blob: ea13989440b1fb2ad77d4ac5f0fa1ce5a7de7363 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "CCodec"
#include <utils/Log.h>
#include <sstream>
#include <thread>
#include <C2Config.h>
#include <C2Debug.h>
#include <C2ParamInternal.h>
#include <C2PlatformSupport.h>
#include <android/IOMXBufferSource.h>
#include <android/hardware/media/c2/1.0/IInputSurface.h>
#include <android/hardware/media/omx/1.0/IGraphicBufferSource.h>
#include <android/hardware/media/omx/1.0/IOmx.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <cutils/properties.h>
#include <gui/IGraphicBufferProducer.h>
#include <gui/Surface.h>
#include <gui/bufferqueue/1.0/H2BGraphicBufferProducer.h>
#include <media/omx/1.0/WOmxNode.h>
#include <media/openmax/OMX_Core.h>
#include <media/openmax/OMX_IndexExt.h>
#include <media/stagefright/foundation/avc_utils.h>
#include <media/stagefright/omx/1.0/WGraphicBufferSource.h>
#include <media/stagefright/omx/OmxGraphicBufferSource.h>
#include <media/stagefright/CCodec.h>
#include <media/stagefright/BufferProducerWrapper.h>
#include <media/stagefright/MediaCodecConstants.h>
#include <media/stagefright/MediaCodecMetricsConstants.h>
#include <media/stagefright/PersistentSurface.h>
#include <media/stagefright/RenderedFrameInfo.h>
#include <utils/NativeHandle.h>
#include "C2OMXNode.h"
#include "CCodecBufferChannel.h"
#include "CCodecConfig.h"
#include "Codec2Mapper.h"
#include "InputSurfaceWrapper.h"
extern "C" android::PersistentSurface *CreateInputSurface();
namespace android {
using namespace std::chrono_literals;
using ::android::hardware::graphics::bufferqueue::V1_0::utils::H2BGraphicBufferProducer;
using android::base::StringPrintf;
using ::android::hardware::media::c2::V1_0::IInputSurface;
typedef hardware::media::omx::V1_0::IGraphicBufferSource HGraphicBufferSource;
typedef CCodecConfig Config;
namespace {
class CCodecWatchdog : public AHandler {
private:
enum {
kWhatWatch,
};
constexpr static int64_t kWatchIntervalUs = 3300000; // 3.3 secs
public:
static sp<CCodecWatchdog> getInstance() {
static sp<CCodecWatchdog> instance(new CCodecWatchdog);
static std::once_flag flag;
// Call Init() only once.
std::call_once(flag, Init, instance);
return instance;
}
~CCodecWatchdog() = default;
void watch(sp<CCodec> codec) {
bool shouldPost = false;
{
Mutexed<std::set<wp<CCodec>>>::Locked codecs(mCodecsToWatch);
// If a watch message is in flight, piggy-back this instance as well.
// Otherwise, post a new watch message.
shouldPost = codecs->empty();
codecs->emplace(codec);
}
if (shouldPost) {
ALOGV("posting watch message");
(new AMessage(kWhatWatch, this))->post(kWatchIntervalUs);
}
}
protected:
void onMessageReceived(const sp<AMessage> &msg) {
switch (msg->what()) {
case kWhatWatch: {
Mutexed<std::set<wp<CCodec>>>::Locked codecs(mCodecsToWatch);
ALOGV("watch for %zu codecs", codecs->size());
for (auto it = codecs->begin(); it != codecs->end(); ++it) {
sp<CCodec> codec = it->promote();
if (codec == nullptr) {
continue;
}
codec->initiateReleaseIfStuck();
}
codecs->clear();
break;
}
default: {
TRESPASS("CCodecWatchdog: unrecognized message");
}
}
}
private:
CCodecWatchdog() : mLooper(new ALooper) {}
static void Init(const sp<CCodecWatchdog> &thiz) {
ALOGV("Init");
thiz->mLooper->setName("CCodecWatchdog");
thiz->mLooper->registerHandler(thiz);
thiz->mLooper->start();
}
sp<ALooper> mLooper;
Mutexed<std::set<wp<CCodec>>> mCodecsToWatch;
};
class C2InputSurfaceWrapper : public InputSurfaceWrapper {
public:
explicit C2InputSurfaceWrapper(
const std::shared_ptr<Codec2Client::InputSurface> &surface) :
mSurface(surface) {
}
~C2InputSurfaceWrapper() override = default;
status_t connect(const std::shared_ptr<Codec2Client::Component> &comp) override {
if (mConnection != nullptr) {
return ALREADY_EXISTS;
}
return toStatusT(comp->connectToInputSurface(mSurface, &mConnection));
}
void disconnect() override {
if (mConnection != nullptr) {
mConnection->disconnect();
mConnection = nullptr;
}
}
status_t start() override {
// InputSurface does not distinguish started state
return OK;
}
status_t signalEndOfInputStream() override {
C2InputSurfaceEosTuning eos(true);
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t err = mSurface->config({&eos}, C2_MAY_BLOCK, &failures);
if (err != C2_OK) {
return UNKNOWN_ERROR;
}
return OK;
}
status_t configure(Config &config __unused) {
// TODO
return OK;
}
private:
std::shared_ptr<Codec2Client::InputSurface> mSurface;
std::shared_ptr<Codec2Client::InputSurfaceConnection> mConnection;
};
class GraphicBufferSourceWrapper : public InputSurfaceWrapper {
public:
typedef hardware::media::omx::V1_0::Status OmxStatus;
GraphicBufferSourceWrapper(
const sp<HGraphicBufferSource> &source,
uint32_t width,
uint32_t height,
uint64_t usage)
: mSource(source), mWidth(width), mHeight(height) {
mDataSpace = HAL_DATASPACE_BT709;
mConfig.mUsage = usage;
}
~GraphicBufferSourceWrapper() override = default;
status_t connect(const std::shared_ptr<Codec2Client::Component> &comp) override {
mNode = new C2OMXNode(comp);
mOmxNode = new hardware::media::omx::V1_0::utils::TWOmxNode(mNode);
mNode->setFrameSize(mWidth, mHeight);
// Usage is queried during configure(), so setting it beforehand.
// 64 bit set parameter is existing only in C2OMXNode.
OMX_U64 usage64 = mConfig.mUsage;
status_t res = mNode->setParameter(
(OMX_INDEXTYPE)OMX_IndexParamConsumerUsageBits64,
&usage64, sizeof(usage64));
if (res != OK) {
OMX_U32 usage = mConfig.mUsage & 0xFFFFFFFF;
(void)mNode->setParameter(
(OMX_INDEXTYPE)OMX_IndexParamConsumerUsageBits,
&usage, sizeof(usage));
}
return GetStatus(mSource->configure(
mOmxNode, static_cast<hardware::graphics::common::V1_0::Dataspace>(mDataSpace)));
}
void disconnect() override {
if (mNode == nullptr) {
return;
}
sp<IOMXBufferSource> source = mNode->getSource();
if (source == nullptr) {
ALOGD("GBSWrapper::disconnect: node is not configured with OMXBufferSource.");
return;
}
source->onOmxIdle();
source->onOmxLoaded();
mNode.clear();
mOmxNode.clear();
}
status_t GetStatus(hardware::Return<OmxStatus> &&status) {
if (status.isOk()) {
return static_cast<status_t>(status.withDefault(OmxStatus::UNKNOWN_ERROR));
} else if (status.isDeadObject()) {
return DEAD_OBJECT;
}
return UNKNOWN_ERROR;
}
status_t start() override {
sp<IOMXBufferSource> source = mNode->getSource();
if (source == nullptr) {
return NO_INIT;
}
size_t numSlots = 16;
constexpr OMX_U32 kPortIndexInput = 0;
OMX_PARAM_PORTDEFINITIONTYPE param;
param.nPortIndex = kPortIndexInput;
status_t err = mNode->getParameter(OMX_IndexParamPortDefinition,
&param, sizeof(param));
if (err == OK) {
numSlots = param.nBufferCountActual;
}
for (size_t i = 0; i < numSlots; ++i) {
source->onInputBufferAdded(i);
}
source->onOmxExecuting();
return OK;
}
status_t signalEndOfInputStream() override {
return GetStatus(mSource->signalEndOfInputStream());
}
status_t configure(Config &config) {
std::stringstream status;
status_t err = OK;
// handle each configuration granually, in case we need to handle part of the configuration
// elsewhere
// TRICKY: we do not unset frame delay repeating
if (config.mMinFps > 0 && config.mMinFps != mConfig.mMinFps) {
int64_t us = 1e6 / config.mMinFps + 0.5;
status_t res = GetStatus(mSource->setRepeatPreviousFrameDelayUs(us));
status << " minFps=" << config.mMinFps << " => repeatDelayUs=" << us;
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
}
mConfig.mMinFps = config.mMinFps;
}
// pts gap
if (config.mMinAdjustedFps > 0 || config.mFixedAdjustedFps > 0) {
if (mNode != nullptr) {
OMX_PARAM_U32TYPE ptrGapParam = {};
ptrGapParam.nSize = sizeof(OMX_PARAM_U32TYPE);
float gap = (config.mMinAdjustedFps > 0)
? c2_min(INT32_MAX + 0., 1e6 / config.mMinAdjustedFps + 0.5)
: c2_max(0. - INT32_MAX, -1e6 / config.mFixedAdjustedFps - 0.5);
// float -> uint32_t is undefined if the value is negative.
// First convert to int32_t to ensure the expected behavior.
ptrGapParam.nU32 = int32_t(gap);
(void)mNode->setParameter(
(OMX_INDEXTYPE)OMX_IndexParamMaxFrameDurationForBitrateControl,
&ptrGapParam, sizeof(ptrGapParam));
}
}
// max fps
// TRICKY: we do not unset max fps to 0 unless using fixed fps
if ((config.mMaxFps > 0 || (config.mFixedAdjustedFps > 0 && config.mMaxFps == -1))
&& config.mMaxFps != mConfig.mMaxFps) {
status_t res = GetStatus(mSource->setMaxFps(config.mMaxFps));
status << " maxFps=" << config.mMaxFps;
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
}
mConfig.mMaxFps = config.mMaxFps;
}
if (config.mTimeOffsetUs != mConfig.mTimeOffsetUs) {
status_t res = GetStatus(mSource->setTimeOffsetUs(config.mTimeOffsetUs));
status << " timeOffset " << config.mTimeOffsetUs << "us";
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
}
mConfig.mTimeOffsetUs = config.mTimeOffsetUs;
}
if (config.mCaptureFps != mConfig.mCaptureFps || config.mCodedFps != mConfig.mCodedFps) {
status_t res =
GetStatus(mSource->setTimeLapseConfig(config.mCodedFps, config.mCaptureFps));
status << " timeLapse " << config.mCaptureFps << "fps as " << config.mCodedFps << "fps";
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
}
mConfig.mCaptureFps = config.mCaptureFps;
mConfig.mCodedFps = config.mCodedFps;
}
if (config.mStartAtUs != mConfig.mStartAtUs
|| (config.mStopped != mConfig.mStopped && !config.mStopped)) {
status_t res = GetStatus(mSource->setStartTimeUs(config.mStartAtUs));
status << " start at " << config.mStartAtUs << "us";
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
}
mConfig.mStartAtUs = config.mStartAtUs;
mConfig.mStopped = config.mStopped;
}
// suspend-resume
if (config.mSuspended != mConfig.mSuspended) {
status_t res = GetStatus(mSource->setSuspend(config.mSuspended, config.mSuspendAtUs));
status << " " << (config.mSuspended ? "suspend" : "resume")
<< " at " << config.mSuspendAtUs << "us";
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
}
mConfig.mSuspended = config.mSuspended;
mConfig.mSuspendAtUs = config.mSuspendAtUs;
}
if (config.mStopped != mConfig.mStopped && config.mStopped) {
status_t res = GetStatus(mSource->setStopTimeUs(config.mStopAtUs));
status << " stop at " << config.mStopAtUs << "us";
if (res != OK) {
status << " (=> " << asString(res) << ")";
err = res;
} else {
status << " delayUs";
hardware::Return<void> trans = mSource->getStopTimeOffsetUs(
[&res, &delayUs = config.mInputDelayUs](
auto status, auto stopTimeOffsetUs) {
res = static_cast<status_t>(status);
delayUs = stopTimeOffsetUs;
});
if (!trans.isOk()) {
res = trans.isDeadObject() ? DEAD_OBJECT : UNKNOWN_ERROR;
}
if (res != OK) {
status << " (=> " << asString(res) << ")";
} else {
status << "=" << config.mInputDelayUs << "us";
}
mConfig.mInputDelayUs = config.mInputDelayUs;
}
mConfig.mStopAtUs = config.mStopAtUs;
mConfig.mStopped = config.mStopped;
}
// color aspects (android._color-aspects)
// consumer usage is queried earlier.
