blob: 9792089009d0397d2310145f57e88370c7c6622b [file] [log] [blame]
/*
* Copyright (C) 2013-2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-Device"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0 // Per-frame verbose logging
#ifdef LOG_NNDEBUG
#define ALOGVV(...) ALOGV(__VA_ARGS__)
#else
#define ALOGVV(...) ((void)0)
#endif
// Convenience macro for transient errors
#define CLOGE(fmt, ...) ALOGE("Camera %s: %s: " fmt, mId.c_str(), __FUNCTION__, \
##__VA_ARGS__)
#define CLOGW(fmt, ...) ALOGW("Camera %s: %s: " fmt, mId.c_str(), __FUNCTION__, \
##__VA_ARGS__)
// Convenience macros for transitioning to the error state
#define SET_ERR(fmt, ...) setErrorState( \
"%s: " fmt, __FUNCTION__, \
##__VA_ARGS__)
#define SET_ERR_L(fmt, ...) setErrorStateLocked( \
"%s: " fmt, __FUNCTION__, \
##__VA_ARGS__)
#include <inttypes.h>
#include <utility>
#include <android-base/stringprintf.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <utils/Timers.h>
#include <cutils/properties.h>
#include <camera/StringUtils.h>
#include <android-base/properties.h>
#include <android/hardware/camera/device/3.7/ICameraInjectionSession.h>
#include <android/hardware/camera2/ICameraDeviceUser.h>
#include <com_android_internal_camera_flags.h>
#include "CameraService.h"
#include "aidl/android/hardware/graphics/common/Dataspace.h"
#include "aidl/AidlUtils.h"
#include "device3/Camera3Device.h"
#include "device3/Camera3FakeStream.h"
#include "device3/Camera3InputStream.h"
#include "device3/Camera3OutputStream.h"
#include "device3/Camera3SharedOutputStream.h"
#include "utils/CameraThreadState.h"
#include "utils/CameraTraces.h"
#include "utils/SchedulingPolicyUtils.h"
#include "utils/SessionConfigurationUtils.h"
#include "utils/TraceHFR.h"
#include "utils/Utils.h"
#include <algorithm>
#include <optional>
#include <tuple>
using namespace android::camera3;
using namespace android::camera3::SessionConfigurationUtils;
using namespace android::hardware::camera;
using namespace android::hardware::cameraservice::utils::conversion::aidl;
namespace flags = com::android::internal::camera::flags;
namespace android {
Camera3Device::Camera3Device(std::shared_ptr<CameraServiceProxyWrapper>& cameraServiceProxyWrapper,
const std::string &id, bool overrideForPerfClass, bool overrideToPortrait,
bool legacyClient):
mCameraServiceProxyWrapper(cameraServiceProxyWrapper),
mId(id),
mLegacyClient(legacyClient),
mOperatingMode(NO_MODE),
mIsConstrainedHighSpeedConfiguration(false),
mIsCompositeJpegRDisabled(false),
mStatus(STATUS_UNINITIALIZED),
mStatusWaiters(0),
mUsePartialResult(false),
mNumPartialResults(1),
mDeviceTimeBaseIsRealtime(false),
mTimestampOffset(0),
mNextResultFrameNumber(0),
mNextReprocessResultFrameNumber(0),
mNextZslStillResultFrameNumber(0),
mNextShutterFrameNumber(0),
mNextReprocessShutterFrameNumber(0),
mNextZslStillShutterFrameNumber(0),
mListener(NULL),
mVendorTagId(CAMERA_METADATA_INVALID_VENDOR_ID),
mLastTemplateId(-1),
mNeedFixupMonochromeTags(false),
mOverrideForPerfClass(overrideForPerfClass),
mOverrideToPortrait(overrideToPortrait),
mRotateAndCropOverride(ANDROID_SCALER_ROTATE_AND_CROP_NONE),
mComposerOutput(false),
mAutoframingOverride(ANDROID_CONTROL_AUTOFRAMING_OFF),
mSettingsOverride(-1),
mActivePhysicalId("")
{
ATRACE_CALL();
ALOGV("%s: Created device for camera %s", __FUNCTION__, mId.c_str());
}
Camera3Device::~Camera3Device()
{
ATRACE_CALL();
ALOGV("%s: Tearing down for camera id %s", __FUNCTION__, mId.c_str());
disconnectImpl();
}
const std::string& Camera3Device::getId() const {
return mId;
}
status_t Camera3Device::initializeCommonLocked() {
/** Start up status tracker thread */
mStatusTracker = new StatusTracker(this);
status_t res = mStatusTracker->run((std::string("C3Dev-") + mId + "-Status").c_str());
if (res != OK) {
SET_ERR_L("Unable to start status tracking thread: %s (%d)",
strerror(-res), res);
mInterface->close();
mStatusTracker.clear();
return res;
}
/** Register in-flight map to the status tracker */
mInFlightStatusId = mStatusTracker->addComponent("InflightRequests");
/** Create buffer manager */
mBufferManager = new Camera3BufferManager();
Vector<int32_t> sessionParamKeys;
camera_metadata_entry_t sessionKeysEntry = mDeviceInfo.find(
ANDROID_REQUEST_AVAILABLE_SESSION_KEYS);
if (sessionKeysEntry.count > 0) {
sessionParamKeys.insertArrayAt(sessionKeysEntry.data.i32, 0, sessionKeysEntry.count);
}
camera_metadata_entry_t availableTestPatternModes = mDeviceInfo.find(
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES);
for (size_t i = 0; i < availableTestPatternModes.count; i++) {
if (availableTestPatternModes.data.i32[i] ==
ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR) {
mSupportCameraMute = true;
mSupportTestPatternSolidColor = true;
break;
} else if (availableTestPatternModes.data.i32[i] ==
ANDROID_SENSOR_TEST_PATTERN_MODE_BLACK) {
mSupportCameraMute = true;
mSupportTestPatternSolidColor = false;
}
}
camera_metadata_entry_t availableSettingsOverrides = mDeviceInfo.find(
ANDROID_CONTROL_AVAILABLE_SETTINGS_OVERRIDES);
for (size_t i = 0; i < availableSettingsOverrides.count; i++) {
if (availableSettingsOverrides.data.i32[i] ==
ANDROID_CONTROL_SETTINGS_OVERRIDE_ZOOM) {
mSupportZoomOverride = true;
break;
}
}
/** Start up request queue thread */
mRequestThread = createNewRequestThread(
this, mStatusTracker, mInterface, sessionParamKeys,
mUseHalBufManager, mSupportCameraMute, mOverrideToPortrait,
mSupportZoomOverride);
res = mRequestThread->run((std::string("C3Dev-") + mId + "-ReqQueue").c_str());
if (res != OK) {
SET_ERR_L("Unable to start request queue thread: %s (%d)",
strerror(-res), res);
mInterface->close();
mRequestThread.clear();
return res;
}
mPreparerThread = new PreparerThread();
internalUpdateStatusLocked(STATUS_UNCONFIGURED);
mNextStreamId = 0;
mFakeStreamId = NO_STREAM;
mNeedConfig = true;
mPauseStateNotify = false;
mIsInputStreamMultiResolution = false;
// Measure the clock domain offset between camera and video/hw_composer
mTimestampOffset = getMonoToBoottimeOffset();
camera_metadata_entry timestampSource =
mDeviceInfo.find(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE);
if (timestampSource.count > 0 && timestampSource.data.u8[0] ==
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME) {
mDeviceTimeBaseIsRealtime = true;
}
// Will the HAL be sending in early partial result metadata?
camera_metadata_entry partialResultsCount =
mDeviceInfo.find(ANDROID_REQUEST_PARTIAL_RESULT_COUNT);
if (partialResultsCount.count > 0) {
mNumPartialResults = partialResultsCount.data.i32[0];
mUsePartialResult = (mNumPartialResults > 1);
}
bool usePrecorrectArray = DistortionMapper::isDistortionSupported(mDeviceInfo);
if (usePrecorrectArray) {
res = mDistortionMappers[mId].setupStaticInfo(mDeviceInfo);
if (res != OK) {
SET_ERR_L("Unable to read necessary calibration fields for distortion correction");
return res;
}
}
mZoomRatioMappers[mId] = ZoomRatioMapper(&mDeviceInfo,
mSupportNativeZoomRatio, usePrecorrectArray);
if (SessionConfigurationUtils::supportsUltraHighResolutionCapture(mDeviceInfo)) {
mUHRCropAndMeteringRegionMappers[mId] =
UHRCropAndMeteringRegionMapper(mDeviceInfo, usePrecorrectArray);
}
if (RotateAndCropMapper::isNeeded(&mDeviceInfo)) {
mRotateAndCropMappers.emplace(mId, &mDeviceInfo);
}
// Hidl/AidlCamera3DeviceInjectionMethods
mInjectionMethods = createCamera3DeviceInjectionMethods(this);
/** Start watchdog thread */
mCameraServiceWatchdog = new CameraServiceWatchdog(mId, mCameraServiceProxyWrapper);
res = mCameraServiceWatchdog->run("CameraServiceWatchdog");
if (res != OK) {
SET_ERR_L("Unable to start camera service watchdog thread: %s (%d)",
strerror(-res), res);
return res;
}
mSupportsExtensionKeys = areExtensionKeysSupported(mDeviceInfo);
return OK;
}
status_t Camera3Device::disconnect() {
return disconnectImpl();
}
status_t Camera3Device::disconnectImpl() {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGI("%s: E", __FUNCTION__);
status_t res = OK;
std::vector<wp<Camera3StreamInterface>> streams;
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
{
Mutex::Autolock l(mLock);
if (mStatus == STATUS_UNINITIALIZED) return res;
if (mRequestThread != NULL) {
if (mStatus == STATUS_ACTIVE || mStatus == STATUS_ERROR) {
res = mRequestThread->clear();
if (res != OK) {
SET_ERR_L("Can't stop streaming");
// Continue to close device even in case of error
} else {
res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration,
/*requestThreadInvocation*/ false);
if (res != OK) {
SET_ERR_L("Timeout waiting for HAL to drain (% " PRIi64 " ns)",
maxExpectedDuration);
// Continue to close device even in case of error
}
}
}
}
if (mStatus == STATUS_ERROR) {
CLOGE("Shutting down in an error state");
}
if (mStatusTracker != NULL) {
mStatusTracker->requestExit();
}
if (mRequestThread != NULL) {
mRequestThread->requestExit();
}
streams.reserve(mOutputStreams.size() + (mInputStream != nullptr ? 1 : 0));
for (size_t i = 0; i < mOutputStreams.size(); i++) {
streams.push_back(mOutputStreams[i]);
}
if (mInputStream != nullptr) {
streams.push_back(mInputStream);
}
}
// Joining done without holding mLock, otherwise deadlocks may ensue
// as the threads try to access parent state
if (mRequestThread != NULL && mStatus != STATUS_ERROR) {
// HAL may be in a bad state, so waiting for request thread
// (which may be stuck in the HAL processCaptureRequest call)
// could be dangerous.
mRequestThread->join();
}
if (mStatusTracker != NULL) {
mStatusTracker->join();
}
if (mInjectionMethods->isInjecting()) {
mInjectionMethods->stopInjection();
}
HalInterface* interface;
{
Mutex::Autolock l(mLock);
mRequestThread.clear();
Mutex::Autolock stLock(mTrackerLock);
mStatusTracker.clear();
interface = mInterface.get();
}
// Call close without internal mutex held, as the HAL close may need to
// wait on assorted callbacks,etc, to complete before it can return.
mCameraServiceWatchdog->WATCH(interface->close());
flushInflightRequests();
{
Mutex::Autolock l(mLock);
mInterface->clear();
mOutputStreams.clear();
mInputStream.clear();
mDeletedStreams.clear();
mBufferManager.clear();
internalUpdateStatusLocked(STATUS_UNINITIALIZED);
}
for (auto& weakStream : streams) {
sp<Camera3StreamInterface> stream = weakStream.promote();
if (stream != nullptr) {
ALOGE("%s: Stream %d leaked! strong reference (%d)!",
__FUNCTION__, stream->getId(), stream->getStrongCount() - 1);
}
}
ALOGI("%s: X", __FUNCTION__);
if (mCameraServiceWatchdog != NULL) {
mCameraServiceWatchdog->requestExit();
mCameraServiceWatchdog.clear();
}
return res;
}
// For dumping/debugging only -
// try to acquire a lock a few times, eventually give up to proceed with
// debug/dump operations
bool Camera3Device::tryLockSpinRightRound(Mutex& lock) {
bool gotLock = false;
for (size_t i = 0; i < kDumpLockAttempts; ++i) {
if (lock.tryLock() == NO_ERROR) {
gotLock = true;
break;
} else {
usleep(kDumpSleepDuration);
}
}
return gotLock;
}
nsecs_t Camera3Device::getMonoToBoottimeOffset() {
// try three times to get the clock offset, choose the one
// with the minimum gap in measurements.
const int tries = 3;
nsecs_t bestGap, measured;
for (int i = 0; i < tries; ++i) {
const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
const nsecs_t tbase = systemTime(SYSTEM_TIME_BOOTTIME);
const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
const nsecs_t gap = tmono2 - tmono;
if (i == 0 || gap < bestGap) {
bestGap = gap;
measured = tbase - ((tmono + tmono2) >> 1);
}
}
return measured;
}
ssize_t Camera3Device::getJpegBufferSize(const CameraMetadata &info, uint32_t width,
uint32_t height) const {
// Get max jpeg size (area-wise) for default sensor pixel mode
camera3::Size maxDefaultJpegResolution =
SessionConfigurationUtils::getMaxJpegResolution(info,
/*supportsUltraHighResolutionCapture*/false);
// Get max jpeg size (area-wise) for max resolution sensor pixel mode / 0 if
// not ultra high res sensor
camera3::Size uhrMaxJpegResolution =
SessionConfigurationUtils::getMaxJpegResolution(info,
/*isUltraHighResolution*/true);
if (maxDefaultJpegResolution.width == 0) {
ALOGE("%s: Camera %s: Can't find valid available jpeg sizes in static metadata!",
__FUNCTION__, mId.c_str());
return BAD_VALUE;
}
bool useMaxSensorPixelModeThreshold = false;
if (uhrMaxJpegResolution.width != 0 &&
width * height > maxDefaultJpegResolution.width * maxDefaultJpegResolution.height) {
// Use the ultra high res max jpeg size and max jpeg buffer size
useMaxSensorPixelModeThreshold = true;
}
// Get max jpeg buffer size
ssize_t maxJpegBufferSize = 0;
camera_metadata_ro_entry jpegBufMaxSize = info.find(ANDROID_JPEG_MAX_SIZE);
if (jpegBufMaxSize.count == 0) {
ALOGE("%s: Camera %s: Can't find maximum JPEG size in static metadata!", __FUNCTION__,
mId.c_str());
return BAD_VALUE;
}
maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
camera3::Size chosenMaxJpegResolution = maxDefaultJpegResolution;
if (useMaxSensorPixelModeThreshold) {
maxJpegBufferSize =
SessionConfigurationUtils::getUHRMaxJpegBufferSize(uhrMaxJpegResolution,
maxDefaultJpegResolution, maxJpegBufferSize);
chosenMaxJpegResolution = uhrMaxJpegResolution;
}
assert(kMinJpegBufferSize < maxJpegBufferSize);
// Calculate final jpeg buffer size for the given resolution.
float scaleFactor = ((float) (width * height)) /
(chosenMaxJpegResolution.width * chosenMaxJpegResolution.height);
ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) +
kMinJpegBufferSize;
if (jpegBufferSize > maxJpegBufferSize) {
ALOGI("%s: jpeg buffer size calculated is > maxJpeg bufferSize(%zd), clamping",
__FUNCTION__, maxJpegBufferSize);
jpegBufferSize = maxJpegBufferSize;
}
return jpegBufferSize;
}
ssize_t Camera3Device::getPointCloudBufferSize(const CameraMetadata &info) const {
const int FLOATS_PER_POINT=4;
camera_metadata_ro_entry maxPointCount = info.find(ANDROID_DEPTH_MAX_DEPTH_SAMPLES);
if (maxPointCount.count == 0) {
ALOGE("%s: Camera %s: Can't find maximum depth point cloud size in static metadata!",
__FUNCTION__, mId.c_str());
return BAD_VALUE;
}
ssize_t maxBytesForPointCloud = sizeof(android_depth_points) +
maxPointCount.data.i32[0] * sizeof(float) * FLOATS_PER_POINT;
return maxBytesForPointCloud;
}
ssize_t Camera3Device::getRawOpaqueBufferSize(const CameraMetadata &info, int32_t width,
int32_t height, bool maxResolution) const {
const int PER_CONFIGURATION_SIZE = 3;
const int WIDTH_OFFSET = 0;
const int HEIGHT_OFFSET = 1;
const int SIZE_OFFSET = 2;
camera_metadata_ro_entry rawOpaqueSizes =
info.find(
camera3::SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SENSOR_OPAQUE_RAW_SIZE,
maxResolution));
size_t count = rawOpaqueSizes.count;
if (count == 0 || (count % PER_CONFIGURATION_SIZE)) {
ALOGE("%s: Camera %s: bad opaque RAW size static metadata length(%zu)!",
__FUNCTION__, mId.c_str(), count);
return BAD_VALUE;
}
for (size_t i = 0; i < count; i += PER_CONFIGURATION_SIZE) {
if (width == rawOpaqueSizes.data.i32[i + WIDTH_OFFSET] &&
height == rawOpaqueSizes.data.i32[i + HEIGHT_OFFSET]) {
return rawOpaqueSizes.data.i32[i + SIZE_OFFSET];
}
}
ALOGE("%s: Camera %s: cannot find size for %dx%d opaque RAW image!",
__FUNCTION__, mId.c_str(), width, height);
return BAD_VALUE;
}
status_t Camera3Device::dump(int fd, [[maybe_unused]] const Vector<String16> &args) {
ATRACE_CALL();
// Try to lock, but continue in case of failure (to avoid blocking in
// deadlocks)
bool gotInterfaceLock = tryLockSpinRightRound(mInterfaceLock);
bool gotLock = tryLockSpinRightRound(mLock);
ALOGW_IF(!gotInterfaceLock,
"Camera %s: %s: Unable to lock interface lock, proceeding anyway",
mId.c_str(), __FUNCTION__);
ALOGW_IF(!gotLock,
"Camera %s: %s: Unable to lock main lock, proceeding anyway",
mId.c_str(), __FUNCTION__);
bool dumpTemplates = false;
String16 templatesOption("-t");
int n = args.size();
for (int i = 0; i < n; i++) {
if (args[i] == templatesOption) {
dumpTemplates = true;
}
if (args[i] == toString16(TagMonitor::kMonitorOption)) {
if (i + 1 < n) {
std::string monitorTags = toStdString(args[i + 1]);
if (monitorTags == "off") {
mTagMonitor.disableMonitoring();
} else {
mTagMonitor.parseTagsToMonitor(monitorTags);
}
} else {
mTagMonitor.disableMonitoring();
}
}
}
std::string lines;
const char *status =
mStatus == STATUS_ERROR ? "ERROR" :
mStatus == STATUS_UNINITIALIZED ? "UNINITIALIZED" :
mStatus == STATUS_UNCONFIGURED ? "UNCONFIGURED" :
mStatus == STATUS_CONFIGURED ? "CONFIGURED" :
mStatus == STATUS_ACTIVE ? "ACTIVE" :
"Unknown";
lines += fmt::sprintf(" Device status: %s\n", status);
if (mStatus == STATUS_ERROR) {
lines += fmt::sprintf(" Error cause: %s\n", mErrorCause.c_str());
}
lines += " Stream configuration:\n";
const char *mode =
mOperatingMode == CAMERA_STREAM_CONFIGURATION_NORMAL_MODE ? "NORMAL" :
mOperatingMode == CAMERA_STREAM_CONFIGURATION_CONSTRAINED_HIGH_SPEED_MODE ?
"CONSTRAINED_HIGH_SPEED" : "CUSTOM";
lines += fmt::sprintf(" Operation mode: %s (%d) \n", mode, mOperatingMode);
if (mInputStream != NULL) {
write(fd, lines.c_str(), lines.size());
mInputStream->dump(fd, args);
} else {
lines += " No input stream.\n";
write(fd, lines.c_str(), lines.size());
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
mOutputStreams[i]->dump(fd,args);
}
if (mBufferManager != NULL) {
lines = " Camera3 Buffer Manager:\n";
write(fd, lines.c_str(), lines.size());
mBufferManager->dump(fd, args);
}
lines = " In-flight requests:\n";
if (mInFlightLock.try_lock()) {
if (mInFlightMap.size() == 0) {
lines += " None\n";
} else {
for (size_t i = 0; i < mInFlightMap.size(); i++) {
InFlightRequest r = mInFlightMap.valueAt(i);
lines += fmt::sprintf(" Frame %d | Timestamp: %" PRId64 ", metadata"
" arrived: %s, buffers left: %d\n", mInFlightMap.keyAt(i),
r.shutterTimestamp, r.haveResultMetadata ? "true" : "false",
r.numBuffersLeft);
}
}
mInFlightLock.unlock();
} else {
lines += " Failed to acquire In-flight lock!\n";
}
write(fd, lines.c_str(), lines.size());
if (mRequestThread != NULL) {
mRequestThread->dumpCaptureRequestLatency(fd,
" ProcessCaptureRequest latency histogram:");
}
{
lines = " Last request sent:\n";
write(fd, lines.c_str(), lines.size());
CameraMetadata lastRequest = getLatestRequestLocked();
lastRequest.dump(fd, /*verbosity*/2, /*indentation*/6);
}
if (dumpTemplates) {
const char *templateNames[CAMERA_TEMPLATE_COUNT] = {
"TEMPLATE_PREVIEW",
"TEMPLATE_STILL_CAPTURE",
"TEMPLATE_VIDEO_RECORD",
"TEMPLATE_VIDEO_SNAPSHOT",
"TEMPLATE_ZERO_SHUTTER_LAG",
"TEMPLATE_MANUAL",
};
for (int i = 1; i < CAMERA_TEMPLATE_COUNT; i++) {
camera_metadata_t *templateRequest = nullptr;
mInterface->constructDefaultRequestSettings(
(camera_request_template_t) i, &templateRequest);
lines = fmt::sprintf(" HAL Request %s:\n", templateNames[i-1]);
if (templateRequest == nullptr) {
lines += " Not supported\n";
write(fd, lines.c_str(), lines.size());
} else {
write(fd, lines.c_str(), lines.size());
dump_indented_camera_metadata(templateRequest,
fd, /*verbosity*/2, /*indentation*/8);
}
free_camera_metadata(templateRequest);
}
}
mTagMonitor.dumpMonitoredMetadata(fd);
if (mInterface->valid()) {
lines = " HAL device dump:\n";
write(fd, lines.c_str(), lines.size());
mInterface->dump(fd);
}
if (gotLock) mLock.unlock();
if (gotInterfaceLock) mInterfaceLock.unlock();
return OK;
}
status_t Camera3Device::startWatchingTags(const std::string &tags) {
mTagMonitor.parseTagsToMonitor(tags);
return OK;
}
status_t Camera3Device::stopWatchingTags() {
mTagMonitor.disableMonitoring();
return OK;
}
status_t Camera3Device::dumpWatchedEventsToVector(std::vector<std::string> &out) {
mTagMonitor.getLatestMonitoredTagEvents(out);
return OK;
}
const CameraMetadata& Camera3Device::infoPhysical(const std::string& physicalId) const {
ALOGVV("%s: E", __FUNCTION__);
if (CC_UNLIKELY(mStatus == STATUS_UNINITIALIZED ||
mStatus == STATUS_ERROR)) {
ALOGW("%s: Access to static info %s!", __FUNCTION__,
mStatus == STATUS_ERROR ?
