blob: e424860c1169957d9ac4b7fd1a909cdd89b3decc [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2SoftAvcEnc"
#include <log/log.h>
#include <utils/misc.h>
#include <algorithm>
#include <media/hardware/VideoAPI.h>
#include <media/stagefright/MediaDefs.h>
#include <media/stagefright/MediaErrors.h>
#include <media/stagefright/MetaData.h>
#include <media/stagefright/foundation/AUtils.h>
#include <C2Debug.h>
#include <Codec2Mapper.h>
#include <C2PlatformSupport.h>
#include <Codec2BufferUtils.h>
#include <SimpleC2Interface.h>
#include <util/C2InterfaceHelper.h>
#include "C2SoftAvcEnc.h"
#include "ih264e.h"
#include "ih264e_error.h"
namespace android {
namespace {
constexpr char COMPONENT_NAME[] = "c2.android.avc.encoder";
constexpr uint32_t kMinOutBufferSize = 524288;
void ParseGop(
const C2StreamGopTuning::output &gop,
uint32_t *syncInterval, uint32_t *iInterval, uint32_t *maxBframes) {
uint32_t syncInt = 1;
uint32_t iInt = 1;
for (size_t i = 0; i < gop.flexCount(); ++i) {
const C2GopLayerStruct &layer = gop.m.values[i];
if (layer.count == UINT32_MAX) {
syncInt = 0;
} else if (syncInt <= UINT32_MAX / (layer.count + 1)) {
syncInt *= (layer.count + 1);
}
if ((layer.type_ & I_FRAME) == 0) {
if (layer.count == UINT32_MAX) {
iInt = 0;
} else if (iInt <= UINT32_MAX / (layer.count + 1)) {
iInt *= (layer.count + 1);
}
}
if (layer.type_ == C2Config::picture_type_t(P_FRAME | B_FRAME) && maxBframes) {
*maxBframes = layer.count;
}
}
if (syncInterval) {
*syncInterval = syncInt;
}
if (iInterval) {
*iInterval = iInt;
}
}
} // namespace
class C2SoftAvcEnc::IntfImpl : public SimpleInterface<void>::BaseParams {
public:
explicit IntfImpl(const std::shared_ptr<C2ReflectorHelper> &helper)
: SimpleInterface<void>::BaseParams(
helper,
COMPONENT_NAME,
C2Component::KIND_ENCODER,
C2Component::DOMAIN_VIDEO,
MEDIA_MIMETYPE_VIDEO_AVC) {
noPrivateBuffers(); // TODO: account for our buffers here
noInputReferences();
noOutputReferences();
noTimeStretch();
setDerivedInstance(this);
addParameter(
DefineParam(mUsage, C2_PARAMKEY_INPUT_STREAM_USAGE)
.withConstValue(new C2StreamUsageTuning::input(
0u, (uint64_t)C2MemoryUsage::CPU_READ))
.build());
addParameter(
DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES)
.withConstValue(new C2ComponentAttributesSetting(
C2Component::ATTRIB_IS_TEMPORAL))
.build());
addParameter(
DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE)
.withDefault(new C2StreamPictureSizeInfo::input(0u, 16, 16))
.withFields({
C2F(mSize, width).inRange(2, 2560, 2),
C2F(mSize, height).inRange(2, 2560, 2),
})
.withSetter(SizeSetter)
.build());
addParameter(
DefineParam(mGop, C2_PARAMKEY_GOP)
.withDefault(C2StreamGopTuning::output::AllocShared(
0 /* flexCount */, 0u /* stream */))
.withFields({C2F(mGop, m.values[0].type_).any(),
C2F(mGop, m.values[0].count).any()})
.withSetter(GopSetter)
.build());
addParameter(
DefineParam(mPictureQuantization, C2_PARAMKEY_PICTURE_QUANTIZATION)
.withDefault(C2StreamPictureQuantizationTuning::output::AllocShared(
0 /* flexCount */, 0u /* stream */))
.withFields({C2F(mPictureQuantization, m.values[0].type_).oneOf(
{C2Config::picture_type_t(I_FRAME),
C2Config::picture_type_t(P_FRAME),
C2Config::picture_type_t(B_FRAME)}),
C2F(mPictureQuantization, m.values[0].min).any(),
C2F(mPictureQuantization, m.values[0].max).any()})
.withSetter(PictureQuantizationSetter)
.build());
addParameter(
DefineParam(mActualInputDelay, C2_PARAMKEY_INPUT_DELAY)
.withDefault(new C2PortActualDelayTuning::input(DEFAULT_B_FRAMES))
.withFields({C2F(mActualInputDelay, value).inRange(0, MAX_B_FRAMES)})
.calculatedAs(InputDelaySetter, mGop)
.build());
addParameter(
DefineParam(mFrameRate, C2_PARAMKEY_FRAME_RATE)
.withDefault(new C2StreamFrameRateInfo::output(0u, 1.))
// TODO: More restriction?
.withFields({C2F(mFrameRate, value).greaterThan(0.)})
.withSetter(Setter<decltype(*mFrameRate)>::StrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mBitrate, C2_PARAMKEY_BITRATE)
.withDefault(new C2StreamBitrateInfo::output(0u, 64000))
.withFields({C2F(mBitrate, value).inRange(4096, 12000000)})
.withSetter(BitrateSetter)
.build());
addParameter(
DefineParam(mIntraRefresh, C2_PARAMKEY_INTRA_REFRESH)
.withDefault(new C2StreamIntraRefreshTuning::output(
0u, C2Config::INTRA_REFRESH_DISABLED, 0.))
.withFields({
C2F(mIntraRefresh, mode).oneOf({
C2Config::INTRA_REFRESH_DISABLED, C2Config::INTRA_REFRESH_ARBITRARY }),
C2F(mIntraRefresh, period).any()
})
.withSetter(IntraRefreshSetter)
.build());
addParameter(
DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL)
.withDefault(new C2StreamProfileLevelInfo::output(
0u, PROFILE_AVC_CONSTRAINED_BASELINE, LEVEL_AVC_4_1))
.withFields({
C2F(mProfileLevel, profile).oneOf({
PROFILE_AVC_BASELINE,
PROFILE_AVC_CONSTRAINED_BASELINE,
PROFILE_AVC_MAIN,
}),
C2F(mProfileLevel, level).oneOf({
LEVEL_AVC_1,
LEVEL_AVC_1B,
LEVEL_AVC_1_1,
LEVEL_AVC_1_2,
LEVEL_AVC_1_3,
LEVEL_AVC_2,
LEVEL_AVC_2_1,
LEVEL_AVC_2_2,
LEVEL_AVC_3,
LEVEL_AVC_3_1,
LEVEL_AVC_3_2,
LEVEL_AVC_4,
LEVEL_AVC_4_1,
LEVEL_AVC_4_2,
LEVEL_AVC_5,
}),
})
.withSetter(ProfileLevelSetter, mSize, mFrameRate, mBitrate)
.build());
addParameter(
DefineParam(mRequestSync, C2_PARAMKEY_REQUEST_SYNC_FRAME)
.withDefault(new C2StreamRequestSyncFrameTuning::output(0u, C2_FALSE))
.withFields({C2F(mRequestSync, value).oneOf({ C2_FALSE, C2_TRUE }) })
.withSetter(Setter<decltype(*mRequestSync)>::NonStrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mSyncFramePeriod, C2_PARAMKEY_SYNC_FRAME_INTERVAL)
.withDefault(new C2StreamSyncFrameIntervalTuning::output(0u, 1000000))
.withFields({C2F(mSyncFramePeriod, value).any()})
.withSetter(Setter<decltype(*mSyncFramePeriod)>::StrictValueWithNoDeps)
.build());
addParameter(
DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::input(
0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({
C2F(mColorAspects, range).inRange(
C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mColorAspects, primaries).inRange(
C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER),
C2F(mColorAspects, transfer).inRange(
C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER),
C2F(mColorAspects, matrix).inRange(
C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)
})
.withSetter(ColorAspectsSetter)
.build());
addParameter(
DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::output(
0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({
C2F(mCodedColorAspects, range).inRange(
C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER),
C2F(mCodedColorAspects, primaries).inRange(
C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER),
C2F(mCodedColorAspects, transfer).inRange(
C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER),
C2F(mCodedColorAspects, matrix).inRange(
C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER)
})
.withSetter(CodedColorAspectsSetter, mColorAspects)
.build());
}
static C2R InputDelaySetter(
bool mayBlock,
C2P<C2PortActualDelayTuning::input> &me,
const C2P<C2StreamGopTuning::output> &gop) {
(void)mayBlock;
uint32_t maxBframes = 0;
ParseGop(gop.v, nullptr, nullptr, &maxBframes);
me.set().value = maxBframes;
return C2R::Ok();
}
static C2R BitrateSetter(bool mayBlock, C2P<C2StreamBitrateInfo::output> &me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (me.v.value <= 4096) {
me.set().value = 4096;
}
return res;
}
static C2R SizeSetter(bool mayBlock, const C2P<C2StreamPictureSizeInfo::input> &oldMe,
C2P<C2StreamPictureSizeInfo::input> &me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (!me.F(me.v.width).supportsAtAll(me.v.width)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width)));
me.set().width = oldMe.v.width;
}
if (!me.F(me.v.height).supportsAtAll(me.v.height)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height)));
me.set().height = oldMe.v.height;
}
return res;
}
static C2R ProfileLevelSetter(
bool mayBlock,
C2P<C2StreamProfileLevelInfo::output> &me,
const C2P<C2StreamPictureSizeInfo::input> &size,
const C2P<C2StreamFrameRateInfo::output> &frameRate,
const C2P<C2StreamBitrateInfo::output> &bitrate) {
(void)mayBlock;
if (!me.F(me.v.profile).supportsAtAll(me.v.profile)) {
me.set().profile = PROFILE_AVC_CONSTRAINED_BASELINE;
}
struct LevelLimits {
C2Config::level_t level;
float mbsPerSec;
uint64_t mbs;
uint32_t bitrate;
};
constexpr LevelLimits kLimits[] = {
{ LEVEL_AVC_1, 1485, 99, 64000 },
// Decoder does not properly handle level 1b.
