blob: 965985d1aa7eaf605110264fd57d6cf22f115554 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <asyncio/AsyncIO.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/usb/ch9.h>
#include <linux/usb/functionfs.h>
#include <memory>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/endian.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "PosixAsyncIO.h"
#include "MtpFfsHandle.h"
#include "mtp.h"
namespace {
constexpr char FFS_MTP_EP_IN[] = "/dev/usb-ffs/mtp/ep1";
constexpr char FFS_MTP_EP_OUT[] = "/dev/usb-ffs/mtp/ep2";
constexpr char FFS_MTP_EP_INTR[] = "/dev/usb-ffs/mtp/ep3";
constexpr int MAX_PACKET_SIZE_FS = 64;
constexpr int MAX_PACKET_SIZE_HS = 512;
constexpr int MAX_PACKET_SIZE_SS = 1024;
constexpr int MAX_PACKET_SIZE_EV = 28;
constexpr unsigned AIO_BUFS_MAX = 128;
constexpr unsigned AIO_BUF_LEN = 16384;
constexpr unsigned FFS_NUM_EVENTS = 5;
constexpr unsigned MAX_FILE_CHUNK_SIZE = AIO_BUFS_MAX * AIO_BUF_LEN;
constexpr uint32_t MAX_MTP_FILE_SIZE = 0xFFFFFFFF;
struct timespec ZERO_TIMEOUT = { 0, 0 };
struct func_desc {
struct usb_interface_descriptor intf;
struct usb_endpoint_descriptor_no_audio sink;
struct usb_endpoint_descriptor_no_audio source;
struct usb_endpoint_descriptor_no_audio intr;
} __attribute__((packed));
struct ss_func_desc {
struct usb_interface_descriptor intf;
struct usb_endpoint_descriptor_no_audio sink;
struct usb_ss_ep_comp_descriptor sink_comp;
struct usb_endpoint_descriptor_no_audio source;
struct usb_ss_ep_comp_descriptor source_comp;
struct usb_endpoint_descriptor_no_audio intr;
struct usb_ss_ep_comp_descriptor intr_comp;
} __attribute__((packed));
struct desc_v1 {
struct usb_functionfs_descs_head_v1 {
__le32 magic;
__le32 length;
__le32 fs_count;
__le32 hs_count;
} __attribute__((packed)) header;
struct func_desc fs_descs, hs_descs;
} __attribute__((packed));
struct desc_v2 {
struct usb_functionfs_descs_head_v2 header;
// The rest of the structure depends on the flags in the header.
__le32 fs_count;
__le32 hs_count;
__le32 ss_count;
__le32 os_count;
struct func_desc fs_descs, hs_descs;
struct ss_func_desc ss_descs;
struct usb_os_desc_header os_header;
struct usb_ext_compat_desc os_desc;
} __attribute__((packed));
const struct usb_interface_descriptor mtp_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bNumEndpoints = 3,
.bInterfaceClass = USB_CLASS_STILL_IMAGE,
.bInterfaceSubClass = 1,
.bInterfaceProtocol = 1,
.iInterface = 1,
};
const struct usb_interface_descriptor ptp_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bNumEndpoints = 3,
.bInterfaceClass = USB_CLASS_STILL_IMAGE,
.bInterfaceSubClass = 1,
.bInterfaceProtocol = 1,
};
const struct usb_endpoint_descriptor_no_audio fs_sink = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 1 | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = MAX_PACKET_SIZE_FS,
};
const struct usb_endpoint_descriptor_no_audio fs_source = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 2 | USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = MAX_PACKET_SIZE_FS,