"when in error state" : "before init");
}
if (physicalId.empty()) {
return mDeviceInfo;
} else {
if (mPhysicalDeviceInfoMap.find(physicalId) != mPhysicalDeviceInfoMap.end()) {
return mPhysicalDeviceInfoMap.at(physicalId);
} else {
ALOGE("%s: Invalid physical camera id %s", __FUNCTION__, physicalId.c_str());
return mDeviceInfo;
}
}
}
const CameraMetadata& Camera3Device::info() const {
return infoPhysical(/*physicalId*/ std::string());
}
status_t Camera3Device::checkStatusOkToCaptureLocked() {
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
return OK;
}
status_t Camera3Device::convertMetadataListToRequestListLocked(
const List<const PhysicalCameraSettingsList> &metadataList,
const std::list<const SurfaceMap> &surfaceMaps,
bool repeating, nsecs_t requestTimeNs,
RequestList *requestList) {
if (requestList == NULL) {
CLOGE("requestList cannot be NULL.");
return BAD_VALUE;
}
int32_t burstId = 0;
List<const PhysicalCameraSettingsList>::const_iterator metadataIt = metadataList.begin();
std::list<const SurfaceMap>::const_iterator surfaceMapIt = surfaceMaps.begin();
for (; metadataIt != metadataList.end() && surfaceMapIt != surfaceMaps.end();
++metadataIt, ++surfaceMapIt) {
sp<CaptureRequest> newRequest = setUpRequestLocked(*metadataIt, *surfaceMapIt);
if (newRequest == 0) {
CLOGE("Can't create capture request");
return BAD_VALUE;
}
newRequest->mRepeating = repeating;
newRequest->mRequestTimeNs = requestTimeNs;
// Setup burst Id and request Id
newRequest->mResultExtras.burstId = burstId++;
auto requestIdEntry = metadataIt->begin()->metadata.find(ANDROID_REQUEST_ID);
if (requestIdEntry.count == 0) {
CLOGE("RequestID does not exist in metadata");
return BAD_VALUE;
}
newRequest->mResultExtras.requestId = requestIdEntry.data.i32[0];
requestList->push_back(newRequest);
ALOGV("%s: requestId = %" PRId32, __FUNCTION__, newRequest->mResultExtras.requestId);
}
if (metadataIt != metadataList.end() || surfaceMapIt != surfaceMaps.end()) {
ALOGE("%s: metadataList and surfaceMaps are not the same size!", __FUNCTION__);
return BAD_VALUE;
}
// Setup batch size if this is a high speed video recording request.
if (mIsConstrainedHighSpeedConfiguration && requestList->size() > 0) {
auto firstRequest = requestList->begin();
for (auto& outputStream : (*firstRequest)->mOutputStreams) {
if (outputStream->isVideoStream()) {
applyMaxBatchSizeLocked(requestList, outputStream);
break;
}
}
}
return OK;
}
status_t Camera3Device::capture(CameraMetadata &request, int64_t* lastFrameNumber) {
ATRACE_CALL();
List<const PhysicalCameraSettingsList> requestsList;
std::list<const SurfaceMap> surfaceMaps;
convertToRequestList(requestsList, surfaceMaps, request);
return captureList(requestsList, surfaceMaps, lastFrameNumber);
}
void Camera3Device::convertToRequestList(List<const PhysicalCameraSettingsList>& requestsList,
std::list<const SurfaceMap>& surfaceMaps,
const CameraMetadata& request) {
PhysicalCameraSettingsList requestList;
requestList.push_back({getId(), request});
requestsList.push_back(requestList);
SurfaceMap surfaceMap;
camera_metadata_ro_entry streams = request.find(ANDROID_REQUEST_OUTPUT_STREAMS);
// With no surface list passed in, stream and surface will have 1-to-1
// mapping. So the surface index is 0 for each stream in the surfaceMap.
for (size_t i = 0; i < streams.count; i++) {
surfaceMap[streams.data.i32[i]].push_back(0);
}
surfaceMaps.push_back(surfaceMap);
}
status_t Camera3Device::submitRequestsHelper(
const List<const PhysicalCameraSettingsList> &requests,
const std::list<const SurfaceMap> &surfaceMaps,
bool repeating,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
nsecs_t requestTimeNs = systemTime();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
status_t res = checkStatusOkToCaptureLocked();
if (res != OK) {
// error logged by previous call
return res;
}
RequestList requestList;
res = convertMetadataListToRequestListLocked(requests, surfaceMaps,
repeating, requestTimeNs, /*out*/&requestList);
if (res != OK) {
// error logged by previous call
return res;
}
if (repeating) {
res = mRequestThread->setRepeatingRequests(requestList, lastFrameNumber);
} else {
res = mRequestThread->queueRequestList(requestList, lastFrameNumber);
}
if (res == OK) {
waitUntilStateThenRelock(/*active*/true, kActiveTimeout, /*requestThreadInvocation*/false);
if (res != OK) {
SET_ERR_L("Can't transition to active in %f seconds!",
kActiveTimeout/1e9);
}
ALOGV("Camera %s: Capture request %" PRId32 " enqueued", mId.c_str(),
(*(requestList.begin()))->mResultExtras.requestId);
} else {
CLOGE("Cannot queue request. Impossible.");
return BAD_VALUE;
}
return res;
}
status_t Camera3Device::captureList(const List<const PhysicalCameraSettingsList> &requestsList,
const std::list<const SurfaceMap> &surfaceMaps,
int64_t *lastFrameNumber) {
ATRACE_CALL();
return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/false, lastFrameNumber);
}
status_t Camera3Device::setStreamingRequest(const CameraMetadata &request,
int64_t* /*lastFrameNumber*/) {
ATRACE_CALL();
List<const PhysicalCameraSettingsList> requestsList;
std::list<const SurfaceMap> surfaceMaps;
convertToRequestList(requestsList, surfaceMaps, request);
return setStreamingRequestList(requestsList, /*surfaceMap*/surfaceMaps,
/*lastFrameNumber*/NULL);
}
status_t Camera3Device::setStreamingRequestList(
const List<const PhysicalCameraSettingsList> &requestsList,
const std::list<const SurfaceMap> &surfaceMaps, int64_t *lastFrameNumber) {
ATRACE_CALL();
return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/true, lastFrameNumber);
}
sp<Camera3Device::CaptureRequest> Camera3Device::setUpRequestLocked(
const PhysicalCameraSettingsList &request, const SurfaceMap &surfaceMap) {
status_t res;
if (mStatus == STATUS_UNCONFIGURED || mNeedConfig) {
// This point should only be reached via API1 (API2 must explicitly call configureStreams)
// so unilaterally select normal operating mode.
res = filterParamsAndConfigureLocked(request.begin()->metadata,
CAMERA_STREAM_CONFIGURATION_NORMAL_MODE);
// Stream configuration failed. Client might try other configuraitons.
if (res != OK) {
CLOGE("Can't set up streams: %s (%d)", strerror(-res), res);
return NULL;
} else if (mStatus == STATUS_UNCONFIGURED) {
// Stream configuration successfully configure to empty stream configuration.
CLOGE("No streams configured");
return NULL;
}
}
sp<CaptureRequest> newRequest = createCaptureRequest(request, surfaceMap);
return newRequest;
}
status_t Camera3Device::clearStreamingRequest(int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
ALOGV("Camera %s: Clearing repeating request", mId.c_str());
return mRequestThread->clearRepeatingRequests(lastFrameNumber);
}
status_t Camera3Device::waitUntilRequestReceived(int32_t requestId, nsecs_t timeout) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
return mRequestThread->waitUntilRequestProcessed(requestId, timeout);
}
status_t Camera3Device::createInputStream(
uint32_t width, uint32_t height, int format, bool isMultiResolution, int *id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
ALOGV("Camera %s: Creating new input stream %d: %d x %d, format %d",
mId.c_str(), mNextStreamId, width, height, format);
status_t res;
bool wasActive = false;
switch (mStatus) {
case STATUS_ERROR:
ALOGE("%s: Device has encountered a serious error", __FUNCTION__);
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
ALOGE("%s: Device not initialized", __FUNCTION__);
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
// OK
break;
case STATUS_ACTIVE:
ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__);
res = internalPauseAndWaitLocked(maxExpectedDuration,
/*requestThreadInvocation*/ false);
if (res != OK) {
SET_ERR_L("Can't pause captures to reconfigure streams!");
return res;
}
wasActive = true;
break;
default:
SET_ERR_L("%s: Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
assert(mStatus != STATUS_ACTIVE);
if (mInputStream != 0) {
ALOGE("%s: Cannot create more than 1 input stream", __FUNCTION__);
return INVALID_OPERATION;
}
sp<Camera3InputStream> newStream = new Camera3InputStream(mNextStreamId,
width, height, format);
newStream->setStatusTracker(mStatusTracker);
mInputStream = newStream;
mIsInputStreamMultiResolution = isMultiResolution;
*id = mNextStreamId++;
// Continue captures if active at start
if (wasActive) {
ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__);
// Reuse current operating mode and session parameters for new stream config
res = configureStreamsLocked(mOperatingMode, mSessionParams);
if (res != OK) {
ALOGE("%s: Can't reconfigure device for new stream %d: %s (%d)",
__FUNCTION__, mNextStreamId, strerror(-res), res);
return res;
}
internalResumeLocked();
}
ALOGV("Camera %s: Created input stream", mId.c_str());
return OK;
}
status_t Camera3Device::createStream(sp<Surface> consumer,
uint32_t width, uint32_t height, int format,
android_dataspace dataSpace, camera_stream_rotation_t rotation, int *id,
const std::string& physicalCameraId,
const std::unordered_set<int32_t> &sensorPixelModesUsed,
std::vector<int> *surfaceIds, int streamSetId, bool isShared, bool isMultiResolution,
uint64_t consumerUsage, int64_t dynamicRangeProfile, int64_t streamUseCase,
int timestampBase, int mirrorMode, int32_t colorSpace, bool useReadoutTimestamp) {
ATRACE_CALL();
if (consumer == nullptr) {
ALOGE("%s: consumer must not be null", __FUNCTION__);
return BAD_VALUE;
}
std::vector<sp<Surface>> consumers;
consumers.push_back(consumer);
return createStream(consumers, /*hasDeferredConsumer*/ false, width, height,
format, dataSpace, rotation, id, physicalCameraId, sensorPixelModesUsed, surfaceIds,
streamSetId, isShared, isMultiResolution, consumerUsage, dynamicRangeProfile,
streamUseCase, timestampBase, mirrorMode, colorSpace, useReadoutTimestamp);
}
static bool isRawFormat(int format) {
switch (format) {
case HAL_PIXEL_FORMAT_RAW16:
case HAL_PIXEL_FORMAT_RAW12:
case HAL_PIXEL_FORMAT_RAW10:
case HAL_PIXEL_FORMAT_RAW_OPAQUE:
return true;
default:
return false;
}
}
status_t Camera3Device::createStream(const std::vector<sp<Surface>>& consumers,
bool hasDeferredConsumer, uint32_t width, uint32_t height, int format,
android_dataspace dataSpace, camera_stream_rotation_t rotation, int *id,
const std::string& physicalCameraId,
const std::unordered_set<int32_t> &sensorPixelModesUsed,
std::vector<int> *surfaceIds, int streamSetId, bool isShared, bool isMultiResolution,
uint64_t consumerUsage, int64_t dynamicRangeProfile, int64_t streamUseCase,
int timestampBase, int mirrorMode, int32_t colorSpace, bool useReadoutTimestamp) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
ALOGV("Camera %s: Creating new stream %d: %d x %d, format %d, dataspace %d rotation %d"
" consumer usage %" PRIu64 ", isShared %d, physicalCameraId %s, isMultiResolution %d"
" dynamicRangeProfile 0x%" PRIx64 ", streamUseCase %" PRId64 ", timestampBase %d,"
" mirrorMode %d, colorSpace %d, useReadoutTimestamp %d",
mId.c_str(), mNextStreamId, width, height, format, dataSpace, rotation,
consumerUsage, isShared, physicalCameraId.c_str(), isMultiResolution,
dynamicRangeProfile, streamUseCase, timestampBase, mirrorMode, colorSpace,
useReadoutTimestamp);
status_t res;
bool wasActive = false;
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
// OK
break;
case STATUS_ACTIVE:
ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__);
res = internalPauseAndWaitLocked(maxExpectedDuration,
/*requestThreadInvocation*/ false);
if (res != OK) {
SET_ERR_L("Can't pause captures to reconfigure streams!");
return res;
}
wasActive = true;
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
assert(mStatus != STATUS_ACTIVE);
sp<Camera3OutputStream> newStream;
if (consumers.size() == 0 && !hasDeferredConsumer) {
ALOGE("%s: Number of consumers cannot be smaller than 1", __FUNCTION__);
return BAD_VALUE;
}
if (hasDeferredConsumer && format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
ALOGE("Deferred consumer stream creation only support IMPLEMENTATION_DEFINED format");
return BAD_VALUE;
}
if (isRawFormat(format) && sensorPixelModesUsed.size() > 1) {
// We can't use one stream with a raw format in both sensor pixel modes since its going to
// be found in only one sensor pixel mode.
ALOGE("%s: RAW opaque stream cannot be used with > 1 sensor pixel modes", __FUNCTION__);
return BAD_VALUE;
}
IPCTransport transport = getTransportType();
if (format == HAL_PIXEL_FORMAT_BLOB) {
ssize_t blobBufferSize;
if (dataSpace == HAL_DATASPACE_DEPTH) {
blobBufferSize = getPointCloudBufferSize(infoPhysical(physicalCameraId));
if (blobBufferSize <= 0) {
SET_ERR_L("Invalid point cloud buffer size %zd", blobBufferSize);
return BAD_VALUE;
}
} else if (dataSpace == static_cast<android_dataspace>(HAL_DATASPACE_JPEG_APP_SEGMENTS)) {
blobBufferSize = width * height;
} else {
blobBufferSize = getJpegBufferSize(infoPhysical(physicalCameraId), width, height);
if (blobBufferSize <= 0) {
SET_ERR_L("Invalid jpeg buffer size %zd", blobBufferSize);
return BAD_VALUE;
}
}
newStream = new Camera3OutputStream(mNextStreamId, consumers[0],
width, height, blobBufferSize, format, dataSpace, rotation,
mTimestampOffset, physicalCameraId, sensorPixelModesUsed, transport, streamSetId,
isMultiResolution, dynamicRangeProfile, streamUseCase, mDeviceTimeBaseIsRealtime,
timestampBase, mirrorMode, colorSpace, useReadoutTimestamp);
} else if (format == HAL_PIXEL_FORMAT_RAW_OPAQUE) {
bool maxResolution =
sensorPixelModesUsed.find(ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION) !=
sensorPixelModesUsed.end();
ssize_t rawOpaqueBufferSize = getRawOpaqueBufferSize(infoPhysical(physicalCameraId), width,
height, maxResolution);
if (rawOpaqueBufferSize <= 0) {
SET_ERR_L("Invalid RAW opaque buffer size %zd", rawOpaqueBufferSize);
return BAD_VALUE;
}
newStream = new Camera3OutputStream(mNextStreamId, consumers[0],
width, height, rawOpaqueBufferSize, format, dataSpace, rotation,
mTimestampOffset, physicalCameraId, sensorPixelModesUsed, transport, streamSetId,
isMultiResolution, dynamicRangeProfile, streamUseCase, mDeviceTimeBaseIsRealtime,
timestampBase, mirrorMode, colorSpace, useReadoutTimestamp);
} else if (isShared) {
newStream = new Camera3SharedOutputStream(mNextStreamId, consumers,
width, height, format, consumerUsage, dataSpace, rotation,
mTimestampOffset, physicalCameraId, sensorPixelModesUsed, transport, streamSetId,
mUseHalBufManager, dynamicRangeProfile, streamUseCase, mDeviceTimeBaseIsRealtime,
timestampBase, mirrorMode, colorSpace, useReadoutTimestamp);
} else if (consumers.size() == 0 && hasDeferredConsumer) {
newStream = new Camera3OutputStream(mNextStreamId,
width, height, format, consumerUsage, dataSpace, rotation,
mTimestampOffset, physicalCameraId, sensorPixelModesUsed, transport, streamSetId,
isMultiResolution, dynamicRangeProfile, streamUseCase, mDeviceTimeBaseIsRealtime,
timestampBase, mirrorMode, colorSpace, useReadoutTimestamp);
} else {
newStream = new Camera3OutputStream(mNextStreamId, consumers[0],
width, height, format, dataSpace, rotation,
mTimestampOffset, physicalCameraId, sensorPixelModesUsed, transport, streamSetId,
isMultiResolution, dynamicRangeProfile, streamUseCase, mDeviceTimeBaseIsRealtime,
timestampBase, mirrorMode, colorSpace, useReadoutTimestamp);
}
size_t consumerCount = consumers.size();
for (size_t i = 0; i < consumerCount; i++) {
int id = newStream->getSurfaceId(consumers[i]);
if (id < 0) {
SET_ERR_L("Invalid surface id");
return BAD_VALUE;
}
if (surfaceIds != nullptr) {
surfaceIds->push_back(id);
}
}
newStream->setStatusTracker(mStatusTracker);
newStream->setBufferManager(mBufferManager);
newStream->setImageDumpMask(mImageDumpMask);
res = mOutputStreams.add(mNextStreamId, newStream);
if (res < 0) {
SET_ERR_L("Can't add new stream to set: %s (%d)", strerror(-res), res);
return res;
}
mSessionStatsBuilder.addStream(mNextStreamId);
*id = mNextStreamId++;
mNeedConfig = true;
// Continue captures if active at start
if (wasActive) {
ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__);
// Reuse current operating mode and session parameters for new stream config
res = configureStreamsLocked(mOperatingMode, mSessionParams);
if (res != OK) {
CLOGE("Can't reconfigure device for new stream %d: %s (%d)",
mNextStreamId, strerror(-res), res);
return res;
}
internalResumeLocked();
}
ALOGV("Camera %s: Created new stream", mId.c_str());
return OK;
}
status_t Camera3Device::getStreamInfo(int id, StreamInfo *streamInfo) {
ATRACE_CALL();
if (nullptr == streamInfo) {
return BAD_VALUE;
}
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized!");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
sp<Camera3StreamInterface> stream = mOutputStreams.get(id);
if (stream == nullptr) {
CLOGE("Stream %d is unknown", id);
return BAD_VALUE;
}
streamInfo->width = stream->getWidth();
streamInfo->height = stream->getHeight();
streamInfo->format = stream->getFormat();
streamInfo->dataSpace = stream->getDataSpace();
streamInfo->formatOverridden = stream->isFormatOverridden();
streamInfo->originalFormat = stream->getOriginalFormat();
streamInfo->dataSpaceOverridden = stream->isDataSpaceOverridden();
streamInfo->originalDataSpace = stream->getOriginalDataSpace();
streamInfo->dynamicRangeProfile = stream->getDynamicRangeProfile();
streamInfo->colorSpace = stream->getColorSpace();
return OK;
}
status_t Camera3Device::setStreamTransform(int id,
int transform) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(id);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", id);
return BAD_VALUE;
}
return stream->setTransform(transform, false /*mayChangeMirror*/);
}
status_t Camera3Device::deleteStream(int id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
status_t res;
ALOGV("%s: Camera %s: Deleting stream %d", __FUNCTION__, mId.c_str(), id);
// CameraDevice semantics require device to already be idle before
// deleteStream is called, unlike for createStream.
if (mStatus == STATUS_ACTIVE) {
ALOGW("%s: Camera %s: Device not idle", __FUNCTION__, mId.c_str());
return -EBUSY;
}
if (mStatus == STATUS_ERROR) {
ALOGW("%s: Camera %s: deleteStream not allowed in ERROR state",
__FUNCTION__, mId.c_str());
return -EBUSY;
}
sp<Camera3StreamInterface> deletedStream;
sp<Camera3StreamInterface> stream = mOutputStreams.get(id);
if (mInputStream != NULL && id == mInputStream->getId()) {
deletedStream = mInputStream;
mInputStream.clear();
} else {
if (stream == nullptr) {
CLOGE("Stream %d does not exist", id);
return BAD_VALUE;
}
mSessionStatsBuilder.removeStream(id);
}
// Delete output stream or the output part of a bi-directional stream.
if (stream != nullptr) {
deletedStream = stream;
mOutputStreams.remove(id);
}
// Free up the stream endpoint so that it can be used by some other stream
res = deletedStream->disconnect();
if (res != OK) {
SET_ERR_L("Can't disconnect deleted stream %d", id);
// fall through since we want to still list the stream as deleted.
