blob: 40656ff62a1da9c1294961828126b99bf892b18f [file] [log] [blame]
/*
* Copyright 2017, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#include <utils/Errors.h>
#define LOG_TAG "CCodecBufferChannel"
#define ATRACE_TAG ATRACE_TAG_VIDEO
#include <utils/Log.h>
#include <utils/Trace.h>
#include <algorithm>
#include <atomic>
#include <list>
#include <numeric>
#include <thread>
#include <chrono>
#include <C2AllocatorGralloc.h>
#include <C2PlatformSupport.h>
#include <C2BlockInternal.h>
#include <C2Config.h>
#include <C2Debug.h>
#include <android/hardware/cas/native/1.0/IDescrambler.h>
#include <android/hardware/drm/1.0/types.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <binder/MemoryBase.h>
#include <binder/MemoryDealer.h>
#include <cutils/properties.h>
#include <gui/Surface.h>
#include <hidlmemory/FrameworkUtils.h>
#include <media/openmax/OMX_Core.h>
#include <media/stagefright/foundation/ABuffer.h>
#include <media/stagefright/foundation/ALookup.h>
#include <media/stagefright/foundation/AMessage.h>
#include <media/stagefright/foundation/AUtils.h>
#include <media/stagefright/foundation/hexdump.h>
#include <media/stagefright/MediaCodecConstants.h>
#include <media/stagefright/SkipCutBuffer.h>
#include <media/stagefright/SurfaceUtils.h>
#include <media/MediaCodecBuffer.h>
#include <mediadrm/ICrypto.h>
#include <server_configurable_flags/get_flags.h>
#include <system/window.h>
#include "CCodecBufferChannel.h"
#include "Codec2Buffer.h"
namespace android {
using android::base::StringPrintf;
using hardware::hidl_handle;
using hardware::hidl_string;
using hardware::hidl_vec;
using hardware::fromHeap;
using hardware::HidlMemory;
using server_configurable_flags::GetServerConfigurableFlag;
using namespace hardware::cas::V1_0;
using namespace hardware::cas::native::V1_0;
using CasStatus = hardware::cas::V1_0::Status;
using DrmBufferType = hardware::drm::V1_0::BufferType;
namespace {
constexpr size_t kSmoothnessFactor = 4;
// This is for keeping IGBP's buffer dropping logic in legacy mode other
// than making it non-blocking. Do not change this value.
const static size_t kDequeueTimeoutNs = 0;
static bool areRenderMetricsEnabled() {
std::string v = GetServerConfigurableFlag("media_native", "render_metrics_enabled", "false");
return v == "true";
}
// Flags can come with individual BufferInfos
// when used with large frame audio
constexpr static std::initializer_list<std::pair<uint32_t, uint32_t>> flagList = {
{BUFFER_FLAG_CODEC_CONFIG, C2FrameData::FLAG_CODEC_CONFIG},
{BUFFER_FLAG_END_OF_STREAM, C2FrameData::FLAG_END_OF_STREAM},
{BUFFER_FLAG_DECODE_ONLY, C2FrameData::FLAG_DROP_FRAME}
};
static uint32_t convertFlags(uint32_t flags, bool toC2) {
return std::transform_reduce(
flagList.begin(), flagList.end(),
0u,
std::bit_or{},
[flags, toC2](const std::pair<uint32_t, uint32_t> &entry) {
if (toC2) {
return (flags & entry.first) ? entry.second : 0;
} else {
return (flags & entry.second) ? entry.first : 0;
}
});
}
} // namespace
CCodecBufferChannel::QueueGuard::QueueGuard(
CCodecBufferChannel::QueueSync &sync) : mSync(sync) {
Mutex::Autolock l(mSync.mGuardLock);
// At this point it's guaranteed that mSync is not under state transition,
// as we are holding its mutex.
Mutexed<CCodecBufferChannel::QueueSync::Counter>::Locked count(mSync.mCount);
if (count->value == -1) {
mRunning = false;
} else {
++count->value;
mRunning = true;
}
}
CCodecBufferChannel::QueueGuard::~QueueGuard() {
if (mRunning) {
// We are not holding mGuardLock at this point so that QueueSync::stop() can
// keep holding the lock until mCount reaches zero.
Mutexed<CCodecBufferChannel::QueueSync::Counter>::Locked count(mSync.mCount);
--count->value;
count->cond.broadcast();
}
}
void CCodecBufferChannel::QueueSync::start() {
Mutex::Autolock l(mGuardLock);
// If stopped, it goes to running state; otherwise no-op.
Mutexed<Counter>::Locked count(mCount);
if (count->value == -1) {
count->value = 0;
}
}
void CCodecBufferChannel::QueueSync::stop() {
Mutex::Autolock l(mGuardLock);
Mutexed<Counter>::Locked count(mCount);
if (count->value == -1) {
// no-op
return;
}
// Holding mGuardLock here blocks creation of additional QueueGuard objects, so
// mCount can only decrement. In other words, threads that acquired the lock
// are allowed to finish execution but additional threads trying to acquire
// the lock at this point will block, and then get QueueGuard at STOPPED
// state.
while (count->value != 0) {
count.waitForCondition(count->cond);
}
count->value = -1;
}
// Input
CCodecBufferChannel::Input::Input() : extraBuffers("extra") {}
// CCodecBufferChannel
CCodecBufferChannel::CCodecBufferChannel(
const std::shared_ptr<CCodecCallback> &callback)
: mHeapSeqNum(-1),
mCCodecCallback(callback),
mFrameIndex(0u),
mFirstValidFrameIndex(0u),
mAreRenderMetricsEnabled(areRenderMetricsEnabled()),
mIsSurfaceToDisplay(false),
mHasPresentFenceTimes(false),
mRenderingDepth(3u),
mMetaMode(MODE_NONE),
mInputMetEos(false),
mSendEncryptedInfoBuffer(false) {
{
Mutexed<Input>::Locked input(mInput);
input->buffers.reset(new DummyInputBuffers(""));
input->extraBuffers.flush();
input->inputDelay = 0u;
input->pipelineDelay = 0u;
input->numSlots = kSmoothnessFactor;
input->numExtraSlots = 0u;
input->lastFlushIndex = 0u;
}
{
Mutexed<Output>::Locked output(mOutput);
output->outputDelay = 0u;
output->numSlots = kSmoothnessFactor;
output->bounded = false;
}
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
pools->outputPoolId = C2BlockPool::BASIC_LINEAR;
}
std::string value = GetServerConfigurableFlag("media_native", "ccodec_rendering_depth", "3");
android::base::ParseInt(value, &mRenderingDepth);
mOutputSurface.lock()->maxDequeueBuffers = kSmoothnessFactor + mRenderingDepth;
}
CCodecBufferChannel::~CCodecBufferChannel() {
if (mCrypto != nullptr && mHeapSeqNum >= 0) {
mCrypto->unsetHeap(mHeapSeqNum);
}
}
void CCodecBufferChannel::setComponent(
const std::shared_ptr<Codec2Client::Component> &component) {
mComponent = component;
mComponentName = component->getName() + StringPrintf("#%d", int(uintptr_t(component.get()) % 997));
mName = mComponentName.c_str();
}
status_t CCodecBufferChannel::setInputSurface(
const std::shared_ptr<InputSurfaceWrapper> &surface) {
ALOGV("[%s] setInputSurface", mName);
mInputSurface = surface;
return mInputSurface->connect(mComponent);
}
status_t CCodecBufferChannel::signalEndOfInputStream() {
if (mInputSurface == nullptr) {
return INVALID_OPERATION;
}
return mInputSurface->signalEndOfInputStream();
}
status_t CCodecBufferChannel::queueInputBufferInternal(
sp<MediaCodecBuffer> buffer,
std::shared_ptr<C2LinearBlock> encryptedBlock,
size_t blockSize) {
int64_t timeUs;
CHECK(buffer->meta()->findInt64("timeUs", &timeUs));
if (mInputMetEos) {
ALOGD("[%s] buffers after EOS ignored (%lld us)", mName, (long long)timeUs);
return OK;
}
int32_t flags = 0;
int32_t tmp = 0;
bool eos = false;
bool tunnelFirstFrame = false;
if (buffer->meta()->findInt32("eos", &tmp) && tmp) {
eos = true;
mInputMetEos = true;
ALOGV("[%s] input EOS", mName);
}
if (buffer->meta()->findInt32("csd", &tmp) && tmp) {
flags |= C2FrameData::FLAG_CODEC_CONFIG;
}
if (buffer->meta()->findInt32("tunnel-first-frame", &tmp) && tmp) {
tunnelFirstFrame = true;
}
if (buffer->meta()->findInt32("decode-only", &tmp) && tmp) {
flags |= C2FrameData::FLAG_DROP_FRAME;
}
ALOGV("[%s] queueInputBuffer: buffer->size() = %zu time: %lld",
mName, buffer->size(), (long long)timeUs);
std::list<std::unique_ptr<C2Work>> items;
std::unique_ptr<C2Work> work(new C2Work);
work->input.ordinal.timestamp = timeUs;
work->input.ordinal.frameIndex = mFrameIndex++;
// WORKAROUND: until codecs support handling work after EOS and max output sizing, use timestamp
// manipulation to achieve image encoding via video codec, and to constrain encoded output.
// Keep client timestamp in customOrdinal
work->input.ordinal.customOrdinal = timeUs;
work->input.buffers.clear();
sp<Codec2Buffer> copy;
bool usesFrameReassembler = false;
if (buffer->size() > 0u) {
Mutexed<Input>::Locked input(mInput);
std::shared_ptr<C2Buffer> c2buffer;
if (!input->buffers->releaseBuffer(buffer, &c2buffer, false)) {
return -ENOENT;
}
// TODO: we want to delay copying buffers.
if (input->extraBuffers.numComponentBuffers() < input->numExtraSlots) {
copy = input->buffers->cloneAndReleaseBuffer(buffer);
if (copy != nullptr) {
(void)input->extraBuffers.assignSlot(copy);
if (!input->extraBuffers.releaseSlot(copy, &c2buffer, false)) {
return UNKNOWN_ERROR;
}
bool released = input->buffers->releaseBuffer(buffer, nullptr, true);
ALOGV("[%s] queueInputBuffer: buffer copied; %sreleased",
mName, released ? "" : "not ");
buffer = copy;
} else {
ALOGW("[%s] queueInputBuffer: failed to copy a buffer; this may cause input "
"buffer starvation on component.", mName);
}
}
if (input->frameReassembler) {
usesFrameReassembler = true;
input->frameReassembler.process(buffer, &items);
} else {
int32_t cvo = 0;
if (buffer->meta()->findInt32("cvo", &cvo)) {
int32_t rotation = cvo % 360;
// change rotation to counter-clock wise.