};
const struct usb_endpoint_descriptor_no_audio intr = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 3 | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = MAX_PACKET_SIZE_EV,
.bInterval = 6,
};
const struct usb_endpoint_descriptor_no_audio hs_sink = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 1 | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = MAX_PACKET_SIZE_HS,
};
const struct usb_endpoint_descriptor_no_audio hs_source = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 2 | USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = MAX_PACKET_SIZE_HS,
};
const struct usb_endpoint_descriptor_no_audio ss_sink = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 1 | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = MAX_PACKET_SIZE_SS,
};
const struct usb_endpoint_descriptor_no_audio ss_source = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 2 | USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = MAX_PACKET_SIZE_SS,
};
const struct usb_ss_ep_comp_descriptor ss_sink_comp = {
.bLength = sizeof(ss_sink_comp),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
.bMaxBurst = 6,
};
const struct usb_ss_ep_comp_descriptor ss_source_comp = {
.bLength = sizeof(ss_source_comp),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
.bMaxBurst = 6,
};
const struct usb_ss_ep_comp_descriptor ss_intr_comp = {
.bLength = sizeof(ss_intr_comp),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
};
const struct func_desc mtp_fs_descriptors = {
.intf = mtp_interface_desc,
.sink = fs_sink,
.source = fs_source,
.intr = intr,
};
const struct func_desc mtp_hs_descriptors = {
.intf = mtp_interface_desc,
.sink = hs_sink,
.source = hs_source,
.intr = intr,
};
const struct ss_func_desc mtp_ss_descriptors = {
.intf = mtp_interface_desc,
.sink = ss_sink,
.sink_comp = ss_sink_comp,
.source = ss_source,
.source_comp = ss_source_comp,
.intr = intr,
.intr_comp = ss_intr_comp,
};
const struct func_desc ptp_fs_descriptors = {
.intf = ptp_interface_desc,
.sink = fs_sink,
.source = fs_source,
.intr = intr,
};
const struct func_desc ptp_hs_descriptors = {
.intf = ptp_interface_desc,
.sink = hs_sink,
.source = hs_source,
.intr = intr,
};
const struct ss_func_desc ptp_ss_descriptors = {
.intf = ptp_interface_desc,
.sink = ss_sink,
.sink_comp = ss_sink_comp,
.source = ss_source,
.source_comp = ss_source_comp,
.intr = intr,
.intr_comp = ss_intr_comp,
};
#define STR_INTERFACE "MTP"
const struct {
struct usb_functionfs_strings_head header;
struct {
__le16 code;
const char str1[sizeof(STR_INTERFACE)];
} __attribute__((packed)) lang0;
} __attribute__((packed)) strings = {
.header = {
.magic = htole32(FUNCTIONFS_STRINGS_MAGIC),
.length = htole32(sizeof(strings)),
.str_count = htole32(1),
.lang_count = htole32(1),
},
.lang0 = {
.code = htole16(0x0409),
.str1 = STR_INTERFACE,
},
};
struct usb_os_desc_header mtp_os_desc_header = {
.interface = htole32(1),
.dwLength = htole32(sizeof(usb_os_desc_header) + sizeof(usb_ext_compat_desc)),
.bcdVersion = htole16(1),