}
mDeletedStreams.add(deletedStream);
mNeedConfig = true;
return res;
}
status_t Camera3Device::configureStreams(const CameraMetadata& sessionParams, int operatingMode) {
ATRACE_CALL();
ALOGV("%s: E", __FUNCTION__);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
// In case the client doesn't include any session parameter, try a
// speculative configuration using the values from the last cached
// default request.
if (sessionParams.isEmpty() &&
((mLastTemplateId > 0) && (mLastTemplateId < CAMERA_TEMPLATE_COUNT)) &&
(!mRequestTemplateCache[mLastTemplateId].isEmpty())) {
ALOGV("%s: Speculative session param configuration with template id: %d", __func__,
mLastTemplateId);
return filterParamsAndConfigureLocked(mRequestTemplateCache[mLastTemplateId],
operatingMode);
}
return filterParamsAndConfigureLocked(sessionParams, operatingMode);
}
status_t Camera3Device::filterParamsAndConfigureLocked(const CameraMetadata& params,
int operatingMode) {
CameraMetadata filteredParams;
SessionConfigurationUtils::filterParameters(params, mDeviceInfo, mVendorTagId, filteredParams);
camera_metadata_entry_t availableSessionKeys = mDeviceInfo.find(
ANDROID_REQUEST_AVAILABLE_SESSION_KEYS);
bool rotateAndCropSessionKey = false;
bool autoframingSessionKey = false;
for (size_t i = 0; i < availableSessionKeys.count; i++) {
if (ANDROID_SCALER_ROTATE_AND_CROP == availableSessionKeys.data.i32[i]) {
rotateAndCropSessionKey = true;
}
if (ANDROID_CONTROL_AUTOFRAMING == availableSessionKeys.data.i32[i]) {
autoframingSessionKey = true;
}
}
if (rotateAndCropSessionKey || autoframingSessionKey) {
sp<CaptureRequest> request = new CaptureRequest();
PhysicalCameraSettings settingsList;
settingsList.metadata = filteredParams;
request->mSettingsList.push_back(settingsList);
if (rotateAndCropSessionKey) {
auto rotateAndCropEntry = filteredParams.find(ANDROID_SCALER_ROTATE_AND_CROP);
if (rotateAndCropEntry.count > 0 &&
rotateAndCropEntry.data.u8[0] == ANDROID_SCALER_ROTATE_AND_CROP_AUTO) {
request->mRotateAndCropAuto = true;
} else {
request->mRotateAndCropAuto = false;
}
overrideAutoRotateAndCrop(request, mOverrideToPortrait, mRotateAndCropOverride);
}
if (autoframingSessionKey) {
auto autoframingEntry = filteredParams.find(ANDROID_CONTROL_AUTOFRAMING);
if (autoframingEntry.count > 0 &&
autoframingEntry.data.u8[0] == ANDROID_CONTROL_AUTOFRAMING_AUTO) {
overrideAutoframing(request, mAutoframingOverride);
}
}
filteredParams = request->mSettingsList.begin()->metadata;
}
return configureStreamsLocked(operatingMode, filteredParams);
}
status_t Camera3Device::getInputBufferProducer(
sp<IGraphicBufferProducer> *producer) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (producer == NULL) {
return BAD_VALUE;
} else if (mInputStream == NULL) {
return INVALID_OPERATION;
}
return mInputStream->getInputBufferProducer(producer);
}
status_t Camera3Device::createDefaultRequest(camera_request_template_t templateId,
CameraMetadata *request) {
ATRACE_CALL();
ALOGV("%s: for template %d", __FUNCTION__, templateId);
if (templateId <= 0 || templateId >= CAMERA_TEMPLATE_COUNT) {
android_errorWriteWithInfoLog(CameraService::SN_EVENT_LOG_ID, "26866110",
CameraThreadState::getCallingUid(), nullptr, 0);
return BAD_VALUE;
}
Mutex::Autolock il(mInterfaceLock);
{
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device is not initialized!");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
if (!mRequestTemplateCache[templateId].isEmpty()) {
*request = mRequestTemplateCache[templateId];
mLastTemplateId = templateId;
return OK;
}
}
camera_metadata_t *rawRequest;
status_t res = mInterface->constructDefaultRequestSettings(
(camera_request_template_t) templateId, &rawRequest);
{
Mutex::Autolock l(mLock);
if (res == BAD_VALUE) {
ALOGI("%s: template %d is not supported on this camera device",
__FUNCTION__, templateId);
return res;
} else if (res != OK) {
CLOGE("Unable to construct request template %d: %s (%d)",
templateId, strerror(-res), res);
return res;
}
set_camera_metadata_vendor_id(rawRequest, mVendorTagId);
mRequestTemplateCache[templateId].acquire(rawRequest);
// Override the template request with zoomRatioMapper
res = mZoomRatioMappers[mId].initZoomRatioInTemplate(
&mRequestTemplateCache[templateId]);
if (res != OK) {
CLOGE("Failed to update zoom ratio for template %d: %s (%d)",
templateId, strerror(-res), res);
return res;
}
// Fill in JPEG_QUALITY if not available
if (!mRequestTemplateCache[templateId].exists(ANDROID_JPEG_QUALITY)) {
static const uint8_t kDefaultJpegQuality = 95;
mRequestTemplateCache[templateId].update(ANDROID_JPEG_QUALITY,
&kDefaultJpegQuality, 1);
}
// Fill in AUTOFRAMING if not available
if (!mRequestTemplateCache[templateId].exists(ANDROID_CONTROL_AUTOFRAMING)) {
static const uint8_t kDefaultAutoframingMode = ANDROID_CONTROL_AUTOFRAMING_OFF;
mRequestTemplateCache[templateId].update(ANDROID_CONTROL_AUTOFRAMING,
&kDefaultAutoframingMode, 1);
}
*request = mRequestTemplateCache[templateId];
mLastTemplateId = templateId;
}
return OK;
}
status_t Camera3Device::waitUntilDrained() {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
return waitUntilDrainedLocked(maxExpectedDuration);
}
status_t Camera3Device::waitUntilDrainedLocked(nsecs_t maxExpectedDuration) {
switch (mStatus) {
case STATUS_UNINITIALIZED:
case STATUS_UNCONFIGURED:
ALOGV("%s: Already idle", __FUNCTION__);
return OK;
case STATUS_CONFIGURED:
// To avoid race conditions, check with tracker to be sure
case STATUS_ERROR:
case STATUS_ACTIVE:
// Need to verify shut down
break;
default:
SET_ERR_L("Unexpected status: %d",mStatus);
return INVALID_OPERATION;
}
ALOGV("%s: Camera %s: Waiting until idle (%" PRIi64 "ns)", __FUNCTION__, mId.c_str(),
maxExpectedDuration);
status_t res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration,
/*requestThreadInvocation*/ false);
if (res != OK) {
mStatusTracker->dumpActiveComponents();
SET_ERR_L("Error waiting for HAL to drain: %s (%d)", strerror(-res),
res);
}
return res;
}
void Camera3Device::internalUpdateStatusLocked(Status status) {
mStatus = status;
mStatusIsInternal = mPauseStateNotify ? true : false;
mRecentStatusUpdates.add({mStatus, mStatusIsInternal});
mStatusChanged.broadcast();
}
// Pause to reconfigure
status_t Camera3Device::internalPauseAndWaitLocked(nsecs_t maxExpectedDuration,
bool requestThreadInvocation) {
if (mRequestThread.get() != nullptr) {
mRequestThread->setPaused(true);
} else {
return NO_INIT;
}
ALOGV("%s: Camera %s: Internal wait until idle (% " PRIi64 " ns)", __FUNCTION__, mId.c_str(),
maxExpectedDuration);
status_t res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration,
requestThreadInvocation);
if (res != OK) {
mStatusTracker->dumpActiveComponents();
SET_ERR_L("Can't idle device in %f seconds!",
maxExpectedDuration/1e9);
}
return res;
}
// Resume after internalPauseAndWaitLocked
status_t Camera3Device::internalResumeLocked() {
status_t res;
mRequestThread->setPaused(false);
ALOGV("%s: Camera %s: Internal wait until active (% " PRIi64 " ns)", __FUNCTION__, mId.c_str(),
kActiveTimeout);
// internalResumeLocked is always called from a binder thread.
res = waitUntilStateThenRelock(/*active*/ true, kActiveTimeout,
/*requestThreadInvocation*/ false);
if (res != OK) {
SET_ERR_L("Can't transition to active in %f seconds!",
kActiveTimeout/1e9);
}
mPauseStateNotify = false;
return OK;
}
status_t Camera3Device::waitUntilStateThenRelock(bool active, nsecs_t timeout,
bool requestThreadInvocation) {
status_t res = OK;
size_t startIndex = 0;
if (mStatusWaiters == 0) {
// Clear the list of recent statuses if there are no existing threads waiting on updates to
// this status list
mRecentStatusUpdates.clear();
} else {
// If other threads are waiting on updates to this status list, set the position of the
// first element that this list will check rather than clearing the list.
startIndex = mRecentStatusUpdates.size();
}
mStatusWaiters++;
bool signalPipelineDrain = false;
if (!active &&
(mUseHalBufManager ||
(flags::session_hal_buf_manager() && mHalBufManagedStreamIds.size() != 0))) {
auto streamIds = mOutputStreams.getStreamIds();
if (mStatus == STATUS_ACTIVE) {
mRequestThread->signalPipelineDrain(streamIds);
signalPipelineDrain = true;
}
mRequestBufferSM.onWaitUntilIdle();
}
bool stateSeen = false;
nsecs_t startTime = systemTime();
do {
if (mStatus == STATUS_ERROR) {
// Device in error state. Return right away.
break;
}
if (active == (mStatus == STATUS_ACTIVE) &&
(requestThreadInvocation || !mStatusIsInternal)) {
// Desired state is current
break;
}
nsecs_t timeElapsed = systemTime() - startTime;
nsecs_t timeToWait = timeout - timeElapsed;
if (timeToWait <= 0) {
// Thread woke up spuriously but has timed out since.
// Force out of loop with TIMED_OUT result.
res = TIMED_OUT;
break;
}
res = mStatusChanged.waitRelative(mLock, timeToWait);
if (res != OK) break;
// This is impossible, but if not, could result in subtle deadlocks and invalid state
// transitions.
LOG_ALWAYS_FATAL_IF(startIndex > mRecentStatusUpdates.size(),
"%s: Skipping status updates in Camera3Device, may result in deadlock.",
__FUNCTION__);
// Encountered desired state since we began waiting. Internal invocations coming from
// request threads (such as reconfigureCamera) should be woken up immediately, whereas
// invocations from binder threads (such as createInputStream) should only be woken up if
// they are not paused. This avoids intermediate pause signals from reconfigureCamera as it
// changes the status to active right after.
for (size_t i = startIndex; i < mRecentStatusUpdates.size(); i++) {
if (mRecentStatusUpdates[i].status == STATUS_ERROR) {
// Device in error state. Return right away.
stateSeen = true;
break;
}
if (active == (mRecentStatusUpdates[i].status == STATUS_ACTIVE) &&
(requestThreadInvocation || !mRecentStatusUpdates[i].isInternal)) {
stateSeen = true;
break;
}
}
} while (!stateSeen);
if (signalPipelineDrain) {
mRequestThread->resetPipelineDrain();
}
mStatusWaiters--;
return res;
}
status_t Camera3Device::setNotifyCallback(wp<NotificationListener> listener) {
ATRACE_CALL();
std::lock_guard<std::mutex> l(mOutputLock);
if (listener != NULL && mListener != NULL) {
ALOGW("%s: Replacing old callback listener", __FUNCTION__);
}
mListener = listener;
mRequestThread->setNotificationListener(listener);
mPreparerThread->setNotificationListener(listener);
return OK;
}
bool Camera3Device::willNotify3A() {
return false;
}
status_t Camera3Device::waitForNextFrame(nsecs_t timeout) {
ATRACE_CALL();
std::unique_lock<std::mutex> l(mOutputLock);
while (mResultQueue.empty()) {
auto st = mResultSignal.wait_for(l, std::chrono::nanoseconds(timeout));
if (st == std::cv_status::timeout) {
return TIMED_OUT;
}
}
return OK;
}
status_t Camera3Device::getNextResult(CaptureResult *frame) {
ATRACE_CALL();
std::lock_guard<std::mutex> l(mOutputLock);
if (mResultQueue.empty()) {
return NOT_ENOUGH_DATA;
}
if (frame == NULL) {
ALOGE("%s: argument cannot be NULL", __FUNCTION__);
return BAD_VALUE;
}
CaptureResult &result = *(mResultQueue.begin());
frame->mResultExtras = result.mResultExtras;
frame->mMetadata.acquire(result.mMetadata);
frame->mPhysicalMetadatas = std::move(result.mPhysicalMetadatas);
mResultQueue.erase(mResultQueue.begin());
return OK;
}
status_t Camera3Device::triggerAutofocus(uint32_t id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGV("%s: Triggering autofocus, id %d", __FUNCTION__, id);
// Mix-in this trigger into the next request and only the next request.
RequestTrigger trigger[] = {
{
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AF_TRIGGER_START
},
{
ANDROID_CONTROL_AF_TRIGGER_ID,
static_cast<int32_t>(id)
}
};
return mRequestThread->queueTrigger(trigger,
sizeof(trigger)/sizeof(trigger[0]));
}
status_t Camera3Device::triggerCancelAutofocus(uint32_t id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGV("%s: Triggering cancel autofocus, id %d", __FUNCTION__, id);
// Mix-in this trigger into the next request and only the next request.
RequestTrigger trigger[] = {
{
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AF_TRIGGER_CANCEL
},
{
ANDROID_CONTROL_AF_TRIGGER_ID,
static_cast<int32_t>(id)
}
};
return mRequestThread->queueTrigger(trigger,
sizeof(trigger)/sizeof(trigger[0]));
}
status_t Camera3Device::triggerPrecaptureMetering(uint32_t id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGV("%s: Triggering precapture metering, id %d", __FUNCTION__, id);
// Mix-in this trigger into the next request and only the next request.
RequestTrigger trigger[] = {
{
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START
},
{
ANDROID_CONTROL_AE_PRECAPTURE_ID,
static_cast<int32_t>(id)
}
};
return mRequestThread->queueTrigger(trigger,
sizeof(trigger)/sizeof(trigger[0]));
}
status_t Camera3Device::flush(int64_t *frameNumber) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Flushing all requests", __FUNCTION__, mId.c_str());
Mutex::Autolock il(mInterfaceLock);
{
Mutex::Autolock l(mLock);
// b/116514106 "disconnect()" can get called twice for the same device. The
// camera device will not be initialized during the second run.
if (mStatus == STATUS_UNINITIALIZED) {
return OK;
}
mRequestThread->clear(/*out*/frameNumber);
// Stop session and stream counter
mSessionStatsBuilder.stopCounter();
}
// Calculate expected duration for flush with additional buffer time in ms for watchdog
uint64_t maxExpectedDuration = ns2ms(getExpectedInFlightDuration() + kBaseGetBufferWait);
status_t res = mCameraServiceWatchdog->WATCH_CUSTOM_TIMER(mRequestThread->flush(),
maxExpectedDuration / kCycleLengthMs, kCycleLengthMs);
return res;
}
status_t Camera3Device::prepare(int streamId) {
return prepare(camera3::Camera3StreamInterface::ALLOCATE_PIPELINE_MAX, streamId);
}
status_t Camera3Device::prepare(int maxCount, int streamId) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Preparing stream %d", __FUNCTION__, mId.c_str(), streamId);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", streamId);
return BAD_VALUE;
}
if (stream->isUnpreparable() || stream->hasOutstandingBuffers() ) {
CLOGE("Stream %d has already been a request target", streamId);
return BAD_VALUE;
}
if (mRequestThread->isStreamPending(stream)) {
CLOGE("Stream %d is already a target in a pending request", streamId);
return BAD_VALUE;
}
return mPreparerThread->prepare(maxCount, stream);
}
status_t Camera3Device::tearDown(int streamId) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Tearing down stream %d", __FUNCTION__, mId.c_str(), streamId);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", streamId);
return BAD_VALUE;
}
if (stream->hasOutstandingBuffers() || mRequestThread->isStreamPending(stream)) {
CLOGE("Stream %d is a target of a in-progress request", streamId);
return BAD_VALUE;
}
return stream->tearDown();
}
status_t Camera3Device::addBufferListenerForStream(int streamId,
wp<Camera3StreamBufferListener> listener) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Adding buffer listener for stream %d", __FUNCTION__, mId.c_str(),
streamId);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", streamId);
return BAD_VALUE;
}
stream->addBufferListener(listener);
return OK;
}
float Camera3Device::getMaxPreviewFps(sp<camera3::Camera3OutputStreamInterface> stream) {
camera_metadata_entry minDurations =
mDeviceInfo.find(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS);
for (size_t i = 0; i < minDurations.count; i += 4) {
if (minDurations.data.i64[i] == stream->getOriginalFormat()
&& minDurations.data.i64[i+1] == stream->getWidth()
&& minDurations.data.i64[i+2] == stream->getHeight()) {
int64_t minFrameDuration = minDurations.data.i64[i+3];
return 1e9f / minFrameDuration;
}
}
return 0.0f;
}
/**
* Methods called by subclasses
*/
void Camera3Device::notifyStatus(bool idle) {
ATRACE_CALL();
std::vector<int> streamIds;
std::vector<hardware::CameraStreamStats> streamStats;
float sessionMaxPreviewFps = 0.0f;
{
// Need mLock to safely update state and synchronize to current
// state of methods in flight.
Mutex::Autolock l(mLock);
// We can get various system-idle notices from the status tracker
// while starting up. Only care about them if we've actually sent
// in some requests recently.
if (mStatus != STATUS_ACTIVE && mStatus != STATUS_CONFIGURED) {
return;
}
ALOGV("%s: Camera %s: Now %s, pauseState: %s", __FUNCTION__, mId.c_str(),
idle ? "idle" : "active", mPauseStateNotify ? "true" : "false");
internalUpdateStatusLocked(idle ? STATUS_CONFIGURED : STATUS_ACTIVE);
// Skip notifying listener if we're doing some user-transparent
// state changes
if (mPauseStateNotify) return;
for (size_t i = 0; i < mOutputStreams.size(); i++) {
auto stream = mOutputStreams[i];
if (stream.get() == nullptr) continue;
float streamMaxPreviewFps = getMaxPreviewFps(stream);
sessionMaxPreviewFps = std::max(sessionMaxPreviewFps, streamMaxPreviewFps);
// Populate stream statistics in case of Idle
if (idle) {
streamIds.push_back(stream->getId());
Camera3Stream* camera3Stream = Camera3Stream::cast(stream->asHalStream());
int64_t usage = 0LL;
int64_t streamUseCase = ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT;
if (camera3Stream != nullptr) {
usage = camera3Stream->getUsage();
streamUseCase = camera3Stream->getStreamUseCase();
}
streamStats.emplace_back(stream->getWidth(), stream->getHeight(),
stream->getOriginalFormat(), streamMaxPreviewFps, stream->getDataSpace(), usage,
stream->getMaxHalBuffers(),
stream->getMaxTotalBuffers() - stream->getMaxHalBuffers(),
stream->getDynamicRangeProfile(), streamUseCase,
stream->getColorSpace());
}
}
}
sp<NotificationListener> listener;
{
std::lock_guard<std::mutex> l(mOutputLock);
listener = mListener.promote();
}
status_t res = OK;
if (listener != nullptr) {
if (idle) {
// Get session stats from the builder, and notify the listener.
int64_t requestCount, resultErrorCount;
bool deviceError;
std::map<int, StreamStats> streamStatsMap;
mSessionStatsBuilder.buildAndReset(&requestCount, &resultErrorCount,
&deviceError, &streamStatsMap);
for (size_t i = 0; i < streamIds.size(); i++) {
int streamId = streamIds[i];
auto stats = streamStatsMap.find(streamId);
if (stats != streamStatsMap.end()) {
streamStats[i].mRequestCount = stats->second.mRequestedFrameCount;
streamStats[i].mErrorCount = stats->second.mDroppedFrameCount;
streamStats[i].mStartLatencyMs = stats->second.mStartLatencyMs;
streamStats[i].mHistogramType =
hardware::CameraStreamStats::HISTOGRAM_TYPE_CAPTURE_LATENCY;
streamStats[i].mHistogramBins.assign(
stats->second.mCaptureLatencyBins.begin(),
stats->second.mCaptureLatencyBins.end());
streamStats[i].mHistogramCounts.assign(
stats->second.mCaptureLatencyHistogram.begin(),
stats->second.mCaptureLatencyHistogram.end());
}
}
listener->notifyIdle(requestCount, resultErrorCount, deviceError, streamStats);
} else {
res = listener->notifyActive(sessionMaxPreviewFps);
}
}
if (res != OK) {
SET_ERR("Camera access permission lost mid-operation: %s (%d)",
strerror(-res), res);
}
}
status_t Camera3Device::setConsumerSurfaces(int streamId,
const std::vector<sp<Surface>>& consumers, std::vector<int> *surfaceIds) {
ATRACE_CALL();
ALOGV("%s: Camera %s: set consumer surface for stream %d",
__FUNCTION__, mId.c_str(), streamId);
if (surfaceIds == nullptr) {
return BAD_VALUE;
}
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (consumers.size() == 0) {
CLOGE("No consumer is passed!");
return BAD_VALUE;
}
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d is unknown", streamId);
return BAD_VALUE;
}
// isConsumerConfigurationDeferred will be off after setConsumers
bool isDeferred = stream->isConsumerConfigurationDeferred();
status_t res = stream->setConsumers(consumers);
if (res != OK) {
CLOGE("Stream %d set consumer failed (error %d %s) ", streamId, res, strerror(-res));
return res;
}
for (auto &consumer : consumers) {
int id = stream->getSurfaceId(consumer);
if (id < 0) {
CLOGE("Invalid surface id!");
return BAD_VALUE;
}
surfaceIds->push_back(id);
}
if (isDeferred) {
if (!stream->isConfiguring()) {
CLOGE("Stream %d was already fully configured.", streamId);
return INVALID_OPERATION;
}
res = stream->finishConfiguration();
if (res != OK) {
// If finishConfiguration fails due to abandoned surface, do not set
// device to error state.
bool isSurfaceAbandoned =
(res == NO_INIT || res == DEAD_OBJECT) && stream->isAbandoned();
if (!isSurfaceAbandoned) {
SET_ERR_L("Can't finish configuring output stream %d: %s (%d)",
stream->getId(), strerror(-res), res);
}
return res;
}
}
return OK;
}
status_t Camera3Device::updateStream(int streamId, const std::vector<sp<Surface>> &newSurfaces,
const std::vector<OutputStreamInfo> &outputInfo,
const std::vector<size_t> &removedSurfaceIds, KeyedVector<sp<Surface>, size_t> *outputMap) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d is unknown", streamId);
return BAD_VALUE;
}
for (const auto &it : removedSurfaceIds) {
if (mRequestThread->isOutputSurfacePending(streamId, it)) {
CLOGE("Shared surface still part of a pending request!");
return -EBUSY;
}
}
status_t res = stream->updateStream(newSurfaces, outputInfo, removedSurfaceIds, outputMap);
if (res != OK) {
CLOGE("Stream %d failed to update stream (error %d %s) ",
streamId, res, strerror(-res));
if (res == UNKNOWN_ERROR) {
SET_ERR_L("%s: Stream update failed to revert to previous output configuration!",
__FUNCTION__);
}
return res;
}
return res;
}
status_t Camera3Device::dropStreamBuffers(bool dropping, int streamId) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
ALOGE("%s: Stream %d is not found.", __FUNCTION__, streamId);
return BAD_VALUE;
}
if (dropping) {
mSessionStatsBuilder.stopCounter(streamId);
} else {
mSessionStatsBuilder.startCounter(streamId);
}
return stream->dropBuffers(dropping);
}
/**
* Camera3Device private methods
*/
sp<Camera3Device::CaptureRequest> Camera3Device::createCaptureRequest(
const PhysicalCameraSettingsList &request, const SurfaceMap &surfaceMap) {
ATRACE_CALL();
sp<CaptureRequest> newRequest = new CaptureRequest();
newRequest->mSettingsList = request;
camera_metadata_entry_t inputStreams =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_INPUT_STREAMS);
if (inputStreams.count > 0) {
if (mInputStream == NULL ||
mInputStream->getId() != inputStreams.data.i32[0]) {
CLOGE("Request references unknown input stream %d",
inputStreams.data.u8[0]);
return NULL;
}
if (mInputStream->isConfiguring()) {
SET_ERR_L("%s: input stream %d is not configured!",
__FUNCTION__, mInputStream->getId());
return NULL;
}
// Check if stream prepare is blocking requests.