// { LEVEL_AVC_1B, 1485, 99, 128000 },
{ LEVEL_AVC_1_1, 3000, 396, 192000 },
{ LEVEL_AVC_1_2, 6000, 396, 384000 },
{ LEVEL_AVC_1_3, 11880, 396, 768000 },
{ LEVEL_AVC_2, 11880, 396, 2000000 },
{ LEVEL_AVC_2_1, 19800, 792, 4000000 },
{ LEVEL_AVC_2_2, 20250, 1620, 4000000 },
{ LEVEL_AVC_3, 40500, 1620, 10000000 },
{ LEVEL_AVC_3_1, 108000, 3600, 14000000 },
{ LEVEL_AVC_3_2, 216000, 5120, 20000000 },
{ LEVEL_AVC_4, 245760, 8192, 20000000 },
{ LEVEL_AVC_4_1, 245760, 8192, 50000000 },
{ LEVEL_AVC_4_2, 522240, 8704, 50000000 },
{ LEVEL_AVC_5, 589824, 22080, 135000000 },
};
uint64_t mbs = uint64_t((size.v.width + 15) / 16) * ((size.v.height + 15) / 16);
float mbsPerSec = float(mbs) * frameRate.v.value;
// Check if the supplied level meets the MB / bitrate requirements. If
// not, update the level with the lowest level meeting the requirements.
bool found = false;
// By default needsUpdate = false in case the supplied level does meet
// the requirements. For Level 1b, we want to update the level anyway,
// so we set it to true in that case.
bool needsUpdate = false;
if (me.v.level == LEVEL_AVC_1B || !me.F(me.v.level).supportsAtAll(me.v.level)) {
needsUpdate = true;
}
for (const LevelLimits &limit : kLimits) {
if (mbs <= limit.mbs && mbsPerSec <= limit.mbsPerSec &&
bitrate.v.value <= limit.bitrate) {
// This is the lowest level that meets the requirements, and if
// we haven't seen the supplied level yet, that means we don't
// need the update.
if (needsUpdate) {
ALOGD("Given level %x does not cover current configuration: "
"adjusting to %x", me.v.level, limit.level);
me.set().level = limit.level;
}
found = true;
break;
}
if (me.v.level == limit.level) {
// We break out of the loop when the lowest feasible level is
// found. The fact that we're here means that our level doesn't
// meet the requirement and needs to be updated.
needsUpdate = true;
}
}
if (!found || me.v.level > LEVEL_AVC_5) {
// We set to the highest supported level.
me.set().level = LEVEL_AVC_5;
}
return C2R::Ok();
}
static C2R IntraRefreshSetter(bool mayBlock, C2P<C2StreamIntraRefreshTuning::output> &me) {
(void)mayBlock;
C2R res = C2R::Ok();
if (me.v.period < 1) {
me.set().mode = C2Config::INTRA_REFRESH_DISABLED;
me.set().period = 0;
} else {
// only support arbitrary mode (cyclic in our case)
me.set().mode = C2Config::INTRA_REFRESH_ARBITRARY;
}
return res;
}
static C2R GopSetter(bool mayBlock, C2P<C2StreamGopTuning::output> &me) {
(void)mayBlock;
for (size_t i = 0; i < me.v.flexCount(); ++i) {
const C2GopLayerStruct &layer = me.v.m.values[0];
if (layer.type_ == C2Config::picture_type_t(P_FRAME | B_FRAME)
&& layer.count > MAX_B_FRAMES) {
me.set().m.values[i].count = MAX_B_FRAMES;
}
}
return C2R::Ok();
}
static C2R PictureQuantizationSetter(bool mayBlock,
C2P<C2StreamPictureQuantizationTuning::output> &me) {
(void)mayBlock;
// these are the ones we're going to set, so want them to default
// to the DEFAULT values for the codec
int32_t iMin = DEFAULT_I_QP_MIN, pMin = DEFAULT_P_QP_MIN, bMin = DEFAULT_B_QP_MIN;
int32_t iMax = DEFAULT_I_QP_MAX, pMax = DEFAULT_P_QP_MAX, bMax = DEFAULT_B_QP_MAX;
for (size_t i = 0; i < me.v.flexCount(); ++i) {
const C2PictureQuantizationStruct &layer = me.v.m.values[i];
if (layer.type_ == C2Config::picture_type_t(I_FRAME)) {
iMax = layer.max;
iMin = layer.min;
ALOGV("iMin %d iMax %d", iMin, iMax);
} else if (layer.type_ == C2Config::picture_type_t(P_FRAME)) {
pMax = layer.max;
pMin = layer.min;
ALOGV("pMin %d pMax %d", pMin, pMax);
} else if (layer.type_ == C2Config::picture_type_t(B_FRAME)) {
bMax = layer.max;
bMin = layer.min;
ALOGV("bMin %d bMax %d", bMin, bMax);
}
}
ALOGV("PictureQuantizationSetter(entry): i %d-%d p %d-%d b %d-%d",
iMin, iMax, pMin, pMax, bMin, bMax);
// min is clamped to [AVC_QP_MIN, max] to avoid error
// cases where layer.min > layer.max
iMax = std::clamp(iMax, AVC_QP_MIN, AVC_QP_MAX);
iMin = std::clamp(iMin, AVC_QP_MIN, iMax);
pMax = std::clamp(pMax, AVC_QP_MIN, AVC_QP_MAX);
pMin = std::clamp(pMin, AVC_QP_MIN, pMax);
bMax = std::clamp(bMax, AVC_QP_MIN, AVC_QP_MAX);
bMin = std::clamp(bMin, AVC_QP_MIN, bMax);
// put them back into the structure
for (size_t i = 0; i < me.v.flexCount(); ++i) {
const C2PictureQuantizationStruct &layer = me.v.m.values[i];
if (layer.type_ == C2Config::picture_type_t(I_FRAME)) {
me.set().m.values[i].max = iMax;
me.set().m.values[i].min = iMin;
}
if (layer.type_ == C2Config::picture_type_t(P_FRAME)) {
me.set().m.values[i].max = pMax;
me.set().m.values[i].min = pMin;
}
if (layer.type_ == C2Config::picture_type_t(B_FRAME)) {
me.set().m.values[i].max = bMax;
me.set().m.values[i].min = bMin;
}
}
ALOGV("PictureQuantizationSetter(exit): i %d-%d p %d-%d b %d-%d",
iMin, iMax, pMin, pMax, bMin, bMax);
return C2R::Ok();
}
static C2R ColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::input> &me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
static C2R CodedColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::output> &me,
const C2P<C2StreamColorAspectsInfo::input> &coded) {
(void)mayBlock;
me.set().range = coded.v.range;
me.set().primaries = coded.v.primaries;
me.set().transfer = coded.v.transfer;
me.set().matrix = coded.v.matrix;
return C2R::Ok();
}
IV_PROFILE_T getProfile_l() const {
switch (mProfileLevel->profile) {
case PROFILE_AVC_CONSTRAINED_BASELINE: [[fallthrough]];
case PROFILE_AVC_BASELINE: return IV_PROFILE_BASE;
case PROFILE_AVC_MAIN: return IV_PROFILE_MAIN;
default:
ALOGD("Unrecognized profile: %x", mProfileLevel->profile);
return IV_PROFILE_DEFAULT;
}
}
UWORD32 getLevel_l() const {
struct Level {
C2Config::level_t c2Level;
UWORD32 avcLevel;
};
constexpr Level levels[] = {
{ LEVEL_AVC_1, 10 },
{ LEVEL_AVC_1B, 9 },
{ LEVEL_AVC_1_1, 11 },
{ LEVEL_AVC_1_2, 12 },
{ LEVEL_AVC_1_3, 13 },
{ LEVEL_AVC_2, 20 },
{ LEVEL_AVC_2_1, 21 },
{ LEVEL_AVC_2_2, 22 },
{ LEVEL_AVC_3, 30 },
{ LEVEL_AVC_3_1, 31 },
{ LEVEL_AVC_3_2, 32 },
{ LEVEL_AVC_4, 40 },
{ LEVEL_AVC_4_1, 41 },
{ LEVEL_AVC_4_2, 42 },
{ LEVEL_AVC_5, 50 },
};
for (const Level &level : levels) {
if (mProfileLevel->level == level.c2Level) {
return level.avcLevel;
}
}
ALOGD("Unrecognized level: %x", mProfileLevel->level);
return 41;
}
uint32_t getSyncFramePeriod_l() const {
if (mSyncFramePeriod->value < 0 || mSyncFramePeriod->value == INT64_MAX) {
return 0;
}
double period = mSyncFramePeriod->value / 1e6 * mFrameRate->value;
return (uint32_t)c2_max(c2_min(period + 0.5, double(UINT32_MAX)), 1.);
}
// unsafe getters
std::shared_ptr<C2StreamPictureSizeInfo::input> getSize_l() const { return mSize; }
std::shared_ptr<C2StreamIntraRefreshTuning::output> getIntraRefresh_l() const { return mIntraRefresh; }
std::shared_ptr<C2StreamFrameRateInfo::output> getFrameRate_l() const { return mFrameRate; }
std::shared_ptr<C2StreamBitrateInfo::output> getBitrate_l() const { return mBitrate; }
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> getRequestSync_l() const { return mRequestSync; }
std::shared_ptr<C2StreamGopTuning::output> getGop_l() const { return mGop; }
std::shared_ptr<C2StreamPictureQuantizationTuning::output> getPictureQuantization_l() const
{ return mPictureQuantization; }
std::shared_ptr<C2StreamColorAspectsInfo::output> getCodedColorAspects_l() const {
return mCodedColorAspects;
}
private:
std::shared_ptr<C2StreamUsageTuning::input> mUsage;
std::shared_ptr<C2StreamPictureSizeInfo::input> mSize;
std::shared_ptr<C2StreamFrameRateInfo::output> mFrameRate;
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> mRequestSync;
std::shared_ptr<C2StreamIntraRefreshTuning::output> mIntraRefresh;
std::shared_ptr<C2StreamBitrateInfo::output> mBitrate;
std::shared_ptr<C2StreamProfileLevelInfo::output> mProfileLevel;
std::shared_ptr<C2StreamSyncFrameIntervalTuning::output> mSyncFramePeriod;
std::shared_ptr<C2StreamGopTuning::output> mGop;
std::shared_ptr<C2StreamPictureQuantizationTuning::output> mPictureQuantization;
std::shared_ptr<C2StreamColorAspectsInfo::input> mColorAspects;
std::shared_ptr<C2StreamColorAspectsInfo::output> mCodedColorAspects;
};
#define ive_api_function ih264e_api_function
namespace {
// From external/libavc/encoder/ih264e_bitstream.h
constexpr uint32_t MIN_STREAM_SIZE = 0x800;
static size_t GetCPUCoreCount() {
long cpuCoreCount = 1;
#if defined(_SC_NPROCESSORS_ONLN)
cpuCoreCount = sysconf(_SC_NPROCESSORS_ONLN);
#else
// _SC_NPROC_ONLN must be defined...
