blob: af4b93a7e39affbc07dd248d0f916103578a6d39 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "AAudio"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <stdint.h>
#include <assert.h>
#include <binder/IServiceManager.h>
#include <aaudio/AAudio.h>
#include <utils/String16.h>
#include "AudioClock.h"
#include "AudioEndpointParcelable.h"
#include "binding/AAudioStreamRequest.h"
#include "binding/AAudioStreamConfiguration.h"
#include "binding/IAAudioService.h"
#include "binding/AAudioServiceMessage.h"
#include "fifo/FifoBuffer.h"
#include "core/AudioStreamBuilder.h"
#include "AudioStreamInternal.h"
#define LOG_TIMESTAMPS 0
using android::String16;
using android::Mutex;
using android::WrappingBuffer;
using namespace aaudio;
#define MIN_TIMEOUT_NANOS (1000 * AAUDIO_NANOS_PER_MILLISECOND)
// Wait at least this many times longer than the operation should take.
#define MIN_TIMEOUT_OPERATIONS 4
//static int64_t s_logCounter = 0;
//#define MYLOG_CONDITION (mInService == true && s_logCounter++ < 500)
//#define MYLOG_CONDITION (s_logCounter++ < 500000)
#define MYLOG_CONDITION (1)
AudioStreamInternal::AudioStreamInternal(AAudioServiceInterface &serviceInterface, bool inService)
: AudioStream()
, mClockModel()
, mAudioEndpoint()
, mServiceStreamHandle(AAUDIO_HANDLE_INVALID)
, mFramesPerBurst(16)
, mServiceInterface(serviceInterface)
, mInService(inService) {
}
AudioStreamInternal::~AudioStreamInternal() {
}
aaudio_result_t AudioStreamInternal::open(const AudioStreamBuilder &builder) {
aaudio_result_t result = AAUDIO_OK;
AAudioStreamRequest request;
AAudioStreamConfiguration configuration;
result = AudioStream::open(builder);
if (result < 0) {
return result;
}
// We have to do volume scaling. So we prefer FLOAT format.
if (getFormat() == AAUDIO_UNSPECIFIED) {
setFormat(AAUDIO_FORMAT_PCM_FLOAT);
}
// Request FLOAT for the shared mixer.
request.getConfiguration().setAudioFormat(AAUDIO_FORMAT_PCM_FLOAT);
// Build the request to send to the server.
request.setUserId(getuid());
request.setProcessId(getpid());
request.setDirection(getDirection());
request.setSharingModeMatchRequired(isSharingModeMatchRequired());
request.getConfiguration().setDeviceId(getDeviceId());
request.getConfiguration().setSampleRate(getSampleRate());
request.getConfiguration().setSamplesPerFrame(getSamplesPerFrame());
request.getConfiguration().setSharingMode(getSharingMode());
request.getConfiguration().setBufferCapacity(builder.getBufferCapacity());
mServiceStreamHandle = mServiceInterface.openStream(request, configuration);
if (mServiceStreamHandle < 0) {
result = mServiceStreamHandle;
ALOGE("AudioStreamInternal.open(): %s openStream() returned %d", getLocationName(), result);
} else {
result = configuration.validate();
if (result != AAUDIO_OK) {
close();
return result;
}
// Save results of the open.
setSampleRate(configuration.getSampleRate());
setSamplesPerFrame(configuration.getSamplesPerFrame());
setDeviceId(configuration.getDeviceId());
// Save device format so we can do format conversion and volume scaling together.
mDeviceFormat = configuration.getAudioFormat();
result = mServiceInterface.getStreamDescription(mServiceStreamHandle, mEndPointParcelable);
if (result != AAUDIO_OK) {
ALOGE("AudioStreamInternal.open(): %s getStreamDescriptor returns %d",
getLocationName(), result);
mServiceInterface.closeStream(mServiceStreamHandle);
return result;
}
// resolve parcelable into a descriptor
result = mEndPointParcelable.resolve(&mEndpointDescriptor);
if (result != AAUDIO_OK) {
ALOGE("AudioStreamInternal.open(): resolve() returns %d", result);
mServiceInterface.closeStream(mServiceStreamHandle);
return result;
}
// Configure endpoint based on descriptor.