if (mInputStream->isBlockedByPrepare()) {
CLOGE("Request references an input stream that's being prepared!");
return NULL;
}
newRequest->mInputStream = mInputStream;
newRequest->mSettingsList.begin()->metadata.erase(ANDROID_REQUEST_INPUT_STREAMS);
}
camera_metadata_entry_t streams =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_OUTPUT_STREAMS);
if (streams.count == 0) {
CLOGE("Zero output streams specified!");
return NULL;
}
for (size_t i = 0; i < streams.count; i++) {
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streams.data.i32[i]);
if (stream == nullptr) {
CLOGE("Request references unknown stream %d",
streams.data.i32[i]);
return NULL;
}
// It is illegal to include a deferred consumer output stream into a request
auto iter = surfaceMap.find(streams.data.i32[i]);
if (iter != surfaceMap.end()) {
const std::vector<size_t>& surfaces = iter->second;
for (const auto& surface : surfaces) {
if (stream->isConsumerConfigurationDeferred(surface)) {
CLOGE("Stream %d surface %zu hasn't finished configuration yet "
"due to deferred consumer", stream->getId(), surface);
return NULL;
}
}
newRequest->mOutputSurfaces[streams.data.i32[i]] = surfaces;
}
if (stream->isConfiguring()) {
SET_ERR_L("%s: stream %d is not configured!", __FUNCTION__, stream->getId());
return NULL;
}
// Check if stream prepare is blocking requests.
if (stream->isBlockedByPrepare()) {
CLOGE("Request references an output stream that's being prepared!");
return NULL;
}
newRequest->mOutputStreams.push(stream);
}
newRequest->mSettingsList.begin()->metadata.erase(ANDROID_REQUEST_OUTPUT_STREAMS);
newRequest->mBatchSize = 1;
auto rotateAndCropEntry =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_SCALER_ROTATE_AND_CROP);
if (rotateAndCropEntry.count > 0 &&
rotateAndCropEntry.data.u8[0] == ANDROID_SCALER_ROTATE_AND_CROP_AUTO) {
newRequest->mRotateAndCropAuto = true;
} else {
newRequest->mRotateAndCropAuto = false;
}
auto autoframingEntry =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_CONTROL_AUTOFRAMING);
if (autoframingEntry.count > 0 &&
autoframingEntry.data.u8[0] == ANDROID_CONTROL_AUTOFRAMING_AUTO) {
newRequest->mAutoframingAuto = true;
} else {
newRequest->mAutoframingAuto = false;
}
auto zoomRatioEntry =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_CONTROL_ZOOM_RATIO);
if (zoomRatioEntry.count > 0 &&
zoomRatioEntry.data.f[0] == 1.0f) {
newRequest->mZoomRatioIs1x = true;
} else {
newRequest->mZoomRatioIs1x = false;
}
if (mSupportCameraMute) {
for (auto& settings : newRequest->mSettingsList) {
auto testPatternModeEntry =
settings.metadata.find(ANDROID_SENSOR_TEST_PATTERN_MODE);
settings.mOriginalTestPatternMode = testPatternModeEntry.count > 0 ?
testPatternModeEntry.data.i32[0] :
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
auto testPatternDataEntry =
settings.metadata.find(ANDROID_SENSOR_TEST_PATTERN_DATA);
if (testPatternDataEntry.count >= 4) {
memcpy(settings.mOriginalTestPatternData, testPatternDataEntry.data.i32,
sizeof(PhysicalCameraSettings::mOriginalTestPatternData));
} else {
settings.mOriginalTestPatternData[0] = 0;
settings.mOriginalTestPatternData[1] = 0;
settings.mOriginalTestPatternData[2] = 0;
settings.mOriginalTestPatternData[3] = 0;
}
}
}
if (mSupportZoomOverride) {
for (auto& settings : newRequest->mSettingsList) {
auto settingsOverrideEntry =
settings.metadata.find(ANDROID_CONTROL_SETTINGS_OVERRIDE);
settings.mOriginalSettingsOverride = settingsOverrideEntry.count > 0 ?
settingsOverrideEntry.data.i32[0] :
ANDROID_CONTROL_SETTINGS_OVERRIDE_OFF;
}
}
return newRequest;
}
void Camera3Device::cancelStreamsConfigurationLocked() {
int res = OK;
if (mInputStream != NULL && mInputStream->isConfiguring()) {
res = mInputStream->cancelConfiguration();
if (res != OK) {
CLOGE("Can't cancel configuring input stream %d: %s (%d)",
mInputStream->getId(), strerror(-res), res);
}
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
sp<Camera3OutputStreamInterface> outputStream = mOutputStreams[i];
if (outputStream->isConfiguring()) {
res = outputStream->cancelConfiguration();
if (res != OK) {
CLOGE("Can't cancel configuring output stream %d: %s (%d)",
outputStream->getId(), strerror(-res), res);
}
}
}
// Return state to that at start of call, so that future configures
// properly clean things up
internalUpdateStatusLocked(STATUS_UNCONFIGURED);
mNeedConfig = true;
res = mPreparerThread->resume();
if (res != OK) {
ALOGE("%s: Camera %s: Preparer thread failed to resume!", __FUNCTION__, mId.c_str());
}
}
bool Camera3Device::checkAbandonedStreamsLocked() {
if ((mInputStream.get() != nullptr) && (mInputStream->isAbandoned())) {
return true;
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
auto stream = mOutputStreams[i];
if ((stream.get() != nullptr) && (stream->isAbandoned())) {
return true;
}
}
return false;
}
bool Camera3Device::reconfigureCamera(const CameraMetadata& sessionParams, int clientStatusId) {
ATRACE_CALL();
bool ret = false;
nsecs_t startTime = systemTime();
// We must not hold mInterfaceLock here since this function is called from
// RequestThread::threadLoop and holding mInterfaceLock could lead to
// deadlocks (http://b/143513518)
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
// Make sure status tracker is flushed
mStatusTracker->flushPendingStates();
Mutex::Autolock l(mLock);
if (checkAbandonedStreamsLocked()) {
ALOGW("%s: Abandoned stream detected, session parameters can't be applied correctly!",
__FUNCTION__);
return true;
}
status_t rc = NO_ERROR;
bool markClientActive = false;
if (mStatus == STATUS_ACTIVE) {
markClientActive = true;
mPauseStateNotify = true;
mStatusTracker->markComponentIdle(clientStatusId, Fence::NO_FENCE);
// This is essentially the same as calling rc = internalPauseAndWaitLocked(..), except that
// we don't want to call setPaused(true) to avoid it interfering with setPaused() called
// from createInputStream/createStream.
rc = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration,
/*requestThreadInvocation*/ true);
if (rc != OK) {
mStatusTracker->dumpActiveComponents();
SET_ERR_L("Can't idle device in %f seconds!",
maxExpectedDuration/1e9);
}
}
if (rc == NO_ERROR) {
mNeedConfig = true;
rc = configureStreamsLocked(mOperatingMode, sessionParams, /*notifyRequestThread*/ false);
if (rc == NO_ERROR) {
ret = true;
mPauseStateNotify = false;
//Moving to active state while holding 'mLock' is important.
//There could be pending calls to 'create-/deleteStream' which
//will trigger another stream configuration while the already
//present streams end up with outstanding buffers that will
//not get drained.
internalUpdateStatusLocked(STATUS_ACTIVE);
mCameraServiceProxyWrapper->logStreamConfigured(mId, mOperatingMode,
true /*internalReconfig*/, ns2ms(systemTime() - startTime));
} else if (rc == DEAD_OBJECT) {
// DEAD_OBJECT can be returned if either the consumer surface is
// abandoned, or the HAL has died.
// - If the HAL has died, configureStreamsLocked call will set
// device to error state,
// - If surface is abandoned, we should not set device to error
// state.
ALOGE("Failed to re-configure camera due to abandoned surface");
} else {
SET_ERR_L("Failed to re-configure camera: %d", rc);
}
} else {
ALOGE("%s: Failed to pause streaming: %d", __FUNCTION__, rc);
}
if (markClientActive) {
mStatusTracker->markComponentActive(clientStatusId);
}
return ret;
}
status_t Camera3Device::configureStreamsLocked(int operatingMode,
const CameraMetadata& sessionParams, bool notifyRequestThread) {
ATRACE_CALL();
status_t res;
if (mStatus != STATUS_UNCONFIGURED && mStatus != STATUS_CONFIGURED) {
CLOGE("Not idle");
return INVALID_OPERATION;
}
if (operatingMode < 0) {
CLOGE("Invalid operating mode: %d", operatingMode);
return BAD_VALUE;
}
bool isConstrainedHighSpeed =
CAMERA_STREAM_CONFIGURATION_CONSTRAINED_HIGH_SPEED_MODE == operatingMode;
if (mOperatingMode != operatingMode) {
mNeedConfig = true;
mIsConstrainedHighSpeedConfiguration = isConstrainedHighSpeed;
mOperatingMode = operatingMode;
}
// Reset min expected duration when session is reconfigured.
mMinExpectedDuration = 0;
// In case called from configureStreams, abort queued input buffers not belonging to
// any pending requests.
if (mInputStream != NULL && notifyRequestThread) {
while (true) {
camera_stream_buffer_t inputBuffer;
camera3::Size inputBufferSize;
status_t res = mInputStream->getInputBuffer(&inputBuffer,
&inputBufferSize, /*respectHalLimit*/ false);
if (res != OK) {
// Exhausted acquiring all input buffers.
break;
}
inputBuffer.status = CAMERA_BUFFER_STATUS_ERROR;
res = mInputStream->returnInputBuffer(inputBuffer);
if (res != OK) {
ALOGE("%s: %d: couldn't return input buffer while clearing input queue: "
"%s (%d)", __FUNCTION__, __LINE__, strerror(-res), res);
}
}
}
if (!mNeedConfig) {
ALOGV("%s: Skipping config, no stream changes", __FUNCTION__);
return OK;
}
// Workaround for device HALv3.2 or older spec bug - zero streams requires
// adding a fake stream instead.
// TODO: Bug: 17321404 for fixing the HAL spec and removing this workaround.
if (mOutputStreams.size() == 0) {
addFakeStreamLocked();
} else {
tryRemoveFakeStreamLocked();
}
// Override stream use case based on "adb shell command"
overrideStreamUseCaseLocked();
// Start configuring the streams
ALOGV("%s: Camera %s: Starting stream configuration", __FUNCTION__, mId.c_str());
mPreparerThread->pause();
camera_stream_configuration config;
config.operation_mode = mOperatingMode;
config.num_streams = (mInputStream != NULL) + mOutputStreams.size();
config.input_is_multi_resolution = false;
Vector<camera3::camera_stream_t*> streams;
streams.setCapacity(config.num_streams);
std::vector<uint32_t> bufferSizes(config.num_streams, 0);
if (mInputStream != NULL) {
camera3::camera_stream_t *inputStream;
inputStream = mInputStream->startConfiguration();
if (inputStream == NULL) {
CLOGE("Can't start input stream configuration");
cancelStreamsConfigurationLocked();
return INVALID_OPERATION;
}
streams.add(inputStream);
config.input_is_multi_resolution = mIsInputStreamMultiResolution;
}
mGroupIdPhysicalCameraMap.clear();
mComposerOutput = false;
for (size_t i = 0; i < mOutputStreams.size(); i++) {
// Don't configure bidi streams twice, nor add them twice to the list
if (mOutputStreams[i].get() ==
static_cast<Camera3StreamInterface*>(mInputStream.get())) {
config.num_streams--;
continue;
}
camera3::camera_stream_t *outputStream;
outputStream = mOutputStreams[i]->startConfiguration();
if (outputStream == NULL) {
CLOGE("Can't start output stream configuration");
cancelStreamsConfigurationLocked();
return INVALID_OPERATION;
}
streams.add(outputStream);
if (outputStream->format == HAL_PIXEL_FORMAT_BLOB) {
size_t k = i + ((mInputStream != nullptr) ? 1 : 0); // Input stream if present should
// always occupy the initial entry.
if ((outputStream->data_space == HAL_DATASPACE_V0_JFIF) ||
(outputStream->data_space ==
static_cast<android_dataspace_t>(
aidl::android::hardware::graphics::common::Dataspace::JPEG_R))) {
bufferSizes[k] = static_cast<uint32_t>(
getJpegBufferSize(infoPhysical(outputStream->physical_camera_id),
outputStream->width, outputStream->height));
} else if (outputStream->data_space ==
static_cast<android_dataspace>(HAL_DATASPACE_JPEG_APP_SEGMENTS)) {
bufferSizes[k] = outputStream->width * outputStream->height;
} else {
ALOGW("%s: Blob dataSpace %d not supported",
__FUNCTION__, outputStream->data_space);
}
}
if (mOutputStreams[i]->isMultiResolution()) {
int32_t streamGroupId = mOutputStreams[i]->getHalStreamGroupId();
const std::string &physicalCameraId = mOutputStreams[i]->getPhysicalCameraId();
mGroupIdPhysicalCameraMap[streamGroupId].insert(physicalCameraId);
}
if (outputStream->usage & GraphicBuffer::USAGE_HW_COMPOSER) {
mComposerOutput = true;
}
}
config.streams = streams.editArray();
config.hal_buffer_managed_streams = mHalBufManagedStreamIds;
config.use_hal_buf_manager = mUseHalBufManager;
// Do the HAL configuration; will potentially touch stream
// max_buffers, usage, priv fields, data_space and format
// fields for IMPLEMENTATION_DEFINED formats as well as hal buffer managed
// streams and use_hal_buf_manager (in case aconfig flag session_hal_buf_manager
// is not enabled but the HAL supports session specific hal buffer manager).
int64_t logId = mCameraServiceProxyWrapper->getCurrentLogIdForCamera(mId);
const camera_metadata_t *sessionBuffer = sessionParams.getAndLock();
res = mInterface->configureStreams(sessionBuffer, &config, bufferSizes, logId);
sessionParams.unlock(sessionBuffer);
if (res == BAD_VALUE) {
// HAL rejected this set of streams as unsupported, clean up config
// attempt and return to unconfigured state
CLOGE("Set of requested inputs/outputs not supported by HAL");
cancelStreamsConfigurationLocked();
return BAD_VALUE;
} else if (res != OK) {
// Some other kind of error from configure_streams - this is not
// expected
SET_ERR_L("Unable to configure streams with HAL: %s (%d)",
strerror(-res), res);
return res;
}
// It is possible that use hal buffer manager behavior was changed by the
// configureStreams call.
mUseHalBufManager = config.use_hal_buf_manager;
if (flags::session_hal_buf_manager()) {
bool prevSessionHalBufManager = (mHalBufManagedStreamIds.size() != 0);
// It is possible that configureStreams() changed config.hal_buffer_managed_streams
mHalBufManagedStreamIds = config.hal_buffer_managed_streams;
bool thisSessionHalBufManager = mHalBufManagedStreamIds.size() != 0;
if (prevSessionHalBufManager && !thisSessionHalBufManager) {
mRequestBufferSM.deInit();
} else if (!prevSessionHalBufManager && thisSessionHalBufManager) {
res = mRequestBufferSM.initialize(mStatusTracker);
if (res != OK) {
SET_ERR_L("%s: Camera %s: RequestBuffer State machine couldn't be initialized!",
__FUNCTION__, mId.c_str());
return res;
}
}
mRequestThread->setHalBufferManagedStreams(mHalBufManagedStreamIds);
}
// Finish all stream configuration immediately.
// TODO: Try to relax this later back to lazy completion, which should be
// faster
if (mInputStream != NULL && mInputStream->isConfiguring()) {
bool streamReConfigured = false;
res = mInputStream->finishConfiguration(&streamReConfigured);
if (res != OK) {
CLOGE("Can't finish configuring input stream %d: %s (%d)",
mInputStream->getId(), strerror(-res), res);
cancelStreamsConfigurationLocked();
if ((res == NO_INIT || res == DEAD_OBJECT) && mInputStream->isAbandoned()) {
return DEAD_OBJECT;
}
return BAD_VALUE;
}
if (streamReConfigured) {
mInterface->onStreamReConfigured(mInputStream->getId());
}
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
sp<Camera3OutputStreamInterface> outputStream = mOutputStreams[i];
if (outputStream->isConfiguring() && !outputStream->isConsumerConfigurationDeferred()) {
bool streamReConfigured = false;
res = outputStream->finishConfiguration(&streamReConfigured);
if (res != OK) {
CLOGE("Can't finish configuring output stream %d: %s (%d)",
outputStream->getId(), strerror(-res), res);
cancelStreamsConfigurationLocked();
if ((res == NO_INIT || res == DEAD_OBJECT) && outputStream->isAbandoned()) {
return DEAD_OBJECT;
}
return BAD_VALUE;
}
if (streamReConfigured) {
mInterface->onStreamReConfigured(outputStream->getId());
}
}
}
mRequestThread->setComposerSurface(mComposerOutput);
// Request thread needs to know to avoid using repeat-last-settings protocol
// across configure_streams() calls
if (notifyRequestThread) {
mRequestThread->configurationComplete(mIsConstrainedHighSpeedConfiguration,
sessionParams, mGroupIdPhysicalCameraMap);
}
char value[PROPERTY_VALUE_MAX];
property_get("camera.fifo.disable", value, "0");
int32_t disableFifo = atoi(value);
if (disableFifo != 1) {
// Boost priority of request thread to SCHED_FIFO.
pid_t requestThreadTid = mRequestThread->getTid();
res = SchedulingPolicyUtils::requestPriorityDirect(getpid(), requestThreadTid,
kRequestThreadPriority);
if (res != OK) {
ALOGW("Can't set realtime priority for request processing thread: %s (%d)",
strerror(-res), res);
} else {
ALOGD("Set real time priority for request queue thread (tid %d)", requestThreadTid);
}
}
// Update device state
const camera_metadata_t *newSessionParams = sessionParams.getAndLock();
const camera_metadata_t *currentSessionParams = mSessionParams.getAndLock();
bool updateSessionParams = (newSessionParams != currentSessionParams) ? true : false;
sessionParams.unlock(newSessionParams);
mSessionParams.unlock(currentSessionParams);
if (updateSessionParams) {
mSessionParams = sessionParams;
}
mNeedConfig = false;
internalUpdateStatusLocked((mFakeStreamId == NO_STREAM) ?
STATUS_CONFIGURED : STATUS_UNCONFIGURED);
ALOGV("%s: Camera %s: Stream configuration complete", __FUNCTION__, mId.c_str());
// tear down the deleted streams after configure streams.
mDeletedStreams.clear();
auto rc = mPreparerThread->resume();
if (rc != OK) {
SET_ERR_L("%s: Camera %s: Preparer thread failed to resume!", __FUNCTION__, mId.c_str());
return rc;
}
if (mFakeStreamId == NO_STREAM) {
mRequestBufferSM.onStreamsConfigured();
}
// First call injectCamera() and then run configureStreamsLocked() case:
// Since the streams configuration of the injection camera is based on the internal camera, we
// must wait until the internal camera configure streams before running the injection job to
// configure the injection streams.
if (mInjectionMethods->isInjecting()) {
ALOGD("%s: Injection camera %s: Start to configure streams.",
__FUNCTION__, mInjectionMethods->getInjectedCamId().c_str());
res = mInjectionMethods->injectCamera(config, bufferSizes);
if (res != OK) {
ALOGE("Can't finish inject camera process!");
return res;
}
} else {
// First run configureStreamsLocked() and then call injectCamera() case:
// If the stream configuration has been completed and camera deive is active, but the
// injection camera has not been injected yet, we need to store the stream configuration of
// the internal camera (because the stream configuration of the injection camera is based
// on the internal camera). When injecting occurs later, this configuration can be used by
// the injection camera.
ALOGV("%s: The stream configuration is complete and the camera device is active, but the"
" injection camera has not been injected yet.", __FUNCTION__);
mInjectionMethods->storeInjectionConfig(config, bufferSizes);
}
return OK;
}
status_t Camera3Device::addFakeStreamLocked() {
ATRACE_CALL();
status_t res;
if (mFakeStreamId != NO_STREAM) {
// Should never be adding a second fake stream when one is already
// active
SET_ERR_L("%s: Camera %s: A fake stream already exists!",
__FUNCTION__, mId.c_str());
return INVALID_OPERATION;
}
ALOGV("%s: Camera %s: Adding a fake stream", __FUNCTION__, mId.c_str());
sp<Camera3OutputStreamInterface> fakeStream =
new Camera3FakeStream(mNextStreamId);
res = mOutputStreams.add(mNextStreamId, fakeStream);
if (res < 0) {
SET_ERR_L("Can't add fake stream to set: %s (%d)", strerror(-res), res);
return res;
}
mFakeStreamId = mNextStreamId;
mNextStreamId++;
return OK;
}
status_t Camera3Device::tryRemoveFakeStreamLocked() {
ATRACE_CALL();
status_t res;
if (mFakeStreamId == NO_STREAM) return OK;
if (mOutputStreams.size() == 1) return OK;
ALOGV("%s: Camera %s: Removing the fake stream", __FUNCTION__, mId.c_str());
// Ok, have a fake stream and there's at least one other output stream,
// so remove the fake
sp<Camera3StreamInterface> deletedStream = mOutputStreams.get(mFakeStreamId);
if (deletedStream == nullptr) {
SET_ERR_L("Fake stream %d does not appear to exist", mFakeStreamId);
return INVALID_OPERATION;
}
mOutputStreams.remove(mFakeStreamId);
// Free up the stream endpoint so that it can be used by some other stream
res = deletedStream->disconnect();
if (res != OK) {
SET_ERR_L("Can't disconnect deleted fake stream %d", mFakeStreamId);
// fall through since we want to still list the stream as deleted.
}
mDeletedStreams.add(deletedStream);
mFakeStreamId = NO_STREAM;
return res;
}
void Camera3Device::setErrorState(const char *fmt, ...) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
va_list args;
va_start(args, fmt);
setErrorStateLockedV(fmt, args);
va_end(args);
}
void Camera3Device::setErrorStateV(const char *fmt, va_list args) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
setErrorStateLockedV(fmt, args);
}
void Camera3Device::setErrorStateLocked(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
setErrorStateLockedV(fmt, args);
va_end(args);
}
void Camera3Device::setErrorStateLockedV(const char *fmt, va_list args) {
// Print out all error messages to log
std::string errorCause;
base::StringAppendV(&errorCause, fmt, args);
ALOGE("Camera %s: %s", mId.c_str(), errorCause.c_str());
// But only do error state transition steps for the first error
if (mStatus == STATUS_ERROR || mStatus == STATUS_UNINITIALIZED) return;
mErrorCause = errorCause;
if (mRequestThread != nullptr) {
mRequestThread->setPaused(true);
}
internalUpdateStatusLocked(STATUS_ERROR);
// Notify upstream about a device error
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE,
CaptureResultExtras());
mSessionStatsBuilder.onDeviceError();
}
// Save stack trace. View by dumping it later.