cpuCoreCount = sysconf(_SC_NPROC_ONLN);
#endif
CHECK(cpuCoreCount >= 1);
ALOGV("Number of CPU cores: %ld", cpuCoreCount);
return (size_t)cpuCoreCount;
}
} // namespace
C2SoftAvcEnc::C2SoftAvcEnc(
const char *name, c2_node_id_t id, const std::shared_ptr<IntfImpl> &intfImpl)
: SimpleC2Component(std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl),
mIvVideoColorFormat(IV_YUV_420P),
mAVCEncProfile(IV_PROFILE_BASE),
mAVCEncLevel(41),
mStarted(false),
mSawInputEOS(false),
mSignalledError(false),
mCodecCtx(nullptr),
mOutBlock(nullptr),
mOutBufferSize(kMinOutBufferSize) {
// If dump is enabled, then open create an empty file
GENERATE_FILE_NAMES();
CREATE_DUMP_FILE(mInFile);
CREATE_DUMP_FILE(mOutFile);
initEncParams();
}
C2SoftAvcEnc::~C2SoftAvcEnc() {
onRelease();
}
c2_status_t C2SoftAvcEnc::onInit() {
return C2_OK;
}
c2_status_t C2SoftAvcEnc::onStop() {
return C2_OK;
}
void C2SoftAvcEnc::onReset() {
// TODO: use IVE_CMD_CTL_RESET?
releaseEncoder();
if (mOutBlock) {
mOutBlock.reset();
}
initEncParams();
}
void C2SoftAvcEnc::onRelease() {
releaseEncoder();
if (mOutBlock) {
mOutBlock.reset();
}
}
c2_status_t C2SoftAvcEnc::onFlush_sm() {
// TODO: use IVE_CMD_CTL_FLUSH?
return C2_OK;
}
void C2SoftAvcEnc::initEncParams() {
mCodecCtx = nullptr;
mMemRecords = nullptr;
mNumMemRecords = DEFAULT_MEM_REC_CNT;
mHeaderGenerated = 0;
mNumCores = GetCPUCoreCount();
mArch = DEFAULT_ARCH;
mSliceMode = DEFAULT_SLICE_MODE;
mSliceParam = DEFAULT_SLICE_PARAM;
mHalfPelEnable = DEFAULT_HPEL;
mIInterval = DEFAULT_I_INTERVAL;
mIDRInterval = DEFAULT_IDR_INTERVAL;
mDisableDeblkLevel = DEFAULT_DISABLE_DEBLK_LEVEL;
mEnableFastSad = DEFAULT_ENABLE_FAST_SAD;
mEnableAltRef = DEFAULT_ENABLE_ALT_REF;
mEncSpeed = DEFAULT_ENC_SPEED;
mIntra4x4 = DEFAULT_INTRA4x4;
mConstrainedIntraFlag = DEFAULT_CONSTRAINED_INTRA;
mPSNREnable = DEFAULT_PSNR_ENABLE;
mReconEnable = DEFAULT_RECON_ENABLE;
mEntropyMode = DEFAULT_ENTROPY_MODE;
mBframes = DEFAULT_B_FRAMES;
mTimeStart = mTimeEnd = systemTime();
}
c2_status_t C2SoftAvcEnc::setDimensions() {
ive_ctl_set_dimensions_ip_t s_dimensions_ip;
ive_ctl_set_dimensions_op_t s_dimensions_op;
IV_STATUS_T status;
s_dimensions_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_dimensions_ip.e_sub_cmd = IVE_CMD_CTL_SET_DIMENSIONS;
s_dimensions_ip.u4_ht = mSize->height;
s_dimensions_ip.u4_wd = mSize->width;
s_dimensions_ip.u4_timestamp_high = -1;
s_dimensions_ip.u4_timestamp_low = -1;
s_dimensions_ip.u4_size = sizeof(ive_ctl_set_dimensions_ip_t);
s_dimensions_op.u4_size = sizeof(ive_ctl_set_dimensions_op_t);
status = ive_api_function(mCodecCtx, &s_dimensions_ip, &s_dimensions_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set frame dimensions = 0x%x\n",
s_dimensions_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setNumCores() {
IV_STATUS_T status;
ive_ctl_set_num_cores_ip_t s_num_cores_ip;
ive_ctl_set_num_cores_op_t s_num_cores_op;
s_num_cores_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_num_cores_ip.e_sub_cmd = IVE_CMD_CTL_SET_NUM_CORES;
s_num_cores_ip.u4_num_cores = MIN(mNumCores, CODEC_MAX_CORES);
s_num_cores_ip.u4_timestamp_high = -1;
s_num_cores_ip.u4_timestamp_low = -1;
s_num_cores_ip.u4_size = sizeof(ive_ctl_set_num_cores_ip_t);
s_num_cores_op.u4_size = sizeof(ive_ctl_set_num_cores_op_t);
status = ive_api_function(
mCodecCtx, (void *) &s_num_cores_ip, (void *) &s_num_cores_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set processor params = 0x%x\n",
s_num_cores_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setFrameRate() {
ive_ctl_set_frame_rate_ip_t s_frame_rate_ip;
ive_ctl_set_frame_rate_op_t s_frame_rate_op;
IV_STATUS_T status;
s_frame_rate_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_frame_rate_ip.e_sub_cmd = IVE_CMD_CTL_SET_FRAMERATE;
s_frame_rate_ip.u4_src_frame_rate = mFrameRate->value + 0.5;
s_frame_rate_ip.u4_tgt_frame_rate = mFrameRate->value + 0.5;
s_frame_rate_ip.u4_timestamp_high = -1;
s_frame_rate_ip.u4_timestamp_low = -1;
s_frame_rate_ip.u4_size = sizeof(ive_ctl_set_frame_rate_ip_t);
s_frame_rate_op.u4_size = sizeof(ive_ctl_set_frame_rate_op_t);
status = ive_api_function(mCodecCtx, &s_frame_rate_ip, &s_frame_rate_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set frame rate = 0x%x\n",
s_frame_rate_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setIpeParams() {
ive_ctl_set_ipe_params_ip_t s_ipe_params_ip;
ive_ctl_set_ipe_params_op_t s_ipe_params_op;
IV_STATUS_T status;
s_ipe_params_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_ipe_params_ip.e_sub_cmd = IVE_CMD_CTL_SET_IPE_PARAMS;
s_ipe_params_ip.u4_enable_intra_4x4 = mIntra4x4;
s_ipe_params_ip.u4_enc_speed_preset = mEncSpeed;
s_ipe_params_ip.u4_constrained_intra_pred = mConstrainedIntraFlag;
s_ipe_params_ip.u4_timestamp_high = -1;
s_ipe_params_ip.u4_timestamp_low = -1;
s_ipe_params_ip.u4_size = sizeof(ive_ctl_set_ipe_params_ip_t);
s_ipe_params_op.u4_size = sizeof(ive_ctl_set_ipe_params_op_t);
status = ive_api_function(mCodecCtx, &s_ipe_params_ip, &s_ipe_params_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set ipe params = 0x%x\n",
s_ipe_params_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setBitRate() {
ive_ctl_set_bitrate_ip_t s_bitrate_ip;
ive_ctl_set_bitrate_op_t s_bitrate_op;
IV_STATUS_T status;
s_bitrate_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_bitrate_ip.e_sub_cmd = IVE_CMD_CTL_SET_BITRATE;
s_bitrate_ip.u4_target_bitrate = mBitrate->value;
s_bitrate_ip.u4_timestamp_high = -1;
s_bitrate_ip.u4_timestamp_low = -1;
s_bitrate_ip.u4_size = sizeof(ive_ctl_set_bitrate_ip_t);
s_bitrate_op.u4_size = sizeof(ive_ctl_set_bitrate_op_t);
status = ive_api_function(mCodecCtx, &s_bitrate_ip, &s_bitrate_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set bit rate = 0x%x\n", s_bitrate_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setFrameType(IV_PICTURE_CODING_TYPE_T e_frame_type) {
ive_ctl_set_frame_type_ip_t s_frame_type_ip;
ive_ctl_set_frame_type_op_t s_frame_type_op;
IV_STATUS_T status;
s_frame_type_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_frame_type_ip.e_sub_cmd = IVE_CMD_CTL_SET_FRAMETYPE;
s_frame_type_ip.e_frame_type = e_frame_type;
s_frame_type_ip.u4_timestamp_high = -1;
s_frame_type_ip.u4_timestamp_low = -1;
s_frame_type_ip.u4_size = sizeof(ive_ctl_set_frame_type_ip_t);
s_frame_type_op.u4_size = sizeof(ive_ctl_set_frame_type_op_t);
status = ive_api_function(mCodecCtx, &s_frame_type_ip, &s_frame_type_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set frame type = 0x%x\n",
s_frame_type_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setQp() {
ive_ctl_set_qp_ip_t s_qp_ip;
ive_ctl_set_qp_op_t s_qp_op;
IV_STATUS_T status;
ALOGV("in setQp()");
// set the defaults
s_qp_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_qp_ip.e_sub_cmd = IVE_CMD_CTL_SET_QP;
// we resolved out-of-bound and unspecified values in PictureQuantizationSetter()
// so we can start with defaults that are overridden as needed.