mAudioEndpoint.configure(&mEndpointDescriptor);
mFramesPerBurst = mEndpointDescriptor.downDataQueueDescriptor.framesPerBurst;
int32_t capacity = mEndpointDescriptor.downDataQueueDescriptor.capacityInFrames;
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal.open() %s framesPerBurst = %d, capacity = %d",
getLocationName(), mFramesPerBurst, capacity);
// Validate result from server.
if (mFramesPerBurst < 16 || mFramesPerBurst > 16 * 1024) {
ALOGE("AudioStream::open(): framesPerBurst out of range = %d", mFramesPerBurst);
return AAUDIO_ERROR_OUT_OF_RANGE;
}
if (capacity < mFramesPerBurst || capacity > 32 * 1024) {
ALOGE("AudioStream::open(): bufferCapacity out of range = %d", capacity);
return AAUDIO_ERROR_OUT_OF_RANGE;
}
mClockModel.setSampleRate(getSampleRate());
mClockModel.setFramesPerBurst(mFramesPerBurst);
if (getDataCallbackProc()) {
mCallbackFrames = builder.getFramesPerDataCallback();
if (mCallbackFrames > getBufferCapacity() / 2) {
ALOGE("AudioStreamInternal.open(): framesPerCallback too large = %d, capacity = %d",
mCallbackFrames, getBufferCapacity());
mServiceInterface.closeStream(mServiceStreamHandle);
return AAUDIO_ERROR_OUT_OF_RANGE;
} else if (mCallbackFrames < 0) {
ALOGE("AudioStreamInternal.open(): framesPerCallback negative");
mServiceInterface.closeStream(mServiceStreamHandle);
return AAUDIO_ERROR_OUT_OF_RANGE;
}
if (mCallbackFrames == AAUDIO_UNSPECIFIED) {
mCallbackFrames = mFramesPerBurst;
}
int32_t bytesPerFrame = getSamplesPerFrame()
* AAudioConvert_formatToSizeInBytes(getFormat());
int32_t callbackBufferSize = mCallbackFrames * bytesPerFrame;
mCallbackBuffer = new uint8_t[callbackBufferSize];
}
setState(AAUDIO_STREAM_STATE_OPEN);
}
return result;
}
aaudio_result_t AudioStreamInternal::close() {
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal.close(): mServiceStreamHandle = 0x%08X",
mServiceStreamHandle);
if (mServiceStreamHandle != AAUDIO_HANDLE_INVALID) {
aaudio_handle_t serviceStreamHandle = mServiceStreamHandle;
mServiceStreamHandle = AAUDIO_HANDLE_INVALID;
mServiceInterface.closeStream(serviceStreamHandle);
delete[] mCallbackBuffer;
return mEndPointParcelable.close();
} else {
return AAUDIO_ERROR_INVALID_HANDLE;
}
}
// Render audio in the application callback and then write the data to the stream.
void *AudioStreamInternal::callbackLoop() {
aaudio_result_t result = AAUDIO_OK;
aaudio_data_callback_result_t callbackResult = AAUDIO_CALLBACK_RESULT_CONTINUE;
AAudioStream_dataCallback appCallback = getDataCallbackProc();
if (appCallback == nullptr) return NULL;
// result might be a frame count
while (mCallbackEnabled.load() && isPlaying() && (result >= 0)) {
// Call application using the AAudio callback interface.
callbackResult = (*appCallback)(
(AAudioStream *) this,
getDataCallbackUserData(),
mCallbackBuffer,
mCallbackFrames);
if (callbackResult == AAUDIO_CALLBACK_RESULT_CONTINUE) {
// Write audio data to stream.
int64_t timeoutNanos = calculateReasonableTimeout(mCallbackFrames);
// This is a BLOCKING WRITE!
result = write(mCallbackBuffer, mCallbackFrames, timeoutNanos);
if ((result != mCallbackFrames)) {
ALOGE("AudioStreamInternal(): callbackLoop: write() returned %d", result);
if (result >= 0) {
// Only wrote some of the frames requested. Must have timed out.
