blob: 27b00c930eda6e704828c0b2db6c4f2fdc80f953 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-ZoomRatioMapper"
//#define LOG_NDEBUG 0
#include <algorithm>
#include "device3/ZoomRatioMapper.h"
#include "utils/SessionConfigurationUtilsHost.h"
namespace android {
namespace camera3 {
void ZoomRatioMapper::initRemappedKeys() {
mRemappedKeys.insert(
kMeteringRegionsToCorrect.begin(),
kMeteringRegionsToCorrect.end());
mRemappedKeys.insert(
kRectsToCorrect.begin(),
kRectsToCorrect.end());
mRemappedKeys.insert(
kResultPointsToCorrectNoClamp.begin(),
kResultPointsToCorrectNoClamp.end());
mRemappedKeys.insert(ANDROID_CONTROL_ZOOM_RATIO);
}
status_t ZoomRatioMapper::initZoomRatioInTemplate(CameraMetadata *request) {
camera_metadata_entry_t entry;
entry = request->find(ANDROID_CONTROL_ZOOM_RATIO);
float defaultZoomRatio = 1.0f;
if (entry.count == 0) {
return request->update(ANDROID_CONTROL_ZOOM_RATIO, &defaultZoomRatio, 1);
}
return OK;
}
status_t ZoomRatioMapper::overrideZoomRatioTags(
CameraMetadata* deviceInfo, bool* supportNativeZoomRatio) {
if (deviceInfo == nullptr || supportNativeZoomRatio == nullptr) {
return BAD_VALUE;
}
camera_metadata_entry_t entry;
entry = deviceInfo->find(ANDROID_CONTROL_ZOOM_RATIO_RANGE);
if (entry.count != 2 && entry.count != 0) return BAD_VALUE;
// Hal has zoom ratio support
if (entry.count == 2) {
*supportNativeZoomRatio = true;
return OK;
}
// Hal has no zoom ratio support
*supportNativeZoomRatio = false;
entry = deviceInfo->find(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM);
if (entry.count != 1) {
ALOGI("%s: Camera device doesn't support SCALER_AVAILABLE_MAX_DIGITAL_ZOOM key!",
__FUNCTION__);
return OK;
}
float zoomRange[] = {1.0f, entry.data.f[0]};
status_t res = deviceInfo->update(ANDROID_CONTROL_ZOOM_RATIO_RANGE, zoomRange, 2);
if (res != OK) {
ALOGE("%s: Failed to update CONTROL_ZOOM_RATIO_RANGE key: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
std::vector<int32_t> requestKeys;
entry = deviceInfo->find(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS);
if (entry.count > 0) {
requestKeys.insert(requestKeys.end(), entry.data.i32, entry.data.i32 + entry.count);
}
requestKeys.push_back(ANDROID_CONTROL_ZOOM_RATIO);
res = deviceInfo->update(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
requestKeys.data(), requestKeys.size());
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_REQUEST_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
std::vector<int32_t> resultKeys;
entry = deviceInfo->find(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS);
if (entry.count > 0) {
resultKeys.insert(resultKeys.end(), entry.data.i32, entry.data.i32 + entry.count);
}
resultKeys.push_back(ANDROID_CONTROL_ZOOM_RATIO);
res = deviceInfo->update(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
resultKeys.data(), resultKeys.size());
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_RESULT_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