.wIndex = htole16(4),
.bCount = htole16(1),
.Reserved = htole16(0),
};
struct usb_ext_compat_desc mtp_os_desc_compat = {
.bFirstInterfaceNumber = 0,
.Reserved1 = htole32(1),
.CompatibleID = { 'M', 'T', 'P' },
.SubCompatibleID = {0},
.Reserved2 = {0},
};
struct usb_ext_compat_desc ptp_os_desc_compat = {
.bFirstInterfaceNumber = 0,
.Reserved1 = htole32(1),
.CompatibleID = { 'P', 'T', 'P' },
.SubCompatibleID = {0},
.Reserved2 = {0},
};
struct mtp_device_status {
uint16_t wLength;
uint16_t wCode;
};
} // anonymous namespace
namespace android {
int MtpFfsHandle::getPacketSize(int ffs_fd) {
struct usb_endpoint_descriptor desc;
if (ioctl(ffs_fd, FUNCTIONFS_ENDPOINT_DESC, reinterpret_cast<unsigned long>(&desc))) {
PLOG(ERROR) << "Could not get FFS bulk-in descriptor";
return MAX_PACKET_SIZE_HS;
} else {
return desc.wMaxPacketSize;
}
}
MtpFfsHandle::MtpFfsHandle() {}
MtpFfsHandle::~MtpFfsHandle() {}
void MtpFfsHandle::closeEndpoints() {
mIntr.reset();
mBulkIn.reset();
mBulkOut.reset();
}
bool MtpFfsHandle::openEndpoints() {
if (mBulkIn < 0) {
mBulkIn.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP_IN, O_RDWR)));
if (mBulkIn < 0) {
PLOG(ERROR) << FFS_MTP_EP_IN << ": cannot open bulk in ep";
return false;
}
}
if (mBulkOut < 0) {
mBulkOut.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP_OUT, O_RDWR)));
if (mBulkOut < 0) {
PLOG(ERROR) << FFS_MTP_EP_OUT << ": cannot open bulk out ep";
return false;
}
}
if (mIntr < 0) {
mIntr.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP_INTR, O_RDWR)));
if (mIntr < 0) {
PLOG(ERROR) << FFS_MTP_EP_INTR << ": cannot open intr ep";
return false;
}
}
return true;
}
void MtpFfsHandle::advise(int fd) {
for (unsigned i = 0; i < NUM_IO_BUFS; i++) {
if (posix_madvise(mIobuf[i].bufs.data(), MAX_FILE_CHUNK_SIZE,
POSIX_MADV_SEQUENTIAL | POSIX_MADV_WILLNEED) < 0)
PLOG(ERROR) << "Failed to madvise";
}
if (posix_fadvise(fd, 0, 0,
POSIX_FADV_SEQUENTIAL | POSIX_FADV_NOREUSE | POSIX_FADV_WILLNEED) < 0)
PLOG(ERROR) << "Failed to fadvise";
}
bool MtpFfsHandle::initFunctionfs() {
ssize_t ret;
struct desc_v1 v1_descriptor;
struct desc_v2 v2_descriptor;
v2_descriptor.header.magic = htole32(FUNCTIONFS_DESCRIPTORS_MAGIC_V2);
v2_descriptor.header.length = htole32(sizeof(v2_descriptor));
v2_descriptor.header.flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC |
FUNCTIONFS_HAS_SS_DESC | FUNCTIONFS_HAS_MS_OS_DESC;
v2_descriptor.fs_count = 4;
v2_descriptor.hs_count = 4;
v2_descriptor.ss_count = 7;
v2_descriptor.os_count = 1;
v2_descriptor.fs_descs = mPtp ? ptp_fs_descriptors : mtp_fs_descriptors;
v2_descriptor.hs_descs = mPtp ? ptp_hs_descriptors : mtp_hs_descriptors;
v2_descriptor.ss_descs = mPtp ? ptp_ss_descriptors : mtp_ss_descriptors;
v2_descriptor.os_header = mtp_os_desc_header;
v2_descriptor.os_desc = mPtp ? ptp_os_desc_compat : mtp_os_desc_compat;
if (mControl < 0) { // might have already done this before
mControl.reset(TEMP_FAILURE_RETRY(open(FFS_MTP_EP0, O_RDWR)));
if (mControl < 0) {
PLOG(ERROR) << FFS_MTP_EP0 << ": cannot open control endpoint";