result = AAUDIO_ERROR_TIMEOUT;
}
if (getErrorCallbackProc() != nullptr) {
(*getErrorCallbackProc())(
(AAudioStream *) this,
getErrorCallbackUserData(),
result);
}
break;
}
} else if (callbackResult == AAUDIO_CALLBACK_RESULT_STOP) {
ALOGD("AudioStreamInternal(): callback returned AAUDIO_CALLBACK_RESULT_STOP");
break;
}
}
ALOGD("AudioStreamInternal(): callbackLoop() exiting, result = %d, isPlaying() = %d",
result, (int) isPlaying());
return NULL; // TODO review
}
static void *aaudio_callback_thread_proc(void *context)
{
AudioStreamInternal *stream = (AudioStreamInternal *)context;
//LOGD("AudioStreamInternal(): oboe_callback_thread, stream = %p", stream);
if (stream != NULL) {
return stream->callbackLoop();
} else {
return NULL;
}
}
aaudio_result_t AudioStreamInternal::requestStart()
{
int64_t startTime;
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal(): start()");
if (mServiceStreamHandle == AAUDIO_HANDLE_INVALID) {
return AAUDIO_ERROR_INVALID_STATE;
}
startTime = AudioClock::getNanoseconds();
mClockModel.start(startTime);
processTimestamp(0, startTime);
setState(AAUDIO_STREAM_STATE_STARTING);
aaudio_result_t result = mServiceInterface.startStream(mServiceStreamHandle);;
if (result == AAUDIO_OK && getDataCallbackProc() != nullptr) {
// Launch the callback loop thread.
int64_t periodNanos = mCallbackFrames
* AAUDIO_NANOS_PER_SECOND
/ getSampleRate();
mCallbackEnabled.store(true);
result = createThread(periodNanos, aaudio_callback_thread_proc, this);
}
return result;
}
int64_t AudioStreamInternal::calculateReasonableTimeout(int32_t framesPerOperation) {
// Wait for at least a second or some number of callbacks to join the thread.
int64_t timeoutNanoseconds = (MIN_TIMEOUT_OPERATIONS
* framesPerOperation
* AAUDIO_NANOS_PER_SECOND)
/ getSampleRate();
if (timeoutNanoseconds < MIN_TIMEOUT_NANOS) { // arbitrary number of seconds
timeoutNanoseconds = MIN_TIMEOUT_NANOS;
}
return timeoutNanoseconds;
}
aaudio_result_t AudioStreamInternal::stopCallback()
{
if (isDataCallbackActive()) {
mCallbackEnabled.store(false);
return joinThread(NULL, calculateReasonableTimeout(mCallbackFrames));
} else {
return AAUDIO_OK;
}
}
aaudio_result_t AudioStreamInternal::requestPauseInternal()
{
if (mServiceStreamHandle == AAUDIO_HANDLE_INVALID) {
ALOGE("AudioStreamInternal(): requestPauseInternal() mServiceStreamHandle invalid = 0x%08X",
mServiceStreamHandle);
return AAUDIO_ERROR_INVALID_STATE;
}
mClockModel.stop(AudioClock::getNanoseconds());
setState(AAUDIO_STREAM_STATE_PAUSING);
return mServiceInterface.pauseStream(mServiceStreamHandle);
}
aaudio_result_t AudioStreamInternal::requestPause()
{
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal(): %s requestPause()", getLocationName());
aaudio_result_t result = stopCallback();
if (result != AAUDIO_OK) {
return result;
}
result = requestPauseInternal();
ALOGD("AudioStreamInternal(): requestPause() returns %d", result);
return result;
}
aaudio_result_t AudioStreamInternal::requestFlush() {
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal(): requestFlush()");
if (mServiceStreamHandle == AAUDIO_HANDLE_INVALID) {
ALOGE("AudioStreamInternal(): requestFlush() mServiceStreamHandle invalid = 0x%08X",
mServiceStreamHandle);
return AAUDIO_ERROR_INVALID_STATE;
}
setState(AAUDIO_STREAM_STATE_FLUSHING);
return mServiceInterface.flushStream(mServiceStreamHandle);
}
void AudioStreamInternal::onFlushFromServer() {
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal(): onFlushFromServer()");
int64_t readCounter = mAudioEndpoint.getDownDataReadCounter();
int64_t writeCounter = mAudioEndpoint.getDownDataWriteCounter();
// Bump offset so caller does not see the retrograde motion in getFramesRead().