int32_t iMin = DEFAULT_I_QP_MIN, pMin = DEFAULT_P_QP_MIN, bMin = DEFAULT_B_QP_MIN;
int32_t iMax = DEFAULT_I_QP_MAX, pMax = DEFAULT_P_QP_MAX, bMax = DEFAULT_B_QP_MAX;
IntfImpl::Lock lock = mIntf->lock();
std::shared_ptr<C2StreamPictureQuantizationTuning::output> qp =
mIntf->getPictureQuantization_l();
for (size_t i = 0; i < qp->flexCount(); ++i) {
const C2PictureQuantizationStruct &layer = qp->m.values[i];
if (layer.type_ == C2Config::picture_type_t(I_FRAME)) {
iMax = layer.max;
iMin = layer.min;
ALOGV("iMin %d iMax %d", iMin, iMax);
} else if (layer.type_ == C2Config::picture_type_t(P_FRAME)) {
pMax = layer.max;
pMin = layer.min;
ALOGV("pMin %d pMax %d", pMin, pMax);
} else if (layer.type_ == C2Config::picture_type_t(B_FRAME)) {
bMax = layer.max;
bMin = layer.min;
ALOGV("bMin %d bMax %d", bMin, bMax);
}
}
s_qp_ip.u4_i_qp_max = iMax;
s_qp_ip.u4_i_qp_min = iMin;
s_qp_ip.u4_p_qp_max = pMax;
s_qp_ip.u4_p_qp_min = pMin;
s_qp_ip.u4_b_qp_max = bMax;
s_qp_ip.u4_b_qp_min = bMin;
// ensure initial qp values are within our newly configured bounds...
s_qp_ip.u4_i_qp = std::clamp(DEFAULT_I_QP, iMin, iMax);
s_qp_ip.u4_p_qp = std::clamp(DEFAULT_P_QP, pMin, pMax);
s_qp_ip.u4_b_qp = std::clamp(DEFAULT_B_QP, bMin, bMax);
ALOGV("setQp(): i %d-%d p %d-%d b %d-%d", iMin, iMax, pMin, pMax, bMin, bMax);
s_qp_ip.u4_timestamp_high = -1;
s_qp_ip.u4_timestamp_low = -1;
s_qp_ip.u4_size = sizeof(ive_ctl_set_qp_ip_t);
s_qp_op.u4_size = sizeof(ive_ctl_set_qp_op_t);
status = ive_api_function(mCodecCtx, &s_qp_ip, &s_qp_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set qp 0x%x\n", s_qp_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setEncMode(IVE_ENC_MODE_T e_enc_mode) {
IV_STATUS_T status;
ive_ctl_set_enc_mode_ip_t s_enc_mode_ip;
ive_ctl_set_enc_mode_op_t s_enc_mode_op;
s_enc_mode_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_enc_mode_ip.e_sub_cmd = IVE_CMD_CTL_SET_ENC_MODE;
s_enc_mode_ip.e_enc_mode = e_enc_mode;
s_enc_mode_ip.u4_timestamp_high = -1;
s_enc_mode_ip.u4_timestamp_low = -1;
s_enc_mode_ip.u4_size = sizeof(ive_ctl_set_enc_mode_ip_t);
s_enc_mode_op.u4_size = sizeof(ive_ctl_set_enc_mode_op_t);
status = ive_api_function(mCodecCtx, &s_enc_mode_ip, &s_enc_mode_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set in header encode mode = 0x%x\n",
s_enc_mode_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setVbvParams() {
ive_ctl_set_vbv_params_ip_t s_vbv_ip;
ive_ctl_set_vbv_params_op_t s_vbv_op;
IV_STATUS_T status;
s_vbv_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_vbv_ip.e_sub_cmd = IVE_CMD_CTL_SET_VBV_PARAMS;
s_vbv_ip.u4_vbv_buf_size = 0;
s_vbv_ip.u4_vbv_buffer_delay = 1000;
s_vbv_ip.u4_timestamp_high = -1;
s_vbv_ip.u4_timestamp_low = -1;
s_vbv_ip.u4_size = sizeof(ive_ctl_set_vbv_params_ip_t);
s_vbv_op.u4_size = sizeof(ive_ctl_set_vbv_params_op_t);
status = ive_api_function(mCodecCtx, &s_vbv_ip, &s_vbv_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set VBV params = 0x%x\n", s_vbv_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setAirParams() {
ive_ctl_set_air_params_ip_t s_air_ip;
ive_ctl_set_air_params_op_t s_air_op;
IV_STATUS_T status;
s_air_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_air_ip.e_sub_cmd = IVE_CMD_CTL_SET_AIR_PARAMS;
s_air_ip.e_air_mode =
(mIntraRefresh->mode == C2Config::INTRA_REFRESH_DISABLED || mIntraRefresh->period < 1)
? IVE_AIR_MODE_NONE : IVE_AIR_MODE_CYCLIC;
s_air_ip.u4_air_refresh_period = mIntraRefresh->period;
s_air_ip.u4_timestamp_high = -1;
s_air_ip.u4_timestamp_low = -1;
s_air_ip.u4_size = sizeof(ive_ctl_set_air_params_ip_t);
s_air_op.u4_size = sizeof(ive_ctl_set_air_params_op_t);
status = ive_api_function(mCodecCtx, &s_air_ip, &s_air_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set air params = 0x%x\n", s_air_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setMeParams() {
IV_STATUS_T status;
ive_ctl_set_me_params_ip_t s_me_params_ip;
ive_ctl_set_me_params_op_t s_me_params_op;
s_me_params_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_me_params_ip.e_sub_cmd = IVE_CMD_CTL_SET_ME_PARAMS;
s_me_params_ip.u4_enable_fast_sad = mEnableFastSad;
s_me_params_ip.u4_enable_alt_ref = mEnableAltRef;
s_me_params_ip.u4_enable_hpel = mHalfPelEnable;
s_me_params_ip.u4_enable_qpel = DEFAULT_QPEL;
s_me_params_ip.u4_me_speed_preset = DEFAULT_ME_SPEED;
s_me_params_ip.u4_srch_rng_x = DEFAULT_SRCH_RNG_X;
s_me_params_ip.u4_srch_rng_y = DEFAULT_SRCH_RNG_Y;
s_me_params_ip.u4_timestamp_high = -1;
s_me_params_ip.u4_timestamp_low = -1;
s_me_params_ip.u4_size = sizeof(ive_ctl_set_me_params_ip_t);
s_me_params_op.u4_size = sizeof(ive_ctl_set_me_params_op_t);
status = ive_api_function(mCodecCtx, &s_me_params_ip, &s_me_params_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set me params = 0x%x\n", s_me_params_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setGopParams() {
IV_STATUS_T status;
ive_ctl_set_gop_params_ip_t s_gop_params_ip;
ive_ctl_set_gop_params_op_t s_gop_params_op;
s_gop_params_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_gop_params_ip.e_sub_cmd = IVE_CMD_CTL_SET_GOP_PARAMS;
s_gop_params_ip.u4_i_frm_interval = mIInterval;
s_gop_params_ip.u4_idr_frm_interval = mIDRInterval;
s_gop_params_ip.u4_timestamp_high = -1;
s_gop_params_ip.u4_timestamp_low = -1;
s_gop_params_ip.u4_size = sizeof(ive_ctl_set_gop_params_ip_t);
s_gop_params_op.u4_size = sizeof(ive_ctl_set_gop_params_op_t);
status = ive_api_function(mCodecCtx, &s_gop_params_ip, &s_gop_params_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set GOP params = 0x%x\n",
s_gop_params_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setProfileParams() {
IntfImpl::Lock lock = mIntf->lock();
IV_STATUS_T status;
ive_ctl_set_profile_params_ip_t s_profile_params_ip;
ive_ctl_set_profile_params_op_t s_profile_params_op;
s_profile_params_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_profile_params_ip.e_sub_cmd = IVE_CMD_CTL_SET_PROFILE_PARAMS;
s_profile_params_ip.e_profile = mIntf->getProfile_l();
if (s_profile_params_ip.e_profile == IV_PROFILE_BASE) {
s_profile_params_ip.u4_entropy_coding_mode = 0;
} else {
s_profile_params_ip.u4_entropy_coding_mode = 1;
}
s_profile_params_ip.u4_timestamp_high = -1;
s_profile_params_ip.u4_timestamp_low = -1;
s_profile_params_ip.u4_size = sizeof(ive_ctl_set_profile_params_ip_t);
s_profile_params_op.u4_size = sizeof(ive_ctl_set_profile_params_op_t);
lock.unlock();
status = ive_api_function(mCodecCtx, &s_profile_params_ip, &s_profile_params_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to set profile params = 0x%x\n",
s_profile_params_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setDeblockParams() {
IV_STATUS_T status;
ive_ctl_set_deblock_params_ip_t s_deblock_params_ip;
ive_ctl_set_deblock_params_op_t s_deblock_params_op;
s_deblock_params_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_deblock_params_ip.e_sub_cmd = IVE_CMD_CTL_SET_DEBLOCK_PARAMS;
s_deblock_params_ip.u4_disable_deblock_level = mDisableDeblkLevel;
s_deblock_params_ip.u4_timestamp_high = -1;
s_deblock_params_ip.u4_timestamp_low = -1;