std::vector<int32_t> charKeys;
entry = deviceInfo->find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
if (entry.count > 0) {
charKeys.insert(charKeys.end(), entry.data.i32, entry.data.i32 + entry.count);
}
charKeys.push_back(ANDROID_CONTROL_ZOOM_RATIO_RANGE);
res = deviceInfo->update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
charKeys.data(), charKeys.size());
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
return OK;
}
ZoomRatioMapper::ZoomRatioMapper(const CameraMetadata* deviceInfo,
bool supportNativeZoomRatio, bool usePrecorrectArray) {
initRemappedKeys();
int32_t arrayW = 0;
int32_t arrayH = 0;
int32_t arrayMaximumResolutionW = 0;
int32_t arrayMaximumResolutionH = 0;
int32_t activeW = 0;
int32_t activeH = 0;
int32_t activeMaximumResolutionW = 0;
int32_t activeMaximumResolutionH = 0;
if (!SessionConfigurationUtils::getArrayWidthAndHeight(deviceInfo,
ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE, &arrayW, &arrayH)) {
ALOGE("%s: Couldn't get pre correction active array size", __FUNCTION__);
return;
}
if (!SessionConfigurationUtils::getArrayWidthAndHeight(deviceInfo,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE, &activeW, &activeH)) {
ALOGE("%s: Couldn't get active array size", __FUNCTION__);
return;
}
bool isUltraHighResolutionSensor =
camera3::SessionConfigurationUtils::isUltraHighResolutionSensor(*deviceInfo);
if (isUltraHighResolutionSensor) {
if (!SessionConfigurationUtils::getArrayWidthAndHeight(deviceInfo,
ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE_MAXIMUM_RESOLUTION,
&arrayMaximumResolutionW, &arrayMaximumResolutionH)) {
ALOGE("%s: Couldn't get maximum resolution pre correction active array size",
__FUNCTION__);
return;
}
if (!SessionConfigurationUtils::getArrayWidthAndHeight(deviceInfo,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE_MAXIMUM_RESOLUTION,
&activeMaximumResolutionW, &activeMaximumResolutionH)) {
ALOGE("%s: Couldn't get maximum resolution pre correction active array size",
__FUNCTION__);
return;
}
}
if (usePrecorrectArray) {
mArrayWidth = arrayW;
mArrayHeight = arrayH;
mArrayWidthMaximumResolution = arrayMaximumResolutionW;
mArrayHeightMaximumResolution = arrayMaximumResolutionH;
} else {
mArrayWidth = activeW;
mArrayHeight = activeH;
mArrayWidthMaximumResolution = activeMaximumResolutionW;
mArrayHeightMaximumResolution = activeMaximumResolutionH;
}
mHalSupportsZoomRatio = supportNativeZoomRatio;
ALOGV("%s: array size: %d x %d, full res array size: %d x %d, mHalSupportsZoomRatio %d",
__FUNCTION__, mArrayWidth, mArrayHeight, mArrayWidthMaximumResolution,
mArrayHeightMaximumResolution, mHalSupportsZoomRatio);
mIsValid = true;
}
status_t ZoomRatioMapper::getArrayDimensionsToBeUsed(const CameraMetadata *settings,
int32_t *arrayWidth, int32_t *arrayHeight) {
if (settings == nullptr || arrayWidth == nullptr || arrayHeight == nullptr) {
return BAD_VALUE;
}
// First we get the sensorPixelMode from the settings metadata.
int32_t sensorPixelMode = ANDROID_SENSOR_PIXEL_MODE_DEFAULT;
camera_metadata_ro_entry sensorPixelModeEntry = settings->find(ANDROID_SENSOR_PIXEL_MODE);
if (sensorPixelModeEntry.count != 0) {
sensorPixelMode = sensorPixelModeEntry.data.u8[0];
if (sensorPixelMode != ANDROID_SENSOR_PIXEL_MODE_DEFAULT &&
sensorPixelMode != ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION) {
ALOGE("%s: Request sensor pixel mode is not one of the valid values %d",
__FUNCTION__, sensorPixelMode);
return BAD_VALUE;
}
}
if (sensorPixelMode == ANDROID_SENSOR_PIXEL_MODE_DEFAULT) {
*arrayWidth = mArrayWidth;
*arrayHeight = mArrayHeight;
} else {
*arrayWidth = mArrayWidthMaximumResolution;
*arrayHeight = mArrayHeightMaximumResolution;
}
return OK;
}
status_t ZoomRatioMapper::updateCaptureRequest(CameraMetadata* request) {
if (!mIsValid) return INVALID_OPERATION;
status_t res = OK;
bool zoomRatioIs1 = true;
camera_metadata_entry_t entry;
int arrayHeight, arrayWidth = 0;
res = getArrayDimensionsToBeUsed(request, &arrayWidth, &arrayHeight);
if (res != OK) {
return res;
}
entry = request->find(ANDROID_CONTROL_ZOOM_RATIO);
if (entry.count == 1 && entry.data.f[0] != 1.0f) {
zoomRatioIs1 = false;
// If cropRegion is windowboxing, override it with activeArray
camera_metadata_entry_t cropRegionEntry = request->find(ANDROID_SCALER_CROP_REGION);
if (cropRegionEntry.count == 4) {
int cropWidth = cropRegionEntry.data.i32[2];
int cropHeight = cropRegionEntry.data.i32[3];
if (cropWidth < arrayWidth && cropHeight < arrayHeight) {
cropRegionEntry.data.i32[0] = 0;
cropRegionEntry.data.i32[1] = 0;
cropRegionEntry.data.i32[2] = arrayWidth;
cropRegionEntry.data.i32[3] = arrayHeight;
}
}
}
if (mHalSupportsZoomRatio && zoomRatioIs1) {
res = separateZoomFromCropLocked(request, false/*isResult*/, arrayWidth, arrayHeight);
} else if (!mHalSupportsZoomRatio && !zoomRatioIs1) {
res = combineZoomAndCropLocked(request, false/*isResult*/, arrayWidth, arrayHeight);
}
// If CONTROL_ZOOM_RATIO is in request, but HAL doesn't support
// CONTROL_ZOOM_RATIO, remove it from the request.
if (!mHalSupportsZoomRatio && entry.count == 1) {
request->erase(ANDROID_CONTROL_ZOOM_RATIO);
}
return res;
}
status_t ZoomRatioMapper::updateCaptureResult(CameraMetadata* result, bool requestedZoomRatioIs1) {
if (!mIsValid) return INVALID_OPERATION;
status_t res = OK;
int arrayHeight, arrayWidth = 0;
res = getArrayDimensionsToBeUsed(result, &arrayWidth, &arrayHeight);
if (res != OK) {
return res;
}
if (mHalSupportsZoomRatio && requestedZoomRatioIs1) {
res = combineZoomAndCropLocked(result, true/*isResult*/, arrayWidth, arrayHeight);
} else if (!mHalSupportsZoomRatio && !requestedZoomRatioIs1) {
res = separateZoomFromCropLocked(result, true/*isResult*/, arrayWidth, arrayHeight);
} else {
camera_metadata_entry_t entry = result->find(ANDROID_CONTROL_ZOOM_RATIO);
if (entry.count == 0) {
float zoomRatio1x = 1.0f;
result->update(ANDROID_CONTROL_ZOOM_RATIO, &zoomRatio1x, 1);
}
}
return res;
}
status_t ZoomRatioMapper::deriveZoomRatio(const CameraMetadata* metadata, float *zoomRatioRet,
int arrayWidth, int arrayHeight) {
if (metadata == nullptr || zoomRatioRet == nullptr) {
return BAD_VALUE;
}
float zoomRatio = 1.0;
camera_metadata_ro_entry_t entry;
entry = metadata->find(ANDROID_SCALER_CROP_REGION);
if (entry.count != 4) {
*zoomRatioRet = 1;
return OK;
}
// Center of the preCorrection/active size
float arrayCenterX = arrayWidth / 2.0;
float arrayCenterY = arrayHeight / 2.0;
// Re-map crop region to coordinate system centered to (arrayCenterX,
// arrayCenterY).
float cropRegionLeft = arrayCenterX - entry.data.i32[0] ;
float cropRegionTop = arrayCenterY - entry.data.i32[1];
float cropRegionRight = entry.data.i32[0] + entry.data.i32[2] - arrayCenterX;
float cropRegionBottom = entry.data.i32[1] + entry.data.i32[3] - arrayCenterY;
// Calculate the scaling factor for left, top, bottom, right
float zoomRatioLeft = std::max(arrayWidth / (2 * cropRegionLeft), 1.0f);
float zoomRatioTop = std::max(arrayHeight / (2 * cropRegionTop), 1.0f);
float zoomRatioRight = std::max(arrayWidth / (2 * cropRegionRight), 1.0f);
float zoomRatioBottom = std::max(arrayHeight / (2 * cropRegionBottom), 1.0f);
// Use minimum scaling factor to handle letterboxing or pillarboxing
zoomRatio = std::min(std::min(zoomRatioLeft, zoomRatioRight),
std::min(zoomRatioTop, zoomRatioBottom));
ALOGV("%s: derived zoomRatio is %f", __FUNCTION__, zoomRatio);
*zoomRatioRet = zoomRatio;
return OK;
}
status_t ZoomRatioMapper::separateZoomFromCropLocked(CameraMetadata* metadata, bool isResult,
int arrayWidth, int arrayHeight) {
float zoomRatio = 1.0;
status_t res = deriveZoomRatio(metadata, &zoomRatio, arrayWidth, arrayHeight);
if (res != OK) {
ALOGE("%s: Failed to derive zoom ratio: %s(%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// Update zoomRatio metadata tag
res = metadata->update(ANDROID_CONTROL_ZOOM_RATIO, &zoomRatio, 1);
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_CONTROL_ZOOM_RATIO: %s(%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// Scale regions using zoomRatio
camera_metadata_entry_t entry;
for (auto region : kMeteringRegionsToCorrect) {
entry = metadata->find(region);
for (size_t j = 0; j < entry.count; j += 5) {
int32_t weight = entry.data.i32[j + 4];
if (weight == 0) {
continue;
}
// Top left (inclusive)
scaleCoordinates(entry.data.i32 + j, 1, zoomRatio, true /*clamp*/, arrayWidth,
arrayHeight);
// Bottom right (exclusive): Use adjacent inclusive pixel to
// calculate.
entry.data.i32[j+2] -= 1;
entry.data.i32[j+3] -= 1;
scaleCoordinates(entry.data.i32 + j + 2, 1, zoomRatio, true /*clamp*/, arrayWidth,
arrayHeight);
entry.data.i32[j+2] += 1;
entry.data.i32[j+3] += 1;
}
}
for (auto rect : kRectsToCorrect) {
entry = metadata->find(rect);
scaleRects(entry.data.i32, entry.count / 4, zoomRatio, arrayWidth, arrayHeight);
}
if (isResult) {
for (auto pts : kResultPointsToCorrectNoClamp) {
entry = metadata->find(pts);
scaleCoordinates(entry.data.i32, entry.count / 2, zoomRatio, false /*clamp*/,
arrayWidth, arrayHeight);
}
}
return OK;
}
status_t ZoomRatioMapper::combineZoomAndCropLocked(CameraMetadata* metadata, bool isResult,
int arrayWidth, int arrayHeight) {
float zoomRatio = 1.0f;
camera_metadata_entry_t entry;
entry = metadata->find(ANDROID_CONTROL_ZOOM_RATIO);
if (entry.count == 1) {
zoomRatio = entry.data.f[0];
}
// Unscale regions with zoomRatio
for (auto region : kMeteringRegionsToCorrect) {
entry = metadata->find(region);
for (size_t j = 0; j < entry.count; j += 5) {
int32_t weight = entry.data.i32[j + 4];
if (weight == 0) {
continue;
}
// Top-left (inclusive)
scaleCoordinates(entry.data.i32 + j, 1, 1.0 / zoomRatio, true /*clamp*/, arrayWidth,
arrayHeight);
// Bottom-right (exclusive): Use adjacent inclusive pixel to
// calculate.
entry.data.i32[j+2] -= 1;
entry.data.i32[j+3] -= 1;
scaleCoordinates(entry.data.i32 + j + 2, 1, 1.0 / zoomRatio, true /*clamp*/, arrayWidth,
arrayHeight);
entry.data.i32[j+2] += 1;
entry.data.i32[j+3] += 1;
}
}
for (auto rect : kRectsToCorrect) {
entry = metadata->find(rect);
scaleRects(entry.data.i32, entry.count / 4, 1.0 / zoomRatio, arrayWidth, arrayHeight);
}
if (isResult) {
for (auto pts : kResultPointsToCorrectNoClamp) {
entry = metadata->find(pts);
scaleCoordinates(entry.data.i32, entry.count / 2, 1.0 / zoomRatio, false /*clamp*/,
arrayWidth, arrayHeight);
}
}
zoomRatio = 1.0;
status_t res = metadata->update(ANDROID_CONTROL_ZOOM_RATIO, &zoomRatio, 1);
if (res != OK) {
return res;
}
return OK;
}
void ZoomRatioMapper::scaleCoordinates(int32_t* coordPairs, int coordCount,
float scaleRatio, bool clamp, int32_t arrayWidth, int32_t arrayHeight) {
// A pixel's coordinate is represented by the position of its top-left corner.
// To avoid the rounding error, we use the coordinate for the center of the
// pixel instead:
// 1. First shift the coordinate system half pixel both horizontally and
// vertically, so that [x, y] is the center of the pixel, not the top-left corner.
// 2. Do zoom operation to scale the coordinate relative to the center of
// the active array (shifted by 0.5 pixel as well).
// 3. Shift the coordinate system back by directly using the pixel center
// coordinate.
for (int i = 0; i < coordCount * 2; i += 2) {
float x = coordPairs[i];
float y = coordPairs[i + 1];
float xCentered = x - (arrayWidth - 2) / 2;
float yCentered = y - (arrayHeight - 2) / 2;
float scaledX = xCentered * scaleRatio;
float scaledY = yCentered * scaleRatio;
scaledX += (arrayWidth - 2) / 2;
scaledY += (arrayHeight - 2) / 2;
coordPairs[i] = static_cast<int32_t>(std::round(scaledX));
coordPairs[i+1] = static_cast<int32_t>(std::round(scaledY));
// Clamp to within activeArray/preCorrectionActiveArray
if (clamp) {
int32_t right = arrayWidth - 1;
int32_t bottom = arrayHeight - 1;
coordPairs[i] =
std::min(right, std::max(0, coordPairs[i]));
coordPairs[i+1] =
std::min(bottom, std::max(0, coordPairs[i+1]));
}
ALOGV("%s: coordinates: %d, %d", __FUNCTION__, coordPairs[i], coordPairs[i+1]);
}
}
void ZoomRatioMapper::scaleRects(int32_t* rects, int rectCount,
float scaleRatio, int32_t arrayWidth, int32_t arrayHeight) {
for (int i = 0; i < rectCount * 4; i += 4) {
// Map from (l, t, width, height) to (l, t, l+width-1, t+height-1),
// where both top-left and bottom-right are inclusive.
int32_t coords[4] = {
rects[i],
rects[i + 1],
rects[i] + rects[i + 2] - 1,
rects[i + 1] + rects[i + 3] - 1
};
// top-left
scaleCoordinates(coords, 1, scaleRatio, true /*clamp*/, arrayWidth, arrayHeight);
// bottom-right
scaleCoordinates(coords+2, 1, scaleRatio, true /*clamp*/, arrayWidth, arrayHeight);
// Map back to (l, t, width, height)
rects[i] = coords[0];
rects[i + 1] = coords[1];
rects[i + 2] = coords[2] - coords[0] + 1;
rects[i + 3] = coords[3] - coords[1] + 1;
}
}
} // namespace camera3
} // namespace android