int64_t framesFlushed = writeCounter - readCounter;
mFramesOffsetFromService += framesFlushed;
// Flush written frames by forcing writeCounter to readCounter.
// This is because we cannot move the read counter in the hardware.
mAudioEndpoint.setDownDataWriteCounter(readCounter);
}
aaudio_result_t AudioStreamInternal::requestStopInternal()
{
if (mServiceStreamHandle == AAUDIO_HANDLE_INVALID) {
ALOGE("AudioStreamInternal(): requestStopInternal() mServiceStreamHandle invalid = 0x%08X",
mServiceStreamHandle);
return AAUDIO_ERROR_INVALID_STATE;
}
mClockModel.stop(AudioClock::getNanoseconds());
setState(AAUDIO_STREAM_STATE_STOPPING);
return mServiceInterface.stopStream(mServiceStreamHandle);
}
aaudio_result_t AudioStreamInternal::requestStop()
{
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal(): %s requestStop()", getLocationName());
aaudio_result_t result = stopCallback();
if (result != AAUDIO_OK) {
return result;
}
result = requestStopInternal();
ALOGD("AudioStreamInternal(): requestStop() returns %d", result);
return result;
}
aaudio_result_t AudioStreamInternal::registerThread() {
if (mServiceStreamHandle == AAUDIO_HANDLE_INVALID) {
return AAUDIO_ERROR_INVALID_STATE;
}
return mServiceInterface.registerAudioThread(mServiceStreamHandle,
getpid(),
gettid(),
getPeriodNanoseconds());
}
aaudio_result_t AudioStreamInternal::unregisterThread() {
if (mServiceStreamHandle == AAUDIO_HANDLE_INVALID) {
return AAUDIO_ERROR_INVALID_STATE;
}
return mServiceInterface.unregisterAudioThread(mServiceStreamHandle, getpid(), gettid());
}
aaudio_result_t AudioStreamInternal::getTimestamp(clockid_t clockId,
int64_t *framePosition,
int64_t *timeNanoseconds) {
// TODO implement using real HAL
int64_t time = AudioClock::getNanoseconds();
*framePosition = mClockModel.convertTimeToPosition(time);
*timeNanoseconds = time + (10 * AAUDIO_NANOS_PER_MILLISECOND); // Fake hardware delay
return AAUDIO_OK;
}
aaudio_result_t AudioStreamInternal::updateStateWhileWaiting() {
if (isDataCallbackActive()) {
return AAUDIO_OK; // state is getting updated by the callback thread read/write call
}
return processCommands();
}
#if LOG_TIMESTAMPS
static void AudioStreamInternal_LogTimestamp(AAudioServiceMessage &command) {
static int64_t oldPosition = 0;
static int64_t oldTime = 0;
int64_t framePosition = command.timestamp.position;
int64_t nanoTime = command.timestamp.timestamp;
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal() timestamp says framePosition = %08lld at nanoTime %llu",
(long long) framePosition,
(long long) nanoTime);
int64_t nanosDelta = nanoTime - oldTime;
if (nanosDelta > 0 && oldTime > 0) {
int64_t framesDelta = framePosition - oldPosition;
int64_t rate = (framesDelta * AAUDIO_NANOS_PER_SECOND) / nanosDelta;
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal() - framesDelta = %08lld", (long long) framesDelta);
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal() - nanosDelta = %08lld", (long long) nanosDelta);
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal() - measured rate = %llu", (unsigned long long) rate);
}
oldPosition = framePosition;
oldTime = nanoTime;
}
#endif
