blob: 1feb4a0f8f4614dac21006f1b87b979081da9247 [file] [log] [blame]
/*
* Copyright 2014,2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SERVERS_STREAMSPLITTER_H
#define ANDROID_SERVERS_STREAMSPLITTER_H
#include <unordered_set>
#include <camera/CameraMetadata.h>
#include <gui/IConsumerListener.h>
#include <gui/IProducerListener.h>
#include <gui/BufferItemConsumer.h>
#include <utils/Condition.h>
#include <utils/Mutex.h>
#include <utils/StrongPointer.h>
#include <utils/Timers.h>
#define SP_LOGV(x, ...) ALOGV("[%s] " x, mConsumerName.c_str(), ##__VA_ARGS__)
#define SP_LOGI(x, ...) ALOGI("[%s] " x, mConsumerName.c_str(), ##__VA_ARGS__)
#define SP_LOGW(x, ...) ALOGW("[%s] " x, mConsumerName.c_str(), ##__VA_ARGS__)
#define SP_LOGE(x, ...) ALOGE("[%s] " x, mConsumerName.c_str(), ##__VA_ARGS__)
namespace android {
class GraphicBuffer;
class IGraphicBufferConsumer;
class IGraphicBufferProducer;
// Camera3StreamSplitter is an autonomous class that manages one input BufferQueue
// and multiple output BufferQueues. By using the buffer attach and detach logic
// in BufferQueue, it is able to present the illusion of a single split
// BufferQueue, where each buffer queued to the input is available to be
// acquired by each of the outputs, and is able to be dequeued by the input
// again only once all of the outputs have released it.
class Camera3StreamSplitter : public BnConsumerListener {
public:
// Constructor
Camera3StreamSplitter(bool useHalBufManager = false);
// Connect to the stream splitter by creating buffer queue and connecting it
// with output surfaces.
status_t connect(const std::unordered_map<size_t, sp<Surface>> &surfaces,
uint64_t consumerUsage, uint64_t producerUsage, size_t halMaxBuffers, uint32_t width,
uint32_t height, android::PixelFormat format, sp<Surface>* consumer,
int64_t dynamicRangeProfile);
// addOutput adds an output BufferQueue to the splitter. The splitter
// connects to outputQueue as a CPU producer, and any buffers queued
// to the input will be queued to each output. If any output is abandoned
// by its consumer, the splitter will abandon its input queue (see onAbandoned).
//
// A return value other than NO_ERROR means that an error has occurred and
// outputQueue has not been added to the splitter. BAD_VALUE is returned if
// outputQueue is NULL. See IGraphicBufferProducer::connect for explanations
// of other error codes.
status_t addOutput(size_t surfaceId, const sp<Surface>& outputQueue);
//removeOutput will remove a BufferQueue that was previously added to
//the splitter outputs. Any pending buffers in the BufferQueue will get
//reclaimed.
status_t removeOutput(size_t surfaceId);
// Notification that the graphic buffer has been released to the input
// BufferQueue. The buffer should be reused by the camera device instead of
// queuing to the outputs.
status_t notifyBufferReleased(const sp<GraphicBuffer>& buffer);
// Attach a buffer to the specified outputs. This call reserves a buffer
// slot in the output queue.
status_t attachBufferToOutputs(ANativeWindowBuffer* anb,
const std::vector<size_t>& surface_ids);
// Get return value of onFrameAvailable to work around problem that
// onFrameAvailable is void. This function should be called by the producer
// right after calling queueBuffer().
status_t getOnFrameAvailableResult();
// Disconnect the buffer queue from output surfaces.
void disconnect();
void setHalBufferManager(bool enabled);
private:
// From IConsumerListener
//
// During this callback, we store some tracking information, detach the
// buffer from the input, and attach it to each of the outputs. This call
// can block if there are too many outstanding buffers. If it blocks, it
// will resume when onBufferReleasedByOutput releases a buffer back to the
// input.
void onFrameAvailable(const BufferItem& item) override;
// From IConsumerListener
//
// Similar to onFrameAvailable, but buffer item is indeed replacing a buffer
// in the buffer queue. This can happen when buffer queue is in droppable
// mode.
void onFrameReplaced(const BufferItem& item) override;
// From IConsumerListener
// We don't care about released buffers because we detach each buffer as
// soon as we acquire it. See the comment for onBufferReleased below for
// some clarifying notes about the name.
void onBuffersReleased() override {}
// From IConsumerListener
// We don't care about sideband streams, since we won't be splitting them
void onSidebandStreamChanged() override {}
// This is the implementation of the onBufferReleased callback from
// IProducerListener. It gets called from an OutputListener (see below), and
// 'from' is which producer interface from which the callback was received.
//
// During this callback, we detach the buffer from the output queue that
// generated the callback, update our state tracking to see if this is the
// last output releasing the buffer, and if so, release it to the input.
// If we release the buffer to the input, we allow a blocked
// onFrameAvailable call to proceed.
void onBufferReleasedByOutput(const sp<IGraphicBufferProducer>& from);
// Called by outputBufferLocked when a buffer in the async buffer queue got replaced.
void onBufferReplacedLocked(const sp<IGraphicBufferProducer>& from, size_t surfaceId);
// When this is called, the splitter disconnects from (i.e., abandons) its
// input queue and signals any waiting onFrameAvailable calls to wake up.