rotation = ((rotation <= 0) ? 0 : 360) - rotation;
Mutexed<OutputSurface>::Locked output(mOutputSurface);
uint64_t frameIndex = work->input.ordinal.frameIndex.peeku();
output->rotation[frameIndex] = rotation;
}
sp<RefBase> obj;
if (buffer->meta()->findObject("accessUnitInfo", &obj)) {
ALOGV("Filling C2Info from multiple access units");
sp<WrapperObject<std::vector<AccessUnitInfo>>> infos{
(decltype(infos.get()))obj.get()};
std::vector<AccessUnitInfo> &accessUnitInfoVec = infos->value;
std::vector<C2AccessUnitInfosStruct> multipleAccessUnitInfos;
uint32_t outFlags = 0;
for (int i = 0; i < accessUnitInfoVec.size(); i++) {
outFlags = 0;
outFlags = convertFlags(accessUnitInfoVec[i].mFlags, true);
if (eos && (outFlags & C2FrameData::FLAG_END_OF_STREAM)) {
outFlags &= (~C2FrameData::FLAG_END_OF_STREAM);
}
multipleAccessUnitInfos.emplace_back(
outFlags,
accessUnitInfoVec[i].mSize,
accessUnitInfoVec[i].mTimestamp);
ALOGV("%d) flags: %d, size: %d, time: %llu",
i, outFlags, accessUnitInfoVec[i].mSize,
(long long)accessUnitInfoVec[i].mTimestamp);
}
const std::shared_ptr<C2AccessUnitInfos::input> c2AccessUnitInfos =
C2AccessUnitInfos::input::AllocShared(
multipleAccessUnitInfos.size(), 0u, multipleAccessUnitInfos);
c2buffer->setInfo(c2AccessUnitInfos);
}
work->input.buffers.push_back(c2buffer);
if (encryptedBlock) {
work->input.infoBuffers.emplace_back(C2InfoBuffer::CreateLinearBuffer(
kParamIndexEncryptedBuffer,
encryptedBlock->share(0, blockSize, C2Fence())));
}
}
} else if (eos) {
Mutexed<Input>::Locked input(mInput);
if (input->frameReassembler) {
usesFrameReassembler = true;
// drain any pending items with eos
input->frameReassembler.process(buffer, &items);
}
flags |= C2FrameData::FLAG_END_OF_STREAM;
}
if (usesFrameReassembler) {
if (!items.empty()) {
items.front()->input.configUpdate = std::move(mParamsToBeSet);
mFrameIndex = (items.back()->input.ordinal.frameIndex + 1).peek();
}
} else {
work->input.flags = (C2FrameData::flags_t)flags;
// TODO: fill info's
work->input.configUpdate = std::move(mParamsToBeSet);
if (tunnelFirstFrame) {
C2StreamTunnelHoldRender::input tunnelHoldRender{
0u /* stream */,
C2_TRUE /* value */
};
work->input.configUpdate.push_back(C2Param::Copy(tunnelHoldRender));
}
work->worklets.clear();
work->worklets.emplace_back(new C2Worklet);
items.push_back(std::move(work));
eos = eos && buffer->size() > 0u;
}
if (eos) {
work.reset(new C2Work);
work->input.ordinal.timestamp = timeUs;
work->input.ordinal.frameIndex = mFrameIndex++;
// WORKAROUND: keep client timestamp in customOrdinal
work->input.ordinal.customOrdinal = timeUs;
work->input.buffers.clear();
work->input.flags = C2FrameData::FLAG_END_OF_STREAM;
work->worklets.emplace_back(new C2Worklet);
items.push_back(std::move(work));
}
c2_status_t err = C2_OK;
if (!items.empty()) {
ScopedTrace trace(ATRACE_TAG, android::base::StringPrintf(
"CCodecBufferChannel::queue(%s@ts=%lld)", mName, (long long)timeUs).c_str());
{
Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
PipelineWatcher::Clock::time_point now = PipelineWatcher::Clock::now();
for (const std::unique_ptr<C2Work> &work : items) {
watcher->onWorkQueued(
work->input.ordinal.frameIndex.peeku(),
std::vector(work->input.buffers),
now);
}
}
err = mComponent->queue(&items);
}
if (err != C2_OK) {
Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
for (const std::unique_ptr<C2Work> &work : items) {
watcher->onWorkDone(work->input.ordinal.frameIndex.peeku());
}
} else {
Mutexed<Input>::Locked input(mInput);
bool released = false;
if (copy) {
released = input->extraBuffers.releaseSlot(copy, nullptr, true);
} else if (buffer) {
released = input->buffers->releaseBuffer(buffer, nullptr, true);
}
ALOGV("[%s] queueInputBuffer: buffer%s %sreleased",
mName, (buffer == nullptr) ? "(copy)" : "", released ? "" : "not ");
}
feedInputBufferIfAvailableInternal();
return err;
}
status_t CCodecBufferChannel::setParameters(std::vector<std::unique_ptr<C2Param>> &params) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] setParameters is only supported in the running state.", mName);
return -ENOSYS;
}
mParamsToBeSet.insert(mParamsToBeSet.end(),
std::make_move_iterator(params.begin()),
std::make_move_iterator(params.end()));
params.clear();
return OK;
}
status_t CCodecBufferChannel::attachBuffer(
const std::shared_ptr<C2Buffer> &c2Buffer,
const sp<MediaCodecBuffer> &buffer) {
if (!buffer->copy(c2Buffer)) {
return -ENOSYS;
}
return OK;
}
void CCodecBufferChannel::ensureDecryptDestination(size_t size) {
if (!mDecryptDestination || mDecryptDestination->size() < size) {
sp<IMemoryHeap> heap{new MemoryHeapBase(size * 2)};
if (mDecryptDestination && mCrypto && mHeapSeqNum >= 0) {
mCrypto->unsetHeap(mHeapSeqNum);
}
mDecryptDestination = new MemoryBase(heap, 0, size * 2);
if (mCrypto) {
mHeapSeqNum = mCrypto->setHeap(hardware::fromHeap(heap));
}
}
}
int32_t CCodecBufferChannel::getHeapSeqNum(const sp<HidlMemory> &memory) {
CHECK(mCrypto);
auto it = mHeapSeqNumMap.find(memory);
int32_t heapSeqNum = -1;
if (it == mHeapSeqNumMap.end()) {
heapSeqNum = mCrypto->setHeap(memory);
mHeapSeqNumMap.emplace(memory, heapSeqNum);
} else {
heapSeqNum = it->second;
}
return heapSeqNum;
}
typedef WrapperObject<std::vector<AccessUnitInfo>> BufferInfosWrapper;
typedef WrapperObject<std::vector<std::unique_ptr<CodecCryptoInfo>>> CryptoInfosWrapper;
status_t CCodecBufferChannel::attachEncryptedBuffers(
const sp<hardware::HidlMemory> &memory,
size_t offset,
const sp<MediaCodecBuffer> &buffer,
bool secure,
AString* errorDetailMsg) {
static const C2MemoryUsage kDefaultReadWriteUsage{
C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
if (!hasCryptoOrDescrambler()) {
ALOGE("attachEncryptedBuffers requires Crypto/descrambler object");
return -ENOSYS;
}
size_t size = 0;
CHECK(buffer->meta()->findSize("ssize", &size));
if (size == 0) {
buffer->setRange(0, 0);
return OK;
}
sp<RefBase> obj;
CHECK(buffer->meta()->findObject("cryptoInfos", &obj));
sp<CryptoInfosWrapper> cryptoInfos{(CryptoInfosWrapper *)obj.get()};
CHECK(buffer->meta()->findObject("accessUnitInfo", &obj));
sp<BufferInfosWrapper> bufferInfos{(BufferInfosWrapper *)obj.get()};
if (secure || (mCrypto == nullptr)) {
if (cryptoInfos->value.size() != 1) {
ALOGE("Cannot decrypt multiple access units");
return -ENOSYS;
}
// we are dealing with just one cryptoInfo or descrambler.
std::unique_ptr<CodecCryptoInfo> info = std::move(cryptoInfos->value[0]);
if (info == nullptr) {
ALOGE("Cannot decrypt, CryptoInfos are null.");
return -ENOSYS;
}
return attachEncryptedBuffer(
memory,
secure,
info->mKey,
info->mIv,
info->mMode,
info->mPattern,
offset,
info->mSubSamples,
info->mNumSubSamples,
buffer,
errorDetailMsg);
}
std::shared_ptr<C2BlockPool> pool = mBlockPools.lock()->inputPool;
std::shared_ptr<C2LinearBlock> block;
c2_status_t err = pool->fetchLinearBlock(
size,
kDefaultReadWriteUsage,
&block);
if (err != C2_OK) {
ALOGI("[%s] attachEncryptedBuffers: fetchLinearBlock failed: size = %zu (%s) err = %d",
mName, size, secure ? "secure" : "non-secure", err);
return NO_MEMORY;
}
ensureDecryptDestination(size);
C2WriteView wView = block->map().get();
if (wView.error() != C2_OK) {
ALOGI("[%s] attachEncryptedBuffers: block map error: %d (non-secure)",
mName, wView.error());
return UNKNOWN_ERROR;
}
ssize_t result = -1;
ssize_t codecDataOffset = 0;
size_t inBufferOffset = 0;
size_t outBufferSize = 0;
uint32_t cryptoInfoIdx = 0;
int32_t heapSeqNum = getHeapSeqNum(memory);
hardware::drm::V1_0::SharedBuffer src{(uint32_t)heapSeqNum, offset, size};
hardware::drm::V1_0::DestinationBuffer dst;
dst.type = DrmBufferType::SHARED_MEMORY;
IMemoryToSharedBuffer(
mDecryptDestination, mHeapSeqNum, &dst.nonsecureMemory);
for (int i = 0; i < bufferInfos->value.size(); i++) {
if (bufferInfos->value[i].mSize > 0) {
std::unique_ptr<CodecCryptoInfo> info = std::move(cryptoInfos->value[cryptoInfoIdx++]);
result = mCrypto->decrypt(
(uint8_t*)info->mKey,
(uint8_t*)info->mIv,
info->mMode,
info->mPattern,
src,
inBufferOffset,
info->mSubSamples,
info->mNumSubSamples,
dst,
errorDetailMsg);
inBufferOffset += bufferInfos->value[i].mSize;
if (result < 0) {
ALOGI("[%s] attachEncryptedBuffers: decrypt failed: result = %zd",
mName, result);
return result;
}
if (wView.error() == C2_OK) {
if (wView.size() < result) {
ALOGI("[%s] attachEncryptedBuffers: block size too small:"
"size=%u result=%zd (non-secure)", mName, wView.size(), result);
return UNKNOWN_ERROR;
}
memcpy(wView.data(), mDecryptDestination->unsecurePointer(), result);
bufferInfos->value[i].mSize = result;
wView.setOffset(wView.offset() + result);
}
outBufferSize += result;
}
}
if (wView.error() == C2_OK) {
wView.setOffset(0);
}
std::shared_ptr<C2Buffer> c2Buffer{C2Buffer::CreateLinearBuffer(
block->share(codecDataOffset, outBufferSize - codecDataOffset, C2Fence{}))};
if (!buffer->copy(c2Buffer)) {
ALOGI("[%s] attachEncryptedBuffers: buffer copy failed", mName);
return -ENOSYS;
}
return OK;
}
status_t CCodecBufferChannel::attachEncryptedBuffer(
const sp<hardware::HidlMemory> &memory,
bool secure,
const uint8_t *key,
const uint8_t *iv,
CryptoPlugin::Mode mode,
CryptoPlugin::Pattern pattern,
size_t offset,
const CryptoPlugin::SubSample *subSamples,
size_t numSubSamples,
const sp<MediaCodecBuffer> &buffer,
AString* errorDetailMsg) {
static const C2MemoryUsage kSecureUsage{C2MemoryUsage::READ_PROTECTED, 0};
static const C2MemoryUsage kDefaultReadWriteUsage{
C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
size_t size = 0;
for (size_t i = 0; i < numSubSamples; ++i) {
size += subSamples[i].mNumBytesOfClearData + subSamples[i].mNumBytesOfEncryptedData;
}
if (size == 0) {
buffer->setRange(0, 0);
return OK;
}
std::shared_ptr<C2BlockPool> pool = mBlockPools.lock()->inputPool;
std::shared_ptr<C2LinearBlock> block;
c2_status_t err = pool->fetchLinearBlock(
size,
secure ? kSecureUsage : kDefaultReadWriteUsage,
&block);
if (err != C2_OK) {
ALOGI("[%s] attachEncryptedBuffer: fetchLinearBlock failed: size = %zu (%s) err = %d",
mName, size, secure ? "secure" : "non-secure", err);
return NO_MEMORY;
}
if (!secure) {
ensureDecryptDestination(size);
}
ssize_t result = -1;
ssize_t codecDataOffset = 0;
if (mCrypto) {
int32_t heapSeqNum = getHeapSeqNum(memory);
hardware::drm::V1_0::SharedBuffer src{(uint32_t)heapSeqNum, offset, size};
hardware::drm::V1_0::DestinationBuffer dst;
if (secure) {
dst.type = DrmBufferType::NATIVE_HANDLE;
dst.secureMemory = hardware::hidl_handle(block->handle());
} else {
dst.type = DrmBufferType::SHARED_MEMORY;
IMemoryToSharedBuffer(
mDecryptDestination, mHeapSeqNum, &dst.nonsecureMemory);
}
result = mCrypto->decrypt(
key, iv, mode, pattern, src, 0, subSamples, numSubSamples,
dst, errorDetailMsg);
if (result < 0) {
ALOGI("[%s] attachEncryptedBuffer: decrypt failed: result = %zd", mName, result);
return result;
}
} else {
// Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample
// directly, the structure definitions should match as checked in DescramblerImpl.cpp.