CameraTraces::saveTrace();
// TODO: consider adding errorCause and client pid/procname
}
/**
* In-flight request management
*/
status_t Camera3Device::registerInFlight(uint32_t frameNumber,
int32_t numBuffers, CaptureResultExtras resultExtras, bool hasInput,
bool hasAppCallback, nsecs_t minExpectedDuration, nsecs_t maxExpectedDuration,
bool isFixedFps, const std::set<std::set<std::string>>& physicalCameraIds,
bool isStillCapture, bool isZslCapture, bool rotateAndCropAuto, bool autoframingAuto,
const std::set<std::string>& cameraIdsWithZoom,
const SurfaceMap& outputSurfaces, nsecs_t requestTimeNs) {
ATRACE_CALL();
std::lock_guard<std::mutex> l(mInFlightLock);
ssize_t res;
res = mInFlightMap.add(frameNumber, InFlightRequest(numBuffers, resultExtras, hasInput,
hasAppCallback, minExpectedDuration, maxExpectedDuration, isFixedFps, physicalCameraIds,
isStillCapture, isZslCapture, rotateAndCropAuto, autoframingAuto, cameraIdsWithZoom,
requestTimeNs, outputSurfaces));
if (res < 0) return res;
if (mInFlightMap.size() == 1) {
// Hold a separate dedicated tracker lock to prevent race with disconnect and also
// avoid a deadlock during reprocess requests.
Mutex::Autolock l(mTrackerLock);
if (mStatusTracker != nullptr) {
mStatusTracker->markComponentActive(mInFlightStatusId);
}
}
mExpectedInflightDuration += maxExpectedDuration;
return OK;
}
void Camera3Device::onInflightEntryRemovedLocked(nsecs_t duration) {
// Indicate idle inFlightMap to the status tracker
if (mInFlightMap.size() == 0) {
mRequestBufferSM.onInflightMapEmpty();
// Hold a separate dedicated tracker lock to prevent race with disconnect and also
// avoid a deadlock during reprocess requests.
Mutex::Autolock l(mTrackerLock);
if (mStatusTracker != nullptr) {
mStatusTracker->markComponentIdle(mInFlightStatusId, Fence::NO_FENCE);
}
}
mExpectedInflightDuration -= duration;
}
void Camera3Device::checkInflightMapLengthLocked() {
// Validation check - if we have too many in-flight frames with long total inflight duration,
// something has likely gone wrong. This might still be legit only if application send in
// a long burst of long exposure requests.
if (mExpectedInflightDuration > kMinWarnInflightDuration) {
if (!mIsConstrainedHighSpeedConfiguration && mInFlightMap.size() > kInFlightWarnLimit) {
CLOGW("In-flight list too large: %zu, total inflight duration %" PRIu64,
mInFlightMap.size(), mExpectedInflightDuration);
} else if (mIsConstrainedHighSpeedConfiguration && mInFlightMap.size() >
kInFlightWarnLimitHighSpeed) {
CLOGW("In-flight list too large for high speed configuration: %zu,"
"total inflight duration %" PRIu64,
mInFlightMap.size(), mExpectedInflightDuration);
}
}
}
void Camera3Device::onInflightMapFlushedLocked() {
mExpectedInflightDuration = 0;
}
void Camera3Device::removeInFlightMapEntryLocked(int idx) {
ATRACE_HFR_CALL();
nsecs_t duration = mInFlightMap.valueAt(idx).maxExpectedDuration;
mInFlightMap.removeItemsAt(idx, 1);
onInflightEntryRemovedLocked(duration);
}
void Camera3Device::flushInflightRequests() {
ATRACE_CALL();
sp<NotificationListener> listener;
{
std::lock_guard<std::mutex> l(mOutputLock);
listener = mListener.promote();
}
FlushInflightReqStates states {
mId, mInFlightLock, mInFlightMap, mUseHalBufManager,
mHalBufManagedStreamIds, listener, *this, *mInterface, *this,
mSessionStatsBuilder};
camera3::flushInflightRequests(states);
}
CameraMetadata Camera3Device::getLatestRequestLocked() {
ALOGV("%s", __FUNCTION__);
CameraMetadata retVal;
if (mRequestThread != NULL) {
retVal = mRequestThread->getLatestRequest();
}
return retVal;
}
void Camera3Device::monitorMetadata(TagMonitor::eventSource source,
int64_t frameNumber, nsecs_t timestamp, const CameraMetadata& metadata,
const std::unordered_map<std::string, CameraMetadata>& physicalMetadata,
const camera_stream_buffer_t *outputBuffers, uint32_t numOutputBuffers,
int32_t inputStreamId) {
mTagMonitor.monitorMetadata(source, frameNumber, timestamp, metadata,
physicalMetadata, outputBuffers, numOutputBuffers, inputStreamId);
}
void Camera3Device::cleanupNativeHandles(
std::vector<native_handle_t*> *handles, bool closeFd) {
if (handles == nullptr) {
return;
}
if (closeFd) {
for (auto& handle : *handles) {
native_handle_close(handle);
}
}
for (auto& handle : *handles) {
native_handle_delete(handle);
}
handles->clear();
return;
}
/**
* HalInterface inner class methods
*/
void Camera3Device::HalInterface::getInflightBufferKeys(
std::vector<std::pair<int32_t, int32_t>>* out) {
mBufferRecords.getInflightBufferKeys(out);
return;
}
void Camera3Device::HalInterface::getInflightRequestBufferKeys(
std::vector<uint64_t>* out) {
mBufferRecords.getInflightRequestBufferKeys(out);
return;
}
bool Camera3Device::HalInterface::verifyBufferIds(
int32_t streamId, std::vector<uint64_t>& bufIds) {
return mBufferRecords.verifyBufferIds(streamId, bufIds);
}
bool Camera3Device::HalInterface::isHalBufferManagedStream(int32_t streamId) const {
return (mUseHalBufManager || (flags::session_hal_buf_manager() &&
contains(mHalBufManagedStreamIds, streamId)));
}
status_t Camera3Device::HalInterface::popInflightBuffer(
int32_t frameNumber, int32_t streamId,
/*out*/ buffer_handle_t **buffer) {
return mBufferRecords.popInflightBuffer(frameNumber, streamId, buffer);
}
status_t Camera3Device::HalInterface::pushInflightRequestBuffer(
uint64_t bufferId, buffer_handle_t* buf, int32_t streamId) {
return mBufferRecords.pushInflightRequestBuffer(bufferId, buf, streamId);
}
// Find and pop a buffer_handle_t based on bufferId
status_t Camera3Device::HalInterface::popInflightRequestBuffer(
uint64_t bufferId,
/*out*/ buffer_handle_t** buffer,
/*optional out*/ int32_t* streamId) {
return mBufferRecords.popInflightRequestBuffer(bufferId, buffer, streamId);
}
std::pair<bool, uint64_t> Camera3Device::HalInterface::getBufferId(
const buffer_handle_t& buf, int streamId) {
return mBufferRecords.getBufferId(buf, streamId);
}
uint64_t Camera3Device::HalInterface::removeOneBufferCache(int streamId,
const native_handle_t* handle) {
return mBufferRecords.removeOneBufferCache(streamId, handle);
}
void Camera3Device::HalInterface::onBufferFreed(
int streamId, const native_handle_t* handle) {
uint32_t bufferId = mBufferRecords.removeOneBufferCache(streamId, handle);
std::lock_guard<std::mutex> lock(mFreedBuffersLock);
if (bufferId != BUFFER_ID_NO_BUFFER) {
mFreedBuffers.push_back(std::make_pair(streamId, bufferId));
}
}
void Camera3Device::HalInterface::onStreamReConfigured(int streamId) {
std::vector<uint64_t> bufIds = mBufferRecords.clearBufferCaches(streamId);
std::lock_guard<std::mutex> lock(mFreedBuffersLock);
for (auto bufferId : bufIds) {
mFreedBuffers.push_back(std::make_pair(streamId, bufferId));
}
}
/**
* RequestThread inner class methods
*/
Camera3Device::RequestThread::RequestThread(wp<Camera3Device> parent,
sp<StatusTracker> statusTracker,
sp<HalInterface> interface, const Vector<int32_t>& sessionParamKeys,
bool useHalBufManager,
bool supportCameraMute,
bool overrideToPortrait,
bool supportSettingsOverride) :
Thread(/*canCallJava*/false),
mParent(parent),
mStatusTracker(statusTracker),
mInterface(interface),
mListener(nullptr),
mId(getId(parent)),
mRequestClearing(false),
mFirstRepeating(false),
mReconfigured(false),
mDoPause(false),
mPaused(true),
mNotifyPipelineDrain(false),
mPrevTriggers(0),
mFrameNumber(0),
mLatestRequestId(NAME_NOT_FOUND),
mLatestFailedRequestId(NAME_NOT_FOUND),
mCurrentAfTriggerId(0),
mCurrentPreCaptureTriggerId(0),
mRotateAndCropOverride(ANDROID_SCALER_ROTATE_AND_CROP_NONE),
mAutoframingOverride(ANDROID_CONTROL_AUTOFRAMING_OFF),
mComposerOutput(false),
mCameraMute(ANDROID_SENSOR_TEST_PATTERN_MODE_OFF),
mSettingsOverride(ANDROID_CONTROL_SETTINGS_OVERRIDE_OFF),
mRepeatingLastFrameNumber(
hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES),
mPrepareVideoStream(false),
mConstrainedMode(false),
mRequestLatency(kRequestLatencyBinSize),
mSessionParamKeys(sessionParamKeys),
mLatestSessionParams(sessionParamKeys.size()),
mUseHalBufManager(useHalBufManager),
mSupportCameraMute(supportCameraMute),
mOverrideToPortrait(overrideToPortrait),
mSupportSettingsOverride(supportSettingsOverride) {
mStatusId = statusTracker->addComponent("RequestThread");
mVndkVersion = getVNDKVersionFromProp(__ANDROID_API_FUTURE__);
}
Camera3Device::RequestThread::~RequestThread() {}
void Camera3Device::RequestThread::setNotificationListener(
wp<NotificationListener> listener) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
mListener = listener;
}
void Camera3Device::RequestThread::configurationComplete(bool isConstrainedHighSpeed,
const CameraMetadata& sessionParams,
const std::map<int32_t, std::set<std::string>>& groupIdPhysicalCameraMap) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
mReconfigured = true;
mLatestSessionParams = sessionParams;
mGroupIdPhysicalCameraMap = groupIdPhysicalCameraMap;
// Prepare video stream for high speed recording.
mPrepareVideoStream = isConstrainedHighSpeed;
mConstrainedMode = isConstrainedHighSpeed;
}
status_t Camera3Device::RequestThread::queueRequestList(
List<sp<CaptureRequest> > &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
for (List<sp<CaptureRequest> >::iterator it = requests.begin(); it != requests.end();
++it) {
mRequestQueue.push_back(*it);
}
if (lastFrameNumber != NULL) {
*lastFrameNumber = mFrameNumber + mRequestQueue.size() - 1;
ALOGV("%s: requestId %d, mFrameNumber %" PRId32 ", lastFrameNumber %" PRId64 ".",
__FUNCTION__, (*(requests.begin()))->mResultExtras.requestId, mFrameNumber,
*lastFrameNumber);
}
unpauseForNewRequests();
return OK;
}
status_t Camera3Device::RequestThread::queueTrigger(
RequestTrigger trigger[],
size_t count) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
status_t ret;
for (size_t i = 0; i < count; ++i) {
ret = queueTriggerLocked(trigger[i]);
if (ret != OK) {
return ret;
}
}
return OK;
}
const std::string& Camera3Device::RequestThread::getId(const wp<Camera3Device> &device) {
static std::string deadId("<DeadDevice>");
sp<Camera3Device> d = device.promote();
if (d != nullptr) return d->mId;
return deadId;
}
status_t Camera3Device::RequestThread::queueTriggerLocked(
RequestTrigger trigger) {
uint32_t tag = trigger.metadataTag;
ssize_t index = mTriggerMap.indexOfKey(tag);
switch (trigger.getTagType()) {
case TYPE_BYTE:
// fall-through
case TYPE_INT32:
break;
default:
ALOGE("%s: Type not supported: 0x%x", __FUNCTION__,
trigger.getTagType());
return INVALID_OPERATION;
}
/**
* Collect only the latest trigger, since we only have 1 field
* in the request settings per trigger tag, and can't send more than 1
* trigger per request.
*/
if (index != NAME_NOT_FOUND) {
mTriggerMap.editValueAt(index) = trigger;
} else {
mTriggerMap.add(tag, trigger);
}
return OK;
}
status_t Camera3Device::RequestThread::setRepeatingRequests(
const RequestList &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mRepeatingRequests.clear();
mFirstRepeating = true;
mRepeatingRequests.insert(mRepeatingRequests.begin(),
requests.begin(), requests.end());
unpauseForNewRequests();
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
bool Camera3Device::RequestThread::isRepeatingRequestLocked(const sp<CaptureRequest>& requestIn) {
if (mRepeatingRequests.empty()) {
return false;
}
int32_t requestId = requestIn->mResultExtras.requestId;
const RequestList &repeatRequests = mRepeatingRequests;
// All repeating requests are guaranteed to have same id so only check first quest
const sp<CaptureRequest> firstRequest = *repeatRequests.begin();
return (firstRequest->mResultExtras.requestId == requestId);
}
status_t Camera3Device::RequestThread::clearRepeatingRequests(/*out*/int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
return clearRepeatingRequestsLocked(lastFrameNumber);
}
status_t Camera3Device::RequestThread::clearRepeatingRequestsLocked(
/*out*/int64_t *lastFrameNumber) {
std::vector<int32_t> streamIds;
for (const auto& request : mRepeatingRequests) {
for (const auto& stream : request->mOutputStreams) {
streamIds.push_back(stream->getId());
}
}
mRepeatingRequests.clear();
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mInterface->repeatingRequestEnd(mRepeatingLastFrameNumber, streamIds);
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
status_t Camera3Device::RequestThread::clear(
/*out*/int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
ALOGV("RequestThread::%s:", __FUNCTION__);
// Send errors for all requests pending in the request queue, including
// pending repeating requests
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
for (RequestList::iterator it = mRequestQueue.begin();
it != mRequestQueue.end(); ++it) {
// Abort the input buffers for reprocess requests.
if ((*it)->mInputStream != NULL) {
camera_stream_buffer_t inputBuffer;
camera3::Size inputBufferSize;
status_t res = (*it)->mInputStream->getInputBuffer(&inputBuffer,
&inputBufferSize, /*respectHalLimit*/ false);
if (res != OK) {
ALOGW("%s: %d: couldn't get input buffer while clearing the request "
"list: %s (%d)", __FUNCTION__, __LINE__, strerror(-res), res);
} else {
inputBuffer.status = CAMERA_BUFFER_STATUS_ERROR;
res = (*it)->mInputStream->returnInputBuffer(inputBuffer);
if (res != OK) {
ALOGE("%s: %d: couldn't return input buffer while clearing the request "
"list: %s (%d)", __FUNCTION__, __LINE__, strerror(-res), res);
}
}
}
// Set the frame number this request would have had, if it
// had been submitted; this frame number will not be reused.
// The requestId and burstId fields were set when the request was
// submitted originally (in convertMetadataListToRequestListLocked)
(*it)->mResultExtras.frameNumber = mFrameNumber++;
listener->notifyError(hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
(*it)->mResultExtras);
}
}
mRequestQueue.clear();
Mutex::Autolock al(mTriggerMutex);
mTriggerMap.clear();
clearRepeatingRequestsLocked(lastFrameNumber);
mRequestClearing = true;
mRequestSignal.signal();
return OK;
}
status_t Camera3Device::RequestThread::flush() {
ATRACE_CALL();
Mutex::Autolock l(mFlushLock);
return mInterface->flush();
}
void Camera3Device::RequestThread::setPaused(bool paused) {
ATRACE_CALL();
Mutex::Autolock l(mPauseLock);
mDoPause = paused;
mDoPauseSignal.signal();
}
void Camera3Device::RequestThread::setHalBufferManagedStreams(
const std::set<int32_t> &halBufferManagedStreams) {
mHalBufManagedStreamIds = halBufferManagedStreams;
}
status_t Camera3Device::RequestThread::waitUntilRequestProcessed(
int32_t requestId, nsecs_t timeout) {
ATRACE_CALL();
Mutex::Autolock l(mLatestRequestMutex);
status_t res;
while (mLatestRequestId != requestId && mLatestFailedRequestId != requestId) {
nsecs_t startTime = systemTime();
res = mLatestRequestSignal.waitRelative(mLatestRequestMutex, timeout);
if (res != OK) return res;
timeout -= (systemTime() - startTime);
}
return OK;
}
void Camera3Device::RequestThread::requestExit() {
{
Mutex::Autolock l(mRequestLock);
mRequestClearing = true;
// Call parent to set up shutdown
Thread::requestExit();
}
// The exit from any possible waits
mDoPauseSignal.signal();
mRequestSignal.signal();
mRequestLatency.log("ProcessCaptureRequest latency histogram");
mRequestLatency.reset();
}
void Camera3Device::RequestThread::checkAndStopRepeatingRequest() {
ATRACE_CALL();
bool surfaceAbandoned = false;
int64_t lastFrameNumber = 0;
sp<NotificationListener> listener;
{
Mutex::Autolock l(mRequestLock);
// Check all streams needed by repeating requests are still valid. Otherwise, stop
// repeating requests.
for (const auto& request : mRepeatingRequests) {
for (const auto& s : request->mOutputStreams) {
if (s->isAbandoned()) {
surfaceAbandoned = true;
clearRepeatingRequestsLocked(&lastFrameNumber);
break;
}
}
if (surfaceAbandoned) {
break;
}
}
listener = mListener.promote();
}
if (listener != NULL && surfaceAbandoned) {
listener->notifyRepeatingRequestError(lastFrameNumber);
}
}
bool Camera3Device::RequestThread::sendRequestsBatch() {
ATRACE_CALL();
status_t res;
size_t batchSize = mNextRequests.size();
std::vector<camera_capture_request_t*> requests(batchSize);
uint32_t numRequestProcessed = 0;
for (size_t i = 0; i < batchSize; i++) {
requests[i] = &mNextRequests.editItemAt(i).halRequest;
ATRACE_ASYNC_BEGIN("frame capture", mNextRequests[i].halRequest.frame_number);
}
res = mInterface->processBatchCaptureRequests(requests, &numRequestProcessed);
bool triggerRemoveFailed = false;
NextRequest& triggerFailedRequest = mNextRequests.editItemAt(0);
for (size_t i = 0; i < numRequestProcessed; i++) {
NextRequest& nextRequest = mNextRequests.editItemAt(i);
nextRequest.submitted = true;
updateNextRequest(nextRequest);
if (!triggerRemoveFailed) {
// Remove any previously queued triggers (after unlock)
status_t removeTriggerRes = removeTriggers(mPrevRequest);
if (removeTriggerRes != OK) {
triggerRemoveFailed = true;
triggerFailedRequest = nextRequest;
}
}
}
if (triggerRemoveFailed) {
SET_ERR("RequestThread: Unable to remove triggers "
"(capture request %d, HAL device: %s (%d)",
triggerFailedRequest.halRequest.frame_number, strerror(-res), res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
if (res != OK) {
// Should only get a failure here for malformed requests or device-level
// errors, so consider all errors fatal. Bad metadata failures should
// come through notify.