goto err;
}
ret = TEMP_FAILURE_RETRY(::write(mControl, &v2_descriptor, sizeof(v2_descriptor)));
if (ret < 0) {
v1_descriptor.header.magic = htole32(FUNCTIONFS_DESCRIPTORS_MAGIC);
v1_descriptor.header.length = htole32(sizeof(v1_descriptor));
v1_descriptor.header.fs_count = 4;
v1_descriptor.header.hs_count = 4;
v1_descriptor.fs_descs = mPtp ? ptp_fs_descriptors : mtp_fs_descriptors;
v1_descriptor.hs_descs = mPtp ? ptp_hs_descriptors : mtp_hs_descriptors;
PLOG(ERROR) << FFS_MTP_EP0 << "Switching to V1 descriptor format";
ret = TEMP_FAILURE_RETRY(::write(mControl, &v1_descriptor, sizeof(v1_descriptor)));
if (ret < 0) {
PLOG(ERROR) << FFS_MTP_EP0 << "Writing descriptors failed";
goto err;
}
}
ret = TEMP_FAILURE_RETRY(::write(mControl, &strings, sizeof(strings)));
if (ret < 0) {
PLOG(ERROR) << FFS_MTP_EP0 << "Writing strings failed";
goto err;
}
}
return true;
err:
closeConfig();
return false;
}
void MtpFfsHandle::closeConfig() {
mControl.reset();
}
int MtpFfsHandle::doAsync(void* data, size_t len, bool read) {
struct io_event ioevs[1];
if (len > AIO_BUF_LEN) {
LOG(ERROR) << "Mtp read/write too large " << len;
errno = EINVAL;
return -1;
}
mIobuf[0].buf[0] = reinterpret_cast<unsigned char*>(data);
if (iobufSubmit(&mIobuf[0], read ? mBulkOut : mBulkIn, len, read) == -1)
return -1;
int ret = waitEvents(&mIobuf[0], 1, ioevs, nullptr);
mIobuf[0].buf[0] = mIobuf[0].bufs.data();
return ret;
}
int MtpFfsHandle::read(void* data, size_t len) {
return doAsync(data, len, true);
}
int MtpFfsHandle::write(const void* data, size_t len) {
return doAsync(const_cast<void*>(data), len, false);
}
int MtpFfsHandle::handleEvent() {
std::vector<usb_functionfs_event> events(FFS_NUM_EVENTS);
usb_functionfs_event *event = events.data();
int nbytes = TEMP_FAILURE_RETRY(::read(mControl, event,
events.size() * sizeof(usb_functionfs_event)));
if (nbytes == -1) {
return -1;
}
int ret = 0;
for (size_t n = nbytes / sizeof *event; n; --n, ++event) {
switch (event->type) {
case FUNCTIONFS_BIND:
case FUNCTIONFS_ENABLE:
case FUNCTIONFS_RESUME:
ret = 0;
errno = 0;
break;
case FUNCTIONFS_SUSPEND:
case FUNCTIONFS_UNBIND:
case FUNCTIONFS_DISABLE:
errno = ESHUTDOWN;
ret = -1;
break;
case FUNCTIONFS_SETUP:
if (handleControlRequest(&event->u.setup) == -1)
ret = -1;
break;
default:
LOG(ERROR) << "Mtp Event " << event->type << " (unknown)";
}
}
return ret;
}
int MtpFfsHandle::handleControlRequest(const struct usb_ctrlrequest *setup) {
uint8_t type = setup->bRequestType;
uint8_t code = setup->bRequest;
uint16_t length = setup->wLength;
uint16_t index = setup->wIndex;
uint16_t value = setup->wValue;
std::vector<char> buf;
buf.resize(length);
int ret = 0;
if (!(type & USB_DIR_IN)) {
if (::read(mControl, buf.data(), length) != length) {
PLOG(ERROR) << "Mtp error ctrlreq read data";
}
}
if ((type & USB_TYPE_MASK) == USB_TYPE_CLASS && index == 0 && value == 0) {
switch(code) {
case MTP_REQ_RESET:
case MTP_REQ_CANCEL:
errno = ECANCELED;
ret = -1;
break;
case MTP_REQ_GET_DEVICE_STATUS:
{
if (length < sizeof(struct mtp_device_status) + 4) {
errno = EINVAL;
return -1;
}
struct mtp_device_status *st = reinterpret_cast<struct mtp_device_status*>(buf.data());
st->wLength = htole16(sizeof(st));
if (mCanceled) {
st->wLength += 4;
st->wCode = MTP_RESPONSE_TRANSACTION_CANCELLED;
uint16_t *endpoints = reinterpret_cast<uint16_t*>(st + 1);
endpoints[0] = ioctl(mBulkIn, FUNCTIONFS_ENDPOINT_REVMAP);
endpoints[1] = ioctl(mBulkOut, FUNCTIONFS_ENDPOINT_REVMAP);
mCanceled = false;
} else {
st->wCode = MTP_RESPONSE_OK;
}
length = st->wLength;
break;
}
default:
LOG(ERROR) << "Unrecognized Mtp class request! " << code;
}
} else {
LOG(ERROR) << "Unrecognized request type " << type;
}
if (type & USB_DIR_IN) {
if (::write(mControl, buf.data(), length) != length) {
PLOG(ERROR) << "Mtp error ctrlreq write data";
}
}
return 0;
}
int MtpFfsHandle::start() {
mLock.lock();
if (!openEndpoints())
return -1;
for (unsigned i = 0; i < NUM_IO_BUFS; i++) {
mIobuf[i].bufs.resize(MAX_FILE_CHUNK_SIZE);
mIobuf[i].iocb.resize(AIO_BUFS_MAX);
mIobuf[i].iocbs.resize(AIO_BUFS_MAX);
mIobuf[i].buf.resize(AIO_BUFS_MAX);
for (unsigned j = 0; j < AIO_BUFS_MAX; j++) {
mIobuf[i].buf[j] = mIobuf[i].bufs.data() + j * AIO_BUF_LEN;
mIobuf[i].iocb[j] = &mIobuf[i].iocbs[j];
}
}
memset(&mCtx, 0, sizeof(mCtx));
if (io_setup(AIO_BUFS_MAX, &mCtx) < 0) {
PLOG(ERROR) << "unable to setup aio";
return -1;
}
mEventFd.reset(eventfd(0, EFD_NONBLOCK));
mPollFds[0].fd = mControl;
mPollFds[0].events = POLLIN;
mPollFds[1].fd = mEventFd;
mPollFds[1].events = POLLIN;
mCanceled = false;
return 0;
}
int MtpFfsHandle::configure(bool usePtp) {
// Wait till previous server invocation has closed
if (!mLock.try_lock_for(std::chrono::milliseconds(1000))) {
LOG(ERROR) << "MtpServer was unable to get configure lock";
return -1;
}
int ret = 0;
// If ptp is changed, the configuration must be rewritten
if (mPtp != usePtp) {
closeEndpoints();
closeConfig();
}
mPtp = usePtp;
if (!initFunctionfs()) {
ret = -1;
}
mLock.unlock();
return ret;
}
void MtpFfsHandle::close() {
io_destroy(mCtx);
closeEndpoints();
mLock.unlock();
}
int MtpFfsHandle::waitEvents(struct io_buffer *buf, int min_events, struct io_event *events,
int *counter) {
int num_events = 0;
int ret = 0;
int error = 0;
while (num_events < min_events) {
if (poll(mPollFds, 2, 0) == -1) {
PLOG(ERROR) << "Mtp error during poll()";
return -1;
}
if (mPollFds[0].revents & POLLIN) {
mPollFds[0].revents = 0;
if (handleEvent() == -1) {
error = errno;
}
}
if (mPollFds[1].revents & POLLIN) {
mPollFds[1].revents = 0;
uint64_t ev_cnt = 0;
if (::read(mEventFd, &ev_cnt, sizeof(ev_cnt)) == -1) {
PLOG(ERROR) << "Mtp unable to read eventfd";
error = errno;
continue;
}
// It's possible that io_getevents will return more events than the eventFd reported,
// since events may appear in the time between the calls. In this case, the eventFd will
// show up as readable next iteration, but there will be fewer or no events to actually
// wait for. Thus we never want io_getevents to block.