hidl_vec<SubSample> hidlSubSamples;
hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/);
hardware::cas::native::V1_0::SharedBuffer src{*memory, offset, size};
hardware::cas::native::V1_0::DestinationBuffer dst;
if (secure) {
dst.type = BufferType::NATIVE_HANDLE;
dst.secureMemory = hardware::hidl_handle(block->handle());
} else {
dst.type = BufferType::SHARED_MEMORY;
dst.nonsecureMemory = src;
}
CasStatus status = CasStatus::OK;
hidl_string detailedError;
ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED;
if (key != nullptr) {
sctrl = (ScramblingControl)key[0];
// Adjust for the PES offset
codecDataOffset = key[2] | (key[3] << 8);
}
auto returnVoid = mDescrambler->descramble(
sctrl,
hidlSubSamples,
src,
0,
dst,
0,
[&status, &result, &detailedError] (
CasStatus _status, uint32_t _bytesWritten,
const hidl_string& _detailedError) {
status = _status;
result = (ssize_t)_bytesWritten;
detailedError = _detailedError;
});
if (errorDetailMsg) {
errorDetailMsg->setTo(detailedError.c_str(), detailedError.size());
}
if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) {
ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd",
mName, returnVoid.description().c_str(), status, result);
return UNKNOWN_ERROR;
}
if (result < codecDataOffset) {
ALOGD("[%s] invalid codec data offset: %zd, result %zd",
mName, codecDataOffset, result);
return BAD_VALUE;
}
}
if (!secure) {
C2WriteView view = block->map().get();
if (view.error() != C2_OK) {
ALOGI("[%s] attachEncryptedBuffer: block map error: %d (non-secure)",
mName, view.error());
return UNKNOWN_ERROR;
}
if (view.size() < result) {
ALOGI("[%s] attachEncryptedBuffer: block size too small: size=%u result=%zd "
"(non-secure)",
mName, view.size(), result);
return UNKNOWN_ERROR;
}
memcpy(view.data(), mDecryptDestination->unsecurePointer(), result);
}
std::shared_ptr<C2Buffer> c2Buffer{C2Buffer::CreateLinearBuffer(
block->share(codecDataOffset, result - codecDataOffset, C2Fence{}))};
if (!buffer->copy(c2Buffer)) {
ALOGI("[%s] attachEncryptedBuffer: buffer copy failed", mName);
return -ENOSYS;
}
return OK;
}
status_t CCodecBufferChannel::queueInputBuffer(const sp<MediaCodecBuffer> &buffer) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] No more buffers should be queued at current state.", mName);
return -ENOSYS;
}
return queueInputBufferInternal(buffer);
}
status_t CCodecBufferChannel::queueSecureInputBuffer(
const sp<MediaCodecBuffer> &buffer, bool secure, const uint8_t *key,
const uint8_t *iv, CryptoPlugin::Mode mode, CryptoPlugin::Pattern pattern,
const CryptoPlugin::SubSample *subSamples, size_t numSubSamples,
AString *errorDetailMsg) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] No more buffers should be queued at current state.", mName);
return -ENOSYS;
}
if (!hasCryptoOrDescrambler()) {
return -ENOSYS;
}
sp<EncryptedLinearBlockBuffer> encryptedBuffer((EncryptedLinearBlockBuffer *)buffer.get());
std::shared_ptr<C2LinearBlock> block;
size_t allocSize = buffer->size();
size_t bufferSize = 0;
c2_status_t blockRes = C2_OK;
bool copied = false;
ScopedTrace trace(ATRACE_TAG, android::base::StringPrintf(
"CCodecBufferChannel::decrypt(%s)", mName).c_str());
if (mSendEncryptedInfoBuffer) {
static const C2MemoryUsage kDefaultReadWriteUsage{
C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
constexpr int kAllocGranule0 = 1024 * 64;
constexpr int kAllocGranule1 = 1024 * 1024;
std::shared_ptr<C2BlockPool> pool = mBlockPools.lock()->inputPool;
// round up encrypted sizes to limit fragmentation and encourage buffer reuse
if (allocSize <= kAllocGranule1) {
bufferSize = align(allocSize, kAllocGranule0);
} else {
bufferSize = align(allocSize, kAllocGranule1);
}
blockRes = pool->fetchLinearBlock(
bufferSize, kDefaultReadWriteUsage, &block);
if (blockRes == C2_OK) {
C2WriteView view = block->map().get();
if (view.error() == C2_OK && view.size() == bufferSize) {
copied = true;
// TODO: only copy clear sections
memcpy(view.data(), buffer->data(), allocSize);
}
}
}
if (!copied) {
block.reset();
}
ssize_t result = -1;
ssize_t codecDataOffset = 0;
if (numSubSamples == 1
&& subSamples[0].mNumBytesOfClearData == 0
&& subSamples[0].mNumBytesOfEncryptedData == 0) {
// We don't need to go through crypto or descrambler if the input is empty.
result = 0;
} else if (mCrypto != nullptr) {
hardware::drm::V1_0::DestinationBuffer destination;
if (secure) {
destination.type = DrmBufferType::NATIVE_HANDLE;
destination.secureMemory = hidl_handle(encryptedBuffer->handle());
} else {
destination.type = DrmBufferType::SHARED_MEMORY;
IMemoryToSharedBuffer(
mDecryptDestination, mHeapSeqNum, &destination.nonsecureMemory);
}
hardware::drm::V1_0::SharedBuffer source;
encryptedBuffer->fillSourceBuffer(&source);
result = mCrypto->decrypt(
key, iv, mode, pattern, source, buffer->offset(),
subSamples, numSubSamples, destination, errorDetailMsg);
if (result < 0) {
ALOGI("[%s] decrypt failed: result=%zd", mName, result);
return result;
}
if (destination.type == DrmBufferType::SHARED_MEMORY) {
encryptedBuffer->copyDecryptedContent(mDecryptDestination, result);
}
} else {
// Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample
// directly, the structure definitions should match as checked in DescramblerImpl.cpp.
hidl_vec<SubSample> hidlSubSamples;
hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/);
hardware::cas::native::V1_0::SharedBuffer srcBuffer;
encryptedBuffer->fillSourceBuffer(&srcBuffer);
DestinationBuffer dstBuffer;
if (secure) {
dstBuffer.type = BufferType::NATIVE_HANDLE;
dstBuffer.secureMemory = hidl_handle(encryptedBuffer->handle());
} else {
dstBuffer.type = BufferType::SHARED_MEMORY;
dstBuffer.nonsecureMemory = srcBuffer;
}
CasStatus status = CasStatus::OK;
hidl_string detailedError;
ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED;
if (key != nullptr) {
sctrl = (ScramblingControl)key[0];
// Adjust for the PES offset
codecDataOffset = key[2] | (key[3] << 8);
}
auto returnVoid = mDescrambler->descramble(
sctrl,
hidlSubSamples,
srcBuffer,
0,
dstBuffer,
0,
[&status, &result, &detailedError] (
CasStatus _status, uint32_t _bytesWritten,
const hidl_string& _detailedError) {
status = _status;
result = (ssize_t)_bytesWritten;
detailedError = _detailedError;
});
if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) {
ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd",
mName, returnVoid.description().c_str(), status, result);
return UNKNOWN_ERROR;
}
if (result < codecDataOffset) {
ALOGD("invalid codec data offset: %zd, result %zd", codecDataOffset, result);
return BAD_VALUE;
}
ALOGV("[%s] descramble succeeded, %zd bytes", mName, result);
if (dstBuffer.type == BufferType::SHARED_MEMORY) {
encryptedBuffer->copyDecryptedContentFromMemory(result);
}
}
buffer->setRange(codecDataOffset, result - codecDataOffset);
return queueInputBufferInternal(buffer, block, bufferSize);
}
status_t CCodecBufferChannel::queueSecureInputBuffers(
const sp<MediaCodecBuffer> &buffer,
bool secure,
AString *errorDetailMsg) {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGD("[%s] No more buffers should be queued at current state.", mName);
return -ENOSYS;
}
if (!hasCryptoOrDescrambler()) {
ALOGE("queueSecureInputBuffers requires a Crypto/descrambler Object");
return -ENOSYS;
}
sp<RefBase> obj;
CHECK(buffer->meta()->findObject("cryptoInfos", &obj));
sp<CryptoInfosWrapper> cryptoInfos{(CryptoInfosWrapper *)obj.get()};
CHECK(buffer->meta()->findObject("accessUnitInfo", &obj));
sp<BufferInfosWrapper> bufferInfos{(BufferInfosWrapper *)obj.get()};
if (secure || mCrypto == nullptr) {
if (cryptoInfos->value.size() != 1) {
ALOGE("Cannot decrypt multiple access units on native handles");
return -ENOSYS;
}
std::unique_ptr<CodecCryptoInfo> info = std::move(cryptoInfos->value[0]);
if (info == nullptr) {
ALOGE("Cannot decrypt, CryptoInfos are null");
return -ENOSYS;
}
return queueSecureInputBuffer(
buffer,
secure,
info->mKey,
info->mIv,
info->mMode,
info->mPattern,
info->mSubSamples,
info->mNumSubSamples,
errorDetailMsg);
}
sp<EncryptedLinearBlockBuffer> encryptedBuffer((EncryptedLinearBlockBuffer *)buffer.get());
std::shared_ptr<C2LinearBlock> block;
size_t allocSize = buffer->size();
size_t bufferSize = 0;
c2_status_t blockRes = C2_OK;
bool copied = false;
ScopedTrace trace(ATRACE_TAG, android::base::StringPrintf(
"CCodecBufferChannel::decrypt(%s)", mName).c_str());
if (mSendEncryptedInfoBuffer) {
static const C2MemoryUsage kDefaultReadWriteUsage{
C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
constexpr int kAllocGranule0 = 1024 * 64;
constexpr int kAllocGranule1 = 1024 * 1024;
std::shared_ptr<C2BlockPool> pool = mBlockPools.lock()->inputPool;
// round up encrypted sizes to limit fragmentation and encourage buffer reuse
if (allocSize <= kAllocGranule1) {
bufferSize = align(allocSize, kAllocGranule0);
} else {
bufferSize = align(allocSize, kAllocGranule1);
}
blockRes = pool->fetchLinearBlock(
bufferSize, kDefaultReadWriteUsage, &block);
if (blockRes == C2_OK) {
C2WriteView view = block->map().get();
if (view.error() == C2_OK && view.size() == bufferSize) {
copied = true;
// TODO: only copy clear sections
memcpy(view.data(), buffer->data(), allocSize);
}
}
}
if (!copied) {
block.reset();
}
// size of cryptoInfo and accessUnitInfo should be the same?
ssize_t result = -1;
ssize_t codecDataOffset = 0;
size_t inBufferOffset = 0;
size_t outBufferSize = 0;
uint32_t cryptoInfoIdx = 0;
{
// scoped this block to enable destruction of mappedBlock
std::unique_ptr<EncryptedLinearBlockBuffer::MappedBlock> mappedBlock = nullptr;
hardware::drm::V1_0::DestinationBuffer destination;
destination.type = DrmBufferType::SHARED_MEMORY;
IMemoryToSharedBuffer(
mDecryptDestination, mHeapSeqNum, &destination.nonsecureMemory);
encryptedBuffer->getMappedBlock(&mappedBlock);
hardware::drm::V1_0::SharedBuffer source;
encryptedBuffer->fillSourceBuffer(&source);
for (int i = 0 ; i < bufferInfos->value.size(); i++) {
if (bufferInfos->value[i].mSize > 0) {
std::unique_ptr<CodecCryptoInfo> info =
std::move(cryptoInfos->value[cryptoInfoIdx++]);
if (info->mNumSubSamples == 1
&& info->mSubSamples[0].mNumBytesOfClearData == 0
&& info->mSubSamples[0].mNumBytesOfEncryptedData == 0) {
// no data so we only populate the bufferInfo
result = 0;
} else {
result = mCrypto->decrypt(
(uint8_t*)info->mKey,
(uint8_t*)info->mIv,
info->mMode,
info->mPattern,
source,
inBufferOffset,
info->mSubSamples,
info->mNumSubSamples,
destination,
errorDetailMsg);
inBufferOffset += bufferInfos->value[i].mSize;
if (result < 0) {
ALOGI("[%s] decrypt failed: result=%zd", mName, result);
return result;
}
if (destination.type == DrmBufferType::SHARED_MEMORY && mappedBlock) {
mappedBlock->copyDecryptedContent(mDecryptDestination, result);
}
bufferInfos->value[i].mSize = result;
outBufferSize += result;
}
}
}
buffer->setRange(codecDataOffset, outBufferSize - codecDataOffset);
}
return queueInputBufferInternal(buffer, block, bufferSize);
}
void CCodecBufferChannel::feedInputBufferIfAvailable() {
QueueGuard guard(mSync);
if (!guard.isRunning()) {
ALOGV("[%s] We're not running --- no input buffer reported", mName);
return;
}
feedInputBufferIfAvailableInternal();
}
void CCodecBufferChannel::feedInputBufferIfAvailableInternal() {
if (mInputMetEos) {
return;
}
{
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers ||
output->buffers->hasPending() ||
(!output->bounded && output->buffers->numActiveSlots() >= output->numSlots)) {
return;
}
}
size_t numActiveSlots = 0;
while (!mPipelineWatcher.lock()->pipelineFull()) {
sp<MediaCodecBuffer> inBuffer;
size_t index;
{
Mutexed<Input>::Locked input(mInput);
numActiveSlots = input->buffers->numActiveSlots();
if (numActiveSlots >= input->numSlots) {
break;
}
if (!input->buffers->requestNewBuffer(&index, &inBuffer)) {
ALOGV("[%s] no new buffer available", mName);
break;
}
}
ALOGV("[%s] new input index = %zu [%p]", mName, index, inBuffer.get());
mCallback->onInputBufferAvailable(index, inBuffer);
}
ALOGV("[%s] # active slots after feedInputBufferIfAvailable = %zu", mName, numActiveSlots);
}
status_t CCodecBufferChannel::renderOutputBuffer(
const sp<MediaCodecBuffer> &buffer, int64_t timestampNs) {
ALOGV("[%s] renderOutputBuffer: %p", mName, buffer.get());
std::shared_ptr<C2Buffer> c2Buffer;
bool released = false;
{
Mutexed<Output>::Locked output(mOutput);
if (output->buffers) {
released = output->buffers->releaseBuffer(buffer, &c2Buffer);
}
}
// NOTE: some apps try to releaseOutputBuffer() with timestamp and/or render
// set to true.