s_deblock_params_ip.u4_size = sizeof(ive_ctl_set_deblock_params_ip_t);
s_deblock_params_op.u4_size = sizeof(ive_ctl_set_deblock_params_op_t);
status = ive_api_function(mCodecCtx, &s_deblock_params_ip, &s_deblock_params_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to enable/disable deblock params = 0x%x\n",
s_deblock_params_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
void C2SoftAvcEnc::logVersion() {
ive_ctl_getversioninfo_ip_t s_ctl_ip;
ive_ctl_getversioninfo_op_t s_ctl_op;
UWORD8 au1_buf[512];
IV_STATUS_T status;
s_ctl_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_ctl_ip.e_sub_cmd = IVE_CMD_CTL_GETVERSION;
s_ctl_ip.u4_size = sizeof(ive_ctl_getversioninfo_ip_t);
s_ctl_op.u4_size = sizeof(ive_ctl_getversioninfo_op_t);
s_ctl_ip.pu1_version = au1_buf;
s_ctl_ip.u4_version_bufsize = sizeof(au1_buf);
status = ive_api_function(mCodecCtx, (void *) &s_ctl_ip, (void *) &s_ctl_op);
if (status != IV_SUCCESS) {
ALOGE("Error in getting version: 0x%x", s_ctl_op.u4_error_code);
} else {
ALOGV("Ittiam encoder version: %s", (char *)s_ctl_ip.pu1_version);
}
return;
}
c2_status_t C2SoftAvcEnc::setVuiParams()
{
ColorAspects sfAspects;
if (!C2Mapper::map(mColorAspects->primaries, &sfAspects.mPrimaries)) {
sfAspects.mPrimaries = android::ColorAspects::PrimariesUnspecified;
}
if (!C2Mapper::map(mColorAspects->range, &sfAspects.mRange)) {
sfAspects.mRange = android::ColorAspects::RangeUnspecified;
}
if (!C2Mapper::map(mColorAspects->matrix, &sfAspects.mMatrixCoeffs)) {
sfAspects.mMatrixCoeffs = android::ColorAspects::MatrixUnspecified;
}
if (!C2Mapper::map(mColorAspects->transfer, &sfAspects.mTransfer)) {
sfAspects.mTransfer = android::ColorAspects::TransferUnspecified;
}
int32_t primaries, transfer, matrixCoeffs;
bool range;
ColorUtils::convertCodecColorAspectsToIsoAspects(sfAspects,
&primaries,
&transfer,
&matrixCoeffs,
&range);
ih264e_vui_ip_t s_vui_params_ip {};
ih264e_vui_op_t s_vui_params_op {};
s_vui_params_ip.e_cmd = IVE_CMD_VIDEO_CTL;
s_vui_params_ip.e_sub_cmd = IVE_CMD_CTL_SET_VUI_PARAMS;
s_vui_params_ip.u1_video_signal_type_present_flag = 1;
s_vui_params_ip.u1_colour_description_present_flag = 1;
s_vui_params_ip.u1_colour_primaries = primaries;
s_vui_params_ip.u1_transfer_characteristics = transfer;
s_vui_params_ip.u1_matrix_coefficients = matrixCoeffs;
s_vui_params_ip.u1_video_full_range_flag = range;
s_vui_params_ip.u4_size = sizeof(ih264e_vui_ip_t);
s_vui_params_op.u4_size = sizeof(ih264e_vui_op_t);
IV_STATUS_T status = ih264e_api_function(mCodecCtx, &s_vui_params_ip,
&s_vui_params_op);
if(status != IV_SUCCESS)
{
ALOGE("Unable to set vui params = 0x%x\n",
s_vui_params_op.u4_error_code);
return C2_CORRUPTED;
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::initEncoder() {
IV_STATUS_T status;
WORD32 level;
CHECK(!mStarted);
c2_status_t errType = C2_OK;
std::shared_ptr<C2StreamGopTuning::output> gop;
{
IntfImpl::Lock lock = mIntf->lock();
mSize = mIntf->getSize_l();
mBitrate = mIntf->getBitrate_l();
mFrameRate = mIntf->getFrameRate_l();
mIntraRefresh = mIntf->getIntraRefresh_l();
mAVCEncLevel = mIntf->getLevel_l();
mIInterval = mIntf->getSyncFramePeriod_l();
mIDRInterval = mIntf->getSyncFramePeriod_l();
gop = mIntf->getGop_l();
mColorAspects = mIntf->getCodedColorAspects_l();
}
if (gop && gop->flexCount() > 0) {
uint32_t syncInterval = 1;
uint32_t iInterval = 1;
uint32_t maxBframes = 0;
ParseGop(*gop, &syncInterval, &iInterval, &maxBframes);
if (syncInterval > 0) {
ALOGD("Updating IDR interval from GOP: old %u new %u", mIDRInterval, syncInterval);
mIDRInterval = syncInterval;
}
if (iInterval > 0) {
ALOGD("Updating I interval from GOP: old %u new %u", mIInterval, iInterval);
mIInterval = iInterval;
}
if (mBframes != maxBframes) {
ALOGD("Updating max B frames from GOP: old %u new %u", mBframes, maxBframes);
mBframes = maxBframes;
}
}
uint32_t width = mSize->width;
uint32_t height = mSize->height;
mStride = width;
// Assume worst case output buffer size to be equal to number of bytes in input
mOutBufferSize = std::max(width * height * 3 / 2, kMinOutBufferSize);
// TODO
mIvVideoColorFormat = IV_YUV_420P;
ALOGD("Params width %d height %d level %d colorFormat %d bframes %d", width,
height, mAVCEncLevel, mIvVideoColorFormat, mBframes);
/* Getting Number of MemRecords */
{
iv_num_mem_rec_ip_t s_num_mem_rec_ip;
iv_num_mem_rec_op_t s_num_mem_rec_op;
s_num_mem_rec_ip.u4_size = sizeof(iv_num_mem_rec_ip_t);
s_num_mem_rec_op.u4_size = sizeof(iv_num_mem_rec_op_t);
s_num_mem_rec_ip.e_cmd = IV_CMD_GET_NUM_MEM_REC;
status = ive_api_function(nullptr, &s_num_mem_rec_ip, &s_num_mem_rec_op);
if (status != IV_SUCCESS) {
ALOGE("Get number of memory records failed = 0x%x\n",
s_num_mem_rec_op.u4_error_code);
return C2_CORRUPTED;
}
mNumMemRecords = s_num_mem_rec_op.u4_num_mem_rec;
}
/* Allocate array to hold memory records */
if (mNumMemRecords > SIZE_MAX / sizeof(iv_mem_rec_t)) {
ALOGE("requested memory size is too big.");
return C2_CORRUPTED;
}
mMemRecords = (iv_mem_rec_t *)malloc(mNumMemRecords * sizeof(iv_mem_rec_t));
if (nullptr == mMemRecords) {
ALOGE("Unable to allocate memory for hold memory records: Size %zu",
mNumMemRecords * sizeof(iv_mem_rec_t));
mSignalledError = true;
return C2_CORRUPTED;
}
{
iv_mem_rec_t *ps_mem_rec;
ps_mem_rec = mMemRecords;
for (size_t i = 0; i < mNumMemRecords; i++) {
ps_mem_rec->u4_size = sizeof(iv_mem_rec_t);
ps_mem_rec->pv_base = nullptr;
ps_mem_rec->u4_mem_size = 0;
ps_mem_rec->u4_mem_alignment = 0;
ps_mem_rec->e_mem_type = IV_NA_MEM_TYPE;
ps_mem_rec++;
}
}
/* Getting MemRecords Attributes */
{
ih264e_fill_mem_rec_ip_t s_ih264e_mem_rec_ip = {};
ih264e_fill_mem_rec_op_t s_ih264e_mem_rec_op = {};
iv_fill_mem_rec_ip_t *ps_fill_mem_rec_ip = &s_ih264e_mem_rec_ip.s_ive_ip;
iv_fill_mem_rec_op_t *ps_fill_mem_rec_op = &s_ih264e_mem_rec_op.s_ive_op;
ps_fill_mem_rec_ip->u4_size = sizeof(ih264e_fill_mem_rec_ip_t);
ps_fill_mem_rec_op->u4_size = sizeof(ih264e_fill_mem_rec_op_t);
ps_fill_mem_rec_ip->e_cmd = IV_CMD_FILL_NUM_MEM_REC;
ps_fill_mem_rec_ip->ps_mem_rec = mMemRecords;
ps_fill_mem_rec_ip->u4_num_mem_rec = mNumMemRecords;
ps_fill_mem_rec_ip->u4_max_wd = width;
ps_fill_mem_rec_ip->u4_max_ht = height;
ps_fill_mem_rec_ip->u4_max_level = mAVCEncLevel;
ps_fill_mem_rec_ip->e_color_format = DEFAULT_INP_COLOR_FORMAT;
ps_fill_mem_rec_ip->u4_max_ref_cnt = DEFAULT_MAX_REF_FRM;
ps_fill_mem_rec_ip->u4_max_reorder_cnt = DEFAULT_MAX_REORDER_FRM;
ps_fill_mem_rec_ip->u4_max_srch_rng_x = DEFAULT_MAX_SRCH_RANGE_X;
ps_fill_mem_rec_ip->u4_max_srch_rng_y = DEFAULT_MAX_SRCH_RANGE_Y;
status = ive_api_function(nullptr, &s_ih264e_mem_rec_ip, &s_ih264e_mem_rec_op);
if (status != IV_SUCCESS) {
ALOGE("Fill memory records failed = 0x%x\n",
ps_fill_mem_rec_op->u4_error_code);
return C2_CORRUPTED;
}
}
/* Allocating Memory for Mem Records */
{
WORD32 total_size;
iv_mem_rec_t *ps_mem_rec;
total_size = 0;
ps_mem_rec = mMemRecords;
for (size_t i = 0; i < mNumMemRecords; i++) {
ps_mem_rec->pv_base = ive_aligned_malloc(
ps_mem_rec->u4_mem_alignment, ps_mem_rec->u4_mem_size);