int this_events = TEMP_FAILURE_RETRY(io_getevents(mCtx, 0, AIO_BUFS_MAX, events, &ZERO_TIMEOUT));
if (this_events == -1) {
PLOG(ERROR) << "Mtp error getting events";
error = errno;
}
// Add up the total amount of data and find errors on the way.
for (unsigned j = 0; j < static_cast<unsigned>(this_events); j++) {
if (events[j].res < 0) {
errno = -events[j].res;
PLOG(ERROR) << "Mtp got error event at " << j << " and " << buf->actual << " total";
error = errno;
}
ret += events[j].res;
}
num_events += this_events;
if (counter)
*counter += this_events;
}
if (error) {
errno = error;
ret = -1;
break;
}
}
return ret;
}
void MtpFfsHandle::cancelTransaction() {
// Device cancels by stalling both bulk endpoints.
if (::read(mBulkIn, nullptr, 0) != -1 || errno != EBADMSG)
PLOG(ERROR) << "Mtp stall failed on bulk in";
if (::write(mBulkOut, nullptr, 0) != -1 || errno != EBADMSG)
PLOG(ERROR) << "Mtp stall failed on bulk out";
mCanceled = true;
errno = ECANCELED;
}
int MtpFfsHandle::cancelEvents(struct iocb **iocb, struct io_event *events, unsigned start,
unsigned end) {
// Some manpages for io_cancel are out of date and incorrect.
// io_cancel will return -EINPROGRESS on success and does
// not place the event in the given memory. We have to use
// io_getevents to wait for all the events we cancelled.
int ret = 0;
unsigned num_events = 0;
int save_errno = errno;
errno = 0;
for (unsigned j = start; j < end; j++) {
if (io_cancel(mCtx, iocb[j], nullptr) != -1 || errno != EINPROGRESS) {
PLOG(ERROR) << "Mtp couldn't cancel request " << j;
} else {
num_events++;
}
}
if (num_events != end - start) {
ret = -1;
errno = EIO;
}
int evs = TEMP_FAILURE_RETRY(io_getevents(mCtx, num_events, AIO_BUFS_MAX, events, nullptr));
if (static_cast<unsigned>(evs) != num_events) {
PLOG(ERROR) << "Mtp couldn't cancel all requests, got " << evs;
ret = -1;
}
uint64_t ev_cnt = 0;
if (num_events && ::read(mEventFd, &ev_cnt, sizeof(ev_cnt)) == -1)
PLOG(ERROR) << "Mtp Unable to read event fd";
if (ret == 0) {
// Restore errno since it probably got overriden with EINPROGRESS.
errno = save_errno;
}
return ret;
}
int MtpFfsHandle::iobufSubmit(struct io_buffer *buf, int fd, unsigned length, bool read) {
int ret = 0;
buf->actual = AIO_BUFS_MAX;
for (unsigned j = 0; j < AIO_BUFS_MAX; j++) {
unsigned rq_length = std::min(AIO_BUF_LEN, length - AIO_BUF_LEN * j);
io_prep(buf->iocb[j], fd, buf->buf[j], rq_length, 0, read);
buf->iocb[j]->aio_flags |= IOCB_FLAG_RESFD;
buf->iocb[j]->aio_resfd = mEventFd;
// Not enough data, so table is truncated.
if (rq_length < AIO_BUF_LEN || length == AIO_BUF_LEN * (j + 1)) {
buf->actual = j + 1;
break;
}
}
ret = io_submit(mCtx, buf->actual, buf->iocb.data());
if (ret != static_cast<int>(buf->actual)) {
PLOG(ERROR) << "Mtp io_submit got " << ret << " expected " << buf->actual;
if (ret != -1) {
errno = EIO;
}
ret = -1;
}
return ret;
}
int MtpFfsHandle::receiveFile(mtp_file_range mfr, bool zero_packet) {
// When receiving files, the incoming length is given in 32 bits.