SET_ERR("RequestThread: Unable to submit capture request %d to HAL device: %s (%d)",
mNextRequests[numRequestProcessed].halRequest.frame_number,
strerror(-res), res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
return true;
}
Camera3Device::RequestThread::ExpectedDurationInfo
Camera3Device::RequestThread::calculateExpectedDurationRange(
const camera_metadata_t *request) {
ExpectedDurationInfo expectedDurationInfo = {
InFlightRequest::kDefaultMinExpectedDuration,
InFlightRequest::kDefaultMaxExpectedDuration,
/*isFixedFps*/false};
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(request,
ANDROID_CONTROL_AE_MODE,
&e);
if (e.count == 0) return expectedDurationInfo;
switch (e.data.u8[0]) {
case ANDROID_CONTROL_AE_MODE_OFF:
find_camera_metadata_ro_entry(request,
ANDROID_SENSOR_EXPOSURE_TIME,
&e);
if (e.count > 0) {
expectedDurationInfo.minDuration = e.data.i64[0];
expectedDurationInfo.maxDuration = expectedDurationInfo.minDuration;
}
find_camera_metadata_ro_entry(request,
ANDROID_SENSOR_FRAME_DURATION,
&e);
if (e.count > 0) {
expectedDurationInfo.minDuration =
std::max(e.data.i64[0], expectedDurationInfo.minDuration);
expectedDurationInfo.maxDuration = expectedDurationInfo.minDuration;
}
expectedDurationInfo.isFixedFps = false;
break;
default:
find_camera_metadata_ro_entry(request,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
&e);
if (e.count > 1) {
expectedDurationInfo.minDuration = 1e9 / e.data.i32[1];
expectedDurationInfo.maxDuration = 1e9 / e.data.i32[0];
}
expectedDurationInfo.isFixedFps = (e.data.i32[1] == e.data.i32[0]);
break;
}
return expectedDurationInfo;
}
bool Camera3Device::RequestThread::skipHFRTargetFPSUpdate(int32_t tag,
const camera_metadata_ro_entry_t& newEntry, const camera_metadata_entry_t& currentEntry) {
if (mConstrainedMode && (ANDROID_CONTROL_AE_TARGET_FPS_RANGE == tag) &&
(newEntry.count == currentEntry.count) && (currentEntry.count == 2) &&
(currentEntry.data.i32[1] == newEntry.data.i32[1])) {
return true;
}
return false;
}
void Camera3Device::RequestThread::updateNextRequest(NextRequest& nextRequest) {
// Update the latest request sent to HAL
camera_capture_request_t& halRequest = nextRequest.halRequest;
if (halRequest.settings != NULL) { // Don't update if they were unchanged
Mutex::Autolock al(mLatestRequestMutex);
camera_metadata_t* cloned = clone_camera_metadata(halRequest.settings);
mLatestRequest.acquire(cloned);
mLatestPhysicalRequest.clear();
for (uint32_t i = 0; i < halRequest.num_physcam_settings; i++) {
cloned = clone_camera_metadata(halRequest.physcam_settings[i]);
mLatestPhysicalRequest.emplace(halRequest.physcam_id[i],
CameraMetadata(cloned));
}
sp<Camera3Device> parent = mParent.promote();
if (parent != NULL) {
int32_t inputStreamId = -1;
if (halRequest.input_buffer != nullptr) {
inputStreamId = Camera3Stream::cast(halRequest.input_buffer->stream)->getId();
}
parent->monitorMetadata(TagMonitor::REQUEST,
halRequest.frame_number,
0, mLatestRequest, mLatestPhysicalRequest, halRequest.output_buffers,
halRequest.num_output_buffers, inputStreamId);
}
}
if (halRequest.settings != NULL) {
nextRequest.captureRequest->mSettingsList.begin()->metadata.unlock(
halRequest.settings);
}
cleanupPhysicalSettings(nextRequest.captureRequest, &halRequest);
}
bool Camera3Device::RequestThread::updateSessionParameters(const CameraMetadata& settings) {
ATRACE_CALL();
bool updatesDetected = false;
CameraMetadata updatedParams(mLatestSessionParams);
for (auto tag : mSessionParamKeys) {
camera_metadata_ro_entry entry = settings.find(tag);
camera_metadata_entry lastEntry = updatedParams.find(tag);
if (entry.count > 0) {
bool isDifferent = false;
if (lastEntry.count > 0) {
// Have a last value, compare to see if changed
if (lastEntry.type == entry.type &&
lastEntry.count == entry.count) {
// Same type and count, compare values
size_t bytesPerValue = camera_metadata_type_size[lastEntry.type];
size_t entryBytes = bytesPerValue * lastEntry.count;
int cmp = memcmp(entry.data.u8, lastEntry.data.u8, entryBytes);
if (cmp != 0) {
isDifferent = true;
}
} else {
// Count or type has changed
isDifferent = true;
}
} else {
// No last entry, so always consider to be different
isDifferent = true;
}
if (isDifferent) {
ALOGV("%s: Session parameter tag id %d changed", __FUNCTION__, tag);
if (!skipHFRTargetFPSUpdate(tag, entry, lastEntry)) {
updatesDetected = true;
}
updatedParams.update(entry);
}
} else if (lastEntry.count > 0) {
// Value has been removed
ALOGV("%s: Session parameter tag id %d removed", __FUNCTION__, tag);
updatedParams.erase(tag);
updatesDetected = true;
}
}
bool reconfigureRequired;
if (updatesDetected) {
reconfigureRequired = mInterface->isReconfigurationRequired(mLatestSessionParams,
updatedParams);
mLatestSessionParams = updatedParams;
} else {
reconfigureRequired = false;
}
return reconfigureRequired;
}
bool Camera3Device::RequestThread::threadLoop() {
ATRACE_CALL();
status_t res;
// Any function called from threadLoop() must not hold mInterfaceLock since
// it could lead to deadlocks (disconnect() -> hold mInterfaceMutex -> wait for request thread
// to finish -> request thread waits on mInterfaceMutex) http://b/143513518
// Handle paused state.
if (waitIfPaused()) {
return true;
}
// Wait for the next batch of requests.
waitForNextRequestBatch();
if (mNextRequests.size() == 0) {
return true;
}
// Get the latest request ID, if any
int latestRequestId;
camera_metadata_entry_t requestIdEntry = mNextRequests[mNextRequests.size() - 1].
captureRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_ID);
if (requestIdEntry.count > 0) {
latestRequestId = requestIdEntry.data.i32[0];
} else {
ALOGW("%s: Did not have android.request.id set in the request.", __FUNCTION__);
latestRequestId = NAME_NOT_FOUND;
}
for (size_t i = 0; i < mNextRequests.size(); i++) {
auto& nextRequest = mNextRequests.editItemAt(i);
sp<CaptureRequest> captureRequest = nextRequest.captureRequest;
captureRequest->mTestPatternChanged = overrideTestPattern(captureRequest);
// Do not override rotate&crop for stream configurations that include
// SurfaceViews(HW_COMPOSER) output, unless mOverrideToPortrait is set.
// The display rotation there will be compensated by NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY
captureRequest->mRotateAndCropChanged = (mComposerOutput && !mOverrideToPortrait) ? false :
overrideAutoRotateAndCrop(captureRequest);
captureRequest->mAutoframingChanged = overrideAutoframing(captureRequest);
if (flags::inject_session_params()) {
injectSessionParams(captureRequest, mInjectedSessionParams);
}
}
// 'mNextRequests' will at this point contain either a set of HFR batched requests
// or a single request from streaming or burst. In either case the first element
// should contain the latest camera settings that we need to check for any session
// parameter updates.
if (updateSessionParameters(mNextRequests[0].captureRequest->mSettingsList.begin()->metadata)) {
res = OK;
//Input stream buffers are already acquired at this point so an input stream
//will not be able to move to idle state unless we force it.
if (mNextRequests[0].captureRequest->mInputStream != nullptr) {
res = mNextRequests[0].captureRequest->mInputStream->forceToIdle();
if (res != OK) {
ALOGE("%s: Failed to force idle input stream: %d", __FUNCTION__, res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
}
if (res == OK) {
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
if (parent->reconfigureCamera(mLatestSessionParams, mStatusId)) {
mForceNewRequestAfterReconfigure = true;
mReconfigured = true;
}
}
if (mNextRequests[0].captureRequest->mInputStream != nullptr) {
mNextRequests[0].captureRequest->mInputStream->restoreConfiguredState();
if (res != OK) {
ALOGE("%s: Failed to restore configured input stream: %d", __FUNCTION__, res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
}
}
}
// Prepare a batch of HAL requests and output buffers.
res = prepareHalRequests();
if (res == TIMED_OUT) {
// Not a fatal error if getting output buffers time out.
cleanUpFailedRequests(/*sendRequestError*/ true);
// Check if any stream is abandoned.
checkAndStopRepeatingRequest();
return true;
} else if (res != OK) {
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
// Inform waitUntilRequestProcessed thread of a new request ID
{
Mutex::Autolock al(mLatestRequestMutex);
mLatestRequestId = latestRequestId;
mLatestRequestSignal.signal();
}
// Submit a batch of requests to HAL.
// Use flush lock only when submitting multilple requests in a batch.
// TODO: The problem with flush lock is flush() will be blocked by process_capture_request()
// which may take a long time to finish so synchronizing flush() and
// process_capture_request() defeats the purpose of cancelling requests ASAP with flush().
// For now, only synchronize for high speed recording and we should figure something out for
// removing the synchronization.
bool useFlushLock = mNextRequests.size() > 1;
if (useFlushLock) {
mFlushLock.lock();
}
ALOGVV("%s: %d: submitting %zu requests in a batch.", __FUNCTION__, __LINE__,
mNextRequests.size());
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onSubmittingRequest();
}
bool submitRequestSuccess = false;
nsecs_t tRequestStart = systemTime(SYSTEM_TIME_MONOTONIC);
submitRequestSuccess = sendRequestsBatch();
nsecs_t tRequestEnd = systemTime(SYSTEM_TIME_MONOTONIC);
mRequestLatency.add(tRequestStart, tRequestEnd);
if (useFlushLock) {
mFlushLock.unlock();
}
// Unset as current request
{
Mutex::Autolock l(mRequestLock);
mNextRequests.clear();
}
mRequestSubmittedSignal.signal();
return submitRequestSuccess;
}
status_t Camera3Device::removeFwkOnlyRegionKeys(CameraMetadata *request) {
static const std::array<uint32_t, 4> kFwkOnlyRegionKeys = {ANDROID_CONTROL_AF_REGIONS_SET,
ANDROID_CONTROL_AE_REGIONS_SET, ANDROID_CONTROL_AWB_REGIONS_SET,
ANDROID_SCALER_CROP_REGION_SET};
if (request == nullptr) {
ALOGE("%s request metadata nullptr", __FUNCTION__);
return BAD_VALUE;
}
status_t res = OK;
for (const auto &key : kFwkOnlyRegionKeys) {
if (request->exists(key)) {
res = request->erase(key);
if (res != OK) {
return res;
}
}
}
return OK;
}
status_t Camera3Device::RequestThread::prepareHalRequests() {
ATRACE_CALL();
bool batchedRequest = mNextRequests[0].captureRequest->mBatchSize > 1;
for (size_t i = 0; i < mNextRequests.size(); i++) {
auto& nextRequest = mNextRequests.editItemAt(i);
sp<CaptureRequest> captureRequest = nextRequest.captureRequest;
camera_capture_request_t* halRequest = &nextRequest.halRequest;
Vector<camera_stream_buffer_t>* outputBuffers = &nextRequest.outputBuffers;
// Prepare a request to HAL
halRequest->frame_number = captureRequest->mResultExtras.frameNumber;
// Insert any queued triggers (before metadata is locked)
status_t res = insertTriggers(captureRequest);
if (res < 0) {
SET_ERR("RequestThread: Unable to insert triggers "
"(capture request %d, HAL device: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
int triggerCount = res;
bool triggersMixedIn = (triggerCount > 0 || mPrevTriggers > 0);
mPrevTriggers = triggerCount;
bool settingsOverrideChanged = overrideSettingsOverride(captureRequest);
// If the request is the same as last, or we had triggers now or last time or
// changing overrides this time
bool newRequest =
(mPrevRequest != captureRequest || triggersMixedIn ||
captureRequest->mRotateAndCropChanged ||
captureRequest->mAutoframingChanged ||
captureRequest->mTestPatternChanged || settingsOverrideChanged ||
(flags::inject_session_params() && mForceNewRequestAfterReconfigure)) &&
// Request settings are all the same within one batch, so only treat the first
// request in a batch as new
!(batchedRequest && i > 0);
if (newRequest) {
std::set<std::string> cameraIdsWithZoom;
if (flags::inject_session_params() && mForceNewRequestAfterReconfigure) {
// This only needs to happen once.
mForceNewRequestAfterReconfigure = false;
}
/**
* HAL workaround:
* Insert a fake trigger ID if a trigger is set but no trigger ID is
*/
res = addFakeTriggerIds(captureRequest);
if (res != OK) {
SET_ERR("RequestThread: Unable to insert fake trigger IDs "
"(capture request %d, HAL device: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
{
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
List<PhysicalCameraSettings>::iterator it;
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
if (parent->mUHRCropAndMeteringRegionMappers.find(it->cameraId) ==
parent->mUHRCropAndMeteringRegionMappers.end()) {
if (removeFwkOnlyRegionKeys(&(it->metadata)) != OK) {
SET_ERR("RequestThread: Unable to remove fwk-only keys from request"
"%d: %s (%d)", halRequest->frame_number, strerror(-res),
res);
return INVALID_OPERATION;
}
continue;
}
if (!captureRequest->mUHRCropAndMeteringRegionsUpdated) {
res = parent->mUHRCropAndMeteringRegionMappers[it->cameraId].
updateCaptureRequest(&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for scaler crop region and metering regions for request "
"%d: %s (%d)", halRequest->frame_number, strerror(-res),
res);
return INVALID_OPERATION;
}
captureRequest->mUHRCropAndMeteringRegionsUpdated = true;
if (removeFwkOnlyRegionKeys(&(it->metadata)) != OK) {
SET_ERR("RequestThread: Unable to remove fwk-only keys from request"
"%d: %s (%d)", halRequest->frame_number, strerror(-res),
res);
return INVALID_OPERATION;
}
}
}
// Correct metadata regions for distortion correction if enabled
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
if (parent->mDistortionMappers.find(it->cameraId) ==
parent->mDistortionMappers.end()) {
continue;
}
if (!captureRequest->mDistortionCorrectionUpdated) {
res = parent->mDistortionMappers[it->cameraId].correctCaptureRequest(
&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for lens distortion for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
captureRequest->mDistortionCorrectionUpdated = true;
}
}
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
if (parent->mZoomRatioMappers.find(it->cameraId) ==
parent->mZoomRatioMappers.end()) {
continue;
}
if (!captureRequest->mZoomRatioIs1x) {
cameraIdsWithZoom.insert(it->cameraId);
}
if (!captureRequest->mZoomRatioUpdated) {
res = parent->mZoomRatioMappers[it->cameraId].updateCaptureRequest(
&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for zoom ratio for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
captureRequest->mZoomRatioUpdated = true;
}
}
if (captureRequest->mRotateAndCropAuto &&
!captureRequest->mRotationAndCropUpdated) {
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
auto mapper = parent->mRotateAndCropMappers.find(it->cameraId);
if (mapper != parent->mRotateAndCropMappers.end()) {
res = mapper->second.updateCaptureRequest(&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for rotate-and-crop for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
}
}
captureRequest->mRotationAndCropUpdated = true;
}
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
res = filterVndkKeys(mVndkVersion, it->metadata, false /*isStatic*/);
if (res != OK) {
SET_ERR("RequestThread: Failed during VNDK filter of capture requests "
"%d: %s (%d)", halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
if (!parent->mSupportsExtensionKeys) {
res = filterExtensionKeys(&it->metadata);
if (res != OK) {
SET_ERR("RequestThread: Failed during extension filter of capture "
"requests %d: %s (%d)", halRequest->frame_number,
strerror(-res), res);
return INVALID_OPERATION;
}
}
}
}
}
/**
* The request should be presorted so accesses in HAL
* are O(logn). Sidenote, sorting a sorted metadata is nop.
*/
captureRequest->mSettingsList.begin()->metadata.sort();
halRequest->settings = captureRequest->mSettingsList.begin()->metadata.getAndLock();
mPrevRequest = captureRequest;
mPrevCameraIdsWithZoom = cameraIdsWithZoom;
ALOGVV("%s: Request settings are NEW", __FUNCTION__);
IF_ALOGV() {
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(
halRequest->settings,
ANDROID_CONTROL_AF_TRIGGER,
&e
);
if (e.count > 0) {
ALOGV("%s: Request (frame num %d) had AF trigger 0x%x",
__FUNCTION__,
halRequest->frame_number,
e.data.u8[0]);
}
}
} else {
// leave request.settings NULL to indicate 'reuse latest given'
ALOGVV("%s: Request settings are REUSED",
__FUNCTION__);
}
if (captureRequest->mSettingsList.size() > 1) {
halRequest->num_physcam_settings = captureRequest->mSettingsList.size() - 1;
halRequest->physcam_id = new const char* [halRequest->num_physcam_settings];
if (newRequest) {
halRequest->physcam_settings =
new const camera_metadata* [halRequest->num_physcam_settings];
} else {
halRequest->physcam_settings = nullptr;
}
auto it = ++captureRequest->mSettingsList.begin();
size_t i = 0;
for (; it != captureRequest->mSettingsList.end(); it++, i++) {
halRequest->physcam_id[i] = it->cameraId.c_str();
if (newRequest) {
it->metadata.sort();
halRequest->physcam_settings[i] = it->metadata.getAndLock();
}
}
}
uint32_t totalNumBuffers = 0;
// Fill in buffers
if (captureRequest->mInputStream != NULL) {
halRequest->input_buffer = &captureRequest->mInputBuffer;
halRequest->input_width = captureRequest->mInputBufferSize.width;
halRequest->input_height = captureRequest->mInputBufferSize.height;
totalNumBuffers += 1;
} else {
halRequest->input_buffer = NULL;
}
outputBuffers->insertAt(camera_stream_buffer_t(), 0,
captureRequest->mOutputStreams.size());
halRequest->output_buffers = outputBuffers->array();
std::set<std::set<std::string>> requestedPhysicalCameras;
sp<Camera3Device> parent = mParent.promote();
if (parent == NULL) {
// Should not happen, and nowhere to send errors to, so just log it
CLOGE("RequestThread: Parent is gone");
return INVALID_OPERATION;
}
nsecs_t waitDuration = kBaseGetBufferWait + parent->getExpectedInFlightDuration();
SurfaceMap uniqueSurfaceIdMap;
bool containsHalBufferManagedStream = false;
for (size_t j = 0; j < captureRequest->mOutputStreams.size(); j++) {
sp<Camera3OutputStreamInterface> outputStream =
captureRequest->mOutputStreams.editItemAt(j);
int streamId = outputStream->getId();
if (!containsHalBufferManagedStream) {
containsHalBufferManagedStream =
contains(mHalBufManagedStreamIds, streamId);
}
// Prepare video buffers for high speed recording on the first video request.
if (mPrepareVideoStream && outputStream->isVideoStream()) {
// Only try to prepare video stream on the first video request.
mPrepareVideoStream = false;
res = outputStream->startPrepare(Camera3StreamInterface::ALLOCATE_PIPELINE_MAX,
false /*blockRequest*/);
while (res == NOT_ENOUGH_DATA) {
res = outputStream->prepareNextBuffer();
}
if (res != OK) {
ALOGW("%s: Preparing video buffers for high speed failed: %s (%d)",
__FUNCTION__, strerror(-res), res);
outputStream->cancelPrepare();
}
}
std::vector<size_t> uniqueSurfaceIds;
res = outputStream->getUniqueSurfaceIds(
captureRequest->mOutputSurfaces[streamId],
&uniqueSurfaceIds);
// INVALID_OPERATION is normal output for streams not supporting surfaceIds
if (res != OK && res != INVALID_OPERATION) {
ALOGE("%s: failed to query stream %d unique surface IDs",
__FUNCTION__, streamId);
return res;
}
if (res == OK) {
uniqueSurfaceIdMap.insert({streamId, std::move(uniqueSurfaceIds)});
}
if (parent->isHalBufferManagedStream(streamId)) {
if (outputStream->isAbandoned()) {
ALOGV("%s: stream %d is abandoned, skipping request", __FUNCTION__, streamId);
return TIMED_OUT;
}
// HAL will request buffer through requestStreamBuffer API
camera_stream_buffer_t& buffer = outputBuffers->editItemAt(j);
buffer.stream = outputStream->asHalStream();
buffer.buffer = nullptr;
buffer.status = CAMERA_BUFFER_STATUS_OK;
buffer.acquire_fence = -1;
buffer.release_fence = -1;
// Mark the output stream as unpreparable to block clients from calling
// 'prepare' after this request reaches CameraHal and before the respective
// buffers are requested.
outputStream->markUnpreparable();
} else {
res = outputStream->getBuffer(&outputBuffers->editItemAt(j),
waitDuration,
captureRequest->mOutputSurfaces[streamId]);
if (res != OK) {
// Can't get output buffer from gralloc queue - this could be due to
// abandoned queue or other consumer misbehavior, so not a fatal
// error
ALOGV("RequestThread: Can't get output buffer, skipping request:"
" %s (%d)", strerror(-res), res);
return TIMED_OUT;
}
}
{
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
const std::string& streamCameraId = outputStream->getPhysicalCameraId();
// Consider the case where clients are sending a single logical camera request
// to physical output/outputs
bool singleRequest = captureRequest->mSettingsList.size() == 1;
for (const auto& settings : captureRequest->mSettingsList) {
if (((streamCameraId.empty() || singleRequest) &&
parent->getId() == settings.cameraId) ||
streamCameraId == settings.cameraId) {
outputStream->fireBufferRequestForFrameNumber(
captureRequest->mResultExtras.frameNumber,
settings.metadata);
}
}
}
}
const std::string &physicalCameraId = outputStream->getPhysicalCameraId();
int32_t streamGroupId = outputStream->getHalStreamGroupId();
if (streamGroupId != -1 && mGroupIdPhysicalCameraMap.count(streamGroupId) == 1) {
requestedPhysicalCameras.insert(mGroupIdPhysicalCameraMap[streamGroupId]);
} else if (!physicalCameraId.empty()) {
requestedPhysicalCameras.insert(std::set<std::string>({physicalCameraId}));
}
halRequest->num_output_buffers++;
}
totalNumBuffers += halRequest->num_output_buffers;
// Log request in the in-flight queue
// If this request list is for constrained high speed recording (not
// preview), and the current request is not the last one in the batch,
// do not send callback to the app.
bool hasCallback = true;
if (batchedRequest && i != mNextRequests.size()-1) {
hasCallback = false;
}
bool isStillCapture = false;
bool isZslCapture = false;
const camera_metadata_t* settings = halRequest->settings;
bool shouldUnlockSettings = false;
if (settings == nullptr) {
shouldUnlockSettings = true;
settings = captureRequest->mSettingsList.begin()->metadata.getAndLock();
}
if (!mNextRequests[0].captureRequest->mSettingsList.begin()->metadata.isEmpty()) {
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(settings, ANDROID_CONTROL_CAPTURE_INTENT, &e);
if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE)) {
isStillCapture = true;
ATRACE_ASYNC_BEGIN("still capture", mNextRequests[i].halRequest.frame_number);
}
e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(settings, ANDROID_CONTROL_ENABLE_ZSL, &e);
if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_ENABLE_ZSL_TRUE)) {
isZslCapture = true;
}
}
bool passSurfaceMap =
mUseHalBufManager ||
(flags::session_hal_buf_manager() && containsHalBufferManagedStream);
auto expectedDurationInfo = calculateExpectedDurationRange(settings);
res = parent->registerInFlight(halRequest->frame_number,
totalNumBuffers, captureRequest->mResultExtras,
/*hasInput*/halRequest->input_buffer != NULL,
hasCallback,
expectedDurationInfo.minDuration,
expectedDurationInfo.maxDuration,
expectedDurationInfo.isFixedFps,
requestedPhysicalCameras, isStillCapture, isZslCapture,
captureRequest->mRotateAndCropAuto, captureRequest->mAutoframingAuto,
mPrevCameraIdsWithZoom,
passSurfaceMap ? uniqueSurfaceIdMap :
SurfaceMap{}, captureRequest->mRequestTimeNs);
ALOGVV("%s: registered in flight requestId = %" PRId32 ", frameNumber = %" PRId64
", burstId = %" PRId32 ".",
__FUNCTION__,
captureRequest->mResultExtras.requestId, captureRequest->mResultExtras.frameNumber,
captureRequest->mResultExtras.burstId);
if (shouldUnlockSettings) {
captureRequest->mSettingsList.begin()->metadata.unlock(settings);
}
if (res != OK) {
SET_ERR("RequestThread: Unable to register new in-flight request:"
" %s (%d)", strerror(-res), res);
return INVALID_OPERATION;
}
}
return OK;
}
CameraMetadata Camera3Device::RequestThread::getLatestRequest() const {
ATRACE_CALL();
Mutex::Autolock al(mLatestRequestMutex);
ALOGV("RequestThread::%s", __FUNCTION__);
return mLatestRequest;
}
bool Camera3Device::RequestThread::isStreamPending(
sp<Camera3StreamInterface>& stream) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
for (const auto& nextRequest : mNextRequests) {
if (!nextRequest.submitted) {
for (const auto& s : nextRequest.captureRequest->mOutputStreams) {
if (stream == s) return true;
}
if (stream == nextRequest.captureRequest->mInputStream) return true;
}
}
for (const auto& request : mRequestQueue) {
for (const auto& s : request->mOutputStreams) {
if (stream == s) return true;
}
if (stream == request->mInputStream) return true;
}
for (const auto& request : mRepeatingRequests) {
for (const auto& s : request->mOutputStreams) {
if (stream == s) return true;
}
if (stream == request->mInputStream) return true;
}
return false;
}
bool Camera3Device::RequestThread::isOutputSurfacePending(int streamId, size_t surfaceId) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
for (const auto& nextRequest : mNextRequests) {
for (const auto& s : nextRequest.captureRequest->mOutputSurfaces) {
if (s.first == streamId) {
const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId);
if (it != s.second.end()) {
return true;
}
}
}
}
for (const auto& request : mRequestQueue) {
for (const auto& s : request->mOutputSurfaces) {
if (s.first == streamId) {
const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId);
if (it != s.second.end()) {
return true;
}
}
}
}
for (const auto& request : mRepeatingRequests) {
for (const auto& s : request->mOutputSurfaces) {
if (s.first == streamId) {
const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId);
if (it != s.second.end()) {
return true;
}
}
}
}
return false;
}
void Camera3Device::RequestThread::signalPipelineDrain(const std::vector<int>& streamIds) {
if (!mUseHalBufManager &&
(flags::session_hal_buf_manager() && mHalBufManagedStreamIds.size() == 0)) {
ALOGE("%s called for camera device not supporting HAL buffer management", __FUNCTION__);
return;
}
Mutex::Autolock pl(mPauseLock);
if (mPaused) {
mInterface->signalPipelineDrain(streamIds);
return;
}
// If request thread is still busy, wait until paused then notify HAL
mNotifyPipelineDrain = true;
mStreamIdsToBeDrained = streamIds;
}
void Camera3Device::RequestThread::resetPipelineDrain() {
Mutex::Autolock pl(mPauseLock);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
void Camera3Device::RequestThread::clearPreviousRequest() {
Mutex::Autolock l(mRequestLock);
mPrevRequest.clear();
}
status_t Camera3Device::RequestThread::setRotateAndCropAutoBehavior(
camera_metadata_enum_android_scaler_rotate_and_crop_t rotateAndCropValue) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
mRotateAndCropOverride = rotateAndCropValue;
return OK;
}
status_t Camera3Device::RequestThread::setAutoframingAutoBehaviour(
camera_metadata_enum_android_control_autoframing_t autoframingValue) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
mAutoframingOverride = autoframingValue;
return OK;
}
status_t Camera3Device::RequestThread::setComposerSurface(bool composerSurfacePresent) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
mComposerOutput = composerSurfacePresent;
return OK;
}
status_t Camera3Device::RequestThread::setCameraMute(int32_t muteMode) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
if (muteMode != mCameraMute) {
mCameraMute = muteMode;
}
return OK;
}
status_t Camera3Device::RequestThread::setZoomOverride(int32_t zoomOverride) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
mSettingsOverride = zoomOverride;
return OK;
}
nsecs_t Camera3Device::getExpectedInFlightDuration() {
ATRACE_CALL();
std::lock_guard<std::mutex> l(mInFlightLock);
return mExpectedInflightDuration > kMinInflightDuration ?