sendOutputBuffers();
// input buffer feeding may have been gated by pending output buffers
feedInputBufferIfAvailable();
if (!c2Buffer) {
if (released) {
std::call_once(mRenderWarningFlag, [this] {
ALOGW("[%s] The app is calling releaseOutputBuffer() with "
"timestamp or render=true with non-video buffers. Apps should "
"call releaseOutputBuffer() with render=false for those.",
mName);
});
}
return INVALID_OPERATION;
}
#if 0
const std::vector<std::shared_ptr<const C2Info>> infoParams = c2Buffer->info();
ALOGV("[%s] queuing gfx buffer with %zu infos", mName, infoParams.size());
for (const std::shared_ptr<const C2Info> &info : infoParams) {
AString res;
for (size_t ix = 0; ix + 3 < info->size(); ix += 4) {
if (ix) res.append(", ");
res.append(*((int32_t*)info.get() + (ix / 4)));
}
ALOGV(" [%s]", res.c_str());
}
#endif
std::shared_ptr<const C2StreamRotationInfo::output> rotation =
std::static_pointer_cast<const C2StreamRotationInfo::output>(
c2Buffer->getInfo(C2StreamRotationInfo::output::PARAM_TYPE));
bool flip = rotation && (rotation->flip & 1);
uint32_t quarters = ((rotation ? rotation->value : 0) / 90) & 3;
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
if (output->surface == nullptr) {
ALOGI("[%s] cannot render buffer without surface", mName);
return OK;
}
int64_t frameIndex;
buffer->meta()->findInt64("frameIndex", &frameIndex);
if (output->rotation.count(frameIndex) != 0) {
auto it = output->rotation.find(frameIndex);
quarters = (it->second / 90) & 3;
output->rotation.erase(it);
}
}
uint32_t transform = 0;
switch (quarters) {
case 0: // no rotation
transform = flip ? HAL_TRANSFORM_FLIP_H : 0;
break;
case 1: // 90 degrees counter-clockwise
transform = flip ? (HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_ROT_90)
: HAL_TRANSFORM_ROT_270;
break;
case 2: // 180 degrees
transform = flip ? HAL_TRANSFORM_FLIP_V : HAL_TRANSFORM_ROT_180;
break;
case 3: // 90 degrees clockwise
transform = flip ? (HAL_TRANSFORM_FLIP_H | HAL_TRANSFORM_ROT_90)
: HAL_TRANSFORM_ROT_90;
break;
}
std::shared_ptr<const C2StreamSurfaceScalingInfo::output> surfaceScaling =
std::static_pointer_cast<const C2StreamSurfaceScalingInfo::output>(
c2Buffer->getInfo(C2StreamSurfaceScalingInfo::output::PARAM_TYPE));
uint32_t videoScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
if (surfaceScaling) {
videoScalingMode = surfaceScaling->value;
}
// Use dataspace from format as it has the default aspects already applied
android_dataspace_t dataSpace = HAL_DATASPACE_UNKNOWN; // this is 0
(void)buffer->format()->findInt32("android._dataspace", (int32_t *)&dataSpace);
// HDR static info
std::shared_ptr<const C2StreamHdrStaticInfo::output> hdrStaticInfo =
std::static_pointer_cast<const C2StreamHdrStaticInfo::output>(
c2Buffer->getInfo(C2StreamHdrStaticInfo::output::PARAM_TYPE));
// HDR10 plus info
std::shared_ptr<const C2StreamHdr10PlusInfo::output> hdr10PlusInfo =
std::static_pointer_cast<const C2StreamHdr10PlusInfo::output>(
c2Buffer->getInfo(C2StreamHdr10PlusInfo::output::PARAM_TYPE));
if (hdr10PlusInfo && hdr10PlusInfo->flexCount() == 0) {
hdr10PlusInfo.reset();
}
// HDR dynamic info
std::shared_ptr<const C2StreamHdrDynamicMetadataInfo::output> hdrDynamicInfo =
std::static_pointer_cast<const C2StreamHdrDynamicMetadataInfo::output>(
c2Buffer->getInfo(C2StreamHdrDynamicMetadataInfo::output::PARAM_TYPE));
// TODO: make this sticky & enable unset
if (hdrDynamicInfo && hdrDynamicInfo->flexCount() == 0) {
hdrDynamicInfo.reset();
}
if (hdr10PlusInfo) {
// C2StreamHdr10PlusInfo is deprecated; components should use
// C2StreamHdrDynamicMetadataInfo
// TODO: #metric
if (hdrDynamicInfo) {
// It is unexpected that C2StreamHdr10PlusInfo and
// C2StreamHdrDynamicMetadataInfo is both present.
// C2StreamHdrDynamicMetadataInfo takes priority.
// TODO: #metric
} else {
std::shared_ptr<C2StreamHdrDynamicMetadataInfo::output> info =
C2StreamHdrDynamicMetadataInfo::output::AllocShared(
hdr10PlusInfo->flexCount(),
0u,
C2Config::HDR_DYNAMIC_METADATA_TYPE_SMPTE_2094_40);
memcpy(info->m.data, hdr10PlusInfo->m.value, hdr10PlusInfo->flexCount());
hdrDynamicInfo = info;
}
}
std::vector<C2ConstGraphicBlock> blocks = c2Buffer->data().graphicBlocks();
if (blocks.size() != 1u) {
ALOGD("[%s] expected 1 graphic block, but got %zu", mName, blocks.size());
return UNKNOWN_ERROR;
}
const C2ConstGraphicBlock &block = blocks.front();
C2Fence c2fence = block.fence();
sp<Fence> fence = Fence::NO_FENCE;
// TODO: it's not sufficient to just check isHW() and then construct android::fence from it.
// Once C2Fence::type() is added, check the exact C2Fence type
if (c2fence.isHW()) {
int fenceFd = c2fence.fd();
fence = sp<Fence>::make(fenceFd);
if (!fence) {
ALOGE("[%s] Failed to allocate a fence", mName);
close(fenceFd);
return NO_MEMORY;
}
}
// TODO: revisit this after C2Fence implementation.
IGraphicBufferProducer::QueueBufferInput qbi(
timestampNs,
false, // droppable
dataSpace,
Rect(blocks.front().crop().left,
blocks.front().crop().top,
blocks.front().crop().right(),
blocks.front().crop().bottom()),
videoScalingMode,
transform,
fence, 0);
if (hdrStaticInfo || hdrDynamicInfo) {
HdrMetadata hdr;
if (hdrStaticInfo) {
// If mastering max and min luminance fields are 0, do not use them.
// It indicates the value may not be present in the stream.
if (hdrStaticInfo->mastering.maxLuminance > 0.0f &&
hdrStaticInfo->mastering.minLuminance > 0.0f) {
struct android_smpte2086_metadata smpte2086_meta = {
.displayPrimaryRed = {
hdrStaticInfo->mastering.red.x, hdrStaticInfo->mastering.red.y
},
.displayPrimaryGreen = {
hdrStaticInfo->mastering.green.x, hdrStaticInfo->mastering.green.y
},
.displayPrimaryBlue = {
hdrStaticInfo->mastering.blue.x, hdrStaticInfo->mastering.blue.y
},
.whitePoint = {
hdrStaticInfo->mastering.white.x, hdrStaticInfo->mastering.white.y
},
.maxLuminance = hdrStaticInfo->mastering.maxLuminance,
.minLuminance = hdrStaticInfo->mastering.minLuminance,
};
hdr.validTypes |= HdrMetadata::SMPTE2086;
hdr.smpte2086 = smpte2086_meta;
}
// If the content light level fields are 0, do not use them, it
// indicates the value may not be present in the stream.
if (hdrStaticInfo->maxCll > 0.0f && hdrStaticInfo->maxFall > 0.0f) {
struct android_cta861_3_metadata cta861_meta = {
.maxContentLightLevel = hdrStaticInfo->maxCll,
.maxFrameAverageLightLevel = hdrStaticInfo->maxFall,
};
hdr.validTypes |= HdrMetadata::CTA861_3;
hdr.cta8613 = cta861_meta;
}
// does not have valid info
if (!(hdr.validTypes & (HdrMetadata::SMPTE2086 | HdrMetadata::CTA861_3))) {
hdrStaticInfo.reset();
}
}
if (hdrDynamicInfo
&& hdrDynamicInfo->m.type_ == C2Config::HDR_DYNAMIC_METADATA_TYPE_SMPTE_2094_40) {
hdr.validTypes |= HdrMetadata::HDR10PLUS;
hdr.hdr10plus.assign(
hdrDynamicInfo->m.data,
hdrDynamicInfo->m.data + hdrDynamicInfo->flexCount());
}
qbi.setHdrMetadata(hdr);
}
SetMetadataToGralloc4Handle(dataSpace, hdrStaticInfo, hdrDynamicInfo, block.handle());
qbi.setSurfaceDamage(Region::INVALID_REGION); // we don't have dirty regions
qbi.getFrameTimestamps = true; // we need to know when a frame is rendered
IGraphicBufferProducer::QueueBufferOutput qbo;
status_t result = mComponent->queueToOutputSurface(block, qbi, &qbo);
if (result != OK) {
ALOGI("[%s] queueBuffer failed: %d", mName, result);
if (result == NO_INIT) {
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
}
return result;
}
if(android::base::GetBoolProperty("debug.stagefright.fps", false)) {
ALOGD("[%s] queue buffer successful", mName);
} else {
ALOGV("[%s] queue buffer successful", mName);
}
int64_t mediaTimeUs = 0;
(void)buffer->meta()->findInt64("timeUs", &mediaTimeUs);
if (mAreRenderMetricsEnabled && mIsSurfaceToDisplay) {
trackReleasedFrame(qbo, mediaTimeUs, timestampNs);
processRenderedFrames(qbo.frameTimestamps);
} else {
// When the surface is an intermediate surface, onFrameRendered is triggered immediately
// when the frame is queued to the non-display surface
mCCodecCallback->onOutputFramesRendered(mediaTimeUs, timestampNs);
}
return OK;
}
void CCodecBufferChannel::initializeFrameTrackingFor(ANativeWindow * window) {
mTrackedFrames.clear();
int isSurfaceToDisplay = 0;
window->query(window, NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, &isSurfaceToDisplay);
mIsSurfaceToDisplay = isSurfaceToDisplay == 1;
// No frame tracking is needed if we're not sending frames to the display
if (!mIsSurfaceToDisplay) {
// Return early so we don't call into SurfaceFlinger (requiring permissions)
return;
}
int hasPresentFenceTimes = 0;
window->query(window, NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &hasPresentFenceTimes);
mHasPresentFenceTimes = hasPresentFenceTimes == 1;
if (!mHasPresentFenceTimes) {
ALOGI("Using latch times for frame rendered signals - present fences not supported");
}
}
void CCodecBufferChannel::trackReleasedFrame(const IGraphicBufferProducer::QueueBufferOutput& qbo,
int64_t mediaTimeUs, int64_t desiredRenderTimeNs) {
// If the render time is earlier than now, then we're suggesting it should be rendered ASAP,
// so track the frame as if the desired render time is now.
int64_t nowNs = systemTime(SYSTEM_TIME_MONOTONIC);
if (desiredRenderTimeNs < nowNs) {
desiredRenderTimeNs = nowNs;
}
// If the render time is more than a second from now, then pretend the frame is supposed to be
// rendered immediately, because that's what SurfaceFlinger heuristics will do. This is a tight
// coupling, but is really the only way to optimize away unnecessary present fence checks in
// processRenderedFrames.
if (desiredRenderTimeNs > nowNs + 1*1000*1000*1000LL) {
desiredRenderTimeNs = nowNs;
}
// We've just queued a frame to the surface, so keep track of it and later check to see if it is
// actually rendered.