// priority
if (mConfig.mPriority != config.mPriority) {
if (config.mPriority != INT_MAX) {
mNode->setPriority(config.mPriority);
}
mConfig.mPriority = config.mPriority;
}
if (status.str().empty()) {
ALOGD("ISConfig not changed");
} else {
ALOGD("ISConfig%s", status.str().c_str());
}
return err;
}
void onInputBufferDone(c2_cntr64_t index) override {
mNode->onInputBufferDone(index);
}
android_dataspace getDataspace() override {
return mNode->getDataspace();
}
uint32_t getPixelFormat() override {
return mNode->getPixelFormat();
}
private:
sp<HGraphicBufferSource> mSource;
sp<C2OMXNode> mNode;
sp<hardware::media::omx::V1_0::IOmxNode> mOmxNode;
uint32_t mWidth;
uint32_t mHeight;
Config mConfig;
};
class Codec2ClientInterfaceWrapper : public C2ComponentStore {
std::shared_ptr<Codec2Client> mClient;
public:
Codec2ClientInterfaceWrapper(std::shared_ptr<Codec2Client> client)
: mClient(client) { }
virtual ~Codec2ClientInterfaceWrapper() = default;
virtual c2_status_t config_sm(
const std::vector<C2Param *> &params,
std::vector<std::unique_ptr<C2SettingResult>> *const failures) {
return mClient->config(params, C2_MAY_BLOCK, failures);
};
virtual c2_status_t copyBuffer(
std::shared_ptr<C2GraphicBuffer>,
std::shared_ptr<C2GraphicBuffer>) {
return C2_OMITTED;
}
virtual c2_status_t createComponent(
C2String, std::shared_ptr<C2Component> *const component) {
component->reset();
return C2_OMITTED;
}
virtual c2_status_t createInterface(
C2String, std::shared_ptr<C2ComponentInterface> *const interface) {
interface->reset();
return C2_OMITTED;
}
virtual c2_status_t query_sm(
const std::vector<C2Param *> &stackParams,
const std::vector<C2Param::Index> &heapParamIndices,
std::vector<std::unique_ptr<C2Param>> *const heapParams) const {
return mClient->query(stackParams, heapParamIndices, C2_MAY_BLOCK, heapParams);
}
virtual c2_status_t querySupportedParams_nb(
std::vector<std::shared_ptr<C2ParamDescriptor>> *const params) const {
return mClient->querySupportedParams(params);
}
virtual c2_status_t querySupportedValues_sm(
std::vector<C2FieldSupportedValuesQuery> &fields) const {
return mClient->querySupportedValues(fields, C2_MAY_BLOCK);
}
virtual C2String getName() const {
return mClient->getName();
}
virtual std::shared_ptr<C2ParamReflector> getParamReflector() const {
return mClient->getParamReflector();
}
virtual std::vector<std::shared_ptr<const C2Component::Traits>> listComponents() {
return std::vector<std::shared_ptr<const C2Component::Traits>>();
}
};
void RevertOutputFormatIfNeeded(
const sp<AMessage> &oldFormat, sp<AMessage> &currentFormat) {
// We used to not report changes to these keys to the client.
const static std::set<std::string> sIgnoredKeys({
KEY_BIT_RATE,
KEY_FRAME_RATE,
KEY_MAX_BIT_RATE,
KEY_MAX_WIDTH,
KEY_MAX_HEIGHT,
"csd-0",
"csd-1",
"csd-2",
});
if (currentFormat == oldFormat) {
return;
}
sp<AMessage> diff = currentFormat->changesFrom(oldFormat);
AMessage::Type type;
for (size_t i = diff->countEntries(); i > 0; --i) {
if (sIgnoredKeys.count(diff->getEntryNameAt(i - 1, &type)) > 0) {
diff->removeEntryAt(i - 1);
}
}
if (diff->countEntries() == 0) {
currentFormat = oldFormat;
}
}
void AmendOutputFormatWithCodecSpecificData(
const uint8_t *data, size_t size, const std::string &mediaType,
const sp<AMessage> &outputFormat) {
if (mediaType == MIMETYPE_VIDEO_AVC) {
// Codec specific data should be SPS and PPS in a single buffer,
// each prefixed by a startcode (0x00 0x00 0x00 0x01).
// We separate the two and put them into the output format
// under the keys "csd-0" and "csd-1".
unsigned csdIndex = 0;
const uint8_t *nalStart;
size_t nalSize;
while (getNextNALUnit(&data, &size, &nalStart, &nalSize, true) == OK) {
sp<ABuffer> csd = new ABuffer(nalSize + 4);
memcpy(csd->data(), "\x00\x00\x00\x01", 4);
memcpy(csd->data() + 4, nalStart, nalSize);
outputFormat->setBuffer(
AStringPrintf("csd-%u", csdIndex).c_str(), csd);
++csdIndex;
}
if (csdIndex != 2) {
ALOGW("Expected two NAL units from AVC codec config, but %u found",
csdIndex);
}
} else {
// For everything else we just stash the codec specific data into
// the output format as a single piece of csd under "csd-0".
sp<ABuffer> csd = new ABuffer(size);
memcpy(csd->data(), data, size);
csd->setRange(0, size);
outputFormat->setBuffer("csd-0", csd);
}
}
} // namespace
// CCodec::ClientListener
struct CCodec::ClientListener : public Codec2Client::Listener {
explicit ClientListener(const wp<CCodec> &codec) : mCodec(codec) {}
virtual void onWorkDone(
const std::weak_ptr<Codec2Client::Component>& component,
std::list<std::unique_ptr<C2Work>>& workItems) override {
(void)component;
sp<CCodec> codec(mCodec.promote());
if (!codec) {
return;
}
codec->onWorkDone(workItems);
}
virtual void onTripped(
const std::weak_ptr<Codec2Client::Component>& component,
const std::vector<std::shared_ptr<C2SettingResult>>& settingResult
) override {
// TODO
(void)component;
(void)settingResult;
}
virtual void onError(
const std::weak_ptr<Codec2Client::Component>& component,
uint32_t errorCode) override {
{
// Component is only used for reporting as we use a separate listener for each instance
std::shared_ptr<Codec2Client::Component> comp = component.lock();
if (!comp) {
ALOGD("Component died with error: 0x%x", errorCode);
} else {
ALOGD("Component \"%s\" returned error: 0x%x", comp->getName().c_str(), errorCode);
}
}
// Report to MediaCodec
// Note: for now we do not propagate the error code to MediaCodec
// except for C2_NO_MEMORY, as we would need to translate to a MediaCodec error.
sp<CCodec> codec(mCodec.promote());
if (!codec || !codec->mCallback) {
return;
}
codec->mCallback->onError(
errorCode == C2_NO_MEMORY ? NO_MEMORY : UNKNOWN_ERROR,
ACTION_CODE_FATAL);
}
virtual void onDeath(
const std::weak_ptr<Codec2Client::Component>& component) override {
{ // Log the death of the component.
std::shared_ptr<Codec2Client::Component> comp = component.lock();
if (!comp) {
ALOGE("Codec2 component died.");
} else {
ALOGE("Codec2 component \"%s\" died.", comp->getName().c_str());
}
}
// Report to MediaCodec.
sp<CCodec> codec(mCodec.promote());
if (!codec || !codec->mCallback) {
return;
}
codec->mCallback->onError(DEAD_OBJECT, ACTION_CODE_FATAL);
}
virtual void onFrameRendered(uint64_t bufferQueueId,
int32_t slotId,
int64_t timestampNs) override {
// TODO: implement
(void)bufferQueueId;
(void)slotId;
(void)timestampNs;
}
virtual void onInputBufferDone(
uint64_t frameIndex, size_t arrayIndex) override {
sp<CCodec> codec(mCodec.promote());
if (codec) {
codec->onInputBufferDone(frameIndex, arrayIndex);
}
}
private:
wp<CCodec> mCodec;
};
// CCodecCallbackImpl
class CCodecCallbackImpl : public CCodecCallback {
public:
explicit CCodecCallbackImpl(CCodec *codec) : mCodec(codec) {}
~CCodecCallbackImpl() override = default;
void onError(status_t err, enum ActionCode actionCode) override {
mCodec->mCallback->onError(err, actionCode);
}
void onOutputFramesRendered(int64_t mediaTimeUs, nsecs_t renderTimeNs) override {
mCodec->mCallback->onOutputFramesRendered({RenderedFrameInfo(mediaTimeUs, renderTimeNs)});
}
void onOutputBuffersChanged() override {
mCodec->mCallback->onOutputBuffersChanged();
}
void onFirstTunnelFrameReady() override {
mCodec->mCallback->onFirstTunnelFrameReady();
}
private:
CCodec *mCodec;
};
// CCodec
CCodec::CCodec()
: mChannel(new CCodecBufferChannel(std::make_shared<CCodecCallbackImpl>(this))),
mConfig(new CCodecConfig) {
}
CCodec::~CCodec() {
}
std::shared_ptr<BufferChannelBase> CCodec::getBufferChannel() {
return mChannel;
}
status_t CCodec::tryAndReportOnError(std::function<status_t()> job) {
status_t err = job();
if (err != C2_OK) {
mCallback->onError(err, ACTION_CODE_FATAL);
}
return err;
}
void CCodec::initiateAllocateComponent(const sp<AMessage> &msg) {
auto setAllocating = [this] {
Mutexed<State>::Locked state(mState);
if (state->get() != RELEASED) {
return INVALID_OPERATION;
}
state->set(ALLOCATING);
return OK;
};
if (tryAndReportOnError(setAllocating) != OK) {
return;
}
sp<RefBase> codecInfo;
CHECK(msg->findObject("codecInfo", &codecInfo));
// For Codec 2.0 components, componentName == codecInfo->getCodecName().
sp<AMessage> allocMsg(new AMessage(kWhatAllocate, this));
allocMsg->setObject("codecInfo", codecInfo);
allocMsg->post();
}
void CCodec::allocate(const sp<MediaCodecInfo> &codecInfo) {
if (codecInfo == nullptr) {
mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
return;
}
ALOGD("allocate(%s)", codecInfo->getCodecName());
mClientListener.reset(new ClientListener(this));
AString componentName = codecInfo->getCodecName();
std::shared_ptr<Codec2Client> client;
// set up preferred component store to access vendor store parameters
client = Codec2Client::CreateFromService("default");
if (client) {
ALOGI("setting up '%s' as default (vendor) store", client->getServiceName().c_str());
SetPreferredCodec2ComponentStore(
std::make_shared<Codec2ClientInterfaceWrapper>(client));
}
std::shared_ptr<Codec2Client::Component> comp;
c2_status_t status = Codec2Client::CreateComponentByName(
componentName.c_str(),
mClientListener,
&comp,
&client);
if (status != C2_OK) {
ALOGE("Failed Create component: %s, error=%d", componentName.c_str(), status);
Mutexed<State>::Locked state(mState);
state->set(RELEASED);
state.unlock();
mCallback->onError((status == C2_NO_MEMORY ? NO_MEMORY : UNKNOWN_ERROR), ACTION_CODE_FATAL);
state.lock();
return;
}
ALOGI("Created component [%s]", componentName.c_str());
mChannel->setComponent(comp);
auto setAllocated = [this, comp, client] {
Mutexed<State>::Locked state(mState);
if (state->get() != ALLOCATING) {
state->set(RELEASED);
return UNKNOWN_ERROR;
}
state->set(ALLOCATED);
state->comp = comp;
mClient = client;
return OK;
};
if (tryAndReportOnError(setAllocated) != OK) {
return;
}
// initialize config here in case setParameters is called prior to configure
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
status_t err = config->initialize(mClient->getParamReflector(), comp);
if (err != OK) {
ALOGW("Failed to initialize configuration support");
// TODO: report error once we complete implementation.