if (ps_mem_rec->pv_base == nullptr) {
ALOGE("Allocation failure for mem record id %zu size %u\n", i,
ps_mem_rec->u4_mem_size);
return C2_CORRUPTED;
}
total_size += ps_mem_rec->u4_mem_size;
ps_mem_rec++;
}
}
/* Codec Instance Creation */
{
ih264e_init_ip_t s_enc_ip = {};
ih264e_init_op_t s_enc_op = {};
ive_init_ip_t *ps_init_ip = &s_enc_ip.s_ive_ip;
ive_init_op_t *ps_init_op = &s_enc_op.s_ive_op;
mCodecCtx = (iv_obj_t *)mMemRecords[0].pv_base;
mCodecCtx->u4_size = sizeof(iv_obj_t);
mCodecCtx->pv_fxns = (void *)ive_api_function;
ps_init_ip->u4_size = sizeof(ih264e_init_ip_t);
ps_init_op->u4_size = sizeof(ih264e_init_op_t);
ps_init_ip->e_cmd = IV_CMD_INIT;
ps_init_ip->u4_num_mem_rec = mNumMemRecords;
ps_init_ip->ps_mem_rec = mMemRecords;
ps_init_ip->u4_max_wd = width;
ps_init_ip->u4_max_ht = height;
ps_init_ip->u4_max_ref_cnt = DEFAULT_MAX_REF_FRM;
ps_init_ip->u4_max_reorder_cnt = DEFAULT_MAX_REORDER_FRM;
ps_init_ip->u4_max_level = mAVCEncLevel;
ps_init_ip->e_inp_color_fmt = mIvVideoColorFormat;
if (mReconEnable || mPSNREnable) {
ps_init_ip->u4_enable_recon = 1;
} else {
ps_init_ip->u4_enable_recon = 0;
}
ps_init_ip->e_recon_color_fmt = DEFAULT_RECON_COLOR_FORMAT;
ps_init_ip->e_rc_mode = DEFAULT_RC_MODE;
ps_init_ip->u4_max_framerate = DEFAULT_MAX_FRAMERATE;
ps_init_ip->u4_max_bitrate = DEFAULT_MAX_BITRATE;
ps_init_ip->u4_num_bframes = mBframes;
ps_init_ip->e_content_type = IV_PROGRESSIVE;
ps_init_ip->u4_max_srch_rng_x = DEFAULT_MAX_SRCH_RANGE_X;
ps_init_ip->u4_max_srch_rng_y = DEFAULT_MAX_SRCH_RANGE_Y;
ps_init_ip->e_slice_mode = mSliceMode;
ps_init_ip->u4_slice_param = mSliceParam;
ps_init_ip->e_arch = mArch;
ps_init_ip->e_soc = DEFAULT_SOC;
status = ive_api_function(mCodecCtx, &s_enc_ip, &s_enc_op);
if (status != IV_SUCCESS) {
ALOGE("Init encoder failed = 0x%x\n", ps_init_op->u4_error_code);
return C2_CORRUPTED;
}
}
/* Get Codec Version */
logVersion();
/* set processor details */
setNumCores();
/* Video control Set Frame dimensions */
setDimensions();
/* Video control Set Frame rates */
setFrameRate();
/* Video control Set IPE Params */
setIpeParams();
/* Video control Set Bitrate */
setBitRate();
/* Video control Set QP */
setQp();
/* Video control Set AIR params */
setAirParams();
/* Video control Set VBV params */
setVbvParams();
/* Video control Set Motion estimation params */
setMeParams();
/* Video control Set GOP params */
setGopParams();
/* Video control Set Deblock params */
setDeblockParams();
/* Video control Set Profile params */
setProfileParams();
/* Video control Set VUI params */
setVuiParams();
/* Video control Set in Encode header mode */
setEncMode(IVE_ENC_MODE_HEADER);
ALOGV("init_codec successfull");
mSpsPpsHeaderReceived = false;
mStarted = true;
return C2_OK;
}
c2_status_t C2SoftAvcEnc::releaseEncoder() {
IV_STATUS_T status = IV_SUCCESS;
iv_retrieve_mem_rec_ip_t s_retrieve_mem_ip;
iv_retrieve_mem_rec_op_t s_retrieve_mem_op;
iv_mem_rec_t *ps_mem_rec;
if (!mStarted) {
return C2_OK;
}
s_retrieve_mem_ip.u4_size = sizeof(iv_retrieve_mem_rec_ip_t);
s_retrieve_mem_op.u4_size = sizeof(iv_retrieve_mem_rec_op_t);
s_retrieve_mem_ip.e_cmd = IV_CMD_RETRIEVE_MEMREC;
s_retrieve_mem_ip.ps_mem_rec = mMemRecords;
status = ive_api_function(mCodecCtx, &s_retrieve_mem_ip, &s_retrieve_mem_op);
if (status != IV_SUCCESS) {
ALOGE("Unable to retrieve memory records = 0x%x\n",
s_retrieve_mem_op.u4_error_code);
return C2_CORRUPTED;
}
/* Free memory records */
ps_mem_rec = mMemRecords;
for (size_t i = 0; i < s_retrieve_mem_op.u4_num_mem_rec_filled; i++) {
if (ps_mem_rec) ive_aligned_free(ps_mem_rec->pv_base);
else {
ALOGE("memory record is null.");
return C2_CORRUPTED;
}
ps_mem_rec++;
}
if (mMemRecords) free(mMemRecords);
// clear other pointers into the space being free()d
mCodecCtx = nullptr;
mStarted = false;
return C2_OK;
}
c2_status_t C2SoftAvcEnc::setEncodeArgs(
ive_video_encode_ip_t *ps_encode_ip,
ive_video_encode_op_t *ps_encode_op,
const C2GraphicView *const input,
uint8_t *base,
uint32_t capacity,
uint64_t workIndex) {
iv_raw_buf_t *ps_inp_raw_buf;
memset(ps_encode_ip, 0, sizeof(*ps_encode_ip));
memset(ps_encode_op, 0, sizeof(*ps_encode_op));
ps_inp_raw_buf = &ps_encode_ip->s_inp_buf;
ps_encode_ip->s_out_buf.pv_buf = base;
ps_encode_ip->s_out_buf.u4_bytes = 0;
ps_encode_ip->s_out_buf.u4_bufsize = capacity;
ps_encode_ip->u4_size = sizeof(ive_video_encode_ip_t);
ps_encode_op->u4_size = sizeof(ive_video_encode_op_t);
ps_encode_ip->e_cmd = IVE_CMD_VIDEO_ENCODE;
ps_encode_ip->pv_bufs = nullptr;
ps_encode_ip->pv_mb_info = nullptr;
ps_encode_ip->pv_pic_info = nullptr;
ps_encode_ip->u4_mb_info_type = 0;
ps_encode_ip->u4_pic_info_type = 0;
ps_encode_ip->u4_is_last = 0;
ps_encode_ip->u4_timestamp_high = workIndex >> 32;
ps_encode_ip->u4_timestamp_low = workIndex & 0xFFFFFFFF;
ps_encode_op->s_out_buf.pv_buf = nullptr;
/* Initialize color formats */
memset(ps_inp_raw_buf, 0, sizeof(iv_raw_buf_t));
ps_inp_raw_buf->u4_size = sizeof(iv_raw_buf_t);
ps_inp_raw_buf->e_color_fmt = mIvVideoColorFormat;
if (input == nullptr) {
if (mSawInputEOS) {
ps_encode_ip->u4_is_last = 1;
}
return C2_OK;
}
if (input->width() < mSize->width ||
input->height() < mSize->height) {
/* Expect width height to be configured */
ALOGW("unexpected Capacity Aspect %d(%d) x %d(%d)", input->width(),
mSize->width, input->height(), mSize->height);
return C2_BAD_VALUE;
}
ALOGV("width = %d, height = %d", input->width(), input->height());
const C2PlanarLayout &layout = input->layout();
uint8_t *yPlane = const_cast<uint8_t *>(input->data()[C2PlanarLayout::PLANE_Y]);
uint8_t *uPlane = const_cast<uint8_t *>(input->data()[C2PlanarLayout::PLANE_U]);
uint8_t *vPlane = const_cast<uint8_t *>(input->data()[C2PlanarLayout::PLANE_V]);
int32_t yStride = layout.planes[C2PlanarLayout::PLANE_Y].rowInc;
int32_t uStride = layout.planes[C2PlanarLayout::PLANE_U].rowInc;
int32_t vStride = layout.planes[C2PlanarLayout::PLANE_V].rowInc;
uint32_t width = mSize->width;
uint32_t height = mSize->height;
// width and height are always even (as block size is 16x16)
CHECK_EQ((width & 1u), 0u);
CHECK_EQ((height & 1u), 0u);
size_t yPlaneSize = width * height;
switch (layout.type) {
case C2PlanarLayout::TYPE_RGB:
[[fallthrough]];
case C2PlanarLayout::TYPE_RGBA: {
ALOGV("yPlaneSize = %zu", yPlaneSize);
MemoryBlock conversionBuffer = mConversionBuffers.fetch(yPlaneSize * 3 / 2);
mConversionBuffersInUse.emplace(conversionBuffer.data(), conversionBuffer);
yPlane = conversionBuffer.data();
uPlane = yPlane + yPlaneSize;
vPlane = uPlane + yPlaneSize / 4;
yStride = width;
uStride = vStride = yStride / 2;
ConvertRGBToPlanarYUV(yPlane, yStride, height, conversionBuffer.size(), *input,
mColorAspects->matrix, mColorAspects->range);
break;
}
case C2PlanarLayout::TYPE_YUV: {
if (!IsYUV420(*input)) {
ALOGE("input is not YUV420");
return C2_BAD_VALUE;
}
if (layout.planes[layout.PLANE_Y].colInc == 1
&& layout.planes[layout.PLANE_U].colInc == 1
&& layout.planes[layout.PLANE_V].colInc == 1
&& uStride == vStride
&& yStride == 2 * vStride) {