TrackedFrame frame;
frame.number = qbo.nextFrameNumber - 1;
frame.mediaTimeUs = mediaTimeUs;
frame.desiredRenderTimeNs = desiredRenderTimeNs;
frame.latchTime = -1;
frame.presentFence = nullptr;
mTrackedFrames.push_back(frame);
}
void CCodecBufferChannel::processRenderedFrames(const FrameEventHistoryDelta& deltas) {
// Grab the latch times and present fences from the frame event deltas
for (const auto& delta : deltas) {
for (auto& frame : mTrackedFrames) {
if (delta.getFrameNumber() == frame.number) {
delta.getLatchTime(&frame.latchTime);
delta.getDisplayPresentFence(&frame.presentFence);
}
}
}
// Scan all frames and check to see if the frames that SHOULD have been rendered by now, have,
// in fact, been rendered.
int64_t nowNs = systemTime(SYSTEM_TIME_MONOTONIC);
while (!mTrackedFrames.empty()) {
TrackedFrame & frame = mTrackedFrames.front();
// Frames that should have been rendered at least 100ms in the past are checked
if (frame.desiredRenderTimeNs > nowNs - 100*1000*1000LL) {
break;
}
// If we don't have a render time by now, then consider the frame as dropped
int64_t renderTimeNs = getRenderTimeNs(frame);
if (renderTimeNs != -1) {
mCCodecCallback->onOutputFramesRendered(frame.mediaTimeUs, renderTimeNs);
}
mTrackedFrames.pop_front();
}
}
int64_t CCodecBufferChannel::getRenderTimeNs(const TrackedFrame& frame) {
// If the device doesn't have accurate present fence times, then use the latch time as a proxy
if (!mHasPresentFenceTimes) {
if (frame.latchTime == -1) {
ALOGD("no latch time for frame %d", (int) frame.number);
return -1;
}
return frame.latchTime;
}
if (frame.presentFence == nullptr) {
ALOGW("no present fence for frame %d", (int) frame.number);
return -1;
}
nsecs_t actualRenderTimeNs = frame.presentFence->getSignalTime();
if (actualRenderTimeNs == Fence::SIGNAL_TIME_INVALID) {
ALOGW("invalid signal time for frame %d", (int) frame.number);
return -1;
}
if (actualRenderTimeNs == Fence::SIGNAL_TIME_PENDING) {
ALOGD("present fence has not fired for frame %d", (int) frame.number);
return -1;
}
return actualRenderTimeNs;
}
void CCodecBufferChannel::pollForRenderedBuffers() {
FrameEventHistoryDelta delta;
mComponent->pollForRenderedFrames(&delta);
processRenderedFrames(delta);
}
void CCodecBufferChannel::onBufferReleasedFromOutputSurface(uint32_t generation) {
// Note: Since this is called asynchronously from IProducerListener not
// knowing the internal state of CCodec/CCodecBufferChannel,
// prevent mComponent from being destroyed by holding the shared reference
// during this interface being executed.
std::shared_ptr<Codec2Client::Component> comp = mComponent;
if (comp) {
comp->onBufferReleasedFromOutputSurface(generation);
}
}
status_t CCodecBufferChannel::discardBuffer(const sp<MediaCodecBuffer> &buffer) {
ALOGV("[%s] discardBuffer: %p", mName, buffer.get());
bool released = false;
{
Mutexed<Input>::Locked input(mInput);
if (input->buffers && input->buffers->releaseBuffer(buffer, nullptr, true)) {
released = true;
}
}
{
Mutexed<Output>::Locked output(mOutput);
if (output->buffers && output->buffers->releaseBuffer(buffer, nullptr)) {
released = true;
}
}
if (released) {
sendOutputBuffers();
feedInputBufferIfAvailable();
} else {
ALOGD("[%s] MediaCodec discarded an unknown buffer", mName);
}
return OK;
}
void CCodecBufferChannel::getInputBufferArray(Vector<sp<MediaCodecBuffer>> *array) {
array->clear();
Mutexed<Input>::Locked input(mInput);
if (!input->buffers) {
ALOGE("getInputBufferArray: No Input Buffers allocated");
return;
}
if (!input->buffers->isArrayMode()) {
input->buffers = input->buffers->toArrayMode(input->numSlots);
}
input->buffers->getArray(array);
}
void CCodecBufferChannel::getOutputBufferArray(Vector<sp<MediaCodecBuffer>> *array) {
array->clear();
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers) {
ALOGE("getOutputBufferArray: No Output Buffers allocated");
return;
}
if (!output->buffers->isArrayMode()) {
output->buffers = output->buffers->toArrayMode(output->numSlots);
}
output->buffers->getArray(array);
}
status_t CCodecBufferChannel::start(
const sp<AMessage> &inputFormat,
const sp<AMessage> &outputFormat,
bool buffersBoundToCodec) {
C2StreamBufferTypeSetting::input iStreamFormat(0u);
C2StreamBufferTypeSetting::output oStreamFormat(0u);
C2ComponentKindSetting kind;
C2PortReorderBufferDepthTuning::output reorderDepth;
C2PortReorderKeySetting::output reorderKey;
C2PortActualDelayTuning::input inputDelay(0);
C2PortActualDelayTuning::output outputDelay(0);
C2ActualPipelineDelayTuning pipelineDelay(0);
C2SecureModeTuning secureMode(C2Config::SM_UNPROTECTED);
c2_status_t err = mComponent->query(
{
&iStreamFormat,
&oStreamFormat,
&kind,
&reorderDepth,
&reorderKey,
&inputDelay,
&pipelineDelay,
&outputDelay,
&secureMode,
},
{},
C2_DONT_BLOCK,
nullptr);
if (err == C2_BAD_INDEX) {
if (!iStreamFormat || !oStreamFormat || !kind) {
return UNKNOWN_ERROR;
}
} else if (err != C2_OK) {
return UNKNOWN_ERROR;
}
uint32_t inputDelayValue = inputDelay ? inputDelay.value : 0;
uint32_t pipelineDelayValue = pipelineDelay ? pipelineDelay.value : 0;
uint32_t outputDelayValue = outputDelay ? outputDelay.value : 0;
size_t numInputSlots = inputDelayValue + pipelineDelayValue + kSmoothnessFactor;
size_t numOutputSlots = outputDelayValue + kSmoothnessFactor;
// TODO: get this from input format
bool secure = mComponent->getName().find(".secure") != std::string::npos;
// secure mode is a static parameter (shall not change in the executing state)
mSendEncryptedInfoBuffer = secureMode.value == C2Config::SM_READ_PROTECTED_WITH_ENCRYPTED;
std::shared_ptr<C2AllocatorStore> allocatorStore = GetCodec2PlatformAllocatorStore();
int poolMask = GetCodec2PoolMask();
C2PlatformAllocatorStore::id_t preferredLinearId = GetPreferredLinearAllocatorId(poolMask);
if (inputFormat != nullptr) {
bool graphic = (iStreamFormat.value == C2BufferData::GRAPHIC);
bool audioEncoder = !graphic && (kind.value == C2Component::KIND_ENCODER);
C2Config::api_feature_t apiFeatures = C2Config::api_feature_t(
API_REFLECTION |
API_VALUES |
API_CURRENT_VALUES |
API_DEPENDENCY |
API_SAME_INPUT_BUFFER);
C2StreamAudioFrameSizeInfo::input encoderFrameSize(0u);
C2StreamSampleRateInfo::input sampleRate(0u);
C2StreamChannelCountInfo::input channelCount(0u);
C2StreamPcmEncodingInfo::input pcmEncoding(0u);
std::shared_ptr<C2BlockPool> pool;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
// set default allocator ID.
pools->inputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC
: preferredLinearId;
// query C2PortAllocatorsTuning::input from component. If an allocator ID is obtained
// from component, create the input block pool with given ID. Otherwise, use default IDs.
std::vector<std::unique_ptr<C2Param>> params;
C2ApiFeaturesSetting featuresSetting{apiFeatures};
std::vector<C2Param *> stackParams({&featuresSetting});
if (audioEncoder) {
stackParams.push_back(&encoderFrameSize);
stackParams.push_back(&sampleRate);
stackParams.push_back(&channelCount);
stackParams.push_back(&pcmEncoding);
} else {
encoderFrameSize.invalidate();
sampleRate.invalidate();
channelCount.invalidate();
pcmEncoding.invalidate();
}
err = mComponent->query(stackParams,
{ C2PortAllocatorsTuning::input::PARAM_TYPE },
C2_DONT_BLOCK,
&params);
if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
ALOGD("[%s] Query input allocators returned %zu params => %s (%u)",
mName, params.size(), asString(err), err);
} else if (params.size() == 1) {
C2PortAllocatorsTuning::input *inputAllocators =
C2PortAllocatorsTuning::input::From(params[0].get());
if (inputAllocators && inputAllocators->flexCount() > 0) {
std::shared_ptr<C2Allocator> allocator;
// verify allocator IDs and resolve default allocator
allocatorStore->fetchAllocator(inputAllocators->m.values[0], &allocator);
if (allocator) {
pools->inputAllocatorId = allocator->getId();
} else {
ALOGD("[%s] component requested invalid input allocator ID %u",
mName, inputAllocators->m.values[0]);
}
}
}
if (featuresSetting) {
apiFeatures = featuresSetting.value;
}
// TODO: use C2Component wrapper to associate this pool with ourselves
if ((poolMask >> pools->inputAllocatorId) & 1) {
err = CreateCodec2BlockPool(pools->inputAllocatorId, nullptr, &pool);
ALOGD("[%s] Created input block pool with allocatorID %u => poolID %llu - %s (%d)",
mName, pools->inputAllocatorId,
(unsigned long long)(pool ? pool->getLocalId() : 111000111),
asString(err), err);
} else {
err = C2_NOT_FOUND;
}
if (err != C2_OK) {
C2BlockPool::local_id_t inputPoolId =
graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR;
err = GetCodec2BlockPool(inputPoolId, nullptr, &pool);
ALOGD("[%s] Using basic input block pool with poolID %llu => got %llu - %s (%d)",
mName, (unsigned long long)inputPoolId,
(unsigned long long)(pool ? pool->getLocalId() : 111000111),
asString(err), err);
if (err != C2_OK) {
return NO_MEMORY;
}
}
pools->inputPool = pool;
}
bool forceArrayMode = false;
Mutexed<Input>::Locked input(mInput);
input->inputDelay = inputDelayValue;
input->pipelineDelay = pipelineDelayValue;
input->numSlots = numInputSlots;
input->extraBuffers.flush();
input->numExtraSlots = 0u;
input->lastFlushIndex = mFrameIndex.load(std::memory_order_relaxed);
if (audioEncoder && encoderFrameSize && sampleRate && channelCount) {
input->frameReassembler.init(
pool,
{C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE},
encoderFrameSize.value,
sampleRate.value,
channelCount.value,
pcmEncoding ? pcmEncoding.value : C2Config::PCM_16);
}
bool conforming = (apiFeatures & API_SAME_INPUT_BUFFER);
// For encrypted content, framework decrypts source buffer (ashmem) into
// C2Buffers. Thus non-conforming codecs can process these.
if (!buffersBoundToCodec
&& !input->frameReassembler
&& (hasCryptoOrDescrambler() || conforming)) {
input->buffers.reset(new SlotInputBuffers(mName));
} else if (graphic) {
if (mInputSurface) {
input->buffers.reset(new DummyInputBuffers(mName));
} else if (mMetaMode == MODE_ANW) {
input->buffers.reset(new GraphicMetadataInputBuffers(mName));
// This is to ensure buffers do not get released prematurely.