mExpectedInflightDuration : kMinInflightDuration;
}
void Camera3Device::RequestThread::cleanupPhysicalSettings(sp<CaptureRequest> request,
camera_capture_request_t *halRequest) {
if ((request == nullptr) || (halRequest == nullptr)) {
ALOGE("%s: Invalid request!", __FUNCTION__);
return;
}
if (halRequest->num_physcam_settings > 0) {
if (halRequest->physcam_id != nullptr) {
delete [] halRequest->physcam_id;
halRequest->physcam_id = nullptr;
}
if (halRequest->physcam_settings != nullptr) {
auto it = ++(request->mSettingsList.begin());
size_t i = 0;
for (; it != request->mSettingsList.end(); it++, i++) {
it->metadata.unlock(halRequest->physcam_settings[i]);
}
delete [] halRequest->physcam_settings;
halRequest->physcam_settings = nullptr;
}
}
}
status_t Camera3Device::setCameraServiceWatchdog(bool enabled) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (mCameraServiceWatchdog != NULL) {
mCameraServiceWatchdog->setEnabled(enabled);
}
return OK;
}
void Camera3Device::setStreamUseCaseOverrides(
const std::vector<int64_t>& useCaseOverrides) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
mStreamUseCaseOverrides = useCaseOverrides;
}
void Camera3Device::clearStreamUseCaseOverrides() {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
mStreamUseCaseOverrides.clear();
}
bool Camera3Device::hasDeviceError() {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
return mStatus == STATUS_ERROR;
}
void Camera3Device::RequestThread::cleanUpFailedRequests(bool sendRequestError) {
if (mNextRequests.empty()) {
return;
}
for (auto& nextRequest : mNextRequests) {
// Skip the ones that have been submitted successfully.
if (nextRequest.submitted) {
continue;
}
sp<CaptureRequest> captureRequest = nextRequest.captureRequest;
camera_capture_request_t* halRequest = &nextRequest.halRequest;
Vector<camera_stream_buffer_t>* outputBuffers = &nextRequest.outputBuffers;
if (halRequest->settings != NULL) {
captureRequest->mSettingsList.begin()->metadata.unlock(halRequest->settings);
}
cleanupPhysicalSettings(captureRequest, halRequest);
if (captureRequest->mInputStream != NULL) {
captureRequest->mInputBuffer.status = CAMERA_BUFFER_STATUS_ERROR;
captureRequest->mInputStream->returnInputBuffer(captureRequest->mInputBuffer);
}
for (size_t i = 0; i < halRequest->num_output_buffers; i++) {
//Buffers that failed processing could still have
//valid acquire fence.
Camera3Stream *stream = Camera3Stream::cast((*outputBuffers)[i].stream);
int32_t streamId = stream->getId();
bool skipBufferForStream =
mUseHalBufManager || (flags::session_hal_buf_manager() &&
contains(mHalBufManagedStreamIds, streamId));
if (skipBufferForStream) {
// No output buffer can be returned when using HAL buffer manager for its stream
continue;
}
int acquireFence = (*outputBuffers)[i].acquire_fence;
if (0 <= acquireFence) {
close(acquireFence);
outputBuffers->editItemAt(i).acquire_fence = -1;
}
outputBuffers->editItemAt(i).status = CAMERA_BUFFER_STATUS_ERROR;
captureRequest->mOutputStreams.editItemAt(i)->returnBuffer((*outputBuffers)[i],
/*timestamp*/0, /*readoutTimestamp*/0,
/*timestampIncreasing*/true, std::vector<size_t> (),
captureRequest->mResultExtras.frameNumber);
}
if (sendRequestError) {
Mutex::Autolock l(mRequestLock);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
captureRequest->mResultExtras);
}
{
Mutex::Autolock al(mLatestRequestMutex);
mLatestFailedRequestId = captureRequest->mResultExtras.requestId;
mLatestRequestSignal.signal();
}
}
// Remove yet-to-be submitted inflight request from inflightMap
{
sp<Camera3Device> parent = mParent.promote();
if (parent != NULL) {
std::lock_guard<std::mutex> l(parent->mInFlightLock);
ssize_t idx = parent->mInFlightMap.indexOfKey(captureRequest->mResultExtras.frameNumber);
if (idx >= 0) {
ALOGV("%s: Remove inflight request from queue: frameNumber %" PRId64,
__FUNCTION__, captureRequest->mResultExtras.frameNumber);
parent->removeInFlightMapEntryLocked(idx);
}
}
}
}
Mutex::Autolock l(mRequestLock);
mNextRequests.clear();
}
void Camera3Device::RequestThread::waitForNextRequestBatch() {
ATRACE_CALL();
// Optimized a bit for the simple steady-state case (single repeating
// request), to avoid putting that request in the queue temporarily.
Mutex::Autolock l(mRequestLock);
assert(mNextRequests.empty());
NextRequest nextRequest;
nextRequest.captureRequest = waitForNextRequestLocked();
if (nextRequest.captureRequest == nullptr) {
return;
}
nextRequest.halRequest = camera_capture_request_t();
nextRequest.submitted = false;
mNextRequests.add(nextRequest);
// Wait for additional requests
const size_t batchSize = nextRequest.captureRequest->mBatchSize;
for (size_t i = 1; i < batchSize; i++) {
NextRequest additionalRequest;
additionalRequest.captureRequest = waitForNextRequestLocked();
if (additionalRequest.captureRequest == nullptr) {
break;
}
additionalRequest.halRequest = camera_capture_request_t();
additionalRequest.submitted = false;
mNextRequests.add(additionalRequest);
}
if (mNextRequests.size() < batchSize) {
ALOGE("RequestThread: only get %zu out of %zu requests. Skipping requests.",
mNextRequests.size(), batchSize);
cleanUpFailedRequests(/*sendRequestError*/true);
}
return;
}
sp<Camera3Device::CaptureRequest>
Camera3Device::RequestThread::waitForNextRequestLocked() {
status_t res;
sp<CaptureRequest> nextRequest;
while (mRequestQueue.empty()) {
if (!mRepeatingRequests.empty()) {
// Always atomically enqueue all requests in a repeating request
// list. Guarantees a complete in-sequence set of captures to
// application.
const RequestList &requests = mRepeatingRequests;
if (mFirstRepeating) {
mFirstRepeating = false;
} else {
for (auto& request : requests) {
// For repeating requests, override timestamp request using
// the time a request is inserted into the request queue,
// because the original repeating request will have an old
// fixed timestamp.
request->mRequestTimeNs = systemTime();
}
}
RequestList::const_iterator firstRequest =
requests.begin();
nextRequest = *firstRequest;
mRequestQueue.insert(mRequestQueue.end(),
++firstRequest,
requests.end());
// No need to wait any longer
mRepeatingLastFrameNumber = mFrameNumber + requests.size() - 1;
break;
}
if (!mRequestClearing) {
res = mRequestSignal.waitRelative(mRequestLock, kRequestTimeout);
}
if ((mRequestQueue.empty() && mRepeatingRequests.empty()) ||
exitPending()) {
Mutex::Autolock pl(mPauseLock);
if (mPaused == false) {
ALOGV("%s: RequestThread: Going idle", __FUNCTION__);
mPaused = true;
if (mNotifyPipelineDrain) {
mInterface->signalPipelineDrain(mStreamIdsToBeDrained);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
// Let the tracker know
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onRequestThreadPaused();
}
}
mRequestClearing = false;
// Stop waiting for now and let thread management happen
return NULL;
}
}
if (nextRequest == NULL) {
// Don't have a repeating request already in hand, so queue
// must have an entry now.
RequestList::iterator firstRequest =
mRequestQueue.begin();
nextRequest = *firstRequest;
mRequestQueue.erase(firstRequest);
if (mRequestQueue.empty() && !nextRequest->mRepeating) {
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyRequestQueueEmpty();
}
}
}
// In case we've been unpaused by setPaused clearing mDoPause, need to
// update internal pause state (capture/setRepeatingRequest unpause
// directly).
Mutex::Autolock pl(mPauseLock);
if (mPaused) {
ALOGV("%s: RequestThread: Unpaused", __FUNCTION__);
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentActive(mStatusId);
}
}
mPaused = false;
// Check if we've reconfigured since last time, and reset the preview
// request if so. Can't use 'NULL request == repeat' across configure calls.
if (mReconfigured) {
mPrevRequest.clear();
mReconfigured = false;
}
if (nextRequest != NULL) {
nextRequest->mResultExtras.frameNumber = mFrameNumber++;
nextRequest->mResultExtras.afTriggerId = mCurrentAfTriggerId;
nextRequest->mResultExtras.precaptureTriggerId = mCurrentPreCaptureTriggerId;
// Since RequestThread::clear() removes buffers from the input stream,
// get the right buffer here before unlocking mRequestLock
if (nextRequest->mInputStream != NULL) {
res = nextRequest->mInputStream->getInputBuffer(&nextRequest->mInputBuffer,
&nextRequest->mInputBufferSize);
if (res != OK) {
// Can't get input buffer from gralloc queue - this could be due to
// disconnected queue or other producer misbehavior, so not a fatal
// error
ALOGE("%s: Can't get input buffer, skipping request:"
" %s (%d)", __FUNCTION__, strerror(-res), res);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
nextRequest->mResultExtras);
}
return NULL;
}
}
}
return nextRequest;
}
bool Camera3Device::RequestThread::waitIfPaused() {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mPauseLock);
while (mDoPause) {
if (mPaused == false) {
mPaused = true;
ALOGV("%s: RequestThread: Paused", __FUNCTION__);
if (mNotifyPipelineDrain) {
mInterface->signalPipelineDrain(mStreamIdsToBeDrained);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
// Let the tracker know
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onRequestThreadPaused();
}
}
res = mDoPauseSignal.waitRelative(mPauseLock, kRequestTimeout);
if (res == TIMED_OUT || exitPending()) {
return true;
}
}
// We don't set mPaused to false here, because waitForNextRequest needs
// to further manage the paused state in case of starvation.
return false;
}
void Camera3Device::RequestThread::unpauseForNewRequests() {
ATRACE_CALL();
// With work to do, mark thread as unpaused.
// If paused by request (setPaused), don't resume, to avoid
// extra signaling/waiting overhead to waitUntilPaused
mRequestSignal.signal();
Mutex::Autolock p(mPauseLock);
if (!mDoPause) {
ALOGV("%s: RequestThread: Going active", __FUNCTION__);
if (mPaused) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentActive(mStatusId);
}
}
mPaused = false;
}
}
void Camera3Device::RequestThread::setErrorState(const char *fmt, ...) {
sp<Camera3Device> parent = mParent.promote();
if (parent != NULL) {
va_list args;
va_start(args, fmt);
parent->setErrorStateV(fmt, args);
va_end(args);
}
}
status_t Camera3Device::RequestThread::insertTriggers(
const sp<CaptureRequest> &request) {
ATRACE_CALL();
Mutex::Autolock al(mTriggerMutex);
sp<Camera3Device> parent = mParent.promote();
if (parent == NULL) {
CLOGE("RequestThread: Parent is gone");
return DEAD_OBJECT;
}
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
size_t count = mTriggerMap.size();
for (size_t i = 0; i < count; ++i) {
RequestTrigger trigger = mTriggerMap.valueAt(i);
uint32_t tag = trigger.metadataTag;
if (tag == ANDROID_CONTROL_AF_TRIGGER_ID || tag == ANDROID_CONTROL_AE_PRECAPTURE_ID) {
bool isAeTrigger = (trigger.metadataTag == ANDROID_CONTROL_AE_PRECAPTURE_ID);
uint32_t triggerId = static_cast<uint32_t>(trigger.entryValue);
if (isAeTrigger) {
request->mResultExtras.precaptureTriggerId = triggerId;
mCurrentPreCaptureTriggerId = triggerId;
} else {
request->mResultExtras.afTriggerId = triggerId;
mCurrentAfTriggerId = triggerId;
}
continue;
}
camera_metadata_entry entry = metadata.find(tag);
if (entry.count > 0) {
/**
* Already has an entry for this trigger in the request.
* Rewrite it with our requested trigger value.
*/
RequestTrigger oldTrigger = trigger;
oldTrigger.entryValue = entry.data.u8[0];
mTriggerReplacedMap.add(tag, oldTrigger);
} else {
/**
* More typical, no trigger entry, so we just add it
*/
mTriggerRemovedMap.add(tag, trigger);
}
status_t res;
switch (trigger.getTagType()) {
case TYPE_BYTE: {
uint8_t entryValue = static_cast<uint8_t>(trigger.entryValue);
res = metadata.update(tag,
&entryValue,
/*count*/1);
break;
}
case TYPE_INT32:
res = metadata.update(tag,
&trigger.entryValue,
/*count*/1);
break;
default:
ALOGE("%s: Type not supported: 0x%x",
__FUNCTION__,
trigger.getTagType());
return INVALID_OPERATION;
}
if (res != OK) {
ALOGE("%s: Failed to update request metadata with trigger tag %s"
", value %d", __FUNCTION__, trigger.getTagName(),
trigger.entryValue);
return res;
}
ALOGV("%s: Mixed in trigger %s, value %d", __FUNCTION__,
trigger.getTagName(),
trigger.entryValue);
}
mTriggerMap.clear();
return count;
}
status_t Camera3Device::RequestThread::removeTriggers(
const sp<CaptureRequest> &request) {
ATRACE_CALL();
Mutex::Autolock al(mTriggerMutex);
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
/**
* Replace all old entries with their old values.
*/
for (size_t i = 0; i < mTriggerReplacedMap.size(); ++i) {
RequestTrigger trigger = mTriggerReplacedMap.valueAt(i);
status_t res;
uint32_t tag = trigger.metadataTag;
switch (trigger.getTagType()) {
case TYPE_BYTE: {
uint8_t entryValue = static_cast<uint8_t>(trigger.entryValue);
res = metadata.update(tag,
&entryValue,
/*count*/1);
break;
}
case TYPE_INT32:
res = metadata.update(tag,
&trigger.entryValue,
/*count*/1);
break;
default:
ALOGE("%s: Type not supported: 0x%x",
__FUNCTION__,
trigger.getTagType());
return INVALID_OPERATION;
}
if (res != OK) {
ALOGE("%s: Failed to restore request metadata with trigger tag %s"
", trigger value %d", __FUNCTION__,
trigger.getTagName(), trigger.entryValue);
return res;
}
}
mTriggerReplacedMap.clear();
/**
* Remove all new entries.
*/
for (size_t i = 0; i < mTriggerRemovedMap.size(); ++i) {
RequestTrigger trigger = mTriggerRemovedMap.valueAt(i);
status_t res = metadata.erase(trigger.metadataTag);
if (res != OK) {
ALOGE("%s: Failed to erase metadata with trigger tag %s"
", trigger value %d", __FUNCTION__,
trigger.getTagName(), trigger.entryValue);
return res;
}
}
mTriggerRemovedMap.clear();
return OK;
}
status_t Camera3Device::RequestThread::addFakeTriggerIds(
const sp<CaptureRequest> &request) {
// Trigger ID 0 had special meaning in the HAL2 spec, so avoid it here
static const int32_t fakeTriggerId = 1;
status_t res;
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
// If AF trigger is active, insert a fake AF trigger ID if none already
// exists
camera_metadata_entry afTrigger = metadata.find(ANDROID_CONTROL_AF_TRIGGER);
camera_metadata_entry afId = metadata.find(ANDROID_CONTROL_AF_TRIGGER_ID);
if (afTrigger.count > 0 &&
afTrigger.data.u8[0] != ANDROID_CONTROL_AF_TRIGGER_IDLE &&
afId.count == 0) {
res = metadata.update(ANDROID_CONTROL_AF_TRIGGER_ID, &fakeTriggerId, 1);
if (res != OK) return res;
}
// If AE precapture trigger is active, insert a fake precapture trigger ID
// if none already exists
camera_metadata_entry pcTrigger =
metadata.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER);
camera_metadata_entry pcId = metadata.find(ANDROID_CONTROL_AE_PRECAPTURE_ID);
if (pcTrigger.count > 0 &&
pcTrigger.data.u8[0] != ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE &&
pcId.count == 0) {
res = metadata.update(ANDROID_CONTROL_AE_PRECAPTURE_ID,
&fakeTriggerId, 1);
if (res != OK) return res;
}
return OK;
}
bool Camera3Device::RequestThread::overrideAutoRotateAndCrop(const sp<CaptureRequest> &request) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
return Camera3Device::overrideAutoRotateAndCrop(request, this->mOverrideToPortrait,
this->mRotateAndCropOverride);
}
bool Camera3Device::overrideAutoRotateAndCrop(const sp<CaptureRequest> &request,
bool overrideToPortrait,
camera_metadata_enum_android_scaler_rotate_and_crop_t rotateAndCropOverride) {
ATRACE_CALL();
if (overrideToPortrait) {
uint8_t rotateAndCrop_u8 = rotateAndCropOverride;
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
metadata.update(ANDROID_SCALER_ROTATE_AND_CROP,
&rotateAndCrop_u8, 1);
return true;
}
if (request->mRotateAndCropAuto) {
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
auto rotateAndCropEntry = metadata.find(ANDROID_SCALER_ROTATE_AND_CROP);
if (rotateAndCropEntry.count > 0) {
if (rotateAndCropEntry.data.u8[0] == rotateAndCropOverride) {
return false;
} else {
rotateAndCropEntry.data.u8[0] = rotateAndCropOverride;
return true;
}
} else {
uint8_t rotateAndCrop_u8 = rotateAndCropOverride;
metadata.update(ANDROID_SCALER_ROTATE_AND_CROP, &rotateAndCrop_u8, 1);
return true;
}
}
return false;
}
bool Camera3Device::overrideAutoframing(const sp<CaptureRequest> &request /*out*/,
camera_metadata_enum_android_control_autoframing_t autoframingOverride) {
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
auto autoframingEntry = metadata.find(ANDROID_CONTROL_AUTOFRAMING);
if (autoframingEntry.count > 0) {
if (autoframingEntry.data.u8[0] == autoframingOverride) {
return false;
} else {
autoframingEntry.data.u8[0] = autoframingOverride;
return true;
}
} else {
uint8_t autoframing_u8 = autoframingOverride;
metadata.update(ANDROID_CONTROL_AUTOFRAMING,
&autoframing_u8, 1);
return true;
}
return false;
}
bool Camera3Device::RequestThread::overrideAutoframing(const sp<CaptureRequest> &request) {
ATRACE_CALL();
if (request->mAutoframingAuto) {
Mutex::Autolock l(mTriggerMutex);
return Camera3Device::overrideAutoframing(request, mAutoframingOverride);
}
return false;
}
void Camera3Device::RequestThread::injectSessionParams(
const sp<CaptureRequest> &request,
const CameraMetadata& injectedSessionParams) {
CameraMetadata &requestMetadata = request->mSettingsList.begin()->metadata;
uint32_t tag_section;
camera_metadata_ro_entry entry;
for (auto tag : mSessionParamKeys) {
tag_section = tag >> 16;
if (tag_section < VENDOR_SECTION) {
// Only allow injection of vendor tags.
continue;
}
entry = injectedSessionParams.find(tag);
if (entry.count > 0) {
requestMetadata.update(entry);
}
}
}
status_t Camera3Device::RequestThread::setInjectedSessionParams(
const CameraMetadata& injectedSessionParams) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
mInjectedSessionParams = injectedSessionParams;
return OK;
}
status_t Camera3Device::injectSessionParams(const CameraMetadata& injectedSessionParams) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (mRequestThread == nullptr) {
return INVALID_OPERATION;
}
return mRequestThread->setInjectedSessionParams(injectedSessionParams);
}
bool Camera3Device::RequestThread::overrideTestPattern(
const sp<CaptureRequest> &request) {
ATRACE_CALL();
if (!mSupportCameraMute) return false;
Mutex::Autolock l(mTriggerMutex);
bool changed = false;
// For a multi-camera, the physical cameras support the same set of
// test pattern modes as the logical camera.
for (auto& settings : request->mSettingsList) {
CameraMetadata &metadata = settings.metadata;
int32_t testPatternMode = settings.mOriginalTestPatternMode;
int32_t testPatternData[4] = {
settings.mOriginalTestPatternData[0],
settings.mOriginalTestPatternData[1],
settings.mOriginalTestPatternData[2],
settings.mOriginalTestPatternData[3]
};
if (mCameraMute != ANDROID_SENSOR_TEST_PATTERN_MODE_OFF) {
testPatternMode = mCameraMute;
testPatternData[0] = 0;
testPatternData[1] = 0;
testPatternData[2] = 0;
testPatternData[3] = 0;
}
auto testPatternEntry = metadata.find(ANDROID_SENSOR_TEST_PATTERN_MODE);
bool supportTestPatternModeKey = settings.mHasTestPatternModeTag;
if (testPatternEntry.count > 0) {
if (testPatternEntry.data.i32[0] != testPatternMode) {
testPatternEntry.data.i32[0] = testPatternMode;
changed = true;
}
} else if (supportTestPatternModeKey) {
metadata.update(ANDROID_SENSOR_TEST_PATTERN_MODE,
&testPatternMode, 1);
changed = true;
}
auto testPatternColor = metadata.find(ANDROID_SENSOR_TEST_PATTERN_DATA);
bool supportTestPatternDataKey = settings.mHasTestPatternDataTag;
if (testPatternColor.count >= 4) {
for (size_t i = 0; i < 4; i++) {
if (testPatternColor.data.i32[i] != testPatternData[i]) {
testPatternColor.data.i32[i] = testPatternData[i];
changed = true;
}
}
} else if (supportTestPatternDataKey) {
metadata.update(ANDROID_SENSOR_TEST_PATTERN_DATA,
testPatternData, 4);
changed = true;
}
}
return changed;
}
bool Camera3Device::RequestThread::overrideSettingsOverride(
const sp<CaptureRequest> &request) {
ATRACE_CALL();
if (!mSupportSettingsOverride) return false;
Mutex::Autolock l(mTriggerMutex);
// For a multi-camera, only override the logical camera's metadata.
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
camera_metadata_entry entry = metadata.find(ANDROID_CONTROL_SETTINGS_OVERRIDE);
int32_t originalValue = request->mSettingsList.begin()->mOriginalSettingsOverride;
if (mSettingsOverride != -1 &&
(entry.count == 0 || entry.data.i32[0] != mSettingsOverride)) {
metadata.update(ANDROID_CONTROL_SETTINGS_OVERRIDE,
&mSettingsOverride, 1);
return true;
} else if (mSettingsOverride == -1 &&
(entry.count == 0 || entry.data.i32[0] != originalValue)) {
metadata.update(ANDROID_CONTROL_SETTINGS_OVERRIDE,
&originalValue, 1);
return true;
}
return false;
}
status_t Camera3Device::RequestThread::setHalInterface(
sp<HalInterface> newHalInterface) {
if (newHalInterface.get() == nullptr) {
ALOGE("%s: The newHalInterface does not exist!", __FUNCTION__);
return DEAD_OBJECT;
}
mInterface = newHalInterface;
return OK;
}
/**
* PreparerThread inner class methods
*/
Camera3Device::PreparerThread::PreparerThread() :
Thread(/*canCallJava*/false), mListener(nullptr),
mActive(false), mCancelNow(false), mCurrentMaxCount(0), mCurrentPrepareComplete(false) {
}
Camera3Device::PreparerThread::~PreparerThread() {
Thread::requestExitAndWait();
if (mCurrentStream != nullptr) {
mCurrentStream->cancelPrepare();
ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId());
mCurrentStream.clear();
}
clear();
}
status_t Camera3Device::PreparerThread::prepare(int maxCount, sp<Camera3StreamInterface>& stream) {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mLock);
sp<NotificationListener> listener = mListener.promote();
res = stream->startPrepare(maxCount, true /*blockRequest*/);
if (res == OK) {
// No preparation needed, fire listener right off
ALOGV("%s: Stream %d already prepared", __FUNCTION__, stream->getId());
if (listener != NULL) {
listener->notifyPrepared(stream->getId());
}
return OK;
} else if (res != NOT_ENOUGH_DATA) {
return res;
}
// Need to prepare, start up thread if necessary
if (!mActive) {
// mRunning will change to false before the thread fully shuts down, so wait to be sure it
// isn't running
Thread::requestExitAndWait();
res = Thread::run("C3PrepThread", PRIORITY_BACKGROUND);
if (res != OK) {
ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__, res, strerror(-res));
if (listener != NULL) {
listener->notifyPrepared(stream->getId());
}
return res;
}
mCancelNow = false;
mActive = true;
ALOGV("%s: Preparer stream started", __FUNCTION__);
}
// queue up the work
mPendingStreams.push_back(
std::tuple<int, sp<camera3::Camera3StreamInterface>>(maxCount, stream));
ALOGV("%s: Stream %d queued for preparing", __FUNCTION__, stream->getId());
return OK;
}
void Camera3Device::PreparerThread::pause() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
std::list<std::tuple<int, sp<camera3::Camera3StreamInterface>>> pendingStreams;
pendingStreams.insert(pendingStreams.begin(), mPendingStreams.begin(), mPendingStreams.end());
sp<camera3::Camera3StreamInterface> currentStream = mCurrentStream;
int currentMaxCount = mCurrentMaxCount;
mPendingStreams.clear();
mCancelNow = true;
while (mActive) {
auto res = mThreadActiveSignal.waitRelative(mLock, kActiveTimeout);
if (res == TIMED_OUT) {
ALOGE("%s: Timed out waiting on prepare thread!", __FUNCTION__);
return;
} else if (res != OK) {
ALOGE("%s: Encountered an error: %d waiting on prepare thread!", __FUNCTION__, res);
return;
}
}
//Check whether the prepare thread was able to complete the current
//stream. In case work is still pending emplace it along with the rest
//of the streams in the pending list.
if (currentStream != nullptr) {
if (!mCurrentPrepareComplete) {
pendingStreams.push_back(std::tuple(currentMaxCount, currentStream));
}
}
mPendingStreams.insert(mPendingStreams.begin(), pendingStreams.begin(), pendingStreams.end());
for (const auto& it : mPendingStreams) {
std::get<1>(it)->cancelPrepare();
}
}
status_t Camera3Device::PreparerThread::resume() {
ATRACE_CALL();
ALOGV("%s: PreparerThread", __FUNCTION__);
status_t res;
Mutex::Autolock l(mLock);
sp<NotificationListener> listener = mListener.promote();
if (mActive) {
ALOGE("%s: Trying to resume an already active prepare thread!", __FUNCTION__);
return NO_INIT;
}
auto it = mPendingStreams.begin();
for (; it != mPendingStreams.end();) {
res = std::get<1>(*it)->startPrepare(std::get<0>(*it), true /*blockRequest*/);
if (res == OK) {
if (listener != NULL) {
listener->notifyPrepared(std::get<1>(*it)->getId());
}
it = mPendingStreams.erase(it);
} else if (res != NOT_ENOUGH_DATA) {
ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__,
res, strerror(-res));
it = mPendingStreams.erase(it);
} else {
it++;
}
}
if (mPendingStreams.empty()) {
return OK;
}
res = Thread::run("C3PrepThread", PRIORITY_BACKGROUND);
if (res != OK) {
ALOGE("%s: Unable to start preparer stream: %d (%s)",
__FUNCTION__, res, strerror(-res));
return res;
}
mCancelNow = false;
mActive = true;
ALOGV("%s: Preparer stream started", __FUNCTION__);
return OK;
}
status_t Camera3Device::PreparerThread::clear() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
for (const auto& it : mPendingStreams) {
std::get<1>(it)->cancelPrepare();
}
mPendingStreams.clear();
mCancelNow = true;
return OK;
}
void Camera3Device::PreparerThread::setNotificationListener(wp<NotificationListener> listener) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
mListener = listener;
}
bool Camera3Device::PreparerThread::threadLoop() {
status_t res;
{
Mutex::Autolock l(mLock);
if (mCurrentStream == nullptr) {
// End thread if done with work
if (mPendingStreams.empty()) {
ALOGV("%s: Preparer stream out of work", __FUNCTION__);
// threadLoop _must not_ re-acquire mLock after it sets mActive to false; would
// cause deadlock with prepare()'s requestExitAndWait triggered by !mActive.
mActive = false;
mThreadActiveSignal.signal();
return false;
}
// Get next stream to prepare
auto it = mPendingStreams.begin();
mCurrentMaxCount = std::get<0>(*it);
mCurrentStream = std::get<1>(*it);
mCurrentPrepareComplete = false;
mPendingStreams.erase(it);
ATRACE_ASYNC_BEGIN("stream prepare", mCurrentStream->getId());
ALOGV("%s: Preparing stream %d", __FUNCTION__, mCurrentStream->getId());
} else if (mCancelNow) {
mCurrentStream->cancelPrepare();
ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId());
ALOGV("%s: Cancelling stream %d prepare", __FUNCTION__, mCurrentStream->getId());
mCurrentStream.clear();
mCancelNow = false;
return true;
}
}
res = mCurrentStream->prepareNextBuffer();
if (res == NOT_ENOUGH_DATA) return true;
if (res != OK) {
// Something bad happened; try to recover by cancelling prepare and
// signalling listener anyway
ALOGE("%s: Stream %d returned error %d (%s) during prepare", __FUNCTION__,
mCurrentStream->getId(), res, strerror(-res));
mCurrentStream->cancelPrepare();
}
// This stream has finished, notify listener
Mutex::Autolock l(mLock);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
ALOGV("%s: Stream %d prepare done, signaling listener", __FUNCTION__,
mCurrentStream->getId());
listener->notifyPrepared(mCurrentStream->getId());
}
ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId());
mCurrentStream.clear();
mCurrentPrepareComplete = true;
return true;
}
status_t Camera3Device::RequestBufferStateMachine::initialize(
sp<camera3::StatusTracker> statusTracker) {
if (statusTracker == nullptr) {
ALOGE("%s: statusTracker is null", __FUNCTION__);
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mLock);
mStatusTracker = statusTracker;
mRequestBufferStatusId = statusTracker->addComponent("BufferRequestSM");
return OK;
}
status_t Camera3Device::RequestBufferStateMachine::deInit() {
std::lock_guard<std::mutex> lock(mLock);
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker == nullptr) {
ALOGE("%s: statusTracker is null", __FUNCTION__);
return INVALID_OPERATION;
}
if (mRequestBufferStatusId == StatusTracker::NO_STATUS_ID) {
ALOGE("%s: RequestBufferStateMachine not initialized", __FUNCTION__);
return INVALID_OPERATION;
}
statusTracker->removeComponent(mRequestBufferStatusId);
// Bring back to de-initialized state
mRequestBufferStatusId = StatusTracker::NO_STATUS_ID;
mRequestThreadPaused = true;
mInflightMapEmpty = true;
mRequestBufferOngoing = false;
mSwitchedToOffline = false;
return OK;
}
bool Camera3Device::RequestBufferStateMachine::startRequestBuffer() {
std::lock_guard<std::mutex> lock(mLock);
if (mStatus == RB_STATUS_READY || mStatus == RB_STATUS_PENDING_STOP) {
mRequestBufferOngoing = true;
notifyTrackerLocked(/*active*/true);
return true;
}
return false;
}
void Camera3Device::RequestBufferStateMachine::endRequestBuffer() {
std::lock_guard<std::mutex> lock(mLock);
if (!mRequestBufferOngoing) {
ALOGE("%s called without a successful startRequestBuffer call first!", __FUNCTION__);
return;
}
mRequestBufferOngoing = false;
if (mStatus == RB_STATUS_PENDING_STOP) {
checkSwitchToStopLocked();
}
notifyTrackerLocked(/*active*/false);
}
void Camera3Device::RequestBufferStateMachine::onStreamsConfigured() {
std::lock_guard<std::mutex> lock(mLock);
mSwitchedToOffline = false;
mStatus = RB_STATUS_READY;
return;
}
void Camera3Device::RequestBufferStateMachine::onSubmittingRequest() {
std::lock_guard<std::mutex> lock(mLock);
mRequestThreadPaused = false;
// inflight map register actually happens in prepareHalRequest now, but it is close enough
// approximation.
mInflightMapEmpty = false;
if (mStatus == RB_STATUS_STOPPED) {
mStatus = RB_STATUS_READY;
}
return;
}
void Camera3Device::RequestBufferStateMachine::onRequestThreadPaused() {
std::lock_guard<std::mutex> lock(mLock);
mRequestThreadPaused = true;
if (mStatus == RB_STATUS_PENDING_STOP) {
checkSwitchToStopLocked();
}
return;
}
void Camera3Device::RequestBufferStateMachine::onInflightMapEmpty() {
std::lock_guard<std::mutex> lock(mLock);
mInflightMapEmpty = true;
if (mStatus == RB_STATUS_PENDING_STOP) {
checkSwitchToStopLocked();
}
return;
}
void Camera3Device::RequestBufferStateMachine::onWaitUntilIdle() {
std::lock_guard<std::mutex> lock(mLock);
if (!checkSwitchToStopLocked()) {
mStatus = RB_STATUS_PENDING_STOP;
}
return;
}
bool Camera3Device::RequestBufferStateMachine::onSwitchToOfflineSuccess() {
std::lock_guard<std::mutex> lock(mLock);
if (mRequestBufferOngoing) {
ALOGE("%s: HAL must not be requesting buffer after HAL returns switchToOffline!",
__FUNCTION__);
return false;
}
mSwitchedToOffline = true;
mInflightMapEmpty = true;
mRequestThreadPaused = true;
mStatus = RB_STATUS_STOPPED;
return true;
}
void Camera3Device::RequestBufferStateMachine::notifyTrackerLocked(bool active) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != nullptr) {
if (active) {
statusTracker->markComponentActive(mRequestBufferStatusId);
} else {
statusTracker->markComponentIdle(mRequestBufferStatusId, Fence::NO_FENCE);
}
}
}
bool Camera3Device::RequestBufferStateMachine::checkSwitchToStopLocked() {
if (mInflightMapEmpty && mRequestThreadPaused && !mRequestBufferOngoing) {
mStatus = RB_STATUS_STOPPED;
return true;
}
return false;
}
bool Camera3Device::startRequestBuffer() {
return mRequestBufferSM.startRequestBuffer();
}
void Camera3Device::endRequestBuffer() {
mRequestBufferSM.endRequestBuffer();
}
nsecs_t Camera3Device::getWaitDuration() {
return kBaseGetBufferWait + getExpectedInFlightDuration();
}
void Camera3Device::getInflightBufferKeys(std::vector<std::pair<int32_t, int32_t>>* out) {
mInterface->getInflightBufferKeys(out);
}
void Camera3Device::getInflightRequestBufferKeys(std::vector<uint64_t>* out) {
mInterface->getInflightRequestBufferKeys(out);
}
std::vector<sp<Camera3StreamInterface>> Camera3Device::getAllStreams() {
std::vector<sp<Camera3StreamInterface>> ret;
bool hasInputStream = mInputStream != nullptr;
ret.reserve(mOutputStreams.size() + mDeletedStreams.size() + ((hasInputStream) ? 1 : 0));
if (hasInputStream) {
ret.push_back(mInputStream);
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
ret.push_back(mOutputStreams[i]);
}
for (size_t i = 0; i < mDeletedStreams.size(); i++) {
ret.push_back(mDeletedStreams[i]);
}
return ret;
}
void Camera3Device::getOfflineStreamIds(std::vector<int> *offlineStreamIds) {
ATRACE_CALL();
if (offlineStreamIds == nullptr) {
return;
}
Mutex::Autolock il(mInterfaceLock);
auto streamIds = mOutputStreams.getStreamIds();
bool hasInputStream = mInputStream != nullptr;
if (hasInputStream && mInputStream->getOfflineProcessingSupport()) {
offlineStreamIds->push_back(mInputStream->getId());
}
for (const auto & streamId : streamIds) {
sp<camera3::Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
// Streams that use the camera buffer manager are currently not supported in
// offline mode
if (stream->getOfflineProcessingSupport() &&
(stream->getStreamSetId() == CAMERA3_STREAM_SET_ID_INVALID)) {
offlineStreamIds->push_back(streamId);
}
}
}
status_t Camera3Device::setRotateAndCropAutoBehavior(
camera_metadata_enum_android_scaler_rotate_and_crop_t rotateAndCropValue, bool fromHal) {
ATRACE_CALL();
// We shouldn't hold mInterfaceLock when called as an effect of a HAL
// callback since this can lead to a deadlock : b/299348355.
// mLock still protects state.
std::optional<Mutex::Autolock> maybeMutex =
fromHal ? std::nullopt : std::optional<Mutex::Autolock>(mInterfaceLock);
Mutex::Autolock l(mLock);
if (mRequestThread == nullptr) {
return INVALID_OPERATION;
}
if (rotateAndCropValue == ANDROID_SCALER_ROTATE_AND_CROP_AUTO) {
return BAD_VALUE;
}
mRotateAndCropOverride = rotateAndCropValue;
return mRequestThread->setRotateAndCropAutoBehavior(rotateAndCropValue);
}
status_t Camera3Device::setAutoframingAutoBehavior(
camera_metadata_enum_android_control_autoframing_t autoframingValue) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (mRequestThread == nullptr) {
return INVALID_OPERATION;
}
if (autoframingValue == ANDROID_CONTROL_AUTOFRAMING_AUTO) {
return BAD_VALUE;
}
mAutoframingOverride = autoframingValue;
return mRequestThread->setAutoframingAutoBehaviour(autoframingValue);
}
bool Camera3Device::supportsCameraMute() {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
return mSupportCameraMute;
}
status_t Camera3Device::setCameraMute(bool enabled) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (mRequestThread == nullptr || !mSupportCameraMute) {
return INVALID_OPERATION;
}
int32_t muteMode =
!enabled ? ANDROID_SENSOR_TEST_PATTERN_MODE_OFF :
mSupportTestPatternSolidColor ? ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR :
ANDROID_SENSOR_TEST_PATTERN_MODE_BLACK;
return mRequestThread->setCameraMute(muteMode);
}
bool Camera3Device::supportsZoomOverride() {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
return mSupportZoomOverride;
}
status_t Camera3Device::setZoomOverride(int32_t zoomOverride) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (mRequestThread == nullptr || !mSupportZoomOverride) {
return INVALID_OPERATION;
}
return mRequestThread->setZoomOverride(zoomOverride);
}
status_t Camera3Device::injectCamera(const std::string& injectedCamId,
sp<CameraProviderManager> manager) {
ALOGI("%s Injection camera: injectedCamId = %s", __FUNCTION__, injectedCamId.c_str());
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
// When the camera device is active, injectCamera() and stopInjection() will call
// internalPauseAndWaitLocked() and internalResumeLocked(), and then they will call
// mStatusChanged.waitRelative(mLock, timeout) of waitUntilStateThenRelock(). But
// mStatusChanged.waitRelative(mLock, timeout)'s parameter: mutex "mLock" must be in the locked
// state, so we need to add "Mutex::Autolock l(mLock)" to lock the "mLock" before calling
// waitUntilStateThenRelock().
Mutex::Autolock l(mLock);
status_t res = NO_ERROR;
if (mInjectionMethods->isInjecting()) {
if (injectedCamId == mInjectionMethods->getInjectedCamId()) {
return OK;
} else {
res = mInjectionMethods->stopInjection();
if (res != OK) {
ALOGE("%s: Failed to stop the injection camera! ret != NO_ERROR: %d",
__FUNCTION__, res);
return res;
}
}
}
res = injectionCameraInitialize(injectedCamId, manager);
if (res != OK) {
ALOGE("%s: Failed to initialize the injection camera! ret != NO_ERROR: %d",
__FUNCTION__, res);
return res;
}
// When the second display of android is cast to the remote device, and the opened camera is
// also cast to the second display, in this case, because the camera has configured the streams
// at this time, we can directly call injectCamera() to replace the internal camera with
// injection camera.
if (mInjectionMethods->isStreamConfigCompleteButNotInjected()) {
ALOGD("%s: The opened camera is directly cast to the remote device.", __FUNCTION__);
camera3::camera_stream_configuration injectionConfig;
std::vector<uint32_t> injectionBufferSizes;
mInjectionMethods->getInjectionConfig(&injectionConfig, &injectionBufferSizes);
if (mOperatingMode < 0 || injectionConfig.num_streams <= 0
|| injectionBufferSizes.size() <= 0) {
ALOGE("Failed to inject camera due to abandoned configuration! "
"mOperatingMode: %d injectionConfig.num_streams: %d "
"injectionBufferSizes.size(): %zu", mOperatingMode,
injectionConfig.num_streams, injectionBufferSizes.size());
return DEAD_OBJECT;
}
res = mInjectionMethods->injectCamera(
injectionConfig, injectionBufferSizes);
if (res != OK) {
ALOGE("Can't finish inject camera process!");
return res;
}
}
return OK;
}
status_t Camera3Device::stopInjection() {
ALOGI("%s: Injection camera: stopInjection", __FUNCTION__);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
return mInjectionMethods->stopInjection();
}
void Camera3Device::overrideStreamUseCaseLocked() {
if (mStreamUseCaseOverrides.size() == 0) {
return;
}
// Start from an array of indexes in mStreamUseCaseOverrides, and sort them
// based first on size, and second on formats of [JPEG, RAW, YUV, PRIV].
// Refer to CameraService::printHelp for details.
std::vector<int> outputStreamsIndices(mOutputStreams.size());
for (size_t i = 0; i < outputStreamsIndices.size(); i++) {
outputStreamsIndices[i] = i;
}
std::sort(outputStreamsIndices.begin(), outputStreamsIndices.end(),
[&](int a, int b) -> bool {
auto formatScore = [](int format) {
switch (format) {
case HAL_PIXEL_FORMAT_BLOB:
return 4;
case HAL_PIXEL_FORMAT_RAW16:
case HAL_PIXEL_FORMAT_RAW10:
case HAL_PIXEL_FORMAT_RAW12:
return 3;
case HAL_PIXEL_FORMAT_YCBCR_420_888:
return 2;
case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED:
return 1;
default:
return 0;
}
};
int sizeA = mOutputStreams[a]->getWidth() * mOutputStreams[a]->getHeight();
int sizeB = mOutputStreams[a]->getWidth() * mOutputStreams[a]->getHeight();
int formatAScore = formatScore(mOutputStreams[a]->getFormat());
int formatBScore = formatScore(mOutputStreams[b]->getFormat());
if (sizeA > sizeB ||
(sizeA == sizeB && formatAScore >= formatBScore)) {
return true;
} else {
return false;
}
});
size_t overlapSize = std::min(mStreamUseCaseOverrides.size(), mOutputStreams.size());
for (size_t i = 0; i < mOutputStreams.size(); i++) {
mOutputStreams[outputStreamsIndices[i]]->setStreamUseCase(
mStreamUseCaseOverrides[std::min(i, overlapSize-1)]);
}
}
}; // namespace android