
return BAD_VALUE;
}
exifRes = exifUtils->generateApp1();
if (!exifRes) {
ALOGE("%s: ExifUtils failed to generate APP1 segment", __FUNCTION__);
return BAD_VALUE;
}
unsigned int newApp1Length = exifUtils->getApp1Length();
const uint8_t *newApp1Segment = exifUtils->getApp1Buffer();
//Assemble the APP1 marker buffer required by MediaCodec
uint8_t kExifApp1Marker[] = {'E', 'x', 'i', 'f', 0xFF, 0xE1, 0x00, 0x00};
kExifApp1Marker[6] = static_cast<uint8_t>(newApp1Length >> 8);
kExifApp1Marker[7] = static_cast<uint8_t>(newApp1Length & 0xFF);
size_t appSegmentBufferSize = sizeof(kExifApp1Marker) +
appSegmentSize - app1Size + newApp1Length;
uint8_t* appSegmentBuffer = new uint8_t[appSegmentBufferSize];
memcpy(appSegmentBuffer, kExifApp1Marker, sizeof(kExifApp1Marker));
memcpy(appSegmentBuffer + sizeof(kExifApp1Marker), newApp1Segment, newApp1Length);
if (appSegmentSize - app1Size > 0) {
memcpy(appSegmentBuffer + sizeof(kExifApp1Marker) + newApp1Length,
inputFrame.appSegmentBuffer.data + app1Size, appSegmentSize - app1Size);
}
sp<ABuffer> aBuffer = new ABuffer(appSegmentBuffer, appSegmentBufferSize);
auto res = inputFrame.muxer->writeSampleData(aBuffer, inputFrame.trackIndex,
timestamp, MediaCodec::BUFFER_FLAG_MUXER_DATA);
delete[] appSegmentBuffer;
if (res != OK) {
ALOGE("%s: Failed to write JPEG APP segments to muxer: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
ALOGV("%s: [%" PRId64 "]: appSegmentSize is %zu, width %d, height %d, app1Size %zu",
__FUNCTION__, timestamp, appSegmentSize, inputFrame.appSegmentBuffer.width,
inputFrame.appSegmentBuffer.height, app1Size);
inputFrame.appSegmentWritten = true;
// Release the buffer now so any pending input app segments can be processed
mAppSegmentConsumer->unlockBuffer(inputFrame.appSegmentBuffer);
inputFrame.appSegmentBuffer.data = nullptr;
mLockedAppSegmentBufferCnt--;
return OK;
}
status_t HeicCompositeStream::processCodecInputFrame(InputFrame &inputFrame) {
for (auto& inputBuffer : inputFrame.codecInputBuffers) {
sp<MediaCodecBuffer> buffer;
auto res = mCodec->getInputBuffer(inputBuffer.index, &buffer);
if (res != OK) {
ALOGE("%s: Error getting codec input buffer: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
// Copy one tile from source to destination.
size_t tileX = inputBuffer.tileIndex % mGridCols;
size_t tileY = inputBuffer.tileIndex / mGridCols;
size_t top = mGridHeight * tileY;
size_t left = mGridWidth * tileX;
size_t width = (tileX == static_cast<size_t>(mGridCols) - 1) ?
mOutputWidth - tileX * mGridWidth : mGridWidth;
size_t height = (tileY == static_cast<size_t>(mGridRows) - 1) ?
mOutputHeight - tileY * mGridHeight : mGridHeight;
ALOGV("%s: inputBuffer tileIndex [%zu, %zu], top %zu, left %zu, width %zu, height %zu,"
" timeUs %" PRId64, __FUNCTION__, tileX, tileY, top, left, width, height,
inputBuffer.timeUs);
res = copyOneYuvTile(buffer, inputFrame.yuvBuffer, top, left, width, height);
if (res != OK) {
ALOGE("%s: Failed to copy YUV tile %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
res = mCodec->queueInputBuffer(inputBuffer.index, 0, buffer->capacity(),
inputBuffer.timeUs, 0, nullptr /*errorDetailMsg*/);
if (res != OK) {
ALOGE("%s: Failed to queueInputBuffer to Codec: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
inputFrame.codecInputBuffers.clear();
return OK;
}
status_t HeicCompositeStream::processOneCodecOutputFrame(nsecs_t timestamp,
InputFrame &inputFrame) {
auto it = inputFrame.codecOutputBuffers.begin();
sp<MediaCodecBuffer> buffer;
status_t res = mCodec->getOutputBuffer(it->index, &buffer);
if (res != OK) {
ALOGE("%s: Error getting Heic codec output buffer at index %d: %s (%d)",
__FUNCTION__, it->index, strerror(-res), res);
return res;
}
if (buffer == nullptr) {
ALOGE("%s: Invalid Heic codec output buffer at index %d",
__FUNCTION__, it->index);
return BAD_VALUE;
}
sp<ABuffer> aBuffer = new ABuffer(buffer->data(), buffer->size());
res = inputFrame.muxer->writeSampleData(
aBuffer, inputFrame.trackIndex, timestamp, 0 /*flags*/);
if (res != OK) {
ALOGE("%s: Failed to write buffer index %d to muxer: %s (%d)",
__FUNCTION__, it->index, strerror(-res), res);
return res;
}
mCodec->releaseOutputBuffer(it->index);
if (inputFrame.pendingOutputTiles == 0) {
ALOGW("%s: Codec generated more tiles than expected!", __FUNCTION__);
} else {
inputFrame.pendingOutputTiles--;
}
inputFrame.codecOutputBuffers.erase(inputFrame.codecOutputBuffers.begin());
ALOGV("%s: [%" PRId64 "]: Output buffer index %d",
__FUNCTION__, timestamp, it->index);
return OK;
}
status_t HeicCompositeStream::processCompletedInputFrame(nsecs_t timestamp,
InputFrame &inputFrame) {
sp<ANativeWindow> outputANW = mOutputSurface;
inputFrame.muxer->stop();
// Copy the content of the file to memory.
sp<GraphicBuffer> gb = GraphicBuffer::from(inputFrame.anb);
void* dstBuffer;
auto res = gb->lockAsync(GRALLOC_USAGE_SW_WRITE_OFTEN, &dstBuffer, inputFrame.fenceFd);
if (res != OK) {
ALOGE("%s: Error trying to lock output buffer fence: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
off_t fSize = lseek(inputFrame.fileFd, 0, SEEK_END);
if (static_cast<size_t>(fSize) > mMaxHeicBufferSize - sizeof(CameraBlob)) {
ALOGE("%s: Error: MediaMuxer output size %ld is larger than buffer sizer %zu",
__FUNCTION__, fSize, mMaxHeicBufferSize - sizeof(CameraBlob));
return BAD_VALUE;
}
lseek(inputFrame.fileFd, 0, SEEK_SET);
ssize_t bytesRead = read(inputFrame.fileFd, dstBuffer, fSize);
if (bytesRead < fSize) {
ALOGE("%s: Only %zd of %ld bytes read", __FUNCTION__, bytesRead, fSize);
return BAD_VALUE;
}
close(inputFrame.fileFd);
inputFrame.fileFd = -1;
// Fill in HEIC header
uint8_t *header = static_cast<uint8_t*>(dstBuffer) + mMaxHeicBufferSize - sizeof(CameraBlob);
struct CameraBlob *blobHeader = (struct CameraBlob *)header;
// Must be in sync with CAMERA3_HEIC_BLOB_ID in android_media_Utils.cpp
blobHeader->blobId = static_cast<CameraBlobId>(0x00FE);
blobHeader->blobSize = fSize;
res = native_window_set_buffers_timestamp(mOutputSurface.get(), timestamp);
if (res != OK) {
ALOGE("%s: Stream %d: Error setting timestamp: %s (%d)",
__FUNCTION__, getStreamId(), strerror(-res), res);
return res;
}
res = outputANW->queueBuffer(mOutputSurface.get(), inputFrame.anb, /*fence*/ -1);
if (res != OK) {
ALOGE("%s: Failed to queueBuffer to Heic stream: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
inputFrame.anb = nullptr;
mDequeuedOutputBufferCnt--;
ALOGV("%s: [%" PRId64 "]", __FUNCTION__, timestamp);
ATRACE_ASYNC_END("HEIC capture", inputFrame.frameNumber);
return OK;
}
void HeicCompositeStream::releaseInputFrameLocked(InputFrame *inputFrame /*out*/) {
if (inputFrame == nullptr) {
return;
}
if (inputFrame->appSegmentBuffer.data != nullptr) {
mAppSegmentConsumer->unlockBuffer(inputFrame->appSegmentBuffer);
inputFrame->appSegmentBuffer.data = nullptr;
}
while (!inputFrame->codecOutputBuffers.empty()) {
auto it = inputFrame->codecOutputBuffers.begin();
ALOGV("%s: releaseOutputBuffer index %d", __FUNCTION__, it->index);
mCodec->releaseOutputBuffer(it->index);
inputFrame->codecOutputBuffers.erase(it);
}
if (inputFrame->yuvBuffer.data != nullptr) {
mMainImageConsumer->unlockBuffer(inputFrame->yuvBuffer);
inputFrame->yuvBuffer.data = nullptr;
mYuvBufferAcquired = false;
}
while (!inputFrame->codecInputBuffers.empty()) {
auto it = inputFrame->codecInputBuffers.begin();
inputFrame->codecInputBuffers.erase(it);
}
if ((inputFrame->error || mErrorState) && !inputFrame->errorNotified) {
notifyError(inputFrame->frameNumber);
inputFrame->errorNotified = true;
}
if (inputFrame->fileFd >= 0) {
close(inputFrame->fileFd);
inputFrame->fileFd = -1;
}
if (inputFrame->anb != nullptr) {
sp<ANativeWindow> outputANW = mOutputSurface;
outputANW->cancelBuffer(mOutputSurface.get(), inputFrame->anb, /*fence*/ -1);
inputFrame->anb = nullptr;
}
}
void HeicCompositeStream::releaseInputFramesLocked() {
auto it = mPendingInputFrames.begin();
while (it != mPendingInputFrames.end()) {
auto& inputFrame = it->second;
if (inputFrame.error ||
(inputFrame.appSegmentWritten && inputFrame.pendingOutputTiles == 0)) {
releaseInputFrameLocked(&inputFrame);
it = mPendingInputFrames.erase(it);
} else {
it++;
}
}
}
status_t HeicCompositeStream::initializeCodec(uint32_t width, uint32_t height,
const sp<CameraDeviceBase>& cameraDevice) {
ALOGV("%s", __FUNCTION__);
bool useGrid = false;
AString hevcName;
bool isSizeSupported = isSizeSupportedByHeifEncoder(width, height,
&mUseHeic, &useGrid, nullptr, &hevcName);
if (!isSizeSupported) {
ALOGE("%s: Encoder doesnt' support size %u x %u!",
__FUNCTION__, width, height);
return BAD_VALUE;
}
// Create Looper for MediaCodec.
auto desiredMime = mUseHeic ? MIMETYPE_IMAGE_ANDROID_HEIC : MIMETYPE_VIDEO_HEVC;
mCodecLooper = new ALooper;
mCodecLooper->setName("Camera3-HeicComposite-MediaCodecLooper");
status_t res = mCodecLooper->start(
false, // runOnCallingThread
false, // canCallJava
PRIORITY_AUDIO);
if (res != OK) {
ALOGE("%s: Failed to start codec looper: %s (%d)",
__FUNCTION__, strerror(-res), res);
return NO_INIT;
}
// Create HEIC/HEVC codec.
if (mUseHeic) {
mCodec = MediaCodec::CreateByType(mCodecLooper, desiredMime, true /*encoder*/);
} else {
mCodec = MediaCodec::CreateByComponentName(mCodecLooper, hevcName);
}
if (mCodec == nullptr) {
ALOGE("%s: Failed to create codec for %s", __FUNCTION__, desiredMime);
return NO_INIT;
}
// Create Looper and handler for Codec callback.
mCodecCallbackHandler = new CodecCallbackHandler(this);
if (mCodecCallbackHandler == nullptr) {
ALOGE("%s: Failed to create codec callback handler", __FUNCTION__);
return NO_MEMORY;
}
mCallbackLooper = new ALooper;
mCallbackLooper->setName("Camera3-HeicComposite-MediaCodecCallbackLooper");
res = mCallbackLooper->start(
false, // runOnCallingThread
false, // canCallJava
PRIORITY_AUDIO);
if (res != OK) {
ALOGE("%s: Failed to start media callback looper: %s (%d)",
__FUNCTION__, strerror(-res), res);
return NO_INIT;
}
mCallbackLooper->registerHandler(mCodecCallbackHandler);
mAsyncNotify = new AMessage(kWhatCallbackNotify, mCodecCallbackHandler);
res = mCodec->setCallback(mAsyncNotify);
if (res != OK) {
ALOGE("%s: Failed to set MediaCodec callback: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
// Create output format and configure the Codec.
sp<AMessage> outputFormat = new AMessage();
outputFormat->setString(KEY_MIME, desiredMime);
outputFormat->setInt32(KEY_BITRATE_MODE, BITRATE_MODE_CQ);
outputFormat->setInt32(KEY_QUALITY, kDefaultJpegQuality);
// Ask codec to skip timestamp check and encode all frames.
outputFormat->setInt64(KEY_MAX_PTS_GAP_TO_ENCODER, kNoFrameDropMaxPtsGap);
int32_t gridWidth, gridHeight, gridRows, gridCols;
if (useGrid || mUseHeic) {
gridWidth = HeicEncoderInfoManager::kGridWidth;
gridHeight = HeicEncoderInfoManager::kGridHeight;
gridRows = (height + gridHeight - 1)/gridHeight;
gridCols = (width + gridWidth - 1)/gridWidth;
if (mUseHeic) {
outputFormat->setInt32(KEY_TILE_WIDTH, gridWidth);
outputFormat->setInt32(KEY_TILE_HEIGHT, gridHeight);
outputFormat->setInt32(KEY_GRID_COLUMNS, gridCols);
outputFormat->setInt32(KEY_GRID_ROWS, gridRows);
}
} else {
gridWidth = width;
gridHeight = height;
gridRows = 1;
gridCols = 1;
}
outputFormat->setInt32(KEY_WIDTH, !useGrid ? width : gridWidth);
outputFormat->setInt32(KEY_HEIGHT, !useGrid ? height : gridHeight);
outputFormat->setInt32(KEY_I_FRAME_INTERVAL, 0);
outputFormat->setInt32(KEY_COLOR_FORMAT,
useGrid ? COLOR_FormatYUV420Flexible : COLOR_FormatSurface);
outputFormat->setInt32(KEY_FRAME_RATE, useGrid ? gridRows * gridCols : kNoGridOpRate);
// This only serves as a hint to encoder when encoding is not real-time.
outputFormat->setInt32(KEY_OPERATING_RATE, useGrid ? kGridOpRate : kNoGridOpRate);
res = mCodec->configure(outputFormat, nullptr /*nativeWindow*/,
nullptr /*crypto*/, CONFIGURE_FLAG_ENCODE);
if (res != OK) {
ALOGE("%s: Failed to configure codec: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
mGridWidth = gridWidth;
mGridHeight = gridHeight;
mGridRows = gridRows;
mGridCols = gridCols;
mUseGrid = useGrid;
mOutputWidth = width;
mOutputHeight = height;
mAppSegmentMaxSize = calcAppSegmentMaxSize(cameraDevice->info());
mMaxHeicBufferSize = mOutputWidth * mOutputHeight * 3 / 2 + mAppSegmentMaxSize;
return OK;
}
void HeicCompositeStream::deinitCodec() {
ALOGV("%s", __FUNCTION__);
if (mCodec != nullptr) {
mCodec->stop();
mCodec->release();
mCodec.clear();
}
if (mCodecLooper != nullptr) {
mCodecLooper->stop();
mCodecLooper.clear();
}
if (mCallbackLooper != nullptr) {
mCallbackLooper->stop();
mCallbackLooper.clear();
}
mAsyncNotify.clear();
mFormat.clear();
}
// Return the size of the complete list of app segment, 0 indicates failure
size_t HeicCompositeStream::findAppSegmentsSize(const uint8_t* appSegmentBuffer,
size_t maxSize, size_t *app1SegmentSize) {
if (appSegmentBuffer == nullptr || app1SegmentSize == nullptr) {
ALOGE("%s: Invalid input appSegmentBuffer %p, app1SegmentSize %p",
__FUNCTION__, appSegmentBuffer, app1SegmentSize);
return 0;
}
size_t expectedSize = 0;
// First check for EXIF transport header at the end of the buffer
const uint8_t *header = appSegmentBuffer + (maxSize - sizeof(struct CameraBlob));
const struct CameraBlob *blob = (const struct CameraBlob*)(header);
if (blob->blobId != CameraBlobId::JPEG_APP_SEGMENTS) {
ALOGE("%s: Invalid EXIF blobId %hu", __FUNCTION__, blob->blobId);
return 0;
}
expectedSize = blob->blobSize;
if (expectedSize == 0 || expectedSize > maxSize - sizeof(struct CameraBlob)) {
ALOGE("%s: Invalid blobSize %zu.", __FUNCTION__, expectedSize);
return 0;
}
uint32_t totalSize = 0;
// Verify APP1 marker (mandatory)
uint8_t app1Marker[] = {0xFF, 0xE1};
if (memcmp(appSegmentBuffer, app1Marker, sizeof(app1Marker))) {
ALOGE("%s: Invalid APP1 marker: %x, %x", __FUNCTION__,
appSegmentBuffer[0], appSegmentBuffer[1]);
return 0;
}
totalSize += sizeof(app1Marker);
uint16_t app1Size = (static_cast<uint16_t>(appSegmentBuffer[totalSize]) << 8) +
appSegmentBuffer[totalSize+1];
totalSize += app1Size;
ALOGV("%s: Expected APP segments size %zu, APP1 segment size %u",
__FUNCTION__, expectedSize, app1Size);
while (totalSize < expectedSize) {
if (appSegmentBuffer[totalSize] != 0xFF ||
appSegmentBuffer[totalSize+1] <= 0xE1 ||
appSegmentBuffer[totalSize+1] > 0xEF) {
// Invalid APPn marker
ALOGE("%s: Invalid APPn marker: %x, %x", __FUNCTION__,
appSegmentBuffer[totalSize], appSegmentBuffer[totalSize+1]);
return 0;
}
totalSize += 2;
uint16_t appnSize = (static_cast<uint16_t>(appSegmentBuffer[totalSize]) << 8) +
appSegmentBuffer[totalSize+1];
totalSize += appnSize;
}
if (totalSize != expectedSize) {
ALOGE("%s: Invalid JPEG APP segments: totalSize %u vs expected size %zu",
__FUNCTION__, totalSize, expectedSize);
return 0;
}
*app1SegmentSize = app1Size + sizeof(app1Marker);
return expectedSize;
}
int64_t HeicCompositeStream::findTimestampInNsLocked(int64_t timeInUs) {
for (const auto& fn : mFrameNumberMap) {
if (timeInUs == ns2us(fn.second)) {
return fn.second;
}
}
for (const auto& inputFrame : mPendingInputFrames) {
if (timeInUs == ns2us(inputFrame.first)) {
return inputFrame.first;
}
}
return -1;
}
status_t HeicCompositeStream::copyOneYuvTile(sp<MediaCodecBuffer>& codecBuffer,
const CpuConsumer::LockedBuffer& yuvBuffer,
size_t top, size_t left, size_t width, size_t height) {
ATRACE_CALL();
// Get stride information for codecBuffer
sp<ABuffer> imageData;
if (!codecBuffer->meta()->findBuffer("image-data", &imageData)) {
ALOGE("%s: Codec input buffer is not for image data!", __FUNCTION__);
return BAD_VALUE;
}
if (imageData->size() != sizeof(MediaImage2)) {
ALOGE("%s: Invalid codec input image size %zu, expected %zu",
__FUNCTION__, imageData->size(), sizeof(MediaImage2));
return BAD_VALUE;
}
MediaImage2* imageInfo = reinterpret_cast<MediaImage2*>(imageData->data());
if (imageInfo->mType != MediaImage2::MEDIA_IMAGE_TYPE_YUV ||
imageInfo->mBitDepth != 8 ||
imageInfo->mBitDepthAllocated != 8 ||
imageInfo->mNumPlanes != 3) {
ALOGE("%s: Invalid codec input image info: mType %d, mBitDepth %d, "
"mBitDepthAllocated %d, mNumPlanes %d!", __FUNCTION__,
imageInfo->mType, imageInfo->mBitDepth,
imageInfo->mBitDepthAllocated, imageInfo->mNumPlanes);
return BAD_VALUE;
}
ALOGV("%s: yuvBuffer chromaStep %d, chromaStride %d",
__FUNCTION__, yuvBuffer.chromaStep, yuvBuffer.chromaStride);
ALOGV("%s: U offset %u, V offset %u, U rowInc %d, V rowInc %d, U colInc %d, V colInc %d",
__FUNCTION__, imageInfo->mPlane[MediaImage2::U].mOffset,
imageInfo->mPlane[MediaImage2::V].mOffset,
imageInfo->mPlane[MediaImage2::U].mRowInc,
imageInfo->mPlane[MediaImage2::V].mRowInc,
imageInfo->mPlane[MediaImage2::U].mColInc,
imageInfo->mPlane[MediaImage2::V].mColInc);
// Y
for (auto row = top; row < top+height; row++) {
uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::Y].mOffset +
imageInfo->mPlane[MediaImage2::Y].mRowInc * (row - top);
mFnCopyRow(yuvBuffer.data+row*yuvBuffer.stride+left, dst, width);
}
// U is Cb, V is Cr
bool codecUPlaneFirst = imageInfo->mPlane[MediaImage2::V].mOffset >
imageInfo->mPlane[MediaImage2::U].mOffset;
uint32_t codecUvOffsetDiff = codecUPlaneFirst ?
imageInfo->mPlane[MediaImage2::V].mOffset - imageInfo->mPlane[MediaImage2::U].mOffset :
imageInfo->mPlane[MediaImage2::U].mOffset - imageInfo->mPlane[MediaImage2::V].mOffset;
bool isCodecUvSemiplannar = (codecUvOffsetDiff == 1) &&
(imageInfo->mPlane[MediaImage2::U].mRowInc ==
imageInfo->mPlane[MediaImage2::V].mRowInc) &&
(imageInfo->mPlane[MediaImage2::U].mColInc == 2) &&
(imageInfo->mPlane[MediaImage2::V].mColInc == 2);
bool isCodecUvPlannar =
((codecUPlaneFirst && codecUvOffsetDiff >=
imageInfo->mPlane[MediaImage2::U].mRowInc * imageInfo->mHeight/2) ||
((!codecUPlaneFirst && codecUvOffsetDiff >=
imageInfo->mPlane[MediaImage2::V].mRowInc * imageInfo->mHeight/2))) &&
imageInfo->mPlane[MediaImage2::U].mColInc == 1 &&
imageInfo->mPlane[MediaImage2::V].mColInc == 1;
bool cameraUPlaneFirst = yuvBuffer.dataCr > yuvBuffer.dataCb;
if (isCodecUvSemiplannar && yuvBuffer.chromaStep == 2 &&
(codecUPlaneFirst == cameraUPlaneFirst)) {
// UV semiplannar
// The chrome plane could be either Cb first, or Cr first. Take the
// smaller address.
uint8_t *src = std::min(yuvBuffer.dataCb, yuvBuffer.dataCr);
MediaImage2::PlaneIndex dstPlane = codecUvOffsetDiff > 0 ? MediaImage2::U : MediaImage2::V;
for (auto row = top/2; row < (top+height)/2; row++) {
uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[dstPlane].mOffset +
imageInfo->mPlane[dstPlane].mRowInc * (row - top/2);
mFnCopyRow(src+row*yuvBuffer.chromaStride+left, dst, width);
}
} else if (isCodecUvPlannar && yuvBuffer.chromaStep == 1) {
// U plane
for (auto row = top/2; row < (top+height)/2; row++) {
uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::U].mOffset +
imageInfo->mPlane[MediaImage2::U].mRowInc * (row - top/2);
mFnCopyRow(yuvBuffer.dataCb+row*yuvBuffer.chromaStride+left/2, dst, width/2);
}
// V plane
for (auto row = top/2; row < (top+height)/2; row++) {
uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::V].mOffset +
imageInfo->mPlane[MediaImage2::V].mRowInc * (row - top/2);
mFnCopyRow(yuvBuffer.dataCr+row*yuvBuffer.chromaStride+left/2, dst, width/2);
}
} else {
// Convert between semiplannar and plannar, or when UV orders are
// different.
uint8_t *dst = codecBuffer->data();
for (auto row = top/2; row < (top+height)/2; row++) {
for (auto col = left/2; col < (left+width)/2; col++) {
// U/Cb
int32_t dstIndex = imageInfo->mPlane[MediaImage2::U].mOffset +
imageInfo->mPlane[MediaImage2::U].mRowInc * (row - top/2) +
imageInfo->mPlane[MediaImage2::U].mColInc * (col - left/2);
int32_t srcIndex = row * yuvBuffer.chromaStride + yuvBuffer.chromaStep * col;
dst[dstIndex] = yuvBuffer.dataCb[srcIndex];
// V/Cr
dstIndex = imageInfo->mPlane[MediaImage2::V].mOffset +
imageInfo->mPlane[MediaImage2::V].mRowInc * (row - top/2) +
imageInfo->mPlane[MediaImage2::V].mColInc * (col - left/2);
srcIndex = row * yuvBuffer.chromaStride + yuvBuffer.chromaStep * col;
dst[dstIndex] = yuvBuffer.dataCr[srcIndex];
}
}
}
return OK;
}
void HeicCompositeStream::initCopyRowFunction(int32_t width)
{
using namespace libyuv;
mFnCopyRow = CopyRow_C;
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
mFnCopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2;
}
#endif
#if defined(HAS_COPYROW_AVX)
if (TestCpuFlag(kCpuHasAVX)) {
mFnCopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX;
}
#endif
#if defined(HAS_COPYROW_ERMS)
if (TestCpuFlag(kCpuHasERMS)) {
mFnCopyRow = CopyRow_ERMS;
}
#endif
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
mFnCopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON;
}
#endif
#if defined(HAS_COPYROW_MIPS)
if (TestCpuFlag(kCpuHasMIPS)) {
mFnCopyRow = CopyRow_MIPS;
}
#endif
}
size_t HeicCompositeStream::calcAppSegmentMaxSize(const CameraMetadata& info) {
camera_metadata_ro_entry_t entry = info.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT);
size_t maxAppsSegment = 1;
if (entry.count > 0) {
maxAppsSegment = entry.data.u8[0] < 1 ? 1 :
entry.data.u8[0] > 16 ? 16 : entry.data.u8[0];
}
return maxAppsSegment * (2 + 0xFFFF) + sizeof(struct CameraBlob);
}
bool HeicCompositeStream::threadLoop() {
int64_t currentTs = INT64_MAX;
bool newInputAvailable = false;
{
Mutex::Autolock l(mMutex);
if (mErrorState) {
// In case we landed in error state, return any pending buffers and
// halt all further processing.
compilePendingInputLocked();
releaseInputFramesLocked();
return false;
}
while (!newInputAvailable) {
compilePendingInputLocked();
newInputAvailable = getNextReadyInputLocked(&currentTs);
if (!newInputAvailable) {
auto failingFrameNumber = getNextFailingInputLocked(&currentTs);
if (failingFrameNumber >= 0) {
// We cannot erase 'mPendingInputFrames[currentTs]' at this point because it is
// possible for two internal stream buffers to fail. In such scenario the
// composite stream should notify the client about a stream buffer error only
// once and this information is kept within 'errorNotified'.
// Any present failed input frames will be removed on a subsequent call to
// 'releaseInputFramesLocked()'.
releaseInputFrameLocked(&mPendingInputFrames[currentTs]);
currentTs = INT64_MAX;
}
auto ret = mInputReadyCondition.waitRelative(mMutex, kWaitDuration);
if (ret == TIMED_OUT) {
return true;
} else if (ret != OK) {
ALOGE("%s: Timed wait on condition failed: %s (%d)", __FUNCTION__,
strerror(-ret), ret);
return false;
}
}
}
}
auto res = processInputFrame(currentTs, mPendingInputFrames[currentTs]);
Mutex::Autolock l(mMutex);
if (res != OK) {
ALOGE("%s: Failed processing frame with timestamp: %" PRIu64 ": %s (%d)",
__FUNCTION__, currentTs, strerror(-res), res);
mPendingInputFrames[currentTs].error = true;
}
releaseInputFramesLocked();
return true;
}
bool HeicCompositeStream::onStreamBufferError(const CaptureResultExtras& resultExtras) {
bool res = false;
// Buffer errors concerning internal composite streams should not be directly visible to
// camera clients. They must only receive a single buffer error with the public composite
// stream id.
if ((resultExtras.errorStreamId == mAppSegmentStreamId) ||
(resultExtras.errorStreamId == mMainImageStreamId)) {
flagAnErrorFrameNumber(resultExtras.frameNumber);
res = true;
}
return res;
}
void HeicCompositeStream::onResultError(const CaptureResultExtras& resultExtras) {
// For result error, since the APPS_SEGMENT buffer already contains EXIF,
// simply skip using the capture result metadata to override EXIF.
Mutex::Autolock l(mMutex);
int64_t timestamp = -1;
for (const auto& fn : mFrameNumberMap) {
if (fn.first == resultExtras.frameNumber) {
timestamp = fn.second;
break;
}
}
if (timestamp == -1) {
for (const auto& inputFrame : mPendingInputFrames) {
if (inputFrame.second.frameNumber == resultExtras.frameNumber) {
timestamp = inputFrame.first;
break;
}
}
}
if (timestamp == -1) {
ALOGE("%s: Failed to find shutter timestamp for result error!", __FUNCTION__);
return;
}
mCaptureResults.emplace(timestamp, std::make_tuple(resultExtras.frameNumber, CameraMetadata()));
mInputReadyCondition.signal();
}
void HeicCompositeStream::CodecCallbackHandler::onMessageReceived(const sp<AMessage> &msg) {
sp<HeicCompositeStream> parent = mParent.promote();
if (parent == nullptr) return;
switch (msg->what()) {
case kWhatCallbackNotify: {
int32_t cbID;
if (!msg->findInt32("callbackID", &cbID)) {
ALOGE("kWhatCallbackNotify: callbackID is expected.");
break;
}
ALOGV("kWhatCallbackNotify: cbID = %d", cbID);
switch (cbID) {
case MediaCodec::CB_INPUT_AVAILABLE: {
int32_t index;
if (!msg->findInt32("index", &index)) {
ALOGE("CB_INPUT_AVAILABLE: index is expected.");
break;
}
parent->onHeicInputFrameAvailable(index);
break;
}
case MediaCodec::CB_OUTPUT_AVAILABLE: {
int32_t index;
size_t offset;
size_t size;
int64_t timeUs;
int32_t flags;
if (!msg->findInt32("index", &index)) {
ALOGE("CB_OUTPUT_AVAILABLE: index is expected.");
break;
}
if (!msg->findSize("offset", &offset)) {
ALOGE("CB_OUTPUT_AVAILABLE: offset is expected.");
break;
}
if (!msg->findSize("size", &size)) {
ALOGE("CB_OUTPUT_AVAILABLE: size is expected.");
break;
}
if (!msg->findInt64("timeUs", &timeUs)) {
ALOGE("CB_OUTPUT_AVAILABLE: timeUs is expected.");
break;
}
if (!msg->findInt32("flags", &flags)) {
ALOGE("CB_OUTPUT_AVAILABLE: flags is expected.");
break;
}
CodecOutputBufferInfo bufferInfo = {
index,
(int32_t)offset,
(int32_t)size,
timeUs,
(uint32_t)flags};
parent->onHeicOutputFrameAvailable(bufferInfo);
break;
}
case MediaCodec::CB_OUTPUT_FORMAT_CHANGED: {
sp<AMessage> format;
if (!msg->findMessage("format", &format)) {
ALOGE("CB_OUTPUT_FORMAT_CHANGED: format is expected.");
break;
}
// Here format is MediaCodec's internal copy of output format.
// Make a copy since onHeicFormatChanged() might modify it.
sp<AMessage> formatCopy;
if (format != nullptr) {
formatCopy = format->dup();
}
parent->onHeicFormatChanged(formatCopy);
break;
}
case MediaCodec::CB_ERROR: {
status_t err;
int32_t actionCode;
AString detail;
if (!msg->findInt32("err", &err)) {
ALOGE("CB_ERROR: err is expected.");
break;
}
if (!msg->findInt32("action", &actionCode)) {
ALOGE("CB_ERROR: action is expected.");
break;
}
msg->findString("detail", &detail);
ALOGE("Codec reported error(0x%x), actionCode(%d), detail(%s)",
err, actionCode, detail.c_str());
parent->onHeicCodecError();
break;
}
default: {
ALOGE("kWhatCallbackNotify: callbackID(%d) is unexpected.", cbID);
break;
}
}
break;
}
default:
ALOGE("shouldn't be here");
break;
}
}
}; // namespace camera3
}; // namespace android