aaudio_result_t AudioStreamInternal::onTimestampFromServer(AAudioServiceMessage *message) {
int64_t framePosition = 0;
#if LOG_TIMESTAMPS
AudioStreamInternal_LogTimestamp(command);
#endif
framePosition = message->timestamp.position;
processTimestamp(framePosition, message->timestamp.timestamp);
return AAUDIO_OK;
}
aaudio_result_t AudioStreamInternal::onEventFromServer(AAudioServiceMessage *message) {
aaudio_result_t result = AAUDIO_OK;
ALOGD_IF(MYLOG_CONDITION, "processCommands() got event %d", message->event.event);
switch (message->event.event) {
case AAUDIO_SERVICE_EVENT_STARTED:
ALOGD_IF(MYLOG_CONDITION, "processCommands() got AAUDIO_SERVICE_EVENT_STARTED");
setState(AAUDIO_STREAM_STATE_STARTED);
break;
case AAUDIO_SERVICE_EVENT_PAUSED:
ALOGD_IF(MYLOG_CONDITION, "processCommands() got AAUDIO_SERVICE_EVENT_PAUSED");
setState(AAUDIO_STREAM_STATE_PAUSED);
break;
case AAUDIO_SERVICE_EVENT_STOPPED:
ALOGD_IF(MYLOG_CONDITION, "processCommands() got AAUDIO_SERVICE_EVENT_STOPPED");
setState(AAUDIO_STREAM_STATE_STOPPED);
break;
case AAUDIO_SERVICE_EVENT_FLUSHED:
ALOGD_IF(MYLOG_CONDITION, "processCommands() got AAUDIO_SERVICE_EVENT_FLUSHED");
setState(AAUDIO_STREAM_STATE_FLUSHED);
onFlushFromServer();
break;
case AAUDIO_SERVICE_EVENT_CLOSED:
ALOGD_IF(MYLOG_CONDITION, "processCommands() got AAUDIO_SERVICE_EVENT_CLOSED");
setState(AAUDIO_STREAM_STATE_CLOSED);
break;
case AAUDIO_SERVICE_EVENT_DISCONNECTED:
result = AAUDIO_ERROR_DISCONNECTED;
setState(AAUDIO_STREAM_STATE_DISCONNECTED);
ALOGW("WARNING - processCommands() AAUDIO_SERVICE_EVENT_DISCONNECTED");
break;
case AAUDIO_SERVICE_EVENT_VOLUME:
mVolume = message->event.dataDouble;
ALOGD_IF(MYLOG_CONDITION, "processCommands() AAUDIO_SERVICE_EVENT_VOLUME %f", mVolume);
break;
default:
ALOGW("WARNING - processCommands() Unrecognized event = %d",
(int) message->event.event);
break;
}
return result;
}
// Process all the commands coming from the server.
aaudio_result_t AudioStreamInternal::processCommands() {
aaudio_result_t result = AAUDIO_OK;
while (result == AAUDIO_OK) {
//ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::processCommands() - looping, %d", result);
AAudioServiceMessage message;
if (mAudioEndpoint.readUpCommand(&message) != 1) {
break; // no command this time, no problem
}
switch (message.what) {
case AAudioServiceMessage::code::TIMESTAMP:
result = onTimestampFromServer(&message);
break;
case AAudioServiceMessage::code::EVENT:
result = onEventFromServer(&message);
break;
default:
ALOGE("WARNING - AudioStreamInternal::processCommands() Unrecognized what = %d",
(int) message.what);
result = AAUDIO_ERROR_UNEXPECTED_VALUE;
break;
}
}
return result;
}
// Write the data, block if needed and timeoutMillis > 0
aaudio_result_t AudioStreamInternal::write(const void *buffer, int32_t numFrames,
int64_t timeoutNanoseconds)
{
aaudio_result_t result = AAUDIO_OK;
int32_t loopCount = 0;
uint8_t* source = (uint8_t*)buffer;
int64_t currentTimeNanos = AudioClock::getNanoseconds();
int64_t deadlineNanos = currentTimeNanos + timeoutNanoseconds;
int32_t framesLeft = numFrames;
// Write until all the data has been written or until a timeout occurs.