// TODO: handle this without going into array mode
forceArrayMode = true;
} else {
input->buffers.reset(new GraphicInputBuffers(mName));
}
} else {
if (hasCryptoOrDescrambler()) {
int32_t capacity = kLinearBufferSize;
(void)inputFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity);
if ((size_t)capacity > kMaxLinearBufferSize) {
ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize);
capacity = kMaxLinearBufferSize;
}
if (mDealer == nullptr) {
mDealer = new MemoryDealer(
align(capacity, MemoryDealer::getAllocationAlignment())
* (numInputSlots + 1),
"EncryptedLinearInputBuffers");
mDecryptDestination = mDealer->allocate((size_t)capacity);
}
if (mCrypto != nullptr && mHeapSeqNum < 0) {
sp<HidlMemory> heap = fromHeap(mDealer->getMemoryHeap());
mHeapSeqNum = mCrypto->setHeap(heap);
} else {
mHeapSeqNum = -1;
}
input->buffers.reset(new EncryptedLinearInputBuffers(
secure, mDealer, mCrypto, mHeapSeqNum, (size_t)capacity,
numInputSlots, mName));
forceArrayMode = true;
} else {
input->buffers.reset(new LinearInputBuffers(mName));
}
}
input->buffers->setFormat(inputFormat);
if (err == C2_OK) {
input->buffers->setPool(pool);
} else {
// TODO: error
}
if (forceArrayMode) {
input->buffers = input->buffers->toArrayMode(numInputSlots);
}
}
if (outputFormat != nullptr) {
sp<IGraphicBufferProducer> outputSurface;
uint32_t outputGeneration;
int maxDequeueCount = 0;
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
maxDequeueCount = output->maxDequeueBuffers = numOutputSlots +
reorderDepth.value + mRenderingDepth;
outputSurface = output->surface ?
output->surface->getIGraphicBufferProducer() : nullptr;
if (outputSurface) {
output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
}
outputGeneration = output->generation;
}
bool graphic = (oStreamFormat.value == C2BufferData::GRAPHIC);
C2BlockPool::local_id_t outputPoolId_;
C2BlockPool::local_id_t prevOutputPoolId;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
prevOutputPoolId = pools->outputPoolId;
// set default allocator ID.
pools->outputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC
: preferredLinearId;
// query C2PortAllocatorsTuning::output from component, or use default allocator if
// unsuccessful.
std::vector<std::unique_ptr<C2Param>> params;
err = mComponent->query({ },
{ C2PortAllocatorsTuning::output::PARAM_TYPE },
C2_DONT_BLOCK,
&params);
if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
ALOGD("[%s] Query output allocators returned %zu params => %s (%u)",
mName, params.size(), asString(err), err);
} else if (err == C2_OK && params.size() == 1) {
C2PortAllocatorsTuning::output *outputAllocators =
C2PortAllocatorsTuning::output::From(params[0].get());
if (outputAllocators && outputAllocators->flexCount() > 0) {
std::shared_ptr<C2Allocator> allocator;
// verify allocator IDs and resolve default allocator
allocatorStore->fetchAllocator(outputAllocators->m.values[0], &allocator);
if (allocator) {
pools->outputAllocatorId = allocator->getId();
} else {
ALOGD("[%s] component requested invalid output allocator ID %u",
mName, outputAllocators->m.values[0]);
}
}
}
// use bufferqueue if outputting to a surface.
// query C2PortSurfaceAllocatorTuning::output from component, or use default allocator
// if unsuccessful.
if (outputSurface) {
params.clear();
err = mComponent->query({ },
{ C2PortSurfaceAllocatorTuning::output::PARAM_TYPE },
C2_DONT_BLOCK,
&params);
if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
ALOGD("[%s] Query output surface allocator returned %zu params => %s (%u)",
mName, params.size(), asString(err), err);
} else if (err == C2_OK && params.size() == 1) {
C2PortSurfaceAllocatorTuning::output *surfaceAllocator =
C2PortSurfaceAllocatorTuning::output::From(params[0].get());
if (surfaceAllocator) {
std::shared_ptr<C2Allocator> allocator;
// verify allocator IDs and resolve default allocator
allocatorStore->fetchAllocator(surfaceAllocator->value, &allocator);
if (allocator) {
pools->outputAllocatorId = allocator->getId();
} else {
ALOGD("[%s] component requested invalid surface output allocator ID %u",
mName, surfaceAllocator->value);
err = C2_BAD_VALUE;
}
}
}
if (pools->outputAllocatorId == C2PlatformAllocatorStore::GRALLOC
&& err != C2_OK
&& ((poolMask >> C2PlatformAllocatorStore::BUFFERQUEUE) & 1)) {
pools->outputAllocatorId = C2PlatformAllocatorStore::BUFFERQUEUE;
}
}
if ((poolMask >> pools->outputAllocatorId) & 1) {
err = mComponent->createBlockPool(
pools->outputAllocatorId, &pools->outputPoolId, &pools->outputPoolIntf);
ALOGI("[%s] Created output block pool with allocatorID %u => poolID %llu - %s",
mName, pools->outputAllocatorId,
(unsigned long long)pools->outputPoolId,
asString(err));
} else {
err = C2_NOT_FOUND;
}
if (err != C2_OK) {
// use basic pool instead
pools->outputPoolId =
graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR;
}
// Configure output block pool ID as parameter C2PortBlockPoolsTuning::output to
// component.
std::unique_ptr<C2PortBlockPoolsTuning::output> poolIdsTuning =
C2PortBlockPoolsTuning::output::AllocUnique({ pools->outputPoolId });
std::vector<std::unique_ptr<C2SettingResult>> failures;
err = mComponent->config({ poolIdsTuning.get() }, C2_MAY_BLOCK, &failures);
ALOGD("[%s] Configured output block pool ids %llu => %s",
mName, (unsigned long long)poolIdsTuning->m.values[0], asString(err));
outputPoolId_ = pools->outputPoolId;
}
if (prevOutputPoolId != C2BlockPool::BASIC_LINEAR
&& prevOutputPoolId != C2BlockPool::BASIC_GRAPHIC) {
c2_status_t err = mComponent->destroyBlockPool(prevOutputPoolId);
if (err != C2_OK) {
ALOGW("Failed to clean up previous block pool %llu - %s (%d)\n",
(unsigned long long) prevOutputPoolId, asString(err), err);
}
}
Mutexed<Output>::Locked output(mOutput);
output->outputDelay = outputDelayValue;
output->numSlots = numOutputSlots;
output->bounded = bool(outputSurface);
if (graphic) {
if (outputSurface || !buffersBoundToCodec) {
output->buffers.reset(new GraphicOutputBuffers(mName));
} else {
output->buffers.reset(new RawGraphicOutputBuffers(mName));
}
} else {
output->buffers.reset(new LinearOutputBuffers(mName));
}
output->buffers->setFormat(outputFormat);
output->buffers->clearStash();
if (reorderDepth) {
output->buffers->setReorderDepth(reorderDepth.value);
}
if (reorderKey) {
output->buffers->setReorderKey(reorderKey.value);
}
// Try to set output surface to created block pool if given.
if (outputSurface) {
mComponent->setOutputSurface(
outputPoolId_,
outputSurface,
outputGeneration,
maxDequeueCount);
} else {
// configure CPU read consumer usage
C2StreamUsageTuning::output outputUsage{0u, C2MemoryUsage::CPU_READ};
std::vector<std::unique_ptr<C2SettingResult>> failures;
err = mComponent->config({ &outputUsage }, C2_MAY_BLOCK, &failures);
// do not print error message for now as most components may not yet
// support this setting
ALOGD_IF(err != C2_BAD_INDEX, "[%s] Configured output usage [%#llx]",
mName, (long long)outputUsage.value);
}
if (oStreamFormat.value == C2BufferData::LINEAR) {
if (buffersBoundToCodec) {
// WORKAROUND: if we're using early CSD workaround we convert to
// array mode, to appease apps assuming the output
// buffers to be of the same size.
output->buffers = output->buffers->toArrayMode(numOutputSlots);
}
int32_t channelCount;
int32_t sampleRate;
if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount)
&& outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) {
int32_t delay = 0;
int32_t padding = 0;;
if (!outputFormat->findInt32("encoder-delay", &delay)) {
delay = 0;
}
if (!outputFormat->findInt32("encoder-padding", &padding)) {
padding = 0;
}
if (delay || padding) {
// We need write access to the buffers, so turn them into array mode.
// TODO: b/321930152 - define SkipCutOutputBuffers that takes output from
// component, runs it through SkipCutBuffer and allocate local buffer to be
// used by fwk. Make initSkipCutBuffer() return OutputBuffers similar to
// toArrayMode().
if (!output->buffers->isArrayMode()) {
output->buffers = output->buffers->toArrayMode(numOutputSlots);
}
output->buffers->initSkipCutBuffer(delay, padding, sampleRate, channelCount);
}
}
}
int32_t tunneled = 0;
if (!outputFormat->findInt32("android._tunneled", &tunneled)) {
tunneled = 0;
}
mTunneled = (tunneled != 0);
}
// Set up pipeline control. This has to be done after mInputBuffers and
// mOutputBuffers are initialized to make sure that lingering callbacks
// about buffers from the previous generation do not interfere with the
// newly initialized pipeline capacity.
if (inputFormat || outputFormat) {
Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
watcher->inputDelay(inputDelayValue)
.pipelineDelay(pipelineDelayValue)
.outputDelay(outputDelayValue)
.smoothnessFactor(kSmoothnessFactor)
.tunneled(mTunneled);
watcher->flush();
}
mInputMetEos = false;
mSync.start();
return OK;
}
status_t CCodecBufferChannel::prepareInitialInputBuffers(
std::map<size_t, sp<MediaCodecBuffer>> *clientInputBuffers, bool retry) {
if (mInputSurface) {
return OK;
}
size_t numInputSlots = mInput.lock()->numSlots;
int retryCount = 1;
for (; clientInputBuffers->empty() && retryCount >= 0; retryCount--) {
{
Mutexed<Input>::Locked input(mInput);
while (clientInputBuffers->size() < numInputSlots) {
size_t index;
sp<MediaCodecBuffer> buffer;
if (!input->buffers->requestNewBuffer(&index, &buffer)) {
break;
}
clientInputBuffers->emplace(index, buffer);
}
}
if (!retry || (retryCount <= 0)) {
break;
}
if (clientInputBuffers->empty()) {
// wait: buffer may be in transit from component.
std::this_thread::sleep_for(std::chrono::milliseconds(4));
}
}
if (clientInputBuffers->empty()) {
ALOGW("[%s] start: cannot allocate memory at all", mName);
return NO_MEMORY;
} else if (clientInputBuffers->size() < numInputSlots) {
ALOGD("[%s] start: cannot allocate memory for all slots, "
"only %zu buffers allocated",
mName, clientInputBuffers->size());
} else {
ALOGV("[%s] %zu initial input buffers available",
mName, clientInputBuffers->size());
}
return OK;
}
status_t CCodecBufferChannel::requestInitialInputBuffers(
std::map<size_t, sp<MediaCodecBuffer>> &&clientInputBuffers) {
C2StreamBufferTypeSetting::output oStreamFormat(0u);
C2PrependHeaderModeSetting prepend(PREPEND_HEADER_TO_NONE);
c2_status_t err = mComponent->query({ &oStreamFormat, &prepend }, {}, C2_DONT_BLOCK, nullptr);
if (err != C2_OK && err != C2_BAD_INDEX) {
return UNKNOWN_ERROR;
}
std::list<std::unique_ptr<C2Work>> flushedConfigs;
mFlushedConfigs.lock()->swap(flushedConfigs);
if (!flushedConfigs.empty()) {
{
Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
PipelineWatcher::Clock::time_point now = PipelineWatcher::Clock::now();
for (const std::unique_ptr<C2Work> &work : flushedConfigs) {
watcher->onWorkQueued(
work->input.ordinal.frameIndex.peeku(),
std::vector(work->input.buffers),
now);
}
}
err = mComponent->queue(&flushedConfigs);
if (err != C2_OK) {
ALOGW("[%s] Error while queueing a flushed config", mName);
return UNKNOWN_ERROR;
}
}
if (oStreamFormat.value == C2BufferData::LINEAR &&
(!prepend || prepend.value == PREPEND_HEADER_TO_NONE) &&
!clientInputBuffers.empty()) {
size_t minIndex = clientInputBuffers.begin()->first;
sp<MediaCodecBuffer> minBuffer = clientInputBuffers.begin()->second;
for (const auto &[index, buffer] : clientInputBuffers) {
if (minBuffer->capacity() > buffer->capacity()) {
minIndex = index;
minBuffer = buffer;
}
}
// WORKAROUND: Some apps expect CSD available without queueing
// any input. Queue an empty buffer to get the CSD.