}
config->queryConfiguration(comp);
mCallback->onComponentAllocated(componentName.c_str());
}
void CCodec::initiateConfigureComponent(const sp<AMessage> &format) {
auto checkAllocated = [this] {
Mutexed<State>::Locked state(mState);
return (state->get() != ALLOCATED) ? UNKNOWN_ERROR : OK;
};
if (tryAndReportOnError(checkAllocated) != OK) {
return;
}
sp<AMessage> msg(new AMessage(kWhatConfigure, this));
msg->setMessage("format", format);
msg->post();
}
void CCodec::configure(const sp<AMessage> &msg) {
std::shared_ptr<Codec2Client::Component> comp;
auto checkAllocated = [this, &comp] {
Mutexed<State>::Locked state(mState);
if (state->get() != ALLOCATED) {
state->set(RELEASED);
return UNKNOWN_ERROR;
}
comp = state->comp;
return OK;
};
if (tryAndReportOnError(checkAllocated) != OK) {
return;
}
auto doConfig = [msg, comp, this]() -> status_t {
AString mime;
if (!msg->findString("mime", &mime)) {
return BAD_VALUE;
}
int32_t encoder;
if (!msg->findInt32("encoder", &encoder)) {
encoder = false;
}
int32_t flags;
if (!msg->findInt32("flags", &flags)) {
return BAD_VALUE;
}
// TODO: read from intf()
if ((!encoder) != (comp->getName().find("encoder") == std::string::npos)) {
return UNKNOWN_ERROR;
}
int32_t storeMeta;
if (encoder
&& msg->findInt32("android._input-metadata-buffer-type", &storeMeta)
&& storeMeta != kMetadataBufferTypeInvalid) {
if (storeMeta != kMetadataBufferTypeANWBuffer) {
ALOGD("Only ANW buffers are supported for legacy metadata mode");
return BAD_VALUE;
}
mChannel->setMetaMode(CCodecBufferChannel::MODE_ANW);
}
status_t err = OK;
sp<RefBase> obj;
sp<Surface> surface;
if (msg->findObject("native-window", &obj)) {
surface = static_cast<Surface *>(obj.get());
// setup tunneled playback
if (surface != nullptr) {
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
if ((config->mDomain & Config::IS_DECODER)
&& (config->mDomain & Config::IS_VIDEO)) {
int32_t tunneled;
if (msg->findInt32("feature-tunneled-playback", &tunneled) && tunneled != 0) {
ALOGI("Configuring TUNNELED video playback.");
err = configureTunneledVideoPlayback(comp, &config->mSidebandHandle, msg);
if (err != OK) {
ALOGE("configureTunneledVideoPlayback failed!");
return err;
}
config->mTunneled = true;
}
int32_t pushBlankBuffersOnStop = 0;
if (msg->findInt32(KEY_PUSH_BLANK_BUFFERS_ON_STOP, &pushBlankBuffersOnStop)) {
config->mPushBlankBuffersOnStop = pushBlankBuffersOnStop == 1;
}
// secure compoment or protected content default with
// "push-blank-buffers-on-shutdown" flag
if (!config->mPushBlankBuffersOnStop) {
int32_t usageProtected;
if (comp->getName().find(".secure") != std::string::npos) {
config->mPushBlankBuffersOnStop = true;
} else if (msg->findInt32("protected", &usageProtected) && usageProtected) {
config->mPushBlankBuffersOnStop = true;
}
}
}
}
setSurface(surface);
}
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
config->mUsingSurface = surface != nullptr;
config->mBuffersBoundToCodec = ((flags & CONFIGURE_FLAG_USE_BLOCK_MODEL) == 0);
ALOGD("[%s] buffers are %sbound to CCodec for this session",
comp->getName().c_str(), config->mBuffersBoundToCodec ? "" : "not ");
// Enforce required parameters
int32_t i32;
float flt;
if (config->mDomain & Config::IS_AUDIO) {
if (!msg->findInt32(KEY_SAMPLE_RATE, &i32)) {
ALOGD("sample rate is missing, which is required for audio components.");
return BAD_VALUE;
}
if (!msg->findInt32(KEY_CHANNEL_COUNT, &i32)) {
ALOGD("channel count is missing, which is required for audio components.");
return BAD_VALUE;
}
if ((config->mDomain & Config::IS_ENCODER)
&& !mime.equalsIgnoreCase(MEDIA_MIMETYPE_AUDIO_FLAC)
&& !msg->findInt32(KEY_BIT_RATE, &i32)
&& !msg->findFloat(KEY_BIT_RATE, &flt)) {
ALOGD("bitrate is missing, which is required for audio encoders.");
return BAD_VALUE;
}
}
int32_t width = 0;
int32_t height = 0;
if (config->mDomain & (Config::IS_IMAGE | Config::IS_VIDEO)) {
if (!msg->findInt32(KEY_WIDTH, &width)) {
ALOGD("width is missing, which is required for image/video components.");
return BAD_VALUE;
}
if (!msg->findInt32(KEY_HEIGHT, &height)) {
ALOGD("height is missing, which is required for image/video components.");
return BAD_VALUE;
}
if ((config->mDomain & Config::IS_ENCODER) && (config->mDomain & Config::IS_VIDEO)) {
int32_t mode = BITRATE_MODE_VBR;
if (msg->findInt32(KEY_BITRATE_MODE, &mode) && mode == BITRATE_MODE_CQ) {
if (!msg->findInt32(KEY_QUALITY, &i32)) {
ALOGD("quality is missing, which is required for video encoders in CQ.");
return BAD_VALUE;
}
} else {
if (!msg->findInt32(KEY_BIT_RATE, &i32)
&& !msg->findFloat(KEY_BIT_RATE, &flt)) {
ALOGD("bitrate is missing, which is required for video encoders.");
return BAD_VALUE;
}
}
if (!msg->findInt32(KEY_I_FRAME_INTERVAL, &i32)
&& !msg->findFloat(KEY_I_FRAME_INTERVAL, &flt)) {
ALOGD("I frame interval is missing, which is required for video encoders.");
return BAD_VALUE;
}
if (!msg->findInt32(KEY_FRAME_RATE, &i32)
&& !msg->findFloat(KEY_FRAME_RATE, &flt)) {
ALOGD("frame rate is missing, which is required for video encoders.");
return BAD_VALUE;
}
}
}
/*
* Handle input surface configuration
*/
if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE))
&& (config->mDomain & Config::IS_ENCODER)) {
config->mISConfig.reset(new InputSurfaceWrapper::Config{});
{
config->mISConfig->mMinFps = 0;
int64_t value;
if (msg->findInt64(KEY_REPEAT_PREVIOUS_FRAME_AFTER, &value) && value > 0) {
config->mISConfig->mMinFps = 1e6 / value;
}
if (!msg->findFloat(
KEY_MAX_FPS_TO_ENCODER, &config->mISConfig->mMaxFps)) {
config->mISConfig->mMaxFps = -1;
}
config->mISConfig->mMinAdjustedFps = 0;
config->mISConfig->mFixedAdjustedFps = 0;
if (msg->findInt64(KEY_MAX_PTS_GAP_TO_ENCODER, &value)) {
if (value < 0 && value >= INT32_MIN) {
config->mISConfig->mFixedAdjustedFps = -1e6 / value;
config->mISConfig->mMaxFps = -1;
} else if (value > 0 && value <= INT32_MAX) {
config->mISConfig->mMinAdjustedFps = 1e6 / value;
}
}
}
{
bool captureFpsFound = false;
double timeLapseFps;
float captureRate;
if (msg->findDouble("time-lapse-fps", &timeLapseFps)) {
config->mISConfig->mCaptureFps = timeLapseFps;
captureFpsFound = true;
} else if (msg->findAsFloat(KEY_CAPTURE_RATE, &captureRate)) {
config->mISConfig->mCaptureFps = captureRate;
captureFpsFound = true;
}
if (captureFpsFound) {
(void)msg->findAsFloat(KEY_FRAME_RATE, &config->mISConfig->mCodedFps);
}
}
{
config->mISConfig->mSuspended = false;
config->mISConfig->mSuspendAtUs = -1;
int32_t value;
if (msg->findInt32(KEY_CREATE_INPUT_SURFACE_SUSPENDED, &value) && value) {
config->mISConfig->mSuspended = true;
}
}
config->mISConfig->mUsage = 0;
config->mISConfig->mPriority = INT_MAX;
}
/*
* Handle desired color format.
*/
int32_t defaultColorFormat = COLOR_FormatYUV420Flexible;
if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE))) {
int32_t format = 0;
// Query vendor format for Flexible YUV
std::vector<std::unique_ptr<C2Param>> heapParams;
C2StoreFlexiblePixelFormatDescriptorsInfo *pixelFormatInfo = nullptr;
int vendorSdkVersion = base::GetIntProperty(
"ro.vendor.build.version.sdk", android_get_device_api_level());
if (mClient->query(
{},
{C2StoreFlexiblePixelFormatDescriptorsInfo::PARAM_TYPE},
C2_MAY_BLOCK,
&heapParams) == C2_OK
&& heapParams.size() == 1u) {
pixelFormatInfo = C2StoreFlexiblePixelFormatDescriptorsInfo::From(
heapParams[0].get());
} else {
pixelFormatInfo = nullptr;
}
// bit depth -> format
std::map<uint32_t, uint32_t> flexPixelFormat;
std::map<uint32_t, uint32_t> flexPlanarPixelFormat;
std::map<uint32_t, uint32_t> flexSemiPlanarPixelFormat;
if (pixelFormatInfo && *pixelFormatInfo) {
for (size_t i = 0; i < pixelFormatInfo->flexCount(); ++i) {
const C2FlexiblePixelFormatDescriptorStruct &desc =
pixelFormatInfo->m.values[i];
if (desc.subsampling != C2Color::YUV_420
// TODO(b/180076105): some device report wrong layout
// || desc.layout == C2Color::INTERLEAVED_PACKED
// || desc.layout == C2Color::INTERLEAVED_ALIGNED
|| desc.layout == C2Color::UNKNOWN_LAYOUT) {
continue;
}
if (flexPixelFormat.count(desc.bitDepth) == 0) {
flexPixelFormat.emplace(desc.bitDepth, desc.pixelFormat);
}
if (desc.layout == C2Color::PLANAR_PACKED
&& flexPlanarPixelFormat.count(desc.bitDepth) == 0) {
flexPlanarPixelFormat.emplace(desc.bitDepth, desc.pixelFormat);
}
if (desc.layout == C2Color::SEMIPLANAR_PACKED
&& flexSemiPlanarPixelFormat.count(desc.bitDepth) == 0) {
flexSemiPlanarPixelFormat.emplace(desc.bitDepth, desc.pixelFormat);
}
}
}
if (!msg->findInt32(KEY_COLOR_FORMAT, &format)) {
// Also handle default color format (encoders require color format, so this is only
// needed for decoders.
if (!(config->mDomain & Config::IS_ENCODER)) {
if (surface == nullptr) {
const char *prefix = "";
if (flexSemiPlanarPixelFormat.count(8) != 0) {
format = COLOR_FormatYUV420SemiPlanar;
prefix = "semi-";
} else {
format = COLOR_FormatYUV420Planar;
}
ALOGD("Client requested ByteBuffer mode decoder w/o color format set: "
"using default %splanar color format", prefix);
} else {
format = COLOR_FormatSurface;
}
defaultColorFormat = format;
}
} else {
if ((config->mDomain & Config::IS_ENCODER) || !surface) {
if (vendorSdkVersion < __ANDROID_API_S__ &&
(format == COLOR_FormatYUV420Planar ||
format == COLOR_FormatYUV420PackedPlanar ||
format == COLOR_FormatYUV420SemiPlanar ||
format == COLOR_FormatYUV420PackedSemiPlanar)) {
// pre-S framework used to map these color formats into YV12.
// Codecs from older vendor partition may be relying on
// this assumption.
format = HAL_PIXEL_FORMAT_YV12;
}
switch (format) {
case COLOR_FormatYUV420Flexible:
format = COLOR_FormatYUV420Planar;
if (flexPixelFormat.count(8) != 0) {
format = flexPixelFormat[8];
}
break;
case COLOR_FormatYUV420Planar:
case COLOR_FormatYUV420PackedPlanar:
if (flexPlanarPixelFormat.count(8) != 0) {
format = flexPlanarPixelFormat[8];
} else if (flexPixelFormat.count(8) != 0) {
format = flexPixelFormat[8];
}
break;
case COLOR_FormatYUV420SemiPlanar:
case COLOR_FormatYUV420PackedSemiPlanar:
if (flexSemiPlanarPixelFormat.count(8) != 0) {
format = flexSemiPlanarPixelFormat[8];
} else if (flexPixelFormat.count(8) != 0) {
format = flexPixelFormat[8];
}
break;
case COLOR_FormatYUVP010:
format = COLOR_FormatYUVP010;
if (flexSemiPlanarPixelFormat.count(10) != 0) {
format = flexSemiPlanarPixelFormat[10];
} else if (flexPixelFormat.count(10) != 0) {
format = flexPixelFormat[10];
}
break;
default:
// No-op
break;
}
}
}
if (format != 0) {
msg->setInt32("android._color-format", format);
}
}
/*
* Handle dataspace
*/
int32_t usingRecorder;
if (msg->findInt32("android._using-recorder", &usingRecorder) && usingRecorder) {
android_dataspace dataSpace = HAL_DATASPACE_BT709;
int32_t width, height;
if (msg->findInt32("width", &width)
&& msg->findInt32("height", &height)) {
ColorAspects aspects;
getColorAspectsFromFormat(msg, aspects);
setDefaultCodecColorAspectsIfNeeded(aspects, width, height);
// TODO: read dataspace / color aspect from the component
setColorAspectsIntoFormat(aspects, const_cast<sp<AMessage> &>(msg));
dataSpace = getDataSpaceForColorAspects(aspects, true /* mayexpand */);
}
msg->setInt32("android._dataspace", (int32_t)dataSpace);
ALOGD("setting dataspace to %x", dataSpace);
}
int32_t subscribeToAllVendorParams;
if (msg->findInt32("x-*", &subscribeToAllVendorParams) && subscribeToAllVendorParams) {
if (config->subscribeToAllVendorParams(comp, C2_MAY_BLOCK) != OK) {
ALOGD("[%s] Failed to subscribe to all vendor params", comp->getName().c_str());
}
}
std::vector<std::unique_ptr<C2Param>> configUpdate;
// NOTE: We used to ignore "video-bitrate" at configure; replicate
// the behavior here.