while (framesLeft > 0) {
// The call to writeNow() will not block. It will just write as much as it can.
int64_t wakeTimeNanos = 0;
aaudio_result_t framesWritten = writeNow(source, framesLeft,
currentTimeNanos, &wakeTimeNanos);
if (framesWritten < 0) {
ALOGE("AudioStreamInternal::write() loop: writeNow returned %d", framesWritten);
result = framesWritten;
break;
}
framesLeft -= (int32_t) framesWritten;
source += framesWritten * getBytesPerFrame();
// Should we block?
if (timeoutNanoseconds == 0) {
break; // don't block
} else if (framesLeft > 0) {
// clip the wake time to something reasonable
if (wakeTimeNanos < currentTimeNanos) {
wakeTimeNanos = currentTimeNanos;
}
if (wakeTimeNanos > deadlineNanos) {
// If we time out, just return the framesWritten so far.
ALOGE("AudioStreamInternal::write(): timed out after %lld nanos",
(long long) timeoutNanoseconds);
break;
}
int64_t sleepForNanos = wakeTimeNanos - currentTimeNanos;
AudioClock::sleepForNanos(sleepForNanos);
currentTimeNanos = AudioClock::getNanoseconds();
}
}
// return error or framesWritten
(void) loopCount;
return (result < 0) ? result : numFrames - framesLeft;
}
// Write as much data as we can without blocking.
aaudio_result_t AudioStreamInternal::writeNow(const void *buffer, int32_t numFrames,
int64_t currentNanoTime, int64_t *wakeTimePtr) {
{
aaudio_result_t result = processCommands();
if (result != AAUDIO_OK) {
return result;
}
}
if (mAudioEndpoint.isOutputFreeRunning()) {
//ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNow() - update read counter");
// Update data queue based on the timing model.
int64_t estimatedReadCounter = mClockModel.convertTimeToPosition(currentNanoTime);
mAudioEndpoint.setDownDataReadCounter(estimatedReadCounter);
}
// TODO else query from endpoint cuz set by actual reader, maybe
// If the read index passed the write index then consider it an underrun.
if (mAudioEndpoint.getFullFramesAvailable() < 0) {
mXRunCount++;
}
// Write some data to the buffer.
//ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNow() - writeNowWithConversion(%d)", numFrames);
int32_t framesWritten = writeNowWithConversion(buffer, numFrames);
//ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNow() - tried to write %d frames, wrote %d",
// numFrames, framesWritten);
// Calculate an ideal time to wake up.
if (wakeTimePtr != nullptr && framesWritten >= 0) {
// By default wake up a few milliseconds from now. // TODO review
int64_t wakeTime = currentNanoTime + (1 * AAUDIO_NANOS_PER_MILLISECOND);
aaudio_stream_state_t state = getState();
//ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNow() - wakeTime based on %s",
// AAudio_convertStreamStateToText(state));
switch (state) {
case AAUDIO_STREAM_STATE_OPEN:
case AAUDIO_STREAM_STATE_STARTING:
if (framesWritten != 0) {
// Don't wait to write more data. Just prime the buffer.
wakeTime = currentNanoTime;
}
break;
case AAUDIO_STREAM_STATE_STARTED: // When do we expect the next read burst to occur?
{
uint32_t burstSize = mFramesPerBurst;
if (burstSize < 32) {
burstSize = 32; // TODO review
}
uint64_t nextReadPosition = mAudioEndpoint.getDownDataReadCounter() + burstSize;
wakeTime = mClockModel.convertPositionToTime(nextReadPosition);
}
break;
default:
break;
}
*wakeTimePtr = wakeTime;
}
// ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNow finished: now = %llu, read# = %llu, wrote# = %llu",
// (unsigned long long)currentNanoTime,
// (unsigned long long)mAudioEndpoint.getDownDataReadCounter(),
// (unsigned long long)mAudioEndpoint.getDownDataWriteCounter());
return framesWritten;
}
// TODO this function needs a major cleanup.