// It still processes callbacks from other outputs, but only detaches their
// buffers so they can continue operating until they run out of buffers to
// acquire. This must be called with mMutex locked.
void onAbandonedLocked();
// Decrement the buffer's reference count. Once the reference count becomes
// 0, return the buffer back to the input BufferQueue.
void decrementBufRefCountLocked(uint64_t id, size_t surfaceId);
// Check for and handle any output surface dequeue errors.
void handleOutputDequeueStatusLocked(status_t res, int slot);
// Handles released output surface buffers.
void returnOutputBufferLocked(const sp<Fence>& fence, const sp<IGraphicBufferProducer>& from,
size_t surfaceId, int slot);
// This is a thin wrapper class that lets us determine which BufferQueue
// the IProducerListener::onBufferReleased callback is associated with. We
// create one of these per output BufferQueue, and then pass the producer
// into onBufferReleasedByOutput above.
class OutputListener : public BnProducerListener,
public IBinder::DeathRecipient {
public:
OutputListener(wp<Camera3StreamSplitter> splitter,
wp<IGraphicBufferProducer> output);
virtual ~OutputListener() = default;
// From IProducerListener
void onBufferReleased() override;
// From IBinder::DeathRecipient
void binderDied(const wp<IBinder>& who) override;
private:
wp<Camera3StreamSplitter> mSplitter;
wp<IGraphicBufferProducer> mOutput;
};
class BufferTracker {
public:
BufferTracker(const sp<GraphicBuffer>& buffer,
const std::vector<size_t>& requestedSurfaces);
~BufferTracker() = default;
const sp<GraphicBuffer>& getBuffer() const { return mBuffer; }
const sp<Fence>& getMergedFence() const { return mMergedFence; }
void mergeFence(const sp<Fence>& with);
// Returns the new value
// Only called while mMutex is held
size_t decrementReferenceCountLocked(size_t surfaceId);
const std::vector<size_t> requestedSurfaces() const { return mRequestedSurfaces; }
private:
// Disallow copying
BufferTracker(const BufferTracker& other);
BufferTracker& operator=(const BufferTracker& other);
sp<GraphicBuffer> mBuffer; // One instance that holds this native handle
sp<Fence> mMergedFence;
// Request surfaces for a particular buffer. And when the buffer becomes
// available from the input queue, the registered surfaces are used to decide
// which output is the buffer sent to.
std::vector<size_t> mRequestedSurfaces;
size_t mReferenceCount;
};
// Must be accessed through RefBase
virtual ~Camera3StreamSplitter();
status_t addOutputLocked(size_t surfaceId, const sp<Surface>& outputQueue);
status_t removeOutputLocked(size_t surfaceId);
// Send a buffer to particular output, and increment the reference count
// of the buffer. If this output is abandoned, the buffer's reference count
// won't be incremented.
status_t outputBufferLocked(const sp<IGraphicBufferProducer>& output,
const BufferItem& bufferItem, size_t surfaceId);
// Get unique name for the buffer queue consumer
std::string getUniqueConsumerName();
// Helper function to get the BufferQueue slot where a particular buffer is attached to.
int getSlotForOutputLocked(const sp<IGraphicBufferProducer>& gbp,
const sp<GraphicBuffer>& gb);
// Sum of max consumer buffers for all outputs
size_t mMaxConsumerBuffers = 0;
size_t mMaxHalBuffers = 0;
uint32_t mWidth = 0;
uint32_t mHeight = 0;
android::PixelFormat mFormat = android::PIXEL_FORMAT_NONE;
uint64_t mProducerUsage = 0;
int mDynamicRangeProfile = ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD;
// The attachBuffer call will happen on different thread according to mUseHalBufManager and have
// different timing constraint.
static const nsecs_t kNormalDequeueBufferTimeout = s2ns(1); // 1 sec
static const nsecs_t kHalBufMgrDequeueBufferTimeout = ms2ns(1); // 1 msec
Mutex mMutex;
sp<IGraphicBufferProducer> mProducer;
sp<IGraphicBufferConsumer> mConsumer;
sp<BufferItemConsumer> mBufferItemConsumer;
sp<Surface> mSurface;
//Map graphic buffer ids -> buffer items
std::unordered_map<uint64_t, BufferItem> mInputSlots;
//Map surface ids -> gbp outputs
std::unordered_map<int, sp<IGraphicBufferProducer> > mOutputs;
//Map surface ids -> gbp outputs
std::unordered_map<int, sp<Surface>> mOutputSurfaces;
//Map surface ids -> consumer buffer count
std::unordered_map<int, size_t > mConsumerBufferCount;
// Map of GraphicBuffer IDs (GraphicBuffer::getId()) to buffer tracking
// objects (which are mostly for counting how many outputs have released the
// buffer, but also contain merged release fences).
std::unordered_map<uint64_t, std::unique_ptr<BufferTracker> > mBuffers;
struct GBPHash {
std::size_t operator()(const sp<IGraphicBufferProducer>& producer) const {
return std::hash<IGraphicBufferProducer *>{}(producer.get());
}
};
std::unordered_map<sp<IGraphicBufferProducer>, sp<OutputListener>,
GBPHash> mNotifiers;
typedef std::vector<sp<GraphicBuffer>> OutputSlots;
std::unordered_map<sp<IGraphicBufferProducer>, std::unique_ptr<OutputSlots>,
GBPHash> mOutputSlots;
//A set of buffers that could potentially stay in some of the outputs after removal
//and therefore should be detached from the input queue.
std::unordered_set<uint64_t> mDetachedBuffers;
// Latest onFrameAvailable return value
std::atomic<status_t> mOnFrameAvailableRes{0};
// Currently acquired input buffers
size_t mAcquiredInputBuffers;
std::string mConsumerName;
bool mUseHalBufManager;
};
} // namespace android
#endif