// A >=4G file is given as 0xFFFFFFFF
uint32_t file_length = mfr.length;
uint64_t offset = mfr.offset;
struct aiocb aio;
aio.aio_fildes = mfr.fd;
aio.aio_buf = nullptr;
struct aiocb *aiol[] = {&aio};
int ret = -1;
unsigned i = 0;
size_t length;
struct io_event ioevs[AIO_BUFS_MAX];
bool has_write = false;
bool error = false;
bool write_error = false;
int packet_size = getPacketSize(mBulkOut);
bool short_packet = false;
advise(mfr.fd);
// Break down the file into pieces that fit in buffers
while (file_length > 0 || has_write) {
// Queue an asynchronous read from USB.
if (file_length > 0) {
length = std::min(static_cast<uint32_t>(MAX_FILE_CHUNK_SIZE), file_length);
if (iobufSubmit(&mIobuf[i], mBulkOut, length, true) == -1)
error = true;
}
// Get the return status of the last write request.
if (has_write) {
aio_suspend(aiol, 1, nullptr);
int written = aio_return(&aio);
if (static_cast<size_t>(written) < aio.aio_nbytes) {
errno = written == -1 ? aio_error(&aio) : EIO;
PLOG(ERROR) << "Mtp error writing to disk";
write_error = true;
}
has_write = false;
}
if (error) {
return -1;
}
// Get the result of the read request, and queue a write to disk.
if (file_length > 0) {
unsigned num_events = 0;
ret = 0;
unsigned short_i = mIobuf[i].actual;
while (num_events < short_i) {
// Get all events up to the short read, if there is one.
// We must wait for each event since data transfer could end at any time.
int this_events = 0;
int event_ret = waitEvents(&mIobuf[i], 1, ioevs, &this_events);
num_events += this_events;
if (event_ret == -1) {
cancelEvents(mIobuf[i].iocb.data(), ioevs, num_events, mIobuf[i].actual);
return -1;
}
ret += event_ret;
for (int j = 0; j < this_events; j++) {
// struct io_event contains a pointer to the associated struct iocb as a __u64.
if (static_cast<__u64>(ioevs[j].res) <
reinterpret_cast<struct iocb*>(ioevs[j].obj)->aio_nbytes) {
// We've found a short event. Store the index since
// events won't necessarily arrive in the order they are queued.
short_i = (ioevs[j].obj - reinterpret_cast<uint64_t>(mIobuf[i].iocbs.data()))
/ sizeof(struct iocb) + 1;
short_packet = true;
}
}
}
if (short_packet) {
if (cancelEvents(mIobuf[i].iocb.data(), ioevs, short_i, mIobuf[i].actual)) {
write_error = true;
}
}
if (file_length == MAX_MTP_FILE_SIZE) {
// For larger files, receive until a short packet is received.
if (static_cast<size_t>(ret) < length) {
file_length = 0;
}
} else if (ret < static_cast<int>(length)) {
// If file is less than 4G and we get a short packet, it's an error.
errno = EIO;
LOG(ERROR) << "Mtp got unexpected short packet";
return -1;
} else {
file_length -= ret;
}
if (write_error) {
cancelTransaction();
return -1;
}
// Enqueue a new write request
aio_prepare(&aio, mIobuf[i].bufs.data(), ret, offset);
aio_write(&aio);
offset += ret;
i = (i + 1) % NUM_IO_BUFS;
has_write = true;
}
}
if ((ret % packet_size == 0 && !short_packet) || zero_packet) {
// Receive an empty packet if size is a multiple of the endpoint size
// and we didn't already get an empty packet from the header or large file.
if (read(mIobuf[0].bufs.data(), packet_size) != 0) {
return -1;
}
}
return 0;
}
int MtpFfsHandle::sendFile(mtp_file_range mfr) {
uint64_t file_length = mfr.length;
uint32_t given_length = std::min(static_cast<uint64_t>(MAX_MTP_FILE_SIZE),
file_length + sizeof(mtp_data_header));
uint64_t offset = mfr.offset;
int packet_size = getPacketSize(mBulkIn);
// If file_length is larger than a size_t, truncating would produce the wrong comparison.