aaudio_result_t AudioStreamInternal::writeNowWithConversion(const void *buffer,
int32_t numFrames) {
// ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNowWithConversion(%p, %d)", buffer, numFrames);
WrappingBuffer wrappingBuffer;
uint8_t *source = (uint8_t *) buffer;
int32_t framesLeft = numFrames;
mAudioEndpoint.getEmptyRoomAvailable(&wrappingBuffer);
// Read data in one or two parts.
int partIndex = 0;
while (framesLeft > 0 && partIndex < WrappingBuffer::SIZE) {
int32_t framesToWrite = framesLeft;
int32_t framesAvailable = wrappingBuffer.numFrames[partIndex];
if (framesAvailable > 0) {
if (framesToWrite > framesAvailable) {
framesToWrite = framesAvailable;
}
int32_t numBytes = getBytesPerFrame() * framesToWrite;
// TODO handle volume scaling
if (getFormat() == mDeviceFormat) {
// Copy straight through.
memcpy(wrappingBuffer.data[partIndex], source, numBytes);
} else if (getFormat() == AAUDIO_FORMAT_PCM_FLOAT
&& mDeviceFormat == AAUDIO_FORMAT_PCM_I16) {
// Data conversion.
AAudioConvert_floatToPcm16(
(const float *) source,
framesToWrite * getSamplesPerFrame(),
(int16_t *) wrappingBuffer.data[partIndex]);
} else if (getFormat() == AAUDIO_FORMAT_PCM_I16
&& mDeviceFormat == AAUDIO_FORMAT_PCM_FLOAT) {
// Data conversion.
AAudioConvert_pcm16ToFloat(
(const int16_t *) source,
framesToWrite * getSamplesPerFrame(),
(float *) wrappingBuffer.data[partIndex]);
} else {
// TODO handle more conversions
ALOGE("AudioStreamInternal::writeNowWithConversion() unsupported formats: %d, %d",
getFormat(), mDeviceFormat);
return AAUDIO_ERROR_UNEXPECTED_VALUE;
}
source += numBytes;
framesLeft -= framesToWrite;
} else {
break;
}
partIndex++;
}
int32_t framesWritten = numFrames - framesLeft;
mAudioEndpoint.advanceWriteIndex(framesWritten);
if (framesWritten > 0) {
incrementFramesWritten(framesWritten);
}
// ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::writeNowWithConversion() returns %d", framesWritten);
return framesWritten;
}
void AudioStreamInternal::processTimestamp(uint64_t position, int64_t time) {
mClockModel.processTimestamp( position, time);
}
aaudio_result_t AudioStreamInternal::setBufferSize(int32_t requestedFrames) {
int32_t actualFrames = 0;
// Round to the next highest burst size.
if (getFramesPerBurst() > 0) {
int32_t numBursts = (requestedFrames + getFramesPerBurst() - 1) / getFramesPerBurst();
requestedFrames = numBursts * getFramesPerBurst();
}
aaudio_result_t result = mAudioEndpoint.setBufferSizeInFrames(requestedFrames, &actualFrames);
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::setBufferSize() %s req = %d => %d",
getLocationName(), requestedFrames, actualFrames);
if (result < 0) {
return result;
} else {
return (aaudio_result_t) actualFrames;
}
}
int32_t AudioStreamInternal::getBufferSize() const
{
return mAudioEndpoint.getBufferSizeInFrames();
}
int32_t AudioStreamInternal::getBufferCapacity() const
{
return mAudioEndpoint.getBufferCapacityInFrames();
}
int32_t AudioStreamInternal::getFramesPerBurst() const
{
return mEndpointDescriptor.downDataQueueDescriptor.framesPerBurst;
}
int64_t AudioStreamInternal::getFramesRead()
{
int64_t framesRead =
mClockModel.convertTimeToPosition(AudioClock::getNanoseconds())
+ mFramesOffsetFromService;
// Prevent retrograde motion.
if (framesRead < mLastFramesRead) {
framesRead = mLastFramesRead;
} else {
mLastFramesRead = framesRead;
}
ALOGD_IF(MYLOG_CONDITION, "AudioStreamInternal::getFramesRead() returns %lld", (long long)framesRead);
return framesRead;
}
// TODO implement getTimestamp