blob: 351c61836f8a2305cd90d304ac5e9f27f75f4b86 [file] [log] [blame]
/*
**
** Copyright 2014, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "AudioFlinger::PatchPanel"
//#define LOG_NDEBUG 0
#include "Configuration.h"
#include <utils/Log.h>
#include <audio_utils/primitives.h>
#include "AudioFlinger.h"
#include <media/AudioParameter.h>
#include <media/AudioValidator.h>
#include <media/DeviceDescriptorBase.h>
#include <media/PatchBuilder.h>
#include <mediautils/ServiceUtilities.h>
// ----------------------------------------------------------------------------
// Note: the following macro is used for extremely verbose logging message. In
// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
// 0; but one side effect of this is to turn all LOGV's as well. Some messages
// are so verbose that we want to suppress them even when we have ALOG_ASSERT
// turned on. Do not uncomment the #def below unless you really know what you
// are doing and want to see all of the extremely verbose messages.
//#define VERY_VERY_VERBOSE_LOGGING
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
#else
#define ALOGVV(a...) do { } while(0)
#endif
namespace android {
/* List connected audio ports and their attributes */
status_t AudioFlinger::listAudioPorts(unsigned int *num_ports,
struct audio_port *ports)
{
Mutex::Autolock _l(mLock);
return mPatchPanel.listAudioPorts(num_ports, ports);
}
/* Get supported attributes for a given audio port */
status_t AudioFlinger::getAudioPort(struct audio_port_v7 *port) {
status_t status = AudioValidator::validateAudioPort(*port);
if (status != NO_ERROR) {
return status;
}
Mutex::Autolock _l(mLock);
return mPatchPanel.getAudioPort(port);
}
/* Connect a patch between several source and sink ports */
status_t AudioFlinger::createAudioPatch(const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
status_t status = AudioValidator::validateAudioPatch(*patch);
if (status != NO_ERROR) {
return status;
}
Mutex::Autolock _l(mLock);
return mPatchPanel.createAudioPatch(patch, handle);
}
/* Disconnect a patch */
status_t AudioFlinger::releaseAudioPatch(audio_patch_handle_t handle)
{
Mutex::Autolock _l(mLock);
return mPatchPanel.releaseAudioPatch(handle);
}
/* List connected audio ports and they attributes */
status_t AudioFlinger::listAudioPatches(unsigned int *num_patches,
struct audio_patch *patches)
{
Mutex::Autolock _l(mLock);
return mPatchPanel.listAudioPatches(num_patches, patches);
}
status_t AudioFlinger::PatchPanel::SoftwarePatch::getLatencyMs_l(double *latencyMs) const
{
const auto& iter = mPatchPanel.mPatches.find(mPatchHandle);
if (iter != mPatchPanel.mPatches.end()) {
return iter->second.getLatencyMs(latencyMs);
} else {
return BAD_VALUE;
}
}
/* List connected audio ports and their attributes */
status_t AudioFlinger::PatchPanel::listAudioPorts(unsigned int *num_ports __unused,
struct audio_port *ports __unused)
{
ALOGV(__func__);
return NO_ERROR;
}
/* Get supported attributes for a given audio port */
status_t AudioFlinger::PatchPanel::getAudioPort(struct audio_port_v7 *port)
{
if (port->type != AUDIO_PORT_TYPE_DEVICE) {
// Only query the HAL when the port is a device.
// TODO: implement getAudioPort for mix.
return INVALID_OPERATION;
}
AudioHwDevice* hwDevice = findAudioHwDeviceByModule(port->ext.device.hw_module);
if (hwDevice == nullptr) {
ALOGW("%s cannot find hw module %d", __func__, port->ext.device.hw_module);
return BAD_VALUE;
}
if (!hwDevice->supportsAudioPatches()) {
return INVALID_OPERATION;
}
return hwDevice->getAudioPort(port);
}
/* Connect a patch between several source and sink ports */
status_t AudioFlinger::PatchPanel::createAudioPatch(const struct audio_patch *patch,
audio_patch_handle_t *handle,
bool endpointPatch)
{
if (handle == NULL || patch == NULL) {
return BAD_VALUE;
}
ALOGV("%s() num_sources %d num_sinks %d handle %d",
__func__, patch->num_sources, patch->num_sinks, *handle);
status_t status = NO_ERROR;
audio_patch_handle_t halHandle = AUDIO_PATCH_HANDLE_NONE;
if (!audio_patch_is_valid(patch) || (patch->num_sinks == 0 && patch->num_sources != 2)) {
return BAD_VALUE;
}
// limit number of sources to 1 for now or 2 sources for special cross hw module case.
// only the audio policy manager can request a patch creation with 2 sources.
if (patch->num_sources > 2) {
return INVALID_OPERATION;
}
if (*handle != AUDIO_PATCH_HANDLE_NONE) {
auto iter = mPatches.find(*handle);
if (iter != mPatches.end()) {
ALOGV("%s() removing patch handle %d", __func__, *handle);
Patch &removedPatch = iter->second;
// free resources owned by the removed patch if applicable
// 1) if a software patch is present, release the playback and capture threads and
// tracks created. This will also release the corresponding audio HAL patches
if (removedPatch.isSoftware()) {
removedPatch.clearConnections(this);
}
// 2) if the new patch and old patch source or sink are devices from different
// hw modules, clear the audio HAL patches now because they will not be updated
// by call to create_audio_patch() below which will happen on a different HW module
if (removedPatch.mHalHandle != AUDIO_PATCH_HANDLE_NONE) {
audio_module_handle_t hwModule = AUDIO_MODULE_HANDLE_NONE;
const struct audio_patch &oldPatch = removedPatch.mAudioPatch;
if (oldPatch.sources[0].type == AUDIO_PORT_TYPE_DEVICE &&
(patch->sources[0].type != AUDIO_PORT_TYPE_DEVICE ||
oldPatch.sources[0].ext.device.hw_module !=
patch->sources[0].ext.device.hw_module)) {
hwModule = oldPatch.sources[0].ext.device.hw_module;
} else if (patch->num_sinks == 0 ||
(oldPatch.sinks[0].type == AUDIO_PORT_TYPE_DEVICE &&
(patch->sinks[0].type != AUDIO_PORT_TYPE_DEVICE ||
oldPatch.sinks[0].ext.device.hw_module !=
patch->sinks[0].ext.device.hw_module))) {
// Note on (patch->num_sinks == 0): this situation should not happen as
// these special patches are only created by the policy manager but just
// in case, systematically clear the HAL patch.
// Note that removedPatch.mAudioPatch.num_sinks cannot be 0 here because
// removedPatch.mHalHandle would be AUDIO_PATCH_HANDLE_NONE in this case.
hwModule = oldPatch.sinks[0].ext.device.hw_module;
}
sp<DeviceHalInterface> hwDevice = findHwDeviceByModule(hwModule);
if (hwDevice != 0) {
hwDevice->releaseAudioPatch(removedPatch.mHalHandle);
}
halHandle = removedPatch.mHalHandle;
}
erasePatch(*handle);
}
}
Patch newPatch{*patch, endpointPatch};
audio_module_handle_t insertedModule = AUDIO_MODULE_HANDLE_NONE;
switch (patch->sources[0].type) {
case AUDIO_PORT_TYPE_DEVICE: {
audio_module_handle_t srcModule = patch->sources[0].ext.device.hw_module;
AudioHwDevice *audioHwDevice = findAudioHwDeviceByModule(srcModule);
if (!audioHwDevice) {
status = BAD_VALUE;
goto exit;
}
for (unsigned int i = 0; i < patch->num_sinks; i++) {
// support only one sink if connection to a mix or across HW modules
if ((patch->sinks[i].type == AUDIO_PORT_TYPE_MIX ||
(patch->sinks[i].type == AUDIO_PORT_TYPE_DEVICE &&
patch->sinks[i].ext.device.hw_module != srcModule)) &&
patch->num_sinks > 1) {
ALOGW("%s() multiple sinks for mix or across modules not supported", __func__);
status = INVALID_OPERATION;
goto exit;
}
// reject connection to different sink types
if (patch->sinks[i].type != patch->sinks[0].type) {
ALOGW("%s() different sink types in same patch not supported", __func__);
status = BAD_VALUE;
goto exit;
}
}
// manage patches requiring a software bridge
// - special patch request with 2 sources (reuse one existing output mix) OR
// - Device to device AND
// - source HW module != destination HW module OR
// - audio HAL does not support audio patches creation
if ((patch->num_sources == 2) ||
((patch->sinks[0].type == AUDIO_PORT_TYPE_DEVICE) &&
((patch->sinks[0].ext.device.hw_module != srcModule) ||
!audioHwDevice->supportsAudioPatches()))) {
audio_devices_t outputDevice = patch->sinks[0].ext.device.type;
String8 outputDeviceAddress = String8(patch->sinks[0].ext.device.address);
if (patch->num_sources == 2) {
if (patch->sources[1].type != AUDIO_PORT_TYPE_MIX ||
(patch->num_sinks != 0 && patch->sinks[0].ext.device.hw_module !=
patch->sources[1].ext.mix.hw_module)) {
ALOGW("%s() invalid source combination", __func__);
status = INVALID_OPERATION;
goto exit;
}
sp<ThreadBase> thread =
mAudioFlinger.checkPlaybackThread_l(patch->sources[1].ext.mix.handle);
if (thread == 0) {
ALOGW("%s() cannot get playback thread", __func__);
status = INVALID_OPERATION;
goto exit;
}
// existing playback thread is reused, so it is not closed when patch is cleared
newPatch.mPlayback.setThread(
reinterpret_cast<PlaybackThread*>(thread.get()), false /*closeThread*/);
} else {
audio_config_t config = AUDIO_CONFIG_INITIALIZER;
audio_config_base_t mixerConfig = AUDIO_CONFIG_BASE_INITIALIZER;
audio_io_handle_t output = AUDIO_IO_HANDLE_NONE;
audio_output_flags_t flags = AUDIO_OUTPUT_FLAG_NONE;
if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_SAMPLE_RATE) {
config.sample_rate = patch->sinks[0].sample_rate;
}
if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_CHANNEL_MASK) {
config.channel_mask = patch->sinks[0].channel_mask;
}
if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_FORMAT) {
config.format = patch->sinks[0].format;
}
if (patch->sinks[0].config_mask & AUDIO_PORT_CONFIG_FLAGS) {
flags = patch->sinks[0].flags.output;
}
sp<ThreadBase> thread = mAudioFlinger.openOutput_l(
patch->sinks[0].ext.device.hw_module,
&output,
&config,
&mixerConfig,
outputDevice,
outputDeviceAddress,
flags);
ALOGV("mAudioFlinger.openOutput_l() returned %p", thread.get());
if (thread == 0) {
status = NO_MEMORY;
goto exit;
}
newPatch.mPlayback.setThread(reinterpret_cast<PlaybackThread*>(thread.get()));
}
audio_devices_t device = patch->sources[0].ext.device.type;
String8 address = String8(patch->sources[0].ext.device.address);
audio_config_t config = AUDIO_CONFIG_INITIALIZER;
// open input stream with source device audio properties if provided or
// default to peer output stream properties otherwise.
if (patch->sources[0].config_mask & AUDIO_PORT_CONFIG_SAMPLE_RATE) {
config.sample_rate = patch->sources[0].sample_rate;
} else {
config.sample_rate = newPatch.mPlayback.thread()->sampleRate();
}
if (patch->sources[0].config_mask & AUDIO_PORT_CONFIG_CHANNEL_MASK) {
config.channel_mask = patch->sources[0].channel_mask;
} else {
config.channel_mask = audio_channel_in_mask_from_count(
newPatch.mPlayback.thread()->channelCount());
}
if (patch->sources[0].config_mask & AUDIO_PORT_CONFIG_FORMAT) {
config.format = patch->sources[0].format;
} else {
config.format = newPatch.mPlayback.thread()->format();
}
audio_input_flags_t flags =
patch->sources[0].config_mask & AUDIO_PORT_CONFIG_FLAGS ?
patch->sources[0].flags.input : AUDIO_INPUT_FLAG_NONE;
audio_io_handle_t input = AUDIO_IO_HANDLE_NONE;
audio_source_t source = AUDIO_SOURCE_MIC;
// For telephony patches, propagate voice communication use case to record side
if (patch->num_sources == 2
&& patch->sources[1].ext.mix.usecase.stream
== AUDIO_STREAM_VOICE_CALL) {
source = AUDIO_SOURCE_VOICE_COMMUNICATION;
}
sp<ThreadBase> thread = mAudioFlinger.openInput_l(srcModule,
&input,
&config,
device,
address,
source,
flags,
outputDevice,
outputDeviceAddress);
ALOGV("mAudioFlinger.openInput_l() returned %p inChannelMask %08x",
thread.get(), config.channel_mask);
if (thread == 0) {
status = NO_MEMORY;
goto exit;
}
newPatch.mRecord.setThread(reinterpret_cast<RecordThread*>(thread.get()));
status = newPatch.createConnections(this);
if (status != NO_ERROR) {
goto exit;
}
if (audioHwDevice->isInsert()) {
insertedModule = audioHwDevice->handle();
}
} else {
if (patch->sinks[0].type == AUDIO_PORT_TYPE_MIX) {
sp<ThreadBase> thread = mAudioFlinger.checkRecordThread_l(
patch->sinks[0].ext.mix.handle);
if (thread == 0) {
thread = mAudioFlinger.checkMmapThread_l(patch->sinks[0].ext.mix.handle);
if (thread == 0) {
ALOGW("%s() bad capture I/O handle %d",
__func__, patch->sinks[0].ext.mix.handle);
status = BAD_VALUE;
goto exit;
}
}
status = thread->sendCreateAudioPatchConfigEvent(patch, &halHandle);
if (status == NO_ERROR) {
newPatch.setThread(thread);
}
// remove stale audio patch with same input as sink if any
for (auto& iter : mPatches) {
if (iter.second.mAudioPatch.sinks[0].ext.mix.handle == thread->id()) {
erasePatch(iter.first);
break;
}
}
} else {
sp<DeviceHalInterface> hwDevice = audioHwDevice->hwDevice();
status = hwDevice->createAudioPatch(patch->num_sources,
patch->sources,
patch->num_sinks,
patch->sinks,
&halHandle);
if (status == INVALID_OPERATION) goto exit;
}
}
} break;
case AUDIO_PORT_TYPE_MIX: {
audio_module_handle_t srcModule = patch->sources[0].ext.mix.hw_module;
ssize_t index = mAudioFlinger.mAudioHwDevs.indexOfKey(srcModule);
if (index < 0) {
ALOGW("%s() bad src hw module %d", __func__, srcModule);
status = BAD_VALUE;
goto exit;
}
// limit to connections between devices and output streams
DeviceDescriptorBaseVector devices;
for (unsigned int i = 0; i < patch->num_sinks; i++) {
if (patch->sinks[i].type != AUDIO_PORT_TYPE_DEVICE) {
ALOGW("%s() invalid sink type %d for mix source",
__func__, patch->sinks[i].type);
status = BAD_VALUE;
goto exit;
}
// limit to connections between sinks and sources on same HW module
if (patch->sinks[i].ext.device.hw_module != srcModule) {
status = BAD_VALUE;
goto exit;
}
sp<DeviceDescriptorBase> device = new DeviceDescriptorBase(
patch->sinks[i].ext.device.type);
device->setAddress(patch->sinks[i].ext.device.address);
device->applyAudioPortConfig(&patch->sinks[i]);
devices.push_back(device);
}
sp<ThreadBase> thread =
mAudioFlinger.checkPlaybackThread_l(patch->sources[0].ext.mix.handle);
if (thread == 0) {
thread = mAudioFlinger.checkMmapThread_l(patch->sources[0].ext.mix.handle);
if (thread == 0) {
ALOGW("%s() bad playback I/O handle %d",
__func__, patch->sources[0].ext.mix.handle);
status = BAD_VALUE;
goto exit;
}
}
if (thread == mAudioFlinger.primaryPlaybackThread_l()) {
mAudioFlinger.updateOutDevicesForRecordThreads_l(devices);
}
status = thread->sendCreateAudioPatchConfigEvent(patch, &halHandle);
if (status == NO_ERROR) {
newPatch.setThread(thread);
}
// remove stale audio patch with same output as source if any
// Prevent to remove endpoint patches (involved in a SwBridge)
// Prevent to remove AudioPatch used to route an output involved in an endpoint.
if (!endpointPatch) {
for (auto& iter : mPatches) {
if (iter.second.mAudioPatch.sources[0].ext.mix.handle == thread->id() &&
!iter.second.mIsEndpointPatch) {
erasePatch(iter.first);
break;
}
}
}
} break;
default:
status = BAD_VALUE;
goto exit;
}
exit:
ALOGV("%s() status %d", __func__, status);
if (status == NO_ERROR) {
*handle = (audio_patch_handle_t) mAudioFlinger.nextUniqueId(AUDIO_UNIQUE_ID_USE_PATCH);
newPatch.mHalHandle = halHandle;
mAudioFlinger.mDeviceEffectManager.createAudioPatch(*handle, newPatch);
if (insertedModule != AUDIO_MODULE_HANDLE_NONE) {
addSoftwarePatchToInsertedModules(insertedModule, *handle, &newPatch.mAudioPatch);
}
mPatches.insert(std::make_pair(*handle, std::move(newPatch)));
} else {
newPatch.clearConnections(this);
}
return status;
}
AudioFlinger::PatchPanel::Patch::~Patch()
{
ALOGE_IF(isSoftware(), "Software patch connections leaked %d %d",
mRecord.handle(), mPlayback.handle());
}
status_t AudioFlinger::PatchPanel::Patch::createConnections(PatchPanel *panel)
{
// create patch from source device to record thread input
status_t status = panel->createAudioPatch(
PatchBuilder().addSource(mAudioPatch.sources[0]).
addSink(mRecord.thread(), { .source = AUDIO_SOURCE_MIC }).patch(),
mRecord.handlePtr(),
true /*endpointPatch*/);
if (status != NO_ERROR) {
*mRecord.handlePtr() = AUDIO_PATCH_HANDLE_NONE;
return status;
}
// create patch from playback thread output to sink device
if (mAudioPatch.num_sinks != 0) {
status = panel->createAudioPatch(
PatchBuilder().addSource(mPlayback.thread()).addSink(mAudioPatch.sinks[0]).patch(),
mPlayback.handlePtr(),
true /*endpointPatch*/);
if (status != NO_ERROR) {
*mPlayback.handlePtr() = AUDIO_PATCH_HANDLE_NONE;
return status;
}
} else {
*mPlayback.handlePtr() = AUDIO_PATCH_HANDLE_NONE;
}
// create a special record track to capture from record thread
uint32_t channelCount = mPlayback.thread()->channelCount();
audio_channel_mask_t inChannelMask = audio_channel_in_mask_from_count(channelCount);
audio_channel_mask_t outChannelMask = mPlayback.thread()->channelMask();
uint32_t sampleRate = mPlayback.thread()->sampleRate();
audio_format_t format = mPlayback.thread()->format();
audio_format_t inputFormat = mRecord.thread()->format();
if (!audio_is_linear_pcm(inputFormat)) {
// The playbackThread format will say PCM for IEC61937 packetized stream.
// Use recordThread format.
format = inputFormat;
}
audio_input_flags_t inputFlags = mAudioPatch.sources[0].config_mask & AUDIO_PORT_CONFIG_FLAGS ?
mAudioPatch.sources[0].flags.input : AUDIO_INPUT_FLAG_NONE;
if (sampleRate == mRecord.thread()->sampleRate() &&
inChannelMask == mRecord.thread()->channelMask() &&
mRecord.thread()->fastTrackAvailable() &&
mRecord.thread()->hasFastCapture()) {
// Create a fast track if the record thread has fast capture to get better performance.
// Only enable fast mode when there is no resample needed.
inputFlags = (audio_input_flags_t) (inputFlags | AUDIO_INPUT_FLAG_FAST);
} else {
// Fast mode is not available in this case.
inputFlags = (audio_input_flags_t) (inputFlags & ~AUDIO_INPUT_FLAG_FAST);
}
audio_output_flags_t outputFlags = mAudioPatch.sinks[0].config_mask & AUDIO_PORT_CONFIG_FLAGS ?
mAudioPatch.sinks[0].flags.output : AUDIO_OUTPUT_FLAG_NONE;
audio_stream_type_t streamType = AUDIO_STREAM_PATCH;
audio_source_t source = AUDIO_SOURCE_DEFAULT;
if (mAudioPatch.num_sources == 2 && mAudioPatch.sources[1].type == AUDIO_PORT_TYPE_MIX) {
// "reuse one existing output mix" case
streamType = mAudioPatch.sources[1].ext.mix.usecase.stream;
// For telephony patches, propagate voice communication use case to record side
if (streamType == AUDIO_STREAM_VOICE_CALL) {
source = AUDIO_SOURCE_VOICE_COMMUNICATION;
}
}
if (mPlayback.thread()->hasFastMixer()) {
// Create a fast track if the playback thread has fast mixer to get better performance.
// Note: we should have matching channel mask, sample rate, and format by the logic above.
outputFlags = (audio_output_flags_t) (outputFlags | AUDIO_OUTPUT_FLAG_FAST);
} else {
outputFlags = (audio_output_flags_t) (outputFlags & ~AUDIO_OUTPUT_FLAG_FAST);
}
sp<RecordThread::PatchRecord> tempRecordTrack;
const bool usePassthruPatchRecord =
(inputFlags & AUDIO_INPUT_FLAG_DIRECT) && (outputFlags & AUDIO_OUTPUT_FLAG_DIRECT);
const size_t playbackFrameCount = mPlayback.thread()->frameCount();
const size_t recordFrameCount = mRecord.thread()->frameCount();
size_t frameCount = 0;
if (usePassthruPatchRecord) {
// PassthruPatchRecord producesBufferOnDemand, so use
// maximum of playback and record thread framecounts
frameCount = std::max(playbackFrameCount, recordFrameCount);
ALOGV("%s() playframeCount %zu recordFrameCount %zu frameCount %zu",
__func__, playbackFrameCount, recordFrameCount, frameCount);
tempRecordTrack = new RecordThread::PassthruPatchRecord(
mRecord.thread().get(),
sampleRate,
inChannelMask,
format,
frameCount,
inputFlags,
source);
} else {
// use a pseudo LCM between input and output framecount
int playbackShift = __builtin_ctz(playbackFrameCount);
int shift = __builtin_ctz(recordFrameCount);
if (playbackShift < shift) {
shift = playbackShift;
}
frameCount = (playbackFrameCount * recordFrameCount) >> shift;
ALOGV("%s() playframeCount %zu recordFrameCount %zu frameCount %zu",
__func__, playbackFrameCount, recordFrameCount, frameCount);
tempRecordTrack = new RecordThread::PatchRecord(
mRecord.thread().get(),
sampleRate,
inChannelMask,
format,
frameCount,
nullptr,
(size_t)0 /* bufferSize */,
inputFlags,
{} /* timeout */,
source);
}
status = mRecord.checkTrack(tempRecordTrack.get());
if (status != NO_ERROR) {
return status;
}
// create a special playback track to render to playback thread.
// this track is given the same buffer as the PatchRecord buffer
// Default behaviour is to start as soon as possible to have the lowest possible latency even if
// it might glitch.
// Disable this behavior for FM Tuner source if no fast capture/mixer available.
const bool isFmBridge = mAudioPatch.sources[0].ext.device.type == AUDIO_DEVICE_IN_FM_TUNER;
const size_t frameCountToBeReady = isFmBridge && !usePassthruPatchRecord ? frameCount / 4 : 1;
sp<PlaybackThread::PatchTrack> tempPatchTrack = new PlaybackThread::PatchTrack(
mPlayback.thread().get(),
streamType,
sampleRate,
outChannelMask,
format,
frameCount,
tempRecordTrack->buffer(),
tempRecordTrack->bufferSize(),
outputFlags,
{} /*timeout*/,
frameCountToBeReady);
status = mPlayback.checkTrack(tempPatchTrack.get());
if (status != NO_ERROR) {
return status;
}
// tie playback and record tracks together
// In the case of PassthruPatchRecord no I/O activity happens on RecordThread,
// everything is driven from PlaybackThread. Thus AudioBufferProvider methods
// of PassthruPatchRecord can only be called if the corresponding PatchTrack
// is alive. There is no need to hold a reference, and there is no need
// to clear it. In fact, since playback stopping is asynchronous, there is
// no proper time when clearing could be done.
mRecord.setTrackAndPeer(tempRecordTrack, tempPatchTrack, !usePassthruPatchRecord);
mPlayback.setTrackAndPeer(tempPatchTrack, tempRecordTrack, true /*holdReference*/);
// start capture and playback
mRecord.track()->start(AudioSystem::SYNC_EVENT_NONE, AUDIO_SESSION_NONE);
mPlayback.track()->start();
return status;
}
void AudioFlinger::PatchPanel::Patch::clearConnections(PatchPanel *panel)
{
ALOGV("%s() mRecord.handle %d mPlayback.handle %d",
__func__, mRecord.handle(), mPlayback.handle());
mRecord.stopTrack();
mPlayback.stopTrack();
mRecord.clearTrackPeer(); // mRecord stop is synchronous. Break PeerProxy sp<> cycle.
mRecord.closeConnections(panel);
mPlayback.closeConnections(panel);
}
status_t AudioFlinger::PatchPanel::Patch::getLatencyMs(double *latencyMs) const
{
if (!isSoftware()) return INVALID_OPERATION;
auto recordTrack = mRecord.const_track();
if (recordTrack.get() == nullptr) return INVALID_OPERATION;
auto playbackTrack = mPlayback.const_track();
if (playbackTrack.get() == nullptr) return INVALID_OPERATION;
// Latency information for tracks may be called without obtaining
// the underlying thread lock.
//
// We use record server latency + playback track latency (generally smaller than the
// reverse due to internal biases).
//
// TODO: is this stable enough? Consider a PatchTrack synchronized version of this.
// For PCM tracks get server latency.
if (audio_is_linear_pcm(recordTrack->format())) {
double recordServerLatencyMs, playbackTrackLatencyMs;
if (recordTrack->getServerLatencyMs(&recordServerLatencyMs) == OK
&& playbackTrack->getTrackLatencyMs(&playbackTrackLatencyMs) == OK) {
*latencyMs = recordServerLatencyMs + playbackTrackLatencyMs;
return OK;
}
}
// See if kernel latencies are available.
// If so, do a frame diff and time difference computation to estimate
// the total patch latency. This requires that frame counts are reported by the
// HAL are matched properly in the case of record overruns and playback underruns.
ThreadBase::TrackBase::FrameTime recordFT{}, playFT{};
recordTrack->getKernelFrameTime(&recordFT);
playbackTrack->getKernelFrameTime(&playFT);
if (recordFT.timeNs > 0 && playFT.timeNs > 0) {
const int64_t frameDiff = recordFT.frames - playFT.frames;
const int64_t timeDiffNs = recordFT.timeNs - playFT.timeNs;
// It is possible that the patch track and patch record have a large time disparity because
// one thread runs but another is stopped. We arbitrarily choose the maximum timestamp
// time difference based on how often we expect the timestamps to update in normal operation
// (typical should be no more than 50 ms).
//
// If the timestamps aren't sampled close enough, the patch latency is not
// considered valid.
//
// TODO: change this based on more experiments.
constexpr int64_t maxValidTimeDiffNs = 200 * NANOS_PER_MILLISECOND;
if (std::abs(timeDiffNs) < maxValidTimeDiffNs) {
*latencyMs = frameDiff * 1e3 / recordTrack->sampleRate()
- timeDiffNs * 1e-6;
return OK;
}
}
return INVALID_OPERATION;
}
String8 AudioFlinger::PatchPanel::Patch::dump(audio_patch_handle_t myHandle) const
{
// TODO: Consider table dump form for patches, just like tracks.
String8 result = String8::format("Patch %d: %s (thread %p => thread %p)",
myHandle, isSoftware() ? "Software bridge between" : "No software bridge",
mRecord.const_thread().get(), mPlayback.const_thread().get());
bool hasSinkDevice =
mAudioPatch.num_sinks > 0 && mAudioPatch.sinks[0].type == AUDIO_PORT_TYPE_DEVICE;
bool hasSourceDevice =
mAudioPatch.num_sources > 0 && mAudioPatch.sources[0].type == AUDIO_PORT_TYPE_DEVICE;
result.appendFormat(" thread %p %s (%d) first device type %08x", mThread.unsafe_get(),
hasSinkDevice ? "num sinks" :
(hasSourceDevice ? "num sources" : "no devices"),
hasSinkDevice ? mAudioPatch.num_sinks :
(hasSourceDevice ? mAudioPatch.num_sources : 0),
hasSinkDevice ? mAudioPatch.sinks[0].ext.device.type :
(hasSourceDevice ? mAudioPatch.sources[0].ext.device.type : 0));
// add latency if it exists
double latencyMs;
if (getLatencyMs(&latencyMs) == OK) {
result.appendFormat(" latency: %.2lf ms", latencyMs);
}
return result;
}
/* Disconnect a patch */
status_t AudioFlinger::PatchPanel::releaseAudioPatch(audio_patch_handle_t handle)
{
ALOGV("%s handle %d", __func__, handle);
status_t status = NO_ERROR;
auto iter = mPatches.find(handle);
if (iter == mPatches.end()) {
return BAD_VALUE;
}
Patch &removedPatch = iter->second;
const struct audio_patch &patch = removedPatch.mAudioPatch;
const struct audio_port_config &src = patch.sources[0];
switch (src.type) {
case AUDIO_PORT_TYPE_DEVICE: {
sp<DeviceHalInterface> hwDevice = findHwDeviceByModule(src.ext.device.hw_module);
if (hwDevice == 0) {
ALOGW("%s() bad src hw module %d", __func__, src.ext.device.hw_module);
status = BAD_VALUE;
break;
}
if (removedPatch.isSoftware()) {
removedPatch.clearConnections(this);
break;
}
if (patch.sinks[0].type == AUDIO_PORT_TYPE_MIX) {
audio_io_handle_t ioHandle = patch.sinks[0].ext.mix.handle;
sp<ThreadBase> thread = mAudioFlinger.checkRecordThread_l(ioHandle);
if (thread == 0) {
thread = mAudioFlinger.checkMmapThread_l(ioHandle);
if (thread == 0) {
ALOGW("%s() bad capture I/O handle %d", __func__, ioHandle);
status = BAD_VALUE;
break;
}
}
status = thread->sendReleaseAudioPatchConfigEvent(removedPatch.mHalHandle);
} else {
status = hwDevice->releaseAudioPatch(removedPatch.mHalHandle);
}
} break;
case AUDIO_PORT_TYPE_MIX: {
if (findHwDeviceByModule(src.ext.mix.hw_module) == 0) {
ALOGW("%s() bad src hw module %d", __func__, src.ext.mix.hw_module);
status = BAD_VALUE;
break;
}
audio_io_handle_t ioHandle = src.ext.mix.handle;
sp<ThreadBase> thread = mAudioFlinger.checkPlaybackThread_l(ioHandle);
if (thread == 0) {
thread = mAudioFlinger.checkMmapThread_l(ioHandle);
if (thread == 0) {
ALOGW("%s() bad playback I/O handle %d", __func__, ioHandle);
status = BAD_VALUE;
break;
}
}
status = thread->sendReleaseAudioPatchConfigEvent(removedPatch.mHalHandle);
} break;
default:
status = BAD_VALUE;
}
erasePatch(handle);
return status;
}
void AudioFlinger::PatchPanel::erasePatch(audio_patch_handle_t handle) {
mPatches.erase(handle);
removeSoftwarePatchFromInsertedModules(handle);
mAudioFlinger.mDeviceEffectManager.releaseAudioPatch(handle);
}
/* List connected audio ports and they attributes */
status_t AudioFlinger::PatchPanel::listAudioPatches(unsigned int *num_patches __unused,
struct audio_patch *patches __unused)
{
ALOGV(__func__);
return NO_ERROR;
}
status_t AudioFlinger::PatchPanel::getDownstreamSoftwarePatches(
audio_io_handle_t stream,
std::vector<AudioFlinger::PatchPanel::SoftwarePatch> *patches) const
{
for (const auto& module : mInsertedModules) {
if (module.second.streams.count(stream)) {
for (const auto& patchHandle : module.second.sw_patches) {
const auto& patch_iter = mPatches.find(patchHandle);
if (patch_iter != mPatches.end()) {
const Patch &patch = patch_iter->second;
patches->emplace_back(*this, patchHandle,
patch.mPlayback.const_thread()->id(),
patch.mRecord.const_thread()->id());
} else {
ALOGE("Stale patch handle in the cache: %d", patchHandle);
}
}
return OK;
}
}
// The stream is not associated with any of inserted modules.
return BAD_VALUE;
}
void AudioFlinger::PatchPanel::notifyStreamOpened(
AudioHwDevice *audioHwDevice, audio_io_handle_t stream, struct audio_patch *patch)
{
if (audioHwDevice->isInsert()) {
mInsertedModules[audioHwDevice->handle()].streams.insert(stream);
if (patch != nullptr) {
std::vector <SoftwarePatch> swPatches;
getDownstreamSoftwarePatches(stream, &swPatches);
if (swPatches.size() > 0) {
auto iter = mPatches.find(swPatches[0].getPatchHandle());
if (iter != mPatches.end()) {
*patch = iter->second.mAudioPatch;
}
}
}
}
}
void AudioFlinger::PatchPanel::notifyStreamClosed(audio_io_handle_t stream)
{
for (auto& module : mInsertedModules) {
module.second.streams.erase(stream);
}
}
AudioHwDevice* AudioFlinger::PatchPanel::findAudioHwDeviceByModule(audio_module_handle_t module)
{
if (module == AUDIO_MODULE_HANDLE_NONE) return nullptr;
ssize_t index = mAudioFlinger.mAudioHwDevs.indexOfKey(module);
if (index < 0) {
ALOGW("%s() bad hw module %d", __func__, module);
return nullptr;
}
return mAudioFlinger.mAudioHwDevs.valueAt(index);
}
sp<DeviceHalInterface> AudioFlinger::PatchPanel::findHwDeviceByModule(audio_module_handle_t module)
{
AudioHwDevice *audioHwDevice = findAudioHwDeviceByModule(module);
return audioHwDevice ? audioHwDevice->hwDevice() : nullptr;
}
void AudioFlinger::PatchPanel::addSoftwarePatchToInsertedModules(
audio_module_handle_t module, audio_patch_handle_t handle,
const struct audio_patch *patch)
{
mInsertedModules[module].sw_patches.insert(handle);
if (!mInsertedModules[module].streams.empty()) {
mAudioFlinger.updateDownStreamPatches_l(patch, mInsertedModules[module].streams);
}
}
void AudioFlinger::PatchPanel::removeSoftwarePatchFromInsertedModules(
audio_patch_handle_t handle)
{
for (auto& module : mInsertedModules) {
module.second.sw_patches.erase(handle);
}
}
void AudioFlinger::PatchPanel::dump(int fd) const
{
String8 patchPanelDump;
const char *indent = " ";
bool headerPrinted = false;
for (const auto& iter : mPatches) {
if (!headerPrinted) {
patchPanelDump += "\nPatches:\n";
headerPrinted = true;
}
patchPanelDump.appendFormat("%s%s\n", indent, iter.second.dump(iter.first).c_str());
}
headerPrinted = false;
for (const auto& module : mInsertedModules) {
if (!module.second.streams.empty() || !module.second.sw_patches.empty()) {
if (!headerPrinted) {
patchPanelDump += "\nTracked inserted modules:\n";
headerPrinted = true;
}
String8 moduleDump = String8::format("Module %d: I/O handles: ", module.first);
for (const auto& stream : module.second.streams) {
moduleDump.appendFormat("%d ", stream);
}
moduleDump.append("; SW Patches: ");
for (const auto& patch : module.second.sw_patches) {
moduleDump.appendFormat("%d ", patch);
}
patchPanelDump.appendFormat("%s%s\n", indent, moduleDump.c_str());
}
}
if (!patchPanelDump.empty()) {
write(fd, patchPanelDump.c_str(), patchPanelDump.size());
}
}
} // namespace android