minBuffer->setRange(0, 0);
minBuffer->meta()->clear();
minBuffer->meta()->setInt64("timeUs", 0);
if (queueInputBufferInternal(minBuffer) != OK) {
ALOGW("[%s] Error while queueing an empty buffer to get CSD",
mName);
return UNKNOWN_ERROR;
}
clientInputBuffers.erase(minIndex);
}
for (const auto &[index, buffer] : clientInputBuffers) {
mCallback->onInputBufferAvailable(index, buffer);
}
return OK;
}
void CCodecBufferChannel::stop() {
mSync.stop();
mFirstValidFrameIndex = mFrameIndex.load(std::memory_order_relaxed);
}
void CCodecBufferChannel::stopUseOutputSurface(bool pushBlankBuffer) {
sp<Surface> surface = mOutputSurface.lock()->surface;
if (surface) {
C2BlockPool::local_id_t outputPoolId;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
outputPoolId = pools->outputPoolId;
}
if (mComponent) mComponent->stopUsingOutputSurface(outputPoolId);
if (pushBlankBuffer) {
sp<ANativeWindow> anw = static_cast<ANativeWindow *>(surface.get());
if (anw) {
pushBlankBuffersToNativeWindow(anw.get());
}
}
}
}
void CCodecBufferChannel::reset() {
stop();
if (mInputSurface != nullptr) {
mInputSurface.reset();
}
mPipelineWatcher.lock()->flush();
{
Mutexed<Input>::Locked input(mInput);
input->buffers.reset(new DummyInputBuffers(""));
input->extraBuffers.flush();
}
{
Mutexed<Output>::Locked output(mOutput);
output->buffers.reset();
}
// reset the frames that are being tracked for onFrameRendered callbacks
mTrackedFrames.clear();
}
void CCodecBufferChannel::release() {
mComponent.reset();
mInputAllocator.reset();
mOutputSurface.lock()->surface.clear();
{
Mutexed<BlockPools>::Locked blockPools{mBlockPools};
blockPools->inputPool.reset();
blockPools->outputPoolIntf.reset();
}
setCrypto(nullptr);
setDescrambler(nullptr);
}
void CCodecBufferChannel::flush(const std::list<std::unique_ptr<C2Work>> &flushedWork) {
ALOGV("[%s] flush", mName);
std::list<std::unique_ptr<C2Work>> configs;
mInput.lock()->lastFlushIndex = mFrameIndex.load(std::memory_order_relaxed);
{
Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
for (const std::unique_ptr<C2Work> &work : flushedWork) {
uint64_t frameIndex = work->input.ordinal.frameIndex.peeku();
if (!(work->input.flags & C2FrameData::FLAG_CODEC_CONFIG)) {
watcher->onWorkDone(frameIndex);
continue;
}
if (work->input.buffers.empty()
|| work->input.buffers.front() == nullptr
|| work->input.buffers.front()->data().linearBlocks().empty()) {
ALOGD("[%s] no linear codec config data found", mName);
watcher->onWorkDone(frameIndex);
continue;
}
std::unique_ptr<C2Work> copy(new C2Work);
copy->input.flags = C2FrameData::flags_t(
work->input.flags | C2FrameData::FLAG_DROP_FRAME);
copy->input.ordinal = work->input.ordinal;
copy->input.ordinal.frameIndex = mFrameIndex++;
for (size_t i = 0; i < work->input.buffers.size(); ++i) {
copy->input.buffers.push_back(watcher->onInputBufferReleased(frameIndex, i));
}
for (const std::unique_ptr<C2Param> &param : work->input.configUpdate) {
copy->input.configUpdate.push_back(C2Param::Copy(*param));
}
copy->input.infoBuffers.insert(
copy->input.infoBuffers.begin(),
work->input.infoBuffers.begin(),
work->input.infoBuffers.end());
copy->worklets.emplace_back(new C2Worklet);
configs.push_back(std::move(copy));
watcher->onWorkDone(frameIndex);
ALOGV("[%s] stashed flushed codec config data", mName);
}
}
mFlushedConfigs.lock()->swap(configs);
{
Mutexed<Input>::Locked input(mInput);
input->buffers->flush();
input->extraBuffers.flush();
}
{
Mutexed<Output>::Locked output(mOutput);
if (output->buffers) {
output->buffers->flush(flushedWork);
output->buffers->flushStash();
}
}
}
void CCodecBufferChannel::onWorkDone(
std::unique_ptr<C2Work> work, const sp<AMessage> &outputFormat,
const C2StreamInitDataInfo::output *initData) {
if (handleWork(std::move(work), outputFormat, initData)) {
feedInputBufferIfAvailable();
}
}
void CCodecBufferChannel::onInputBufferDone(
uint64_t frameIndex, size_t arrayIndex) {
if (mInputSurface) {
return;
}
std::shared_ptr<C2Buffer> buffer =
mPipelineWatcher.lock()->onInputBufferReleased(frameIndex, arrayIndex);
bool newInputSlotAvailable = false;
{
Mutexed<Input>::Locked input(mInput);
if (input->lastFlushIndex >= frameIndex) {
ALOGD("[%s] Ignoring stale input buffer done callback: "
"last flush index = %lld, frameIndex = %lld",
mName, input->lastFlushIndex.peekll(), (long long)frameIndex);
} else {
newInputSlotAvailable = input->buffers->expireComponentBuffer(buffer);
if (!newInputSlotAvailable) {
(void)input->extraBuffers.expireComponentBuffer(buffer);
}
}
}
if (newInputSlotAvailable) {
feedInputBufferIfAvailable();
}
}
bool CCodecBufferChannel::handleWork(
std::unique_ptr<C2Work> work,
const sp<AMessage> &outputFormat,
const C2StreamInitDataInfo::output *initData) {
{
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers) {
return false;
}
}
// Whether the output buffer should be reported to the client or not.
bool notifyClient = false;
if (work->result == C2_OK){
notifyClient = true;
} else if (work->result == C2_NOT_FOUND) {
ALOGD("[%s] flushed work; ignored.", mName);
} else {
// C2_OK and C2_NOT_FOUND are the only results that we accept for processing
// the config update.
ALOGD("[%s] work failed to complete: %d", mName, work->result);
mCCodecCallback->onError(work->result, ACTION_CODE_FATAL);
return false;
}
if ((work->input.ordinal.frameIndex -
mFirstValidFrameIndex.load()).peek() < 0) {
// Discard frames from previous generation.
ALOGD("[%s] Discard frames from previous generation.", mName);
notifyClient = false;
}
if (mInputSurface == nullptr && (work->worklets.size() != 1u
|| !work->worklets.front()
|| !(work->worklets.front()->output.flags &
C2FrameData::FLAG_INCOMPLETE))) {
mPipelineWatcher.lock()->onWorkDone(
work->input.ordinal.frameIndex.peeku());
}
// NOTE: MediaCodec usage supposedly have only one worklet
if (work->worklets.size() != 1u) {
ALOGI("[%s] onWorkDone: incorrect number of worklets: %zu",
mName, work->worklets.size());
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return false;
}
const std::unique_ptr<C2Worklet> &worklet = work->worklets.front();
std::shared_ptr<C2Buffer> buffer;
// NOTE: MediaCodec usage supposedly have only one output stream.
if (worklet->output.buffers.size() > 1u) {
ALOGI("[%s] onWorkDone: incorrect number of output buffers: %zu",
mName, worklet->output.buffers.size());
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return false;
} else if (worklet->output.buffers.size() == 1u) {
buffer = worklet->output.buffers[0];
if (!buffer) {
ALOGD("[%s] onWorkDone: nullptr found in buffers; ignored.", mName);
}
}
std::optional<uint32_t> newInputDelay, newPipelineDelay, newOutputDelay, newReorderDepth;
std::optional<C2Config::ordinal_key_t> newReorderKey;
bool needMaxDequeueBufferCountUpdate = false;
while (!worklet->output.configUpdate.empty()) {
std::unique_ptr<C2Param> param;
worklet->output.configUpdate.back().swap(param);
worklet->output.configUpdate.pop_back();
switch (param->coreIndex().coreIndex()) {
case C2PortReorderBufferDepthTuning::CORE_INDEX: {
C2PortReorderBufferDepthTuning::output reorderDepth;
if (reorderDepth.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updated reorder depth to %u",
mName, reorderDepth.value);
newReorderDepth = reorderDepth.value;
needMaxDequeueBufferCountUpdate = true;
} else {
ALOGD("[%s] onWorkDone: failed to read reorder depth",
mName);
}
break;
}
case C2PortReorderKeySetting::CORE_INDEX: {
C2PortReorderKeySetting::output reorderKey;
if (reorderKey.updateFrom(*param)) {
newReorderKey = reorderKey.value;
ALOGV("[%s] onWorkDone: updated reorder key to %u",
mName, reorderKey.value);
} else {
ALOGD("[%s] onWorkDone: failed to read reorder key", mName);
}
break;
}
case C2PortActualDelayTuning::CORE_INDEX: {
if (param->isGlobal()) {
C2ActualPipelineDelayTuning pipelineDelay;
if (pipelineDelay.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updating pipeline delay %u",
mName, pipelineDelay.value);
newPipelineDelay = pipelineDelay.value;
(void)mPipelineWatcher.lock()->pipelineDelay(
pipelineDelay.value);
}
}
if (param->forInput()) {
C2PortActualDelayTuning::input inputDelay;
if (inputDelay.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updating input delay %u",
mName, inputDelay.value);
newInputDelay = inputDelay.value;
(void)mPipelineWatcher.lock()->inputDelay(
inputDelay.value);
}
}
if (param->forOutput()) {
C2PortActualDelayTuning::output outputDelay;
if (outputDelay.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: updating output delay %u",
mName, outputDelay.value);
(void)mPipelineWatcher.lock()->outputDelay(outputDelay.value);
newOutputDelay = outputDelay.value;
needMaxDequeueBufferCountUpdate = true;
}
}
break;
}
case C2PortTunnelSystemTime::CORE_INDEX: {
C2PortTunnelSystemTime::output frameRenderTime;
if (frameRenderTime.updateFrom(*param)) {
ALOGV("[%s] onWorkDone: frame rendered (sys:%lld ns, media:%lld us)",
mName, (long long)frameRenderTime.value,
(long long)worklet->output.ordinal.timestamp.peekll());
mCCodecCallback->onOutputFramesRendered(
worklet->output.ordinal.timestamp.peek(), frameRenderTime.value);
}
break;
}
case C2StreamTunnelHoldRender::CORE_INDEX: {
C2StreamTunnelHoldRender::output firstTunnelFrameHoldRender;
if (!(worklet->output.flags & C2FrameData::FLAG_INCOMPLETE)) break;
if (!firstTunnelFrameHoldRender.updateFrom(*param)) break;
if (firstTunnelFrameHoldRender.value != C2_TRUE) break;
ALOGV("[%s] onWorkDone: first tunnel frame ready", mName);
mCCodecCallback->onFirstTunnelFrameReady();
break;
}
default:
ALOGV("[%s] onWorkDone: unrecognized config update (%08X)",
mName, param->index());
break;
}
}
if (newInputDelay || newPipelineDelay) {
Mutexed<Input>::Locked input(mInput);
size_t newNumSlots =
newInputDelay.value_or(input->inputDelay) +
newPipelineDelay.value_or(input->pipelineDelay) +
kSmoothnessFactor;
input->inputDelay = newInputDelay.value_or(input->inputDelay);
if (input->buffers->isArrayMode()) {
if (input->numSlots >= newNumSlots) {
input->numExtraSlots = 0;
} else {
input->numExtraSlots = newNumSlots - input->numSlots;
}
ALOGV("[%s] onWorkDone: updated number of extra slots to %zu (input array mode)",
mName, input->numExtraSlots);
} else {
input->numSlots = newNumSlots;
}
}
size_t numOutputSlots = 0;
uint32_t reorderDepth = 0;
bool outputBuffersChanged = false;
if (newReorderKey || newReorderDepth || needMaxDequeueBufferCountUpdate) {
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers) {
return false;
}
numOutputSlots = output->numSlots;
if (newReorderKey) {
output->buffers->setReorderKey(newReorderKey.value());
}
if (newReorderDepth) {
output->buffers->setReorderDepth(newReorderDepth.value());
}
reorderDepth = output->buffers->getReorderDepth();
if (newOutputDelay) {
output->outputDelay = newOutputDelay.value();
numOutputSlots = newOutputDelay.value() + kSmoothnessFactor;
if (output->numSlots < numOutputSlots) {
output->numSlots = numOutputSlots;
if (output->buffers->isArrayMode()) {
OutputBuffersArray *array =
(OutputBuffersArray *)output->buffers.get();
ALOGV("[%s] onWorkDone: growing output buffer array to %zu",
mName, numOutputSlots);
array->grow(numOutputSlots);
outputBuffersChanged = true;
}
}
}
numOutputSlots = output->numSlots;
}
if (outputBuffersChanged) {
mCCodecCallback->onOutputBuffersChanged();
}
if (needMaxDequeueBufferCountUpdate) {
int maxDequeueCount = 0;
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
maxDequeueCount = output->maxDequeueBuffers =
numOutputSlots + reorderDepth + mRenderingDepth;
if (output->surface) {
output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
}
}
if (maxDequeueCount > 0) {
mComponent->setOutputSurfaceMaxDequeueCount(maxDequeueCount);
}
}
int32_t flags = 0;
if (worklet->output.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= BUFFER_FLAG_END_OF_STREAM;
ALOGV("[%s] onWorkDone: output EOS", mName);
}
// WORKAROUND: adjust output timestamp based on client input timestamp and codec
// input timestamp. Codec output timestamp (in the timestamp field) shall correspond to
// the codec input timestamp, but client output timestamp should (reported in timeUs)
// shall correspond to the client input timesamp (in customOrdinal). By using the
// delta between the two, this allows for some timestamp deviation - e.g. if one input
// produces multiple output.