// I420 compatible - already set up above
break;
}
// copy to I420
yStride = width;
uStride = vStride = yStride / 2;
MemoryBlock conversionBuffer = mConversionBuffers.fetch(yPlaneSize * 3 / 2);
mConversionBuffersInUse.emplace(conversionBuffer.data(), conversionBuffer);
MediaImage2 img = CreateYUV420PlanarMediaImage2(width, height, yStride, height);
status_t err = ImageCopy(conversionBuffer.data(), &img, *input);
if (err != OK) {
ALOGE("Buffer conversion failed: %d", err);
return C2_BAD_VALUE;
}
yPlane = conversionBuffer.data();
uPlane = yPlane + yPlaneSize;
vPlane = uPlane + yPlaneSize / 4;
break;
}
case C2PlanarLayout::TYPE_YUVA:
ALOGE("YUVA plane type is not supported");
return C2_BAD_VALUE;
default:
ALOGE("Unrecognized plane type: %d", layout.type);
return C2_BAD_VALUE;
}
switch (mIvVideoColorFormat) {
case IV_YUV_420P:
{
// input buffer is supposed to be const but Ittiam API wants bare pointer.
ps_inp_raw_buf->apv_bufs[0] = yPlane;
ps_inp_raw_buf->apv_bufs[1] = uPlane;
ps_inp_raw_buf->apv_bufs[2] = vPlane;
ps_inp_raw_buf->au4_wd[0] = mSize->width;
ps_inp_raw_buf->au4_wd[1] = mSize->width / 2;
ps_inp_raw_buf->au4_wd[2] = mSize->width / 2;
ps_inp_raw_buf->au4_ht[0] = mSize->height;
ps_inp_raw_buf->au4_ht[1] = mSize->height / 2;
ps_inp_raw_buf->au4_ht[2] = mSize->height / 2;
ps_inp_raw_buf->au4_strd[0] = yStride;
ps_inp_raw_buf->au4_strd[1] = uStride;
ps_inp_raw_buf->au4_strd[2] = vStride;
break;
}
case IV_YUV_422ILE:
{
// TODO
// ps_inp_raw_buf->apv_bufs[0] = pu1_buf;
// ps_inp_raw_buf->au4_wd[0] = mWidth * 2;
// ps_inp_raw_buf->au4_ht[0] = mHeight;
// ps_inp_raw_buf->au4_strd[0] = mStride * 2;
break;
}
case IV_YUV_420SP_UV:
case IV_YUV_420SP_VU:
default:
{
ps_inp_raw_buf->apv_bufs[0] = yPlane;
ps_inp_raw_buf->apv_bufs[1] = uPlane;
ps_inp_raw_buf->au4_wd[0] = mSize->width;
ps_inp_raw_buf->au4_wd[1] = mSize->width;
ps_inp_raw_buf->au4_ht[0] = mSize->height;
ps_inp_raw_buf->au4_ht[1] = mSize->height / 2;
ps_inp_raw_buf->au4_strd[0] = yStride;
ps_inp_raw_buf->au4_strd[1] = uStride;
break;
}
}
return C2_OK;
}
void C2SoftAvcEnc::finishWork(uint64_t workIndex, const std::unique_ptr<C2Work> &work,
ive_video_encode_op_t *ps_encode_op) {
std::shared_ptr<C2Buffer> buffer =
createLinearBuffer(mOutBlock, 0, ps_encode_op->s_out_buf.u4_bytes);
if (IV_IDR_FRAME == ps_encode_op->u4_encoded_frame_type) {
ALOGV("IDR frame produced");
buffer->setInfo(std::make_shared<C2StreamPictureTypeMaskInfo::output>(
0u /* stream id */, C2Config::SYNC_FRAME));
}
mOutBlock = nullptr;
auto fillWork = [buffer](const std::unique_ptr<C2Work> &work) {
work->worklets.front()->output.flags = (C2FrameData::flags_t)0;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
};
if (work && c2_cntr64_t(workIndex) == work->input.ordinal.frameIndex) {
fillWork(work);
if (mSawInputEOS) {
work->worklets.front()->output.flags = C2FrameData::FLAG_END_OF_STREAM;
}
} else {
finish(workIndex, fillWork);
}
}
void C2SoftAvcEnc::process(
const std::unique_ptr<C2Work> &work,
const std::shared_ptr<C2BlockPool> &pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 0u;
work->worklets.front()->output.flags = work->input.flags;
IV_STATUS_T status;
nsecs_t timeDelay = 0;
uint64_t workIndex = work->input.ordinal.frameIndex.peekull();
// Initialize encoder if not already initialized
if (mCodecCtx == nullptr) {
if (C2_OK != initEncoder()) {
ALOGE("Failed to initialize encoder");
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return;
}
}
if (mSignalledError) {
return;
}
// while (!mSawOutputEOS && !outQueue.empty()) {
c2_status_t error;
ih264e_video_encode_ip_t s_video_encode_ip = {};
ih264e_video_encode_op_t s_video_encode_op = {};
ive_video_encode_ip_t *ps_encode_ip = &s_video_encode_ip.s_ive_ip;
ive_video_encode_op_t *ps_encode_op = &s_video_encode_op.s_ive_op;
memset(ps_encode_op, 0, sizeof(*ps_encode_op));
if (!mSpsPpsHeaderReceived) {
constexpr uint32_t kHeaderLength = MIN_STREAM_SIZE;
uint8_t header[kHeaderLength];
error = setEncodeArgs(
ps_encode_ip, ps_encode_op, nullptr, header, kHeaderLength, workIndex);
if (error != C2_OK) {
ALOGE("setEncodeArgs failed: %d", error);
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return;
}
status = ive_api_function(mCodecCtx, ps_encode_ip, ps_encode_op);
if (IV_SUCCESS != status) {
ALOGE("Encode header failed = 0x%x\n",
ps_encode_op->u4_error_code);
work->workletsProcessed = 1u;
return;
} else {
ALOGV("Bytes Generated in header %d\n",
ps_encode_op->s_out_buf.u4_bytes);
}
mSpsPpsHeaderReceived = true;
std::unique_ptr<C2StreamInitDataInfo::output> csd =
C2StreamInitDataInfo::output::AllocUnique(ps_encode_op->s_out_buf.u4_bytes, 0u);
if (!csd) {
ALOGE("CSD allocation failed");
mSignalledError = true;
work->result = C2_NO_MEMORY;
work->workletsProcessed = 1u;
return;
}
memcpy(csd->m.value, header, ps_encode_op->s_out_buf.u4_bytes);
work->worklets.front()->output.configUpdate.push_back(std::move(csd));
DUMP_TO_FILE(
mOutFile, csd->m.value, csd->flexCount());
if (work->input.buffers.empty()) {
work->workletsProcessed = 1u;
return;
}
}
// handle dynamic config parameters
{
IntfImpl::Lock lock = mIntf->lock();
std::shared_ptr<C2StreamIntraRefreshTuning::output> intraRefresh = mIntf->getIntraRefresh_l();
std::shared_ptr<C2StreamBitrateInfo::output> bitrate = mIntf->getBitrate_l();
std::shared_ptr<C2StreamRequestSyncFrameTuning::output> requestSync = mIntf->getRequestSync_l();
lock.unlock();
if (bitrate != mBitrate) {
mBitrate = bitrate;
setBitRate();
}
if (intraRefresh != mIntraRefresh) {
mIntraRefresh = intraRefresh;
setAirParams();
}
if (requestSync != mRequestSync) {
// we can handle IDR immediately
if (requestSync->value) {
// unset request
C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE);
std::vector<std::unique_ptr<C2SettingResult>> failures;
mIntf->config({ &clearSync }, C2_MAY_BLOCK, &failures);
ALOGV("Got sync request");
setFrameType(IV_IDR_FRAME);
}
mRequestSync = requestSync;
}
}
if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) {
mSawInputEOS = true;
}
/* In normal mode, store inputBufferInfo and this will be returned
when encoder consumes this input */
// if (!mInputDataIsMeta && (inputBufferInfo != NULL)) {
// for (size_t i = 0; i < MAX_INPUT_BUFFER_HEADERS; i++) {
// if (NULL == mInputBufferInfo[i]) {
// mInputBufferInfo[i] = inputBufferInfo;
// break;
// }
// }
// }
std::shared_ptr<C2GraphicView> view;
std::shared_ptr<C2Buffer> inputBuffer;
if (!work->input.buffers.empty()) {
inputBuffer = work->input.buffers[0];
view = std::make_shared<C2GraphicView>(
inputBuffer->data().graphicBlocks().front().map().get());
if (view->error() != C2_OK) {
ALOGE("graphic view map err = %d", view->error());
work->workletsProcessed = 1u;
return;
}
//(b/232396154)
//workaround for incorrect crop size in view when using surface mode
view->setCrop_be(C2Rect(mSize->width, mSize->height));
}
do {
if (mSawInputEOS && work->input.buffers.empty()) break;
if (!mOutBlock) {
C2MemoryUsage usage = {C2MemoryUsage::CPU_READ,
C2MemoryUsage::CPU_WRITE};
// TODO: error handling, proper usage, etc.