// Instead, promote the left side to 64 bits, then truncate the small result.
int init_read_len = std::min(
static_cast<uint64_t>(packet_size - sizeof(mtp_data_header)), file_length);
advise(mfr.fd);
struct aiocb aio;
aio.aio_fildes = mfr.fd;
struct aiocb *aiol[] = {&aio};
int ret = 0;
int length, num_read;
unsigned i = 0;
struct io_event ioevs[AIO_BUFS_MAX];
bool error = false;
bool has_write = false;
// Send the header data
mtp_data_header *header = reinterpret_cast<mtp_data_header*>(mIobuf[0].bufs.data());
header->length = htole32(given_length);
header->type = htole16(2); // data packet
header->command = htole16(mfr.command);
header->transaction_id = htole32(mfr.transaction_id);
// Some hosts don't support header/data separation even though MTP allows it
// Handle by filling first packet with initial file data
if (TEMP_FAILURE_RETRY(pread(mfr.fd, mIobuf[0].bufs.data() +
sizeof(mtp_data_header), init_read_len, offset))
!= init_read_len) return -1;
if (write(mIobuf[0].bufs.data(), sizeof(mtp_data_header) + init_read_len) == -1)
return -1;
file_length -= init_read_len;
offset += init_read_len;
ret = init_read_len + sizeof(mtp_data_header);
// Break down the file into pieces that fit in buffers
while(file_length > 0 || has_write) {
if (file_length > 0) {
// Queue up a read from disk.
length = std::min(static_cast<uint64_t>(MAX_FILE_CHUNK_SIZE), file_length);
aio_prepare(&aio, mIobuf[i].bufs.data(), length, offset);
aio_read(&aio);
}
if (has_write) {
// Wait for usb write. Cancel unwritten portion if there's an error.
int num_events = 0;
if (waitEvents(&mIobuf[(i-1)%NUM_IO_BUFS], mIobuf[(i-1)%NUM_IO_BUFS].actual, ioevs,
&num_events) != ret) {
error = true;
cancelEvents(mIobuf[(i-1)%NUM_IO_BUFS].iocb.data(), ioevs, num_events,
mIobuf[(i-1)%NUM_IO_BUFS].actual);
}
has_write = false;
}
if (file_length > 0) {
// Wait for the previous read to finish
aio_suspend(aiol, 1, nullptr);
num_read = aio_return(&aio);
if (static_cast<size_t>(num_read) < aio.aio_nbytes) {
errno = num_read == -1 ? aio_error(&aio) : EIO;
PLOG(ERROR) << "Mtp error reading from disk";
cancelTransaction();
return -1;
}
file_length -= num_read;
offset += num_read;
if (error) {
return -1;
}
// Queue up a write to usb.
if (iobufSubmit(&mIobuf[i], mBulkIn, num_read, false) == -1) {
return -1;
}
has_write = true;
ret = num_read;
}
i = (i + 1) % NUM_IO_BUFS;
}
if (ret % packet_size == 0) {
// If the last packet wasn't short, send a final empty packet
if (write(mIobuf[0].bufs.data(), 0) != 0) {
return -1;
}
}
return 0;
}
int MtpFfsHandle::sendEvent(mtp_event me) {
// Mimic the behavior of f_mtp by sending the event async.
// Events aren't critical to the connection, so we don't need to check the return value.
char *temp = new char[me.length];
memcpy(temp, me.data, me.length);
me.data = temp;
std::thread t([this, me]() { return this->doSendEvent(me); });
t.detach();
return 0;
}
void MtpFfsHandle::doSendEvent(mtp_event me) {
unsigned length = me.length;
int ret = ::write(mIntr, me.data, length);
if (static_cast<unsigned>(ret) != length)
PLOG(ERROR) << "Mtp error sending event thread!";
delete[] reinterpret_cast<char*>(me.data);
}
} // namespace android