c2_cntr64_t timestamp =
worklet->output.ordinal.timestamp + work->input.ordinal.customOrdinal
- work->input.ordinal.timestamp;
if (mInputSurface != nullptr) {
// When using input surface we need to restore the original input timestamp.
timestamp = work->input.ordinal.customOrdinal;
}
ScopedTrace trace(ATRACE_TAG, android::base::StringPrintf(
"CCodecBufferChannel::onWorkDone(%s@ts=%lld)", mName, timestamp.peekll()).c_str());
ALOGV("[%s] onWorkDone: input %lld, codec %lld => output %lld => %lld",
mName,
work->input.ordinal.customOrdinal.peekll(),
work->input.ordinal.timestamp.peekll(),
worklet->output.ordinal.timestamp.peekll(),
timestamp.peekll());
// csd cannot be re-ordered and will always arrive first.
if (initData != nullptr) {
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers) {
return false;
}
if (outputFormat) {
output->buffers->updateSkipCutBuffer(outputFormat);
output->buffers->setFormat(outputFormat);
}
if (!notifyClient) {
return false;
}
size_t index;
sp<MediaCodecBuffer> outBuffer;
if (output->buffers->registerCsd(initData, &index, &outBuffer) == OK) {
outBuffer->meta()->setInt64("timeUs", timestamp.peek());
outBuffer->meta()->setInt32("flags", BUFFER_FLAG_CODEC_CONFIG);
ALOGV("[%s] onWorkDone: csd index = %zu [%p]", mName, index, outBuffer.get());
// TRICKY: we want popped buffers reported in order, so sending
// the callback while holding the lock here. This assumes that
// onOutputBufferAvailable() does not block. onOutputBufferAvailable()
// callbacks are always sent with the Output lock held.
mCallback->onOutputBufferAvailable(index, outBuffer);
} else {
ALOGD("[%s] onWorkDone: unable to register csd", mName);
output.unlock();
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return false;
}
}
bool drop = false;
if (worklet->output.flags & C2FrameData::FLAG_DROP_FRAME) {
ALOGV("[%s] onWorkDone: drop buffer but keep metadata", mName);
drop = true;
}
// Workaround: if C2FrameData::FLAG_DROP_FRAME is not implemented in
// HAL, the flag is then removed in the corresponding output buffer.
if (work->input.flags & C2FrameData::FLAG_DROP_FRAME) {
flags |= BUFFER_FLAG_DECODE_ONLY;
}
if (notifyClient && !buffer && !flags) {
if (mTunneled && drop && outputFormat) {
if (mOutputFormat != outputFormat) {
ALOGV("[%s] onWorkDone: Keep tunneled, drop frame with format change (%lld)",
mName, work->input.ordinal.frameIndex.peekull());
mOutputFormat = outputFormat;
} else {
ALOGV("[%s] onWorkDone: Not reporting output buffer without format change (%lld)",
mName, work->input.ordinal.frameIndex.peekull());
notifyClient = false;
}
} else {
ALOGV("[%s] onWorkDone: Not reporting output buffer (%lld)",
mName, work->input.ordinal.frameIndex.peekull());
notifyClient = false;
}
}
if (buffer) {
for (const std::shared_ptr<const C2Info> &info : buffer->info()) {
// TODO: properly translate these to metadata
switch (info->coreIndex().coreIndex()) {
case C2StreamPictureTypeMaskInfo::CORE_INDEX:
if (((C2StreamPictureTypeMaskInfo *)info.get())->value & C2Config::SYNC_FRAME) {
flags |= BUFFER_FLAG_KEY_FRAME;
}
break;
default:
break;
}
}
}
{
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers) {
return false;
}
output->buffers->pushToStash(
buffer,
notifyClient,
timestamp.peek(),
flags,
outputFormat,
worklet->output.ordinal);
}
sendOutputBuffers();
return true;
}
void CCodecBufferChannel::sendOutputBuffers() {
OutputBuffers::BufferAction action;
size_t index;
sp<MediaCodecBuffer> outBuffer;
std::shared_ptr<C2Buffer> c2Buffer;
constexpr int kMaxReallocTry = 5;
int reallocTryNum = 0;
while (true) {
Mutexed<Output>::Locked output(mOutput);
if (!output->buffers) {
return;
}
action = output->buffers->popFromStashAndRegister(
&c2Buffer, &index, &outBuffer);
if (action != OutputBuffers::REALLOCATE) {
reallocTryNum = 0;
}
switch (action) {
case OutputBuffers::SKIP:
return;
case OutputBuffers::DISCARD:
break;
case OutputBuffers::NOTIFY_CLIENT:
{
// TRICKY: we want popped buffers reported in order, so sending
// the callback while holding the lock here. This assumes that
// onOutputBufferAvailable() does not block. onOutputBufferAvailable()
// callbacks are always sent with the Output lock held.
if (c2Buffer) {
std::shared_ptr<const C2AccessUnitInfos::output> bufferMetadata =
std::static_pointer_cast<const C2AccessUnitInfos::output>(
c2Buffer->getInfo(C2AccessUnitInfos::output::PARAM_TYPE));
if (bufferMetadata && bufferMetadata->flexCount() > 0) {
uint32_t flag = 0;
std::vector<AccessUnitInfo> accessUnitInfos;
for (int nMeta = 0; nMeta < bufferMetadata->flexCount(); nMeta++) {
const C2AccessUnitInfosStruct &bufferMetadataStruct =
bufferMetadata->m.values[nMeta];
flag = convertFlags(bufferMetadataStruct.flags, false);
accessUnitInfos.emplace_back(flag,
static_cast<size_t>(bufferMetadataStruct.size),
static_cast<size_t>(bufferMetadataStruct.timestamp));
}
sp<WrapperObject<std::vector<AccessUnitInfo>>> obj{
new WrapperObject<std::vector<AccessUnitInfo>>{accessUnitInfos}};
outBuffer->meta()->setObject("accessUnitInfo", obj);
}
}
mCallback->onOutputBufferAvailable(index, outBuffer);
break;
}
case OutputBuffers::REALLOCATE:
if (++reallocTryNum > kMaxReallocTry) {
output.unlock();
ALOGE("[%s] sendOutputBuffers: tried %d realloc and failed",
mName, kMaxReallocTry);
mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return;
}
if (!output->buffers->isArrayMode()) {
output->buffers =
output->buffers->toArrayMode(output->numSlots);
}
static_cast<OutputBuffersArray*>(output->buffers.get())->
realloc(c2Buffer);
output.unlock();
mCCodecCallback->onOutputBuffersChanged();
break;
case OutputBuffers::RETRY:
ALOGV("[%s] sendOutputBuffers: unable to register output buffer",
mName);
return;
default:
LOG_ALWAYS_FATAL("[%s] sendOutputBuffers: "
"corrupted BufferAction value (%d) "
"returned from popFromStashAndRegister.",
mName, int(action));
return;
}
}
}
status_t CCodecBufferChannel::setSurface(const sp<Surface> &newSurface,
uint32_t generation, bool pushBlankBuffer) {
sp<IGraphicBufferProducer> producer;
int maxDequeueCount;
sp<Surface> oldSurface;
{
Mutexed<OutputSurface>::Locked outputSurface(mOutputSurface);
maxDequeueCount = outputSurface->maxDequeueBuffers;
oldSurface = outputSurface->surface;
}
if (newSurface) {
newSurface->setScalingMode(NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
newSurface->setDequeueTimeout(kDequeueTimeoutNs);
newSurface->setMaxDequeuedBufferCount(maxDequeueCount);
producer = newSurface->getIGraphicBufferProducer();
} else {
ALOGE("[%s] setting output surface to null", mName);
return INVALID_OPERATION;
}
std::shared_ptr<Codec2Client::Configurable> outputPoolIntf;
C2BlockPool::local_id_t outputPoolId;
{
Mutexed<BlockPools>::Locked pools(mBlockPools);
outputPoolId = pools->outputPoolId;
outputPoolIntf = pools->outputPoolIntf;
}
if (outputPoolIntf) {
if (mComponent->setOutputSurface(
outputPoolId,
producer,
generation,
maxDequeueCount) != C2_OK) {
ALOGI("[%s] setSurface: component setOutputSurface failed", mName);
return INVALID_OPERATION;
}
}
{
Mutexed<OutputSurface>::Locked output(mOutputSurface);
output->surface = newSurface;
output->generation = generation;
initializeFrameTrackingFor(static_cast<ANativeWindow *>(newSurface.get()));
}
if (oldSurface && pushBlankBuffer) {
// When ReleaseSurface was set from MediaCodec,
// pushing a blank buffer at the end might be necessary.
sp<ANativeWindow> anw = static_cast<ANativeWindow *>(oldSurface.get());
if (anw) {
pushBlankBuffersToNativeWindow(anw.get());
}
}
return OK;
}
PipelineWatcher::Clock::duration CCodecBufferChannel::elapsed() {
// Otherwise, component may have stalled work due to input starvation up to
// the sum of the delay in the pipeline.
// TODO(b/231253301): When client pushed EOS, the pipeline could have less
// number of frames.
size_t n = 0;
size_t outputDelay = mOutput.lock()->outputDelay;
{
Mutexed<Input>::Locked input(mInput);
n = input->inputDelay + input->pipelineDelay + outputDelay;
}
return mPipelineWatcher.lock()->elapsed(PipelineWatcher::Clock::now(), n);
}
void CCodecBufferChannel::setMetaMode(MetaMode mode) {
mMetaMode = mode;
}
void CCodecBufferChannel::setCrypto(const sp<ICrypto> &crypto) {
if (mCrypto != nullptr) {
for (std::pair<wp<HidlMemory>, int32_t> entry : mHeapSeqNumMap) {
mCrypto->unsetHeap(entry.second);
}
mHeapSeqNumMap.clear();
if (mHeapSeqNum >= 0) {
mCrypto->unsetHeap(mHeapSeqNum);
mHeapSeqNum = -1;
}
}
mCrypto = crypto;
}
void CCodecBufferChannel::setDescrambler(const sp<IDescrambler> &descrambler) {
mDescrambler = descrambler;
}
uint32_t CCodecBufferChannel::getBuffersPixelFormat(bool isEncoder) {
if (isEncoder) {
return getInputBuffersPixelFormat();
} else {
return getOutputBuffersPixelFormat();
}
}
uint32_t CCodecBufferChannel::getInputBuffersPixelFormat() {
Mutexed<Input>::Locked input(mInput);
if (input->buffers == nullptr) {
return PIXEL_FORMAT_UNKNOWN;
}
return input->buffers->getPixelFormatIfApplicable();
}
uint32_t CCodecBufferChannel::getOutputBuffersPixelFormat() {
Mutexed<Output>::Locked output(mOutput);
if (output->buffers == nullptr) {
return PIXEL_FORMAT_UNKNOWN;
}
return output->buffers->getPixelFormatIfApplicable();
}
void CCodecBufferChannel::resetBuffersPixelFormat(bool isEncoder) {
if (isEncoder) {
Mutexed<Input>::Locked input(mInput);
if (input->buffers == nullptr) {
return;
}
input->buffers->resetPixelFormatIfApplicable();
} else {
Mutexed<Output>::Locked output(mOutput);
if (output->buffers == nullptr) {
return;
}
output->buffers->resetPixelFormatIfApplicable();
}
}
status_t toStatusT(c2_status_t c2s, c2_operation_t c2op) {
// C2_OK is always translated to OK.
if (c2s == C2_OK) {
return OK;
}
// Operation-dependent translation
// TODO: Add as necessary
switch (c2op) {
case C2_OPERATION_Component_start:
switch (c2s) {
case C2_NO_MEMORY:
return NO_MEMORY;
default:
return UNKNOWN_ERROR;
}
default:
break;
}
// Backup operation-agnostic translation
switch (c2s) {
case C2_BAD_INDEX:
return BAD_INDEX;
case C2_BAD_VALUE:
return BAD_VALUE;
case C2_BLOCKING:
return WOULD_BLOCK;
case C2_DUPLICATE:
return ALREADY_EXISTS;
case C2_NO_INIT:
return NO_INIT;
case C2_NO_MEMORY:
return NO_MEMORY;
case C2_NOT_FOUND:
return NAME_NOT_FOUND;
case C2_TIMED_OUT:
return TIMED_OUT;
case C2_BAD_STATE:
case C2_CANCELED:
case C2_CANNOT_DO:
case C2_CORRUPTED:
case C2_OMITTED:
case C2_REFUSED:
return UNKNOWN_ERROR;
default:
return -static_cast<status_t>(c2s);
}
}
} // namespace android