c2_status_t err =
pool->fetchLinearBlock(mOutBufferSize, usage, &mOutBlock);
if (err != C2_OK) {
ALOGE("fetch linear block err = %d", err);
work->result = err;
work->workletsProcessed = 1u;
return;
}
}
C2WriteView wView = mOutBlock->map().get();
if (wView.error() != C2_OK) {
ALOGE("write view map err = %d", wView.error());
work->result = wView.error();
work->workletsProcessed = 1u;
return;
}
error = setEncodeArgs(
ps_encode_ip, ps_encode_op, view.get(), wView.base(), wView.capacity(), workIndex);
if (error != C2_OK) {
ALOGE("setEncodeArgs failed : %d", error);
mSignalledError = true;
work->result = error;
work->workletsProcessed = 1u;
return;
}
// DUMP_TO_FILE(
// mInFile, s_encode_ip.s_inp_buf.apv_bufs[0],
// (mHeight * mStride * 3 / 2));
/* Compute time elapsed between end of previous decode()
* to start of current decode() */
mTimeStart = systemTime();
timeDelay = mTimeStart - mTimeEnd;
status = ive_api_function(mCodecCtx, &s_video_encode_ip, &s_video_encode_op);
if (IV_SUCCESS != status) {
if ((ps_encode_op->u4_error_code & 0xFF) == IH264E_BITSTREAM_BUFFER_OVERFLOW) {
// TODO: use IVE_CMD_CTL_GETBUFINFO for proper max input size?
mOutBufferSize *= 2;
mOutBlock.reset();
continue;
}
ALOGE("Encode Frame failed = 0x%x\n",
ps_encode_op->u4_error_code);
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return;
}
} while (IV_SUCCESS != status);
// Hold input buffer reference
if (inputBuffer) {
mBuffers[ps_encode_ip->s_inp_buf.apv_bufs[0]] = inputBuffer;
}
/* Compute time taken for decode() */
mTimeEnd = systemTime();
nsecs_t timeTaken = mTimeEnd - mTimeStart;
ALOGV("timeTaken=%" PRId64 "d delay=%" PRId64 " numBytes=%6d", timeTaken, timeDelay,
ps_encode_op->s_out_buf.u4_bytes);
void *freed = ps_encode_op->s_inp_buf.apv_bufs[0];
/* If encoder frees up an input buffer, mark it as free */
if (freed != nullptr) {
if (mBuffers.count(freed) == 0u) {
ALOGD("buffer not tracked");
} else {
// Release input buffer reference
mBuffers.erase(freed);
mConversionBuffersInUse.erase(freed);
}
}
if (ps_encode_op->output_present) {
if (!ps_encode_op->s_out_buf.u4_bytes) {
ALOGE("Error: Output present but bytes generated is zero");
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return;
}
uint64_t workId = ((uint64_t)ps_encode_op->u4_timestamp_high << 32) |
ps_encode_op->u4_timestamp_low;
finishWork(workId, work, ps_encode_op);
}
if (mSawInputEOS) {
drainInternal(DRAIN_COMPONENT_WITH_EOS, pool, work);
}
}
c2_status_t C2SoftAvcEnc::drainInternal(
uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool,
const std::unique_ptr<C2Work> &work) {
if (drainMode == NO_DRAIN) {
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
}
if (drainMode == DRAIN_CHAIN) {
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
}
while (true) {
if (!mOutBlock) {
C2MemoryUsage usage = {C2MemoryUsage::CPU_READ,
C2MemoryUsage::CPU_WRITE};
// TODO: error handling, proper usage, etc.
c2_status_t err =
pool->fetchLinearBlock(mOutBufferSize, usage, &mOutBlock);
if (err != C2_OK) {
ALOGE("fetch linear block err = %d", err);
work->result = err;
work->workletsProcessed = 1u;
return err;
}
}
C2WriteView wView = mOutBlock->map().get();
if (wView.error()) {
ALOGE("graphic view map failed %d", wView.error());
return C2_CORRUPTED;
}
ih264e_video_encode_ip_t s_video_encode_ip = {};
ih264e_video_encode_op_t s_video_encode_op = {};
ive_video_encode_ip_t *ps_encode_ip = &s_video_encode_ip.s_ive_ip;
ive_video_encode_op_t *ps_encode_op = &s_video_encode_op.s_ive_op;
if (C2_OK != setEncodeArgs(ps_encode_ip, ps_encode_op, nullptr,
wView.base(), wView.capacity(), 0)) {
ALOGE("setEncodeArgs failed for drainInternal");
mSignalledError = true;
work->result = C2_CORRUPTED;
work->workletsProcessed = 1u;
return C2_CORRUPTED;
}
(void)ive_api_function(mCodecCtx, &s_video_encode_ip, &s_video_encode_op);
void *freed = ps_encode_op->s_inp_buf.apv_bufs[0];
/* If encoder frees up an input buffer, mark it as free */
if (freed != nullptr) {
if (mBuffers.count(freed) == 0u) {
ALOGD("buffer not tracked");
} else {
// Release input buffer reference
mBuffers.erase(freed);
mConversionBuffersInUse.erase(freed);
}
}
if (ps_encode_op->output_present) {
uint64_t workId = ((uint64_t)ps_encode_op->u4_timestamp_high << 32) |
ps_encode_op->u4_timestamp_low;
finishWork(workId, work, ps_encode_op);
} else {
if (work->workletsProcessed != 1u) {
work->worklets.front()->output.flags = work->input.flags;
work->worklets.front()->output.ordinal = work->input.ordinal;
work->worklets.front()->output.buffers.clear();
work->workletsProcessed = 1u;
}
break;
}
}
return C2_OK;
}
c2_status_t C2SoftAvcEnc::drain(
uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool) {
return drainInternal(drainMode, pool, nullptr);
}
class C2SoftAvcEncFactory : public C2ComponentFactory {
public:
C2SoftAvcEncFactory() : mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GetCodec2PlatformComponentStore()->getParamReflector())) {
}
virtual c2_status_t createComponent(
c2_node_id_t id,
std::shared_ptr<C2Component>* const component,
std::function<void(C2Component*)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2SoftAvcEnc(COMPONENT_NAME,
id,
std::make_shared<C2SoftAvcEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual c2_status_t createInterface(
c2_node_id_t id,
std::shared_ptr<C2ComponentInterface>* const interface,
std::function<void(C2ComponentInterface*)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2SoftAvcEnc::IntfImpl>(
COMPONENT_NAME, id, std::make_shared<C2SoftAvcEnc::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual ~C2SoftAvcEncFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
__attribute__((cfi_canonical_jump_table))
extern "C" ::C2ComponentFactory* CreateCodec2Factory() {
ALOGV("in %s", __func__);
return new ::android::C2SoftAvcEncFactory();
}
__attribute__((cfi_canonical_jump_table))
extern "C" void DestroyCodec2Factory(::C2ComponentFactory* factory) {
ALOGV("in %s", __func__);
delete factory;
}