| /* |
| * Copyright 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_INTERPOLATOR_H |
| #define ANDROID_INTERPOLATOR_H |
| |
| #include <map> |
| #include <sstream> |
| #include <unordered_map> |
| |
| #include <binder/Parcel.h> |
| #include <utils/RefBase.h> |
| |
| #pragma push_macro("LOG_TAG") |
| #undef LOG_TAG |
| #define LOG_TAG "Interpolator" |
| |
| namespace android { |
| |
| /* |
| * A general purpose spline interpolator class which takes a set of points |
| * and performs interpolation. This is used for the VolumeShaper class. |
| */ |
| |
| template <typename S, typename T> |
| class Interpolator : public std::map<S, T> { |
| public: |
| // Polynomial spline interpolators |
| // Extend only at the end of enum, as this must match order in VolumeShapers.java. |
| enum InterpolatorType : int32_t { |
| INTERPOLATOR_TYPE_STEP, // Not continuous |
| INTERPOLATOR_TYPE_LINEAR, // C0 |
| INTERPOLATOR_TYPE_CUBIC, // C1 |
| INTERPOLATOR_TYPE_CUBIC_MONOTONIC, // C1 (to provide locally monotonic curves) |
| // INTERPOLATOR_TYPE_CUBIC_C2, // TODO - requires global computation / cache |
| }; |
| |
| explicit Interpolator( |
| InterpolatorType interpolatorType = INTERPOLATOR_TYPE_LINEAR, |
| bool cache = true) |
| : mCache(cache) |
| , mFirstSlope(0) |
| , mLastSlope(0) { |
| setInterpolatorType(interpolatorType); |
| } |
| |
| std::pair<S, T> first() const { |
| return *this->begin(); |
| } |
| |
| std::pair<S, T> last() const { |
| return *this->rbegin(); |
| } |
| |
| // find the corresponding Y point from a X point. |
| T findY(S x) { // logically const, but modifies cache |
| auto high = this->lower_bound(x); |
| // greater than last point |
| if (high == this->end()) { |
| return this->rbegin()->second; |
| } |
| // at or before first point |
| if (high == this->begin()) { |
| return high->second; |
| } |
| // go lower. |
| auto low = high; |
| --low; |
| |
| // now that we have two adjacent points: |
| switch (mInterpolatorType) { |
| case INTERPOLATOR_TYPE_STEP: |
| return high->first == x ? high->second : low->second; |
| case INTERPOLATOR_TYPE_LINEAR: |
| return ((high->first - x) * low->second + (x - low->first) * high->second) |
| / (high->first - low->first); |
| case INTERPOLATOR_TYPE_CUBIC: |
| case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: |
| default: { |
| // See https://en.wikipedia.org/wiki/Cubic_Hermite_spline |
| |
| const S interval = high->first - low->first; |
| |
| // check to see if we've cached the polynomial coefficients |
| if (mMemo.count(low->first) != 0) { |
| const S t = (x - low->first) / interval; |
| const S t2 = t * t; |
| const auto &memo = mMemo[low->first]; |
| return low->second + std::get<0>(memo) * t |
| + (std::get<1>(memo) + std::get<2>(memo) * t) * t2; |
| } |
| |
| // find the neighboring points (low2 < low < high < high2) |
| auto low2 = this->end(); |
| if (low != this->begin()) { |
| low2 = low; |
| --low2; // decrementing this->begin() is undefined |
| } |
| auto high2 = high; |
| ++high2; |
| |
| // you could have catmullRom with monotonic or |
| // non catmullRom (finite difference) with regular cubic; |
| // the choices here minimize computation. |
| bool monotonic, catmullRom; |
| if (mInterpolatorType == INTERPOLATOR_TYPE_CUBIC_MONOTONIC) { |
| monotonic = true; |
| catmullRom = false; |
| } else { |
| monotonic = false; |
| catmullRom = true; |
| } |
| |
| // secants are only needed for finite difference splines or |
| // monotonic computation. |
| // we use lazy computation here - if we precompute in |
| // a single pass, duplicate secant computations may be avoided. |
| S sec, sec0, sec1; |
| if (!catmullRom || monotonic) { |
| sec = (high->second - low->second) / interval; |
| sec0 = low2 != this->end() |
| ? (low->second - low2->second) / (low->first - low2->first) |
| : mFirstSlope; |
| sec1 = high2 != this->end() |
| ? (high2->second - high->second) / (high2->first - high->first) |
| : mLastSlope; |
| } |
| |
| // compute the tangent slopes at the control points |
| S m0, m1; |
| if (catmullRom) { |
| // Catmull-Rom spline |
| m0 = low2 != this->end() |
| ? (high->second - low2->second) / (high->first - low2->first) |
| : mFirstSlope; |
| |
| m1 = high2 != this->end() |
| ? (high2->second - low->second) / (high2->first - low->first) |
| : mLastSlope; |
| } else { |
| // finite difference spline |
| m0 = (sec0 + sec) * 0.5f; |
| m1 = (sec1 + sec) * 0.5f; |
| } |
| |
| if (monotonic) { |
| // https://en.wikipedia.org/wiki/Monotone_cubic_interpolation |
| // A sufficient condition for Fritsch–Carlson monotonicity is constraining |
| // (1) the normalized slopes to be within the circle of radius 3, or |
| // (2) the normalized slopes to be within the square of radius 3. |
| // Condition (2) is more generous and easier to compute. |
| const S maxSlope = 3 * sec; |
| m0 = constrainSlope(m0, maxSlope); |
| m1 = constrainSlope(m1, maxSlope); |
| |
| m0 = constrainSlope(m0, 3 * sec0); |
| m1 = constrainSlope(m1, 3 * sec1); |
| } |
| |
| const S t = (x - low->first) / interval; |
| const S t2 = t * t; |
| if (mCache) { |
| // convert to cubic polynomial coefficients and compute |
| m0 *= interval; |
| m1 *= interval; |
| const T dy = high->second - low->second; |
| const S c0 = low->second; |
| const S c1 = m0; |
| const S c2 = 3 * dy - 2 * m0 - m1; |
| const S c3 = m0 + m1 - 2 * dy; |
| mMemo[low->first] = std::make_tuple(c1, c2, c3); |
| return c0 + c1 * t + (c2 + c3 * t) * t2; |
| } else { |
| // classic Hermite interpolation |
| const S t3 = t2 * t; |
| const S h00 = 2 * t3 - 3 * t2 + 1; |
| const S h10 = t3 - 2 * t2 + t ; |
| const S h01 = -2 * t3 + 3 * t2 ; |
| const S h11 = t3 - t2 ; |
| return h00 * low->second + (h10 * m0 + h11 * m1) * interval + h01 * high->second; |
| } |
| } // default |
| } |
| } |
| |
| InterpolatorType getInterpolatorType() const { |
| return mInