blob: c4c031d843780064e41e958079ce1c5740e2269d [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <media/SensorPoseProvider.h>
#define LOG_TAG "SensorPoseProvider"
#include <inttypes.h>
#include <future>
#include <map>
#include <thread>
#include <log/log_main.h>
#include <sensor/Sensor.h>
#include <sensor/SensorEventQueue.h>
#include <sensor/SensorManager.h>
#include <utils/Looper.h>
#include "QuaternionUtil.h"
namespace android {
namespace media {
namespace {
// Identifier to use for our event queue on the loop.
// The number 19 is arbitrary, only useful if using multiple objects on the same looper.
constexpr int kIdent = 19;
static inline Looper* ALooper_to_Looper(ALooper* alooper) {
return reinterpret_cast<Looper*>(alooper);
}
static inline ALooper* Looper_to_ALooper(Looper* looper) {
return reinterpret_cast<ALooper*>(looper);
}
/**
* RAII-wrapper around SensorEventQueue, which unregisters it on destruction.
*/
class EventQueueGuard {
public:
EventQueueGuard(const sp<SensorEventQueue>& queue, Looper* looper) : mQueue(queue) {
mQueue->looper = Looper_to_ALooper(looper);
mQueue->requestAdditionalInfo = false;
looper->addFd(mQueue->getFd(), kIdent, ALOOPER_EVENT_INPUT, nullptr, nullptr);
}
~EventQueueGuard() {
if (mQueue) {
ALooper_to_Looper(mQueue->looper)->removeFd(mQueue->getFd());
}
}
EventQueueGuard(const EventQueueGuard&) = delete;
EventQueueGuard& operator=(const EventQueueGuard&) = delete;
[[nodiscard]] SensorEventQueue* get() const { return mQueue.get(); }
private:
sp<SensorEventQueue> mQueue;
};
/**
* RAII-wrapper around an enabled sensor, which disables it upon destruction.
*/
class SensorEnableGuard {
public:
SensorEnableGuard(const sp<SensorEventQueue>& queue, int32_t sensor)
: mQueue(queue), mSensor(sensor) {}
~SensorEnableGuard() {
if (mSensor != SensorPoseProvider::INVALID_HANDLE) {
int ret = mQueue->disableSensor(mSensor);
if (ret) {
ALOGE("Failed to disable sensor: %s\n", strerror(ret));
}
}
}
SensorEnableGuard(const SensorEnableGuard&) = delete;
SensorEnableGuard& operator=(const SensorEnableGuard&) = delete;
// Enable moving.
SensorEnableGuard(SensorEnableGuard&& other) : mQueue(other.mQueue), mSensor(other.mSensor) {
other.mSensor = SensorPoseProvider::INVALID_HANDLE;
}
private:
sp<SensorEventQueue> const mQueue;
int32_t mSensor;
};
/**
* Streams the required events to a PoseListener, based on events originating from the Sensor stack.
*/
class SensorPoseProviderImpl : public SensorPoseProvider {
public:
static std::unique_ptr<SensorPoseProvider> create(const char* packageName, Listener* listener) {
std::unique_ptr<SensorPoseProviderImpl> result(
new SensorPoseProviderImpl(packageName, listener));
return result->waitInitFinished() ? std::move(result) : nullptr;
}
~SensorPoseProviderImpl() override {
// Disable all active sensors.
mEnabledSensors.clear();
mLooper->wake();
mThread.join();
}
bool startSensor(int32_t sensor, std::chrono::microseconds samplingPeriod) override {
// Enable the sensor.
if (mQueue->enableSensor(sensor, samplingPeriod.count(), 0, 0)) {
ALOGE("Failed to enable sensor");
return false;
}
mEnabledSensors.emplace(sensor, SensorEnableGuard(mQueue.get(), sensor));
return true;
}
void stopSensor(int handle) override { mEnabledSensors.erase(handle); }
private:
sp<Looper> mLooper;
Listener* const mListener;
std::thread mThread;
std::map<int32_t, SensorEnableGuard> mEnabledSensors;
sp<SensorEventQueue> mQueue;
// We must do some of the initialization operations on the worker thread, because the API relies
// on the thread-local looper. In addition, as a matter of convenience, we store some of the
// state on the stack.
// For that reason, we use a two-step initialization approach, where the ctor mostly just starts
// the worker thread and that thread would notify, via the promise below whenever initialization
// is finished, and whether it was successful.
std::promise<bool> mInitPromise;
SensorPoseProviderImpl(const char* packageName, Listener* listener)
: mListener(listener),
mThread([this, p = std::string(packageName)] { threadFunc(p.c_str()); }) {}
void initFinished(bool success) { mInitPromise.set_value(success); }
bool waitInitFinished() { return mInitPromise.get_future().get(); }
void threadFunc(const char* packageName) {
// Obtain looper.
mLooper = Looper::prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);
// Obtain sensor manager.
SensorManager& sensorManager = SensorManager::getInstanceForPackage(String16(packageName));
// Create event queue.
mQueue = sensorManager.createEventQueue();
if (mQueue == nullptr) {
ALOGE("Failed to create a sensor event queue");
initFinished(false);
return;
}
EventQueueGuard eventQueueGuard(mQueue, mLooper.get());
initFinished(true);
while (true) {
int ret = mLooper->pollOnce(-1 /* no timeout */, nullptr, nullptr, nullptr);
switch (ret) {
case ALOOPER_POLL_WAKE:
// Normal way to exit.
return;
case kIdent:
// Possible events on our queue.
break;
default:
ALOGE("Unexpected status out of Looper::pollOnce: %d", ret);
}
// Process an event.
ASensorEvent event;
ssize_t actual = mQueue->read(&event, 1);
if (actual > 0) {
mQueue->sendAck(&event, actual);
}
ssize_t size = mQueue->filterEvents(&event, actual);
if (size < 0 || size > 1) {
ALOGE("Unexpected return value from SensorEventQueue::filterEvents: %zd", size);
break;
}
if (size == 0) {
// No events.
continue;
}
handleEvent(event);
}
}
void handleEvent(const ASensorEvent& event) {
auto value = parseEvent(event);
mListener->onPose(event.timestamp, event.sensor, std::get<0>(value), std::get<1>(value));
}
static std::tuple<Pose3f, std::optional<Twist3f>> parseEvent(const ASensorEvent& event) {
// TODO(ytai): Add more types.
switch (event.type) {
case ASENSOR_TYPE_ROTATION_VECTOR:
case ASENSOR_TYPE_GAME_ROTATION_VECTOR: {
Eigen::Quaternionf quat(event.data[3], event.data[0], event.data[1], event.data[2]);
// Adapt to different frame convention.
quat *= rotateX(-M_PI_2);
return std::make_tuple(Pose3f(quat), std::optional<Twist3f>());
}
default:
ALOGE("Unsupported sensor type: %" PRId32, event.type);
return std::make_tuple(Pose3f(), std::optional<Twist3f>());
}
}
};
} // namespace
std::unique_ptr<SensorPoseProvider> SensorPoseProvider::create(const char* packageName,
Listener* listener) {
return SensorPoseProviderImpl::create(packageName, listener);
}
} // namespace media
} // namespace android