| /* |
| * Copyright (C) 2021 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| |
| #include "media/QuaternionUtil.h" |
| #include "TestUtil.h" |
| |
| using Eigen::Quaternionf; |
| using Eigen::Vector3f; |
| |
| namespace android { |
| namespace media { |
| namespace { |
| |
| TEST(QuaternionUtil, RotationVectorToQuaternion) { |
| // 90 degrees around Z. |
| Vector3f rot = {0, 0, M_PI_2}; |
| Quaternionf quat = rotationVectorToQuaternion(rot); |
| ASSERT_EQ(quat * Vector3f(1, 0, 0), Vector3f(0, 1, 0)); |
| ASSERT_EQ(quat * Vector3f(0, 1, 0), Vector3f(-1, 0, 0)); |
| ASSERT_EQ(quat * Vector3f(0, 0, 1), Vector3f(0, 0, 1)); |
| } |
| |
| TEST(QuaternionUtil, QuaternionToRotationVector) { |
| Quaternionf quat = Quaternionf::FromTwoVectors(Vector3f(1, 0, 0), Vector3f(0, 1, 0)); |
| Vector3f rot = quaternionToRotationVector(quat); |
| ASSERT_EQ(rot, Vector3f(0, 0, M_PI_2)); |
| } |
| |
| TEST(QuaternionUtil, RoundTripFromQuaternion) { |
| Quaternionf quaternion = Quaternionf::UnitRandom(); |
| EXPECT_EQ(quaternion, rotationVectorToQuaternion(quaternionToRotationVector(quaternion))); |
| } |
| |
| TEST(QuaternionUtil, RoundTripFromVector) { |
| Vector3f vec{0.1, 0.2, 0.3}; |
| EXPECT_EQ(vec, quaternionToRotationVector(rotationVectorToQuaternion(vec))); |
| } |
| |
| // Float precision necessitates this precision (1e-4f fails) |
| constexpr float NEAR = 1e-3f; |
| |
| TEST(QuaternionUtil, quaternionToAngles_basic) { |
| float pitch, roll, yaw; |
| |
| // angles as reported. |
| // choose 11 angles between -M_PI / 2 to M_PI / 2 |
| for (int step = -5; step <= 5; ++step) { |
| const float angle = M_PI * step * 0.1f; |
| |
| quaternionToAngles(rotationVectorToQuaternion({angle, 0.f, 0.f}), &pitch, &roll, &yaw); |
| EXPECT_NEAR(angle, pitch, NEAR); |
| EXPECT_NEAR(0.f, roll, NEAR); |
| EXPECT_NEAR(0.f, yaw, NEAR); |
| |
| quaternionToAngles(rotationVectorToQuaternion({0.f, angle, 0.f}), &pitch, &roll, &yaw); |
| EXPECT_NEAR(0.f, pitch, NEAR); |
| EXPECT_NEAR(angle, roll, NEAR); |
| EXPECT_NEAR(0.f, yaw, NEAR); |
| |
| quaternionToAngles(rotationVectorToQuaternion({0.f, 0.f, angle}), &pitch, &roll, &yaw); |
| EXPECT_NEAR(0.f, pitch, NEAR); |
| EXPECT_NEAR(0.f, roll, NEAR); |
| EXPECT_NEAR(angle, yaw, NEAR); |
| } |
| |
| // Generates a debug string |
| const std::string s = quaternionToAngles<true /* DEBUG */>( |
| rotationVectorToQuaternion({M_PI, 0.f, 0.f}), &pitch, &roll, &yaw); |
| ASSERT_FALSE(s.empty()); |
| } |
| |
| TEST(QuaternionUtil, quaternionToAngles_zaxis) { |
| float pitch, roll, yaw; |
| |
| for (int rot_step = -10; rot_step <= 10; ++rot_step) { |
| const float rot_angle = M_PI * rot_step * 0.1f; |
| // pitch independent of world Z rotation |
| |
| // We don't test the boundaries of pitch +-M_PI/2 as roll can become |
| // degenerate and atan(0, 0) may report 0, PI, or -PI. |
| for (int step = -4; step <= 4; ++step) { |
| const float angle = M_PI * step * 0.1f; |
| auto q = rotationVectorToQuaternion({angle, 0.f, 0.f}); |
| auto world_z = rotationVectorToQuaternion({0.f, 0.f, rot_angle}); |
| |
| // Sequential active rotations (on world frame) compose as R_2 * R_1. |
| quaternionToAngles(world_z * q, &pitch, &roll, &yaw); |
| |
| EXPECT_NEAR(angle, pitch, NEAR); |
| EXPECT_NEAR(0.f, roll, NEAR); |
| } |
| |
| // roll independent of world Z rotation |
| for (int step = -5; step <= 5; ++step) { |
| const float angle = M_PI * step * 0.1f; |
| auto q = rotationVectorToQuaternion({0.f, angle, 0.f}); |
| auto world_z = rotationVectorToQuaternion({0.f, 0.f, rot_angle}); |
| |
| // Sequential active rotations (on world frame) compose as R_2 * R_1. |
| quaternionToAngles(world_z * q, &pitch, &roll, &yaw); |
| |
| EXPECT_NEAR(0.f, pitch, NEAR); |
| EXPECT_NEAR(angle, roll, NEAR); |
| |
| // Convert extrinsic (world-based) active rotations to a sequence of |
| // intrinsic rotations (each rotation based off of previous rotation |
| // frame). |
| // |
| // R_1 * R_intrinsic = R_extrinsic * R_1 |
| // implies |
| // R_intrinsic = (R_1)^-1 R_extrinsic R_1 |
| // |
| auto world_z_intrinsic = rotationVectorToQuaternion( |
| q.inverse() * Vector3f(0.f, 0.f, rot_angle)); |
| |
| // Sequential intrinsic rotations compose as R_1 * R_2. |
| quaternionToAngles(q * world_z_intrinsic, &pitch, &roll, &yaw); |
| |
| EXPECT_NEAR(0.f, pitch, NEAR); |
| EXPECT_NEAR(angle, roll, NEAR); |
| } |
| } |
| } |
| |
| } // namespace |
| } // namespace media |
| } // namespace android |