sp<AMessage> sdkParams = msg;
int32_t videoBitrate;
if (sdkParams->findInt32(PARAMETER_KEY_VIDEO_BITRATE, &videoBitrate)) {
sdkParams = msg->dup();
sdkParams->removeEntryAt(sdkParams->findEntryByName(PARAMETER_KEY_VIDEO_BITRATE));
}
err = config->getConfigUpdateFromSdkParams(
comp, sdkParams, Config::IS_CONFIG, C2_DONT_BLOCK, &configUpdate);
if (err != OK) {
ALOGW("failed to convert configuration to c2 params");
}
int32_t maxBframes = 0;
if ((config->mDomain & Config::IS_ENCODER)
&& (config->mDomain & Config::IS_VIDEO)
&& sdkParams->findInt32(KEY_MAX_B_FRAMES, &maxBframes)
&& maxBframes > 0) {
std::unique_ptr<C2StreamGopTuning::output> gop =
C2StreamGopTuning::output::AllocUnique(2 /* flexCount */, 0u /* stream */);
gop->m.values[0] = { P_FRAME, UINT32_MAX };
gop->m.values[1] = {
C2Config::picture_type_t(P_FRAME | B_FRAME),
uint32_t(maxBframes)
};
configUpdate.push_back(std::move(gop));
}
if ((config->mDomain & Config::IS_ENCODER)
&& (config->mDomain & Config::IS_VIDEO)) {
// we may not use all 3 of these entries
std::unique_ptr<C2StreamPictureQuantizationTuning::output> qp =
C2StreamPictureQuantizationTuning::output::AllocUnique(3 /* flexCount */,
0u /* stream */);
int ix = 0;
int32_t iMax = INT32_MAX;
int32_t iMin = INT32_MIN;
(void) sdkParams->findInt32(KEY_VIDEO_QP_I_MAX, &iMax);
(void) sdkParams->findInt32(KEY_VIDEO_QP_I_MIN, &iMin);
if (iMax != INT32_MAX || iMin != INT32_MIN) {
qp->m.values[ix++] = {I_FRAME, iMin, iMax};
}
int32_t pMax = INT32_MAX;
int32_t pMin = INT32_MIN;
(void) sdkParams->findInt32(KEY_VIDEO_QP_P_MAX, &pMax);
(void) sdkParams->findInt32(KEY_VIDEO_QP_P_MIN, &pMin);
if (pMax != INT32_MAX || pMin != INT32_MIN) {
qp->m.values[ix++] = {P_FRAME, pMin, pMax};
}
int32_t bMax = INT32_MAX;
int32_t bMin = INT32_MIN;
(void) sdkParams->findInt32(KEY_VIDEO_QP_B_MAX, &bMax);
(void) sdkParams->findInt32(KEY_VIDEO_QP_B_MIN, &bMin);
if (bMax != INT32_MAX || bMin != INT32_MIN) {
qp->m.values[ix++] = {B_FRAME, bMin, bMax};
}
// adjust to reflect actual use.
qp->setFlexCount(ix);
configUpdate.push_back(std::move(qp));
}
int32_t background = 0;
if ((config->mDomain & Config::IS_VIDEO)
&& msg->findInt32("android._background-mode", &background)
&& background) {
androidSetThreadPriority(gettid(), ANDROID_PRIORITY_BACKGROUND);
if (config->mISConfig) {
config->mISConfig->mPriority = ANDROID_PRIORITY_BACKGROUND;
}
}
err = config->setParameters(comp, configUpdate, C2_DONT_BLOCK);
if (err != OK) {
ALOGW("failed to configure c2 params");
return err;
}
std::vector<std::unique_ptr<C2Param>> params;
C2StreamUsageTuning::input usage(0u, 0u);
C2StreamMaxBufferSizeInfo::input maxInputSize(0u, 0u);
C2PrependHeaderModeSetting prepend(PREPEND_HEADER_TO_NONE);
C2Param::Index colorAspectsRequestIndex =
C2StreamColorAspectsInfo::output::PARAM_TYPE | C2Param::CoreIndex::IS_REQUEST_FLAG;
std::initializer_list<C2Param::Index> indices {
colorAspectsRequestIndex.withStream(0u),
};
int32_t colorTransferRequest = 0;
if (config->mDomain & (Config::IS_IMAGE | Config::IS_VIDEO)
&& !sdkParams->findInt32("color-transfer-request", &colorTransferRequest)) {
colorTransferRequest = 0;
}
c2_status_t c2err = C2_OK;
if (colorTransferRequest != 0) {
c2err = comp->query(
{ &usage, &maxInputSize, &prepend },
indices,
C2_DONT_BLOCK,
&params);
} else {
c2err = comp->query(
{ &usage, &maxInputSize, &prepend },
{},
C2_DONT_BLOCK,
&params);
}
if (c2err != C2_OK && c2err != C2_BAD_INDEX) {
ALOGE("Failed to query component interface: %d", c2err);
return UNKNOWN_ERROR;
}
if (usage) {
if (usage.value & C2MemoryUsage::CPU_READ) {
config->mInputFormat->setInt32("using-sw-read-often", true);
}
if (config->mISConfig) {
C2AndroidMemoryUsage androidUsage(C2MemoryUsage(usage.value));
config->mISConfig->mUsage = androidUsage.asGrallocUsage();
}
config->mInputFormat->setInt64("android._C2MemoryUsage", usage.value);
}
// NOTE: we don't blindly use client specified input size if specified as clients
// at times specify too small size. Instead, mimic the behavior from OMX, where the
// client specified size is only used to ask for bigger buffers than component suggested
// size.
int32_t clientInputSize = 0;
bool clientSpecifiedInputSize =
msg->findInt32(KEY_MAX_INPUT_SIZE, &clientInputSize) && clientInputSize > 0;
// TEMP: enforce minimum buffer size of 1MB for video decoders
// and 16K / 4K for audio encoders/decoders
if (maxInputSize.value == 0) {
if (config->mDomain & Config::IS_AUDIO) {
maxInputSize.value = encoder ? 16384 : 4096;
} else if (!encoder) {
maxInputSize.value = 1048576u;
}
}
// verify that CSD fits into this size (if defined)
if ((config->mDomain & Config::IS_DECODER) && maxInputSize.value > 0) {
sp<ABuffer> csd;
for (size_t ix = 0; msg->findBuffer(StringPrintf("csd-%zu", ix).c_str(), &csd); ++ix) {
if (csd && csd->size() > maxInputSize.value) {
maxInputSize.value = csd->size();
}
}
}
// TODO: do this based on component requiring linear allocator for input
if ((config->mDomain & Config::IS_DECODER) || (config->mDomain & Config::IS_AUDIO)) {
if (clientSpecifiedInputSize) {
// Warn that we're overriding client's max input size if necessary.
if ((uint32_t)clientInputSize < maxInputSize.value) {
ALOGD("client requested max input size %d, which is smaller than "
"what component recommended (%u); overriding with component "
"recommendation.", clientInputSize, maxInputSize.value);
ALOGW("This behavior is subject to change. It is recommended that "
"app developers double check whether the requested "
"max input size is in reasonable range.");
} else {
maxInputSize.value = clientInputSize;
}
}
// Pass max input size on input format to the buffer channel (if supplied by the
// component or by a default)
if (maxInputSize.value) {
config->mInputFormat->setInt32(
KEY_MAX_INPUT_SIZE,
(int32_t)(c2_min(maxInputSize.value, uint32_t(INT32_MAX))));
}
}
int32_t clientPrepend;
if ((config->mDomain & Config::IS_VIDEO)
&& (config->mDomain & Config::IS_ENCODER)
&& msg->findInt32(KEY_PREPEND_HEADER_TO_SYNC_FRAMES, &clientPrepend)
&& clientPrepend
&& (!prepend || prepend.value != PREPEND_HEADER_TO_ALL_SYNC)) {
ALOGE("Failed to set KEY_PREPEND_HEADER_TO_SYNC_FRAMES");
return BAD_VALUE;
}
int32_t componentColorFormat = 0;
if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE))) {
// propagate HDR static info to output format for both encoders and decoders
// if component supports this info, we will update from component, but only the raw port,
// so don't propagate if component already filled it in.
sp<ABuffer> hdrInfo;
if (msg->findBuffer(KEY_HDR_STATIC_INFO, &hdrInfo)
&& !config->mOutputFormat->findBuffer(KEY_HDR_STATIC_INFO, &hdrInfo)) {
config->mOutputFormat->setBuffer(KEY_HDR_STATIC_INFO, hdrInfo);
}
// Set desired color format from configuration parameter
int32_t format;
if (!msg->findInt32(KEY_COLOR_FORMAT, &format)) {
format = defaultColorFormat;
}
if (config->mDomain & Config::IS_ENCODER) {
config->mInputFormat->setInt32(KEY_COLOR_FORMAT, format);
if (msg->findInt32("android._color-format", &componentColorFormat)) {
config->mInputFormat->setInt32("android._color-format", componentColorFormat);
}
} else {
config->mOutputFormat->setInt32(KEY_COLOR_FORMAT, format);
}
}
// propagate encoder delay and padding to output format
if ((config->mDomain & Config::IS_DECODER) && (config->mDomain & Config::IS_AUDIO)) {
int delay = 0;
if (msg->findInt32("encoder-delay", &delay)) {
config->mOutputFormat->setInt32("encoder-delay", delay);
}
int padding = 0;
if (msg->findInt32("encoder-padding", &padding)) {
config->mOutputFormat->setInt32("encoder-padding", padding);
}
}
if (config->mDomain & Config::IS_AUDIO) {
// set channel-mask
int32_t mask;
if (msg->findInt32(KEY_CHANNEL_MASK, &mask)) {
if (config->mDomain & Config::IS_ENCODER) {
config->mInputFormat->setInt32(KEY_CHANNEL_MASK, mask);
} else {
config->mOutputFormat->setInt32(KEY_CHANNEL_MASK, mask);
}
}
// set PCM encoding
int32_t pcmEncoding = kAudioEncodingPcm16bit;
msg->findInt32(KEY_PCM_ENCODING, &pcmEncoding);
if (encoder) {
config->mInputFormat->setInt32("android._config-pcm-encoding", pcmEncoding);
} else {
config->mOutputFormat->setInt32("android._config-pcm-encoding", pcmEncoding);
}
}
std::unique_ptr<C2Param> colorTransferRequestParam;
for (std::unique_ptr<C2Param> &param : params) {
if (param->index() == colorAspectsRequestIndex.withStream(0u)) {
ALOGI("found color transfer request param");
colorTransferRequestParam = std::move(param);
}
}
if (colorTransferRequest != 0) {
if (colorTransferRequestParam && *colorTransferRequestParam) {
C2StreamColorAspectsInfo::output *info =
static_cast<C2StreamColorAspectsInfo::output *>(
colorTransferRequestParam.get());
if (!C2Mapper::map(info->transfer, &colorTransferRequest)) {
colorTransferRequest = 0;
}
} else {
colorTransferRequest = 0;
}
config->mInputFormat->setInt32("color-transfer-request", colorTransferRequest);
}
if (componentColorFormat != 0 && componentColorFormat != COLOR_FormatSurface) {
// Need to get stride/vstride
uint32_t pixelFormat = PIXEL_FORMAT_UNKNOWN;
if (C2Mapper::mapPixelFormatFrameworkToCodec(componentColorFormat, &pixelFormat)) {
// TODO: retrieve these values without allocating a buffer.
// Currently allocating a buffer is necessary to retrieve the layout.
int64_t blockUsage =
usage.value | C2MemoryUsage::CPU_READ | C2MemoryUsage::CPU_WRITE;
std::shared_ptr<C2GraphicBlock> block = FetchGraphicBlock(
width, height, componentColorFormat, blockUsage, {comp->getName()});
sp<GraphicBlockBuffer> buffer;
if (block) {
buffer = GraphicBlockBuffer::Allocate(
config->mInputFormat,
block,
[](size_t size) -> sp<ABuffer> { return new ABuffer(size); });
} else {
ALOGD("Failed to allocate a graphic block "
"(width=%d height=%d pixelFormat=%u usage=%llx)",
width, height, pixelFormat, (long long)blockUsage);
// This means that byte buffer mode is not supported in this configuration
// anyway. Skip setting stride/vstride to input format.
}
if (buffer) {
sp<ABuffer> imageData = buffer->getImageData();
MediaImage2 *img = nullptr;
if (imageData && imageData->data()
&& imageData->size() >= sizeof(MediaImage2)) {
img = (MediaImage2*)imageData->data();
}
if (img && img->mNumPlanes > 0 && img->mType != img->MEDIA_IMAGE_TYPE_UNKNOWN) {
int32_t stride = img->mPlane[0].mRowInc;
config->mInputFormat->setInt32(KEY_STRIDE, stride);
if (img->mNumPlanes > 1 && stride > 0) {
int64_t offsetDelta =
(int64_t)img->mPlane[1].mOffset - (int64_t)img->mPlane[0].mOffset;
if (offsetDelta % stride == 0) {
int32_t vstride = int32_t(offsetDelta / stride);
config->mInputFormat->setInt32(KEY_SLICE_HEIGHT, vstride);
} else {
ALOGD("Cannot report accurate slice height: "
"offsetDelta = %lld stride = %d",
(long long)offsetDelta, stride);
}
}
}
}
}
}
if (config->mTunneled) {
config->mOutputFormat->setInt32("android._tunneled", 1);
}
// Convert an encoding statistics level to corresponding encoding statistics
// kinds
int32_t encodingStatisticsLevel = VIDEO_ENCODING_STATISTICS_LEVEL_NONE;
if ((config->mDomain & Config::IS_ENCODER)
&& (config->mDomain & Config::IS_VIDEO)
&& msg->findInt32(KEY_VIDEO_ENCODING_STATISTICS_LEVEL, &encodingStatisticsLevel)) {
// Higher level include all the enc stats belong to lower level.
switch (encodingStatisticsLevel) {
// case VIDEO_ENCODING_STATISTICS_LEVEL_2: // reserved for the future level 2
// with more enc stat kinds
// Future extended encoding statistics for the level 2 should be added here
case VIDEO_ENCODING_STATISTICS_LEVEL_1:
config->subscribeToConfigUpdate(
comp,
{
C2AndroidStreamAverageBlockQuantizationInfo::output::PARAM_TYPE,
C2StreamPictureTypeInfo::output::PARAM_TYPE,
});
break;
case VIDEO_ENCODING_STATISTICS_LEVEL_NONE:
break;
}
}
ALOGD("encoding statistics level = %d", encodingStatisticsLevel);
ALOGD("setup formats input: %s",
config->mInputFormat->debugString().c_str());
ALOGD("setup formats output: %s",
config->mOutputFormat->debugString().c_str());
return OK;
};
if (tryAndReportOnError(doConfig) != OK) {
return;
}
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
config->queryConfiguration(comp);
mMetrics = new AMessage;
mChannel->resetBuffersPixelFormat((config->mDomain & Config::IS_ENCODER) ? true : false);
mCallback->onComponentConfigured(config->mInputFormat, config->mOutputFormat);
}
void CCodec::initiateCreateInputSurface() {
status_t err = [this] {
Mutexed<State>::Locked state(mState);
if (state->get() != ALLOCATED) {
return UNKNOWN_ERROR;
}
// TODO: read it from intf() properly.
if (state->comp->getName().find("encoder") == std::string::npos) {
return INVALID_OPERATION;
}
return OK;
}();
if (err != OK) {
mCallback->onInputSurfaceCreationFailed(err);
return;
}
(new AMessage(kWhatCreateInputSurface, this))->post();
}
sp<PersistentSurface> CCodec::CreateOmxInputSurface() {
using namespace android::hardware::media::omx::V1_0;
using namespace android::hardware::media::omx::V1_0::utils;
using namespace android::hardware::graphics::bufferqueue::V1_0::utils;
typedef android::hardware::media::omx::V1_0::Status OmxStatus;
android::sp<IOmx> omx = IOmx::getService();
if (omx == nullptr) {
return nullptr;
}
typedef android::hardware::graphics::bufferqueue::V1_0::
IGraphicBufferProducer HGraphicBufferProducer;
typedef android::hardware::media::omx::V1_0::
IGraphicBufferSource HGraphicBufferSource;
OmxStatus s;
android::sp<HGraphicBufferProducer> gbp;
android::sp<HGraphicBufferSource> gbs;
using ::android::hardware::Return;
Return<void> transStatus = omx->createInputSurface(
[&s, &gbp, &gbs](
OmxStatus status,
const android::sp<HGraphicBufferProducer>& producer,
const android::sp<HGraphicBufferSource>& source) {
s = status;
gbp = producer;
gbs = source;
});
if (transStatus.isOk() && s == OmxStatus::OK) {
return new PersistentSurface(new H2BGraphicBufferProducer(gbp), gbs);
}
return nullptr;
}
sp<PersistentSurface> CCodec::CreateCompatibleInputSurface() {
sp<PersistentSurface> surface(CreateInputSurface());
if (surface == nullptr) {
surface = CreateOmxInputSurface();
}
return surface;
}
void CCodec::createInputSurface() {
status_t err;
sp<IGraphicBufferProducer> bufferProducer;
sp<AMessage> outputFormat;
uint64_t usage = 0;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
outputFormat = config->mOutputFormat;
usage = config->mISConfig ? config->mISConfig->mUsage : 0;
}
sp<PersistentSurface> persistentSurface = CreateCompatibleInputSurface();
sp<hidl::base::V1_0::IBase> hidlTarget = persistentSurface->getHidlTarget();
sp<IInputSurface> hidlInputSurface = IInputSurface::castFrom(hidlTarget);
sp<HGraphicBufferSource> gbs = HGraphicBufferSource::castFrom(hidlTarget);
if (hidlInputSurface) {
std::shared_ptr<Codec2Client::InputSurface> inputSurface =
std::make_shared<Codec2Client::InputSurface>(hidlInputSurface);
err = setupInputSurface(std::make_shared<C2InputSurfaceWrapper>(
inputSurface));
bufferProducer = inputSurface->getGraphicBufferProducer();
} else if (gbs) {
int32_t width = 0;
(void)outputFormat->findInt32("width", &width);
int32_t height = 0;
(void)outputFormat->findInt32("height", &height);
err = setupInputSurface(std::make_shared<GraphicBufferSourceWrapper>(
gbs, width, height, usage));
bufferProducer = persistentSurface->getBufferProducer();
} else {
ALOGE("Corrupted input surface");
mCallback->onInputSurfaceCreationFailed(UNKNOWN_ERROR);
return;
}
if (err != OK) {
ALOGE("Failed to set up input surface: %d", err);
mCallback->onInputSurfaceCreationFailed(err);
return;
}
// Formats can change after setupInputSurface
sp<AMessage> inputFormat;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
inputFormat = config->mInputFormat;
outputFormat = config->mOutputFormat;
}
mCallback->onInputSurfaceCreated(
inputFormat,
outputFormat,
new BufferProducerWrapper(bufferProducer));
}
status_t CCodec::setupInputSurface(const std::shared_ptr<InputSurfaceWrapper> &surface) {
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
config->mUsingSurface = true;
// we are now using surface - apply default color aspects to input format - as well as
// get dataspace
bool inputFormatChanged = config->updateFormats(Config::IS_INPUT);
// configure dataspace
static_assert(sizeof(int32_t) == sizeof(android_dataspace), "dataspace size mismatch");
// The output format contains app-configured color aspects, and the input format
// has the default color aspects. Use the default for the unspecified params.
ColorAspects inputColorAspects, colorAspects;
getColorAspectsFromFormat(config->mOutputFormat, colorAspects);
getColorAspectsFromFormat(config->mInputFormat, inputColorAspects);
if (colorAspects.mRange == ColorAspects::RangeUnspecified) {
colorAspects.mRange = inputColorAspects.mRange;
}
if (colorAspects.mPrimaries == ColorAspects::PrimariesUnspecified) {
colorAspects.mPrimaries = inputColorAspects.mPrimaries;
}
if (colorAspects.mTransfer == ColorAspects::TransferUnspecified) {
colorAspects.mTransfer = inputColorAspects.mTransfer;
}
if (colorAspects.mMatrixCoeffs == ColorAspects::MatrixUnspecified) {
colorAspects.mMatrixCoeffs = inputColorAspects.mMatrixCoeffs;
}
android_dataspace dataSpace = getDataSpaceForColorAspects(
colorAspects, /* mayExtend = */ false);
surface->setDataSpace(dataSpace);
setColorAspectsIntoFormat(colorAspects, config->mInputFormat, /* force = */ true);
config->mInputFormat->setInt32("android._dataspace", int32_t(dataSpace));
ALOGD("input format %s to %s",
inputFormatChanged ? "changed" : "unchanged",
config->mInputFormat->debugString().c_str());
status_t err = mChannel->setInputSurface(surface);
if (err != OK) {
// undo input format update
config->mUsingSurface = false;
(void)config->updateFormats(Config::IS_INPUT);
return err;
}
config->mInputSurface = surface;
if (config->mISConfig) {
surface->configure(*config->mISConfig);
} else {
ALOGD("ISConfig: no configuration");
}
return OK;
}
void CCodec::initiateSetInputSurface(const sp<PersistentSurface> &surface) {
sp<AMessage> msg = new AMessage(kWhatSetInputSurface, this);
msg->setObject("surface", surface);
msg->post();
}
void CCodec::setInputSurface(const sp<PersistentSurface> &surface) {
sp<AMessage> outputFormat;
uint64_t usage = 0;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
outputFormat = config->mOutputFormat;
usage = config->mISConfig ? config->mISConfig->mUsage : 0;
}
sp<hidl::base::V1_0::IBase> hidlTarget = surface->getHidlTarget();
sp<IInputSurface> inputSurface = IInputSurface::castFrom(hidlTarget);
sp<HGraphicBufferSource> gbs = HGraphicBufferSource::castFrom(hidlTarget);
if (inputSurface) {
status_t err = setupInputSurface(std::make_shared<C2InputSurfaceWrapper>(
std::make_shared<Codec2Client::InputSurface>(inputSurface)));
if (err != OK) {
ALOGE("Failed to set up input surface: %d", err);
mCallback->onInputSurfaceDeclined(err);
return;
}
} else if (gbs) {
int32_t width = 0;
(void)outputFormat->findInt32("width", &width);
int32_t height = 0;
(void)outputFormat->findInt32("height", &height);
status_t err = setupInputSurface(std::make_shared<GraphicBufferSourceWrapper>(
gbs, width, height, usage));
if (err != OK) {
ALOGE("Failed to set up input surface: %d", err);
mCallback->onInputSurfaceDeclined(err);
return;
}
} else {
ALOGE("Failed to set input surface: Corrupted surface.");
mCallback->onInputSurfaceDeclined(UNKNOWN_ERROR);
return;
}
// Formats can change after setupInputSurface
sp<AMessage> inputFormat;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
inputFormat = config->mInputFormat;
outputFormat = config->mOutputFormat;
}
mCallback->onInputSurfaceAccepted(inputFormat, outputFormat);
}
void CCodec::initiateStart() {
auto setStarting = [this] {
Mutexed<State>::Locked state(mState);
if (state->get() != ALLOCATED) {
return UNKNOWN_ERROR;
}
state->set(STARTING);
return OK;
};
if (tryAndReportOnError(setStarting) != OK) {
return;
}
(new AMessage(kWhatStart, this))->post();
}
void CCodec::start() {
std::shared_ptr<Codec2Client::Component> comp;
auto checkStarting = [this, &comp] {
Mutexed<State>::Locked state(mState);
if (state->get() != STARTING) {
return UNKNOWN_ERROR;
}
comp = state->comp;
return OK;
};
if (tryAndReportOnError(checkStarting) != OK) {
return;
}
c2_status_t err = comp->start();
if (err != C2_OK) {
mCallback->onError(toStatusT(err, C2_OPERATION_Component_start),
ACTION_CODE_FATAL);
return;
}
// clear the deadline after the component starts
setDeadline(TimePoint::max(), 0ms, "none");
sp<AMessage> inputFormat;
sp<AMessage> outputFormat;
status_t err2 = OK;
bool buffersBoundToCodec = false;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
inputFormat = config->mInputFormat;
// start triggers format dup
outputFormat = config->mOutputFormat = config->mOutputFormat->dup();
if (config->mInputSurface) {
err2 = config->mInputSurface->start();
config->mInputSurfaceDataspace = config->mInputSurface->getDataspace();
}
buffersBoundToCodec = config->mBuffersBoundToCodec;
}
if (err2 != OK) {
mCallback->onError(err2, ACTION_CODE_FATAL);
return;
}
err2 = mChannel->start(inputFormat, outputFormat, buffersBoundToCodec);
if (err2 != OK) {
mCallback->onError(err2, ACTION_CODE_FATAL);
return;
}
auto setRunning = [this] {
Mutexed<State>::Locked state(mState);
if (state->get() != STARTING) {
return UNKNOWN_ERROR;
}
state->set(RUNNING);
return OK;
};
if (tryAndReportOnError(setRunning) != OK) {
return;
}
// preparation of input buffers may not succeed due to the lack of
// memory; returning correct error code (NO_MEMORY) as an error allows
// MediaCodec to try reclaim and restart codec gracefully.
std::map<size_t, sp<MediaCodecBuffer>> clientInputBuffers;
err2 = mChannel->prepareInitialInputBuffers(&clientInputBuffers);
if (err2 != OK) {
ALOGE("Initial preparation for Input Buffers failed");
mCallback->onError(err2, ACTION_CODE_FATAL);
return;
}
mCallback->onStartCompleted();
mChannel->requestInitialInputBuffers(std::move(clientInputBuffers));
}
void CCodec::initiateShutdown(bool keepComponentAllocated) {
if (keepComponentAllocated) {
initiateStop();
} else {
initiateRelease();
}
}
void CCodec::initiateStop() {
{
Mutexed<State>::Locked state(mState);
if (state->get() == ALLOCATED
|| state->get() == RELEASED
|| state->get() == STOPPING
|| state->get() == RELEASING) {
// We're already stopped, released, or doing it right now.
state.unlock();
mCallback->onStopCompleted();
state.lock();
return;
}
state->set(STOPPING);
}
mChannel->reset();
bool pushBlankBuffer = mConfig.lock().get()->mPushBlankBuffersOnStop;
sp<AMessage> stopMessage(new AMessage(kWhatStop, this));
stopMessage->setInt32("pushBlankBuffer", pushBlankBuffer);
stopMessage->post();
}
void CCodec::stop(bool pushBlankBuffer) {
std::shared_ptr<Codec2Client::Component> comp;
{
Mutexed<State>::Locked state(mState);
if (state->get() == RELEASING) {
state.unlock();
// We're already stopped or release is in progress.
mCallback->onStopCompleted();
state.lock();
return;
} else if (state->get() != STOPPING) {
state.unlock();
mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
state.lock();
return;
}
comp = state->comp;
}
// Note: Logically mChannel->stopUseOutputSurface() should be after comp->stop().
// But in the case some HAL implementations hang forever on comp->stop().
// (HAL is waiting for C2Fence until fetchGraphicBlock unblocks and not
// completing stop()).
// So we reverse their order for stopUseOutputSurface() to notify C2Fence waiters
// prior to comp->stop().
// See also b/300350761.
mChannel->stopUseOutputSurface(pushBlankBuffer);
status_t err = comp->stop();
if (err != C2_OK) {
// TODO: convert err into status_t
mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
}
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
if (config->mInputSurface) {
config->mInputSurface->disconnect();
config->mInputSurface = nullptr;
config->mInputSurfaceDataspace = HAL_DATASPACE_UNKNOWN;
}
}
{
Mutexed<State>::Locked state(mState);
if (state->get() == STOPPING) {
state->set(ALLOCATED);
}
}
mCallback->onStopCompleted();
}
void CCodec::initiateRelease(bool sendCallback /* = true */) {
bool clearInputSurfaceIfNeeded = false;
{
Mutexed<State>::Locked state(mState);
if (state->get() == RELEASED || state->get() == RELEASING) {
// We're already released or doing it right now.
if (sendCallback) {
state.unlock();
mCallback->onReleaseCompleted();
state.lock();
}
return;
}
if (state->get() == ALLOCATING) {
state->set(RELEASING);
// With the altered state allocate() would fail and clean up.
if (sendCallback) {
state.unlock();
mCallback->onReleaseCompleted();
state.lock();
}
return;
}
if (state->get() == STARTING
|| state->get() == RUNNING
|| state->get() == STOPPING) {
// Input surface may have been started, so clean up is needed.
clearInputSurfaceIfNeeded = true;
}
state->set(RELEASING);
}
if (clearInputSurfaceIfNeeded) {
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
if (config->mInputSurface) {
config->mInputSurface->disconnect();
config->mInputSurface = nullptr;
config->mInputSurfaceDataspace = HAL_DATASPACE_UNKNOWN;
}
}
mChannel->reset();
bool pushBlankBuffer = mConfig.lock().get()->mPushBlankBuffersOnStop;
// thiz holds strong ref to this while the thread is running.
sp<CCodec> thiz(this);
std::thread([thiz, sendCallback, pushBlankBuffer]
{ thiz->release(sendCallback, pushBlankBuffer); }).detach();
}
void CCodec::release(bool sendCallback, bool pushBlankBuffer) {
std::shared_ptr<Codec2Client::Component> comp;
{
Mutexed<State>::Locked state(mState);
if (state->get() == RELEASED) {
if (sendCallback) {
state.unlock();
mCallback->onReleaseCompleted();
state.lock();
}
return;
}
comp = state->comp;
}
// Note: Logically mChannel->stopUseOutputSurface() should be after comp->release().
// But in the case some HAL implementations hang forever on comp->release().
// (HAL is waiting for C2Fence until fetchGraphicBlock unblocks and not
// completing release()).
// So we reverse their order for stopUseOutputSurface() to notify C2Fence waiters
// prior to comp->release().
// See also b/300350761.
mChannel->stopUseOutputSurface(pushBlankBuffer);
comp->release();
{
Mutexed<State>::Locked state(mState);
state->set(RELEASED);
state->comp.reset();
}
(new AMessage(kWhatRelease, this))->post();
if (sendCallback) {
mCallback->onReleaseCompleted();
}
}
status_t CCodec::setSurface(const sp<Surface> &surface) {
bool pushBlankBuffer = false;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
sp<ANativeWindow> nativeWindow = static_cast<ANativeWindow *>(surface.get());
status_t err = OK;
if (config->mTunneled && config->mSidebandHandle != nullptr) {
err = native_window_set_sideband_stream(
nativeWindow.get(),
const_cast<native_handle_t *>(config->mSidebandHandle->handle()));
if (err != OK) {
ALOGE("NativeWindow(%p) native_window_set_sideband_stream(%p) failed! (err %d).",
nativeWindow.get(), config->mSidebandHandle->handle(), err);
return err;
}
} else {
// Explicitly reset the sideband handle of the window for
// non-tunneled video in case the window was previously used
// for a tunneled video playback.
err = native_window_set_sideband_stream(nativeWindow.get(), nullptr);
if (err != OK) {
ALOGE("native_window_set_sideband_stream(nullptr) failed! (err %d).", err);
return err;
}
}
pushBlankBuffer = config->mPushBlankBuffersOnStop;
}
return mChannel->setSurface(surface, pushBlankBuffer);
}
void CCodec::signalFlush() {
status_t err = [this] {
Mutexed<State>::Locked state(mState);
if (state->get() == FLUSHED) {
return ALREADY_EXISTS;
}
if (state->get() != RUNNING) {
return UNKNOWN_ERROR;
}
state->set(FLUSHING);
return OK;
}();
switch (err) {
case ALREADY_EXISTS:
mCallback->onFlushCompleted();
return;
case OK:
break;
default:
mCallback->onError(err, ACTION_CODE_FATAL);
return;
}
mChannel->stop();
(new AMessage(kWhatFlush, this))->post();
}
void CCodec::flush() {
std::shared_ptr<Codec2Client::Component> comp;
auto checkFlushing = [this, &comp] {
Mutexed<State>::Locked state(mState);
if (state->get() != FLUSHING) {
return UNKNOWN_ERROR;
}
comp = state->comp;
return OK;
};
if (tryAndReportOnError(checkFlushing) != OK) {
return;
}
std::list<std::unique_ptr<C2Work>> flushedWork;
c2_status_t err = comp->flush(C2Component::FLUSH_COMPONENT, &flushedWork);
{
Mutexed<std::list<std::unique_ptr<C2Work>>>::Locked queue(mWorkDoneQueue);
flushedWork.splice(flushedWork.end(), *queue);
}
if (err != C2_OK) {
// TODO: convert err into status_t
mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
}
mChannel->flush(flushedWork);
{
Mutexed<State>::Locked state(mState);
if (state->get() == FLUSHING) {
state->set(FLUSHED);
}
}
mCallback->onFlushCompleted();
}
void CCodec::signalResume() {
std::shared_ptr<Codec2Client::Component> comp;
auto setResuming = [this, &comp] {
Mutexed<State>::Locked state(mState);
if (state->get() != FLUSHED) {
return UNKNOWN_ERROR;
}
state->set(RESUMING);
comp = state->comp;
return OK;
};
if (tryAndReportOnError(setResuming) != OK) {
return;
}
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
sp<AMessage> outputFormat = config->mOutputFormat;
config->queryConfiguration(comp);
RevertOutputFormatIfNeeded(outputFormat, config->mOutputFormat);
}
std::map<size_t, sp<MediaCodecBuffer>> clientInputBuffers;
status_t err = mChannel->prepareInitialInputBuffers(&clientInputBuffers, true);
if (err != OK) {
if (err == NO_MEMORY) {
// NO_MEMORY happens here when all the buffers are still
// with the codec. That is not an error as it is momentarily
// and the buffers are send to the client as soon as the codec
// releases them
ALOGI("Resuming with all input buffers still with codec");
} else {
ALOGE("Resume request for Input Buffers failed");
mCallback->onError(err, ACTION_CODE_FATAL);
return;
}
}
// channel start should be called after prepareInitialBuffers
// Calling before can cause a failure during prepare when
// buffers are sent to the client before preparation from onWorkDone
(void)mChannel->start(nullptr, nullptr, [&]{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
return config->mBuffersBoundToCodec;
}());
{
Mutexed<State>::Locked state(mState);
if (state->get() != RESUMING) {
state.unlock();
mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
state.lock();
return;
}
state->set(RUNNING);
}
mChannel->requestInitialInputBuffers(std::move(clientInputBuffers));
}
void CCodec::signalSetParameters(const sp<AMessage> &msg) {
std::shared_ptr<Codec2Client::Component> comp;
auto checkState = [this, &comp] {
Mutexed<State>::Locked state(mState);
if (state->get() == RELEASED) {
return INVALID_OPERATION;
}
comp = state->comp;
return OK;
};
if (tryAndReportOnError(checkState) != OK) {
return;
}
// NOTE: We used to ignore "bitrate" at setParameters; replicate
// the behavior here.
sp<AMessage> params = msg;
int32_t bitrate;
if (params->findInt32(KEY_BIT_RATE, &bitrate)) {
params = msg->dup();
params->removeEntryAt(params->findEntryByName(KEY_BIT_RATE));
}
int32_t syncId = 0;
if (params->findInt32("audio-hw-sync", &syncId)
|| params->findInt32("hw-av-sync-id", &syncId)) {
configureTunneledVideoPlayback(comp, nullptr, params);
}
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
/**
* Handle input surface parameters
*/
if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE))
&& (config->mDomain & Config::IS_ENCODER)
&& config->mInputSurface && config->mISConfig) {
(void)params->findInt64(PARAMETER_KEY_OFFSET_TIME, &config->mISConfig->mTimeOffsetUs);
if (params->findInt64("skip-frames-before", &config->mISConfig->mStartAtUs)) {
config->mISConfig->mStopped = false;
} else if (params->findInt64("stop-time-us", &config->mISConfig->mStopAtUs)) {
config->mISConfig->mStopped = true;
}
int32_t value;
if (params->findInt32(PARAMETER_KEY_SUSPEND, &value)) {
config->mISConfig->mSuspended = value;
config->mISConfig->mSuspendAtUs = -1;
(void)params->findInt64(PARAMETER_KEY_SUSPEND_TIME, &config->mISConfig->mSuspendAtUs);
}
(void)config->mInputSurface->configure(*config->mISConfig);
if (config->mISConfig->mStopped) {
config->mInputFormat->setInt64(
"android._stop-time-offset-us", config->mISConfig->mInputDelayUs);
}
}
std::vector<std::unique_ptr<C2Param>> configUpdate;
(void)config->getConfigUpdateFromSdkParams(
comp, params, Config::IS_PARAM, C2_MAY_BLOCK, &configUpdate);
// Prefer to pass parameters to the buffer channel, so they can be synchronized with the frames.
// Parameter synchronization is not defined when using input surface. For now, route
// these directly to the component.
if (config->mInputSurface == nullptr
&& (property_get_bool("debug.stagefright.ccodec_delayed_params", false)
|| comp->getName().find("c2.android.") == 0)) {
mChannel->setParameters(configUpdate);
} else {
sp<AMessage> outputFormat = config->mOutputFormat;
(void)config->setParameters(comp, configUpdate, C2_MAY_BLOCK);
RevertOutputFormatIfNeeded(outputFormat, config->mOutputFormat);
}
}
void CCodec::signalEndOfInputStream() {
mCallback->onSignaledInputEOS(mChannel->signalEndOfInputStream());
}
void CCodec::signalRequestIDRFrame() {
std::shared_ptr<Codec2Client::Component> comp;
{
Mutexed<State>::Locked state(mState);
if (state->get() == RELEASED) {
ALOGD("no IDR request sent since component is released");
return;
}
comp = state->comp;
}
ALOGV("request IDR");
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
std::vector<std::unique_ptr<C2Param>> params;
params.push_back(
std::make_unique<C2StreamRequestSyncFrameTuning::output>(0u, true));
config->setParameters(comp, params, C2_MAY_BLOCK);
}
status_t CCodec::querySupportedParameters(std::vector<std::string> *names) {
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
return config->querySupportedParameters(names);
}
status_t CCodec::describeParameter(
const std::string &name, CodecParameterDescriptor *desc) {
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
return config->describe(name, desc);
}
status_t CCodec::subscribeToParameters(const std::vector<std::string> &names) {
std::shared_ptr<Codec2Client::Component> comp = mState.lock()->comp;
if (!comp) {
return INVALID_OPERATION;
}
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
return config->subscribeToVendorConfigUpdate(comp, names);
}
status_t CCodec::unsubscribeFromParameters(const std::vector<std::string> &names) {
std::shared_ptr<Codec2Client::Component> comp = mState.lock()->comp;
if (!comp) {
return INVALID_OPERATION;
}
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
return config->unsubscribeFromVendorConfigUpdate(comp, names);
}
void CCodec::onWorkDone(std::list<std::unique_ptr<C2Work>> &workItems) {
if (!workItems.empty()) {
Mutexed<std::list<std::unique_ptr<C2Work>>>::Locked queue(mWorkDoneQueue);
bool shouldPost = queue->empty();
queue->splice(queue->end(), workItems);
if (shouldPost) {
(new AMessage(kWhatWorkDone, this))->post();
}
}
}
void CCodec::onInputBufferDone(uint64_t frameIndex, size_t arrayIndex) {
mChannel->onInputBufferDone(frameIndex, arrayIndex);
if (arrayIndex == 0) {
// We always put no more than one buffer per work, if we use an input surface.
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
if (config->mInputSurface) {
config->mInputSurface->onInputBufferDone(frameIndex);
}
}
}
void CCodec::onMessageReceived(const sp<AMessage> &msg) {
TimePoint now = std::chrono::steady_clock::now();
CCodecWatchdog::getInstance()->watch(this);
switch (msg->what()) {
case kWhatAllocate: {
// C2ComponentStore::createComponent() should return within 100ms.
setDeadline(now, 1500ms, "allocate");
sp<RefBase> obj;
CHECK(msg->findObject("codecInfo", &obj));
allocate((MediaCodecInfo *)obj.get());
break;
}
case kWhatConfigure: {
// C2Component::commit_sm() should return within 5ms.
setDeadline(now, 1500ms, "configure");
sp<AMessage> format;
CHECK(msg->findMessage("format", &format));
configure(format);
break;
}
case kWhatStart: {
// C2Component::start() should return within 500ms.
setDeadline(now, 1500ms, "start");
start();
break;
}
case kWhatStop: {
// C2Component::stop() should return within 500ms.
setDeadline(now, 1500ms, "stop");
int32_t pushBlankBuffer;
if (!msg->findInt32("pushBlankBuffer", &pushBlankBuffer)) {
pushBlankBuffer = 0;
}
stop(static_cast<bool>(pushBlankBuffer));
break;
}
case kWhatFlush: {
// C2Component::flush_sm() should return within 5ms.
setDeadline(now, 1500ms, "flush");
flush();
break;
}
case kWhatRelease: {
mChannel->release();
mClient.reset();
mClientListener.reset();
break;
}
case kWhatCreateInputSurface: {
// Surface operations may be briefly blocking.
setDeadline(now, 1500ms, "createInputSurface");
createInputSurface();
break;
}
case kWhatSetInputSurface: {
// Surface operations may be briefly blocking.
setDeadline(now, 1500ms, "setInputSurface");
sp<RefBase> obj;
CHECK(msg->findObject("surface", &obj));
sp<PersistentSurface> surface(static_cast<PersistentSurface *>(obj.get()));
setInputSurface(surface);
break;
}
case kWhatWorkDone: {
std::unique_ptr<C2Work> work;
bool shouldPost = false;
{
Mutexed<std::list<std::unique_ptr<C2Work>>>::Locked queue(mWorkDoneQueue);
if (queue->empty()) {
break;
}
work.swap(queue->front());
queue->pop_front();
shouldPost = !queue->empty();
}
if (shouldPost) {
(new AMessage(kWhatWorkDone, this))->post();
}
// handle configuration changes in work done
std::shared_ptr<const C2StreamInitDataInfo::output> initData;
sp<AMessage> outputFormat = nullptr;
{
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
Config::Watcher<C2StreamInitDataInfo::output> initDataWatcher =
config->watch<C2StreamInitDataInfo::output>();
if (!work->worklets.empty()
&& (work->worklets.front()->output.flags
& C2FrameData::FLAG_DISCARD_FRAME) == 0) {
// copy buffer info to config
std::vector<std::unique_ptr<C2Param>> updates;
for (const std::unique_ptr<C2Param> &param
: work->worklets.front()->output.configUpdate) {
updates.push_back(C2Param::Copy(*param));
}
unsigned stream = 0;
std::vector<std::shared_ptr<C2Buffer>> &outputBuffers =
work->worklets.front()->output.buffers;
for (const std::shared_ptr<C2Buffer> &buf : outputBuffers) {
for (const std::shared_ptr<const C2Info> &info : buf->info()) {
// move all info into output-stream #0 domain
updates.emplace_back(
C2Param::CopyAsStream(*info, true /* output */, stream));
}
const std::vector<C2ConstGraphicBlock> blocks = buf->data().graphicBlocks();
// for now only do the first block
if (!blocks.empty()) {
// ALOGV("got output buffer with crop %u,%u+%u,%u and size %u,%u",
// block.crop().left, block.crop().top,
// block.crop().width, block.crop().height,
// block.width(), block.height());
const C2ConstGraphicBlock &block = blocks[0];
updates.emplace_back(new C2StreamCropRectInfo::output(
stream, block.crop()));
}
++stream;
}
sp<AMessage> oldFormat = config->mOutputFormat;
config->updateConfiguration(updates, config->mOutputDomain);
RevertOutputFormatIfNeeded(oldFormat, config->mOutputFormat);
// copy standard infos to graphic buffers if not already present (otherwise, we
// may overwrite the actual intermediate value with a final value)
stream = 0;
const static C2Param::Index stdGfxInfos[] = {
C2StreamRotationInfo::output::PARAM_TYPE,
C2StreamColorAspectsInfo::output::PARAM_TYPE,
C2StreamDataSpaceInfo::output::PARAM_TYPE,
C2StreamHdrStaticInfo::output::PARAM_TYPE,
C2StreamHdr10PlusInfo::output::PARAM_TYPE, // will be deprecated
C2StreamHdrDynamicMetadataInfo::output::PARAM_TYPE,
C2StreamPixelAspectRatioInfo::output::PARAM_TYPE,
C2StreamSurfaceScalingInfo::output::PARAM_TYPE
};
for (const std::shared_ptr<C2Buffer> &buf : outputBuffers) {
if (buf->data().graphicBlocks().size()) {
for (C2Param::Index ix : stdGfxInfos) {
if (!buf->hasInfo(ix)) {
const C2Param *param =
config->getConfigParameterValue(ix.withStream(stream));
if (param) {
std::shared_ptr<C2Param> info(C2Param::Copy(*param));
buf->setInfo(std::static_pointer_cast<C2Info>(info));
}
}
}
}
++stream;
}
}
if (config->mInputSurface) {
if (work->worklets.empty()
|| !work->worklets.back()
|| (work->worklets.back()->output.flags
& C2FrameData::FLAG_INCOMPLETE) == 0) {
config->mInputSurface->onInputBufferDone(work->input.ordinal.frameIndex);
}
}
if (initDataWatcher.hasChanged()) {
initData = initDataWatcher.update();
AmendOutputFormatWithCodecSpecificData(
initData->m.value, initData->flexCount(), config->mCodingMediaType,
config->mOutputFormat);
}
outputFormat = config->mOutputFormat;
}
mChannel->onWorkDone(
std::move(work), outputFormat, initData ? initData.get() : nullptr);
// log metrics to MediaCodec
if (mMetrics->countEntries() == 0) {
Mutexed<std::unique_ptr<Config>>::Locked configLocked(mConfig);
const std::unique_ptr<Config> &config = *configLocked;
uint32_t pf = PIXEL_FORMAT_UNKNOWN;
if (!config->mInputSurface) {
pf = mChannel->getBuffersPixelFormat(config->mDomain & Config::IS_ENCODER);
} else {
pf = config->mInputSurface->getPixelFormat();
}
if (pf != PIXEL_FORMAT_UNKNOWN) {
mMetrics->setInt64(kCodecPixelFormat, pf);
mCallback->onMetricsUpdated(mMetrics);
}
}
break;
}
case kWhatWatch: {
// watch message already posted; no-op.
break;
}
default: {
ALOGE("unrecognized message");
break;
}
}
setDeadline(TimePoint::max(), 0ms, "none");
}
void CCodec::setDeadline(
const TimePoint &now,
const std::chrono::milliseconds &timeout,
const char *name) {
int32_t mult = std::max(1, property_get_int32("debug.stagefright.ccodec_timeout_mult", 1));
Mutexed<NamedTimePoint>::Locked deadline(mDeadline);
deadline->set(now + (timeout * mult), name);
}
status_t CCodec::configureTunneledVideoPlayback(
std::shared_ptr<Codec2Client::Component> comp,
sp<NativeHandle> *sidebandHandle,
const sp<AMessage> &msg) {
std::vector<std::unique_ptr<C2SettingResult>> failures;
std::unique_ptr<C2PortTunneledModeTuning::output> tunneledPlayback =
C2PortTunneledModeTuning::output::AllocUnique(
1,
C2PortTunneledModeTuning::Struct::SIDEBAND,
C2PortTunneledModeTuning::Struct::REALTIME,
0);
// TODO: use KEY_AUDIO_HW_SYNC, KEY_HARDWARE_AV_SYNC_ID when they are in MediaCodecConstants.h
if (msg->findInt32("audio-hw-sync", &tunneledPlayback->m.syncId[0])) {
tunneledPlayback->m.syncType = C2PortTunneledModeTuning::Struct::sync_type_t::AUDIO_HW_SYNC;
} else if (msg->findInt32("hw-av-sync-id", &tunneledPlayback->m.syncId[0])) {
tunneledPlayback->m.syncType = C2PortTunneledModeTuning::Struct::sync_type_t::HW_AV_SYNC;
} else {
tunneledPlayback->m.syncType = C2PortTunneledModeTuning::Struct::sync_type_t::REALTIME;
tunneledPlayback->setFlexCount(0);
}
c2_status_t c2err = comp->config({ tunneledPlayback.get() }, C2_MAY_BLOCK, &failures);
if (c2err != C2_OK) {
return UNKNOWN_ERROR;
}
if (sidebandHandle == nullptr) {
return OK;
}
std::vector<std::unique_ptr<C2Param>> params;
c2err = comp->query({}, {C2PortTunnelHandleTuning::output::PARAM_TYPE}, C2_DONT_BLOCK, &params);
if (c2err == C2_OK && params.size() == 1u) {
C2PortTunnelHandleTuning::output *videoTunnelSideband =
C2PortTunnelHandleTuning::output::From(params[0].get());
// Currently, Codec2 only supports non-fd case for sideband native_handle.
native_handle_t *handle = native_handle_create(0, videoTunnelSideband->flexCount());
*sidebandHandle = NativeHandle::create(handle, true /* ownsHandle */);
if (handle != nullptr && videoTunnelSideband->flexCount()) {
memcpy(handle->data, videoTunnelSideband->m.values,
sizeof(int32_t) * videoTunnelSideband->flexCount());
return OK;
} else {
return NO_MEMORY;
}
}
return UNKNOWN_ERROR;
}
void CCodec::initiateReleaseIfStuck() {
std::string name;
bool pendingDeadline = false;
{
Mutexed<NamedTimePoint>::Locked deadline(mDeadline);
if (deadline->get() < std::chrono::steady_clock::now()) {
name = deadline->getName();
}
if (deadline->get() != TimePoint::max()) {
pendingDeadline = true;
}
}
if (name.empty()) {
// We're not stuck.
if (pendingDeadline) {
// If we are not stuck yet but still has deadline coming up,
// post watch message to check back later.
(new AMessage(kWhatWatch, this))->post();
}
return;
}
C2String compName;
{
Mutexed<State>::Locked state(mState);
if (!state->comp) {
ALOGD("previous call to %s exceeded timeout "
"and the component is already released", name.c_str());
return;
}
compName = state->comp->getName();
}
ALOGW("[%s] previous call to %s exceeded timeout", compName.c_str(), name.c_str());
initiateRelease(false);
mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
}
// static
PersistentSurface *CCodec::CreateInputSurface() {
using namespace android;
using ::android::hardware::media::omx::V1_0::implementation::TWGraphicBufferSource;
// Attempt to create a Codec2's input surface.
std::shared_ptr<Codec2Client::InputSurface> inputSurface =
Codec2Client::CreateInputSurface();
if (!inputSurface) {
if (property_get_int32("debug.stagefright.c2inputsurface", 0) == -1) {
sp<IGraphicBufferProducer> gbp;
sp<OmxGraphicBufferSource> gbs = new OmxGraphicBufferSource();
status_t err = gbs->initCheck();
if (err != OK) {
ALOGE("Failed to create persistent input surface: error %d", err);
return nullptr;
}
return new PersistentSurface(
gbs->getIGraphicBufferProducer(), new TWGraphicBufferSource(gbs));
} else {
return nullptr;
}
}
return new PersistentSurface(
inputSurface->getGraphicBufferProducer(),
static_cast<sp<android::hidl::base::V1_0::IBase>>(
inputSurface->getHalInterface()));
}
class IntfCache {
public:
IntfCache() = default;
status_t init(const std::string &name) {
std::shared_ptr<Codec2Client::Interface> intf{
Codec2Client::CreateInterfaceByName(name.c_str())};
if (!intf) {
ALOGW("IntfCache [%s]: Unrecognized interface name", name.c_str());
mInitStatus = NO_INIT;
return NO_INIT;
}
const static C2StreamUsageTuning::input sUsage{0u /* stream id */};
mFields.push_back(C2FieldSupportedValuesQuery::Possible(
C2ParamField{&sUsage, &sUsage.value}));
c2_status_t err = intf->querySupportedValues(mFields, C2_MAY_BLOCK);
if (err != C2_OK) {
ALOGW("IntfCache [%s]: failed to query usage supported value (err=%d)",
name.c_str(), err);
mFields[0].status = err;
}
std::vector<std::unique_ptr<C2Param>> params;
err = intf->query(
{&mApiFeatures},
{
C2StreamBufferTypeSetting::input::PARAM_TYPE,
C2PortAllocatorsTuning::input::PARAM_TYPE
},
C2_MAY_BLOCK,
&params);
if (err != C2_OK && err != C2_BAD_INDEX) {
ALOGW("IntfCache [%s]: failed to query api features (err=%d)",
name.c_str(), err);
}
while (!params.empty()) {
C2Param *param = params.back().release();
params.pop_back();
if (!param) {
continue;
}
if (param->type() == C2StreamBufferTypeSetting::input::PARAM_TYPE) {
mInputStreamFormat.reset(
C2StreamBufferTypeSetting::input::From(param));
} else if (param->type() == C2PortAllocatorsTuning::input::PARAM_TYPE) {
mInputAllocators.reset(
C2PortAllocatorsTuning::input::From(param));
}
}
mInitStatus = OK;
return OK;
}
status_t initCheck() const { return mInitStatus; }
const C2FieldSupportedValuesQuery &getUsageSupportedValues() const {
CHECK_EQ(1u, mFields.size());
return mFields[0];
}
const C2ApiFeaturesSetting &getApiFeatures() const {
return mApiFeatures;
}
const C2StreamBufferTypeSetting::input &getInputStreamFormat() const {
static std::unique_ptr<C2StreamBufferTypeSetting::input> sInvalidated = []{
std::unique_ptr<C2StreamBufferTypeSetting::input> param;
param.reset(new C2StreamBufferTypeSetting::input(0u, C2BufferData::INVALID));
param->invalidate();
return param;
}();
return mInputStreamFormat ? *mInputStreamFormat : *sInvalidated;
}
const C2PortAllocatorsTuning::input &getInputAllocators() const {
static std::unique_ptr<C2PortAllocatorsTuning::input> sInvalidated = []{
std::unique_ptr<C2PortAllocatorsTuning::input> param =
C2PortAllocatorsTuning::input::AllocUnique(0);
param->invalidate();
return param;
}();
return mInputAllocators ? *mInputAllocators : *sInvalidated;
}
private:
status_t mInitStatus{NO_INIT};
std::vector<C2FieldSupportedValuesQuery> mFields;
C2ApiFeaturesSetting mApiFeatures;
std::unique_ptr<C2StreamBufferTypeSetting::input> mInputStreamFormat;
std::unique_ptr<C2PortAllocatorsTuning::input> mInputAllocators;
};
static const IntfCache &GetIntfCache(const std::string &name) {
static IntfCache sNullIntfCache;
static std::mutex sMutex;
static std::map<std::string, IntfCache> sCache;
std::unique_lock<std::mutex> lock{sMutex};
auto it = sCache.find(name);
if (it == sCache.end()) {
lock.unlock();
IntfCache intfCache;
status_t err = intfCache.init(name);
if (err != OK) {
return sNullIntfCache;
}
lock.lock();
it = sCache.insert({name, std::move(intfCache)}).first;
}
return it->second;
}
static status_t GetCommonAllocatorIds(
const std::vector<std::string> &names,
C2Allocator::type_t type,
std::set<C2Allocator::id_t> *ids) {
int poolMask = GetCodec2PoolMask();
C2PlatformAllocatorStore::id_t preferredLinearId = GetPreferredLinearAllocatorId(poolMask);
C2Allocator::id_t defaultAllocatorId =
(type == C2Allocator::LINEAR) ? preferredLinearId : C2PlatformAllocatorStore::GRALLOC;
ids->clear();
if (names.empty()) {
return OK;
}
bool firstIteration = true;
for (const std::string &name : names) {
const IntfCache &intfCache = GetIntfCache(name);
if (intfCache.initCheck() != OK) {
continue;
}
const C2StreamBufferTypeSetting::input &streamFormat = intfCache.getInputStreamFormat();
if (streamFormat) {
C2Allocator::type_t allocatorType = C2Allocator::LINEAR;
if (streamFormat.value == C2BufferData::GRAPHIC
|| streamFormat.value == C2BufferData::GRAPHIC_CHUNKS) {
allocatorType = C2Allocator::GRAPHIC;
}
if (type != allocatorType) {
// requested type is not supported at input allocators
ids->clear();
ids->insert(defaultAllocatorId);
ALOGV("name(%s) does not support a type(0x%x) as input allocator."
" uses default allocator id(%d)", name.c_str(), type, defaultAllocatorId);
break;
}
}
const C2PortAllocatorsTuning::input &allocators = intfCache.getInputAllocators();
if (firstIteration) {
firstIteration = false;
if (allocators && allocators.flexCount() > 0) {
ids->insert(allocators.m.values,
allocators.m.values + allocators.flexCount());
}
if (ids->empty()) {
// The component does not advertise allocators. Use default.
ids->insert(defaultAllocatorId);
}
continue;
}
bool filtered = false;
if (allocators && allocators.flexCount() > 0) {
filtered = true;
for (auto it = ids->begin(); it != ids->end(); ) {
bool found = false;
for (size_t j = 0; j < allocators.flexCount(); ++j) {
if (allocators.m.values[j] == *it) {
found = true;
break;
}
}
if (found) {
++it;
} else {
it = ids->erase(it);
}
}
}
if (!filtered) {
// The component does not advertise supported allocators. Use default.
bool containsDefault = (ids->count(defaultAllocatorId) > 0u);
if (ids->size() != (containsDefault ? 1 : 0)) {
ids->clear();
if (containsDefault) {
ids->insert(defaultAllocatorId);
}
}
}
}
// Finally, filter with pool masks
for (auto it = ids->begin(); it != ids->end(); ) {
if ((poolMask >> *it) & 1) {
++it;
} else {
it = ids->erase(it);
}
}
return OK;
}
static status_t CalculateMinMaxUsage(
const std::vector<std::string> &names, uint64_t *minUsage, uint64_t *maxUsage) {
static C2StreamUsageTuning::input sUsage{0u /* stream id */};
*minUsage = 0;
*maxUsage = ~0ull;
for (const std::string &name : names) {
const IntfCache &intfCache = GetIntfCache(name);
if (intfCache.initCheck() != OK) {
continue;
}
const C2FieldSupportedValuesQuery &usageSupportedValues =
intfCache.getUsageSupportedValues();
if (usageSupportedValues.status != C2_OK) {
continue;
}
const C2FieldSupportedValues &supported = usageSupportedValues.values;
if (supported.type != C2FieldSupportedValues::FLAGS) {
continue;
}
if (supported.values.empty()) {
*maxUsage = 0;
continue;
}
if (supported.values.size() > 1) {
*minUsage |= supported.values[1].u64;
} else {
*minUsage |= supported.values[0].u64;
}
int64_t currentMaxUsage = 0;
for (const C2Value::Primitive &flags : supported.values) {
currentMaxUsage |= flags.u64;
}
*maxUsage &= currentMaxUsage;
}
return OK;
}
// static
status_t CCodec::CanFetchLinearBlock(
const std::vector<std::string> &names, const C2MemoryUsage &usage, bool *isCompatible) {
for (const std::string &name : names) {
const IntfCache &intfCache = GetIntfCache(name);
if (intfCache.initCheck() != OK) {
continue;
}
const C2ApiFeaturesSetting &features = intfCache.getApiFeatures();
if (features && !(features.value & API_SAME_INPUT_BUFFER)) {
*isCompatible = false;
return OK;
}
}
std::set<C2Allocator::id_t> allocators;
GetCommonAllocatorIds(names, C2Allocator::LINEAR, &allocators);
if (allocators.empty()) {
*isCompatible = false;
return OK;
}
uint64_t minUsage = 0;
uint64_t maxUsage = ~0ull;
CalculateMinMaxUsage(names, &minUsage, &maxUsage);
minUsage |= usage.expected;
*isCompatible = ((maxUsage & minUsage) == minUsage);
return OK;
}
static std::shared_ptr<C2BlockPool> GetPool(C2Allocator::id_t allocId) {
static std::mutex sMutex{};
static std::map<C2Allocator::id_t, std::shared_ptr<C2BlockPool>> sPools;
std::unique_lock<std::mutex> lock{sMutex};
std::shared_ptr<C2BlockPool> pool;
auto it = sPools.find(allocId);
if (it == sPools.end()) {
c2_status_t err = CreateCodec2BlockPool(allocId, nullptr, &pool);
if (err == OK) {
sPools.emplace(allocId, pool);
} else {
pool.reset();
}
} else {
pool = it->second;
}
return pool;
}
// static
std::shared_ptr<C2LinearBlock> CCodec::FetchLinearBlock(
size_t capacity, const C2MemoryUsage &usage, const std::vector<std::string> &names) {
std::set<C2Allocator::id_t> allocators;
GetCommonAllocatorIds(names, C2Allocator::LINEAR, &allocators);
if (allocators.empty()) {
allocators.insert(C2PlatformAllocatorStore::DEFAULT_LINEAR);
}
uint64_t minUsage = 0;
uint64_t maxUsage = ~0ull;
CalculateMinMaxUsage(names, &minUsage, &maxUsage);
minUsage |= usage.expected;
if ((maxUsage & minUsage) != minUsage) {
allocators.clear();
allocators.insert(C2PlatformAllocatorStore::DEFAULT_LINEAR);
}
std::shared_ptr<C2LinearBlock> block;
for (C2Allocator::id_t allocId : allocators) {
std::shared_ptr<C2BlockPool> pool = GetPool(allocId);
if (!pool) {
continue;
}
c2_status_t err = pool->fetchLinearBlock(capacity, C2MemoryUsage{minUsage}, &block);
if (err != C2_OK || !block) {
block.reset();
continue;
}
break;
}
return block;
}
// static
status_t CCodec::CanFetchGraphicBlock(
const std::vector<std::string> &names, bool *isCompatible) {
uint64_t minUsage = 0;
uint64_t maxUsage = ~0ull;
std::set<C2Allocator::id_t> allocators;
GetCommonAllocatorIds(names, C2Allocator::GRAPHIC, &allocators);
if (allocators.empty()) {
*isCompatible = false;
return OK;
}
CalculateMinMaxUsage(names, &minUsage, &maxUsage);
*isCompatible = ((maxUsage & minUsage) == minUsage);
return OK;
}
// static
std::shared_ptr<C2GraphicBlock> CCodec::FetchGraphicBlock(
int32_t width,
int32_t height,
int32_t format,
uint64_t usage,
const std::vector<std::string> &names) {
uint32_t halPixelFormat = HAL_PIXEL_FORMAT_YCBCR_420_888;
if (!C2Mapper::mapPixelFormatFrameworkToCodec(format, &halPixelFormat)) {
ALOGD("Unrecognized pixel format: %d", format);
return nullptr;
}
uint64_t minUsage = 0;
uint64_t maxUsage = ~0ull;
std::set<C2Allocator::id_t> allocators;
GetCommonAllocatorIds(names, C2Allocator::GRAPHIC, &allocators);
if (allocators.empty()) {
allocators.insert(C2PlatformAllocatorStore::DEFAULT_GRAPHIC);
}
CalculateMinMaxUsage(names, &minUsage, &maxUsage);
minUsage |= usage;
if ((maxUsage & minUsage) != minUsage) {
allocators.clear();
allocators.insert(C2PlatformAllocatorStore::DEFAULT_GRAPHIC);
}
std::shared_ptr<C2GraphicBlock> block;
for (C2Allocator::id_t allocId : allocators) {
std::shared_ptr<C2BlockPool> pool;
c2_status_t err = CreateCodec2BlockPool(allocId, nullptr, &pool);
if (err != C2_OK || !pool) {
continue;
}
err = pool->fetchGraphicBlock(
width, height, halPixelFormat, C2MemoryUsage{minUsage}, &block);
if (err != C2_OK || !block) {
block.reset();
continue;
}
break;
}
return block;
}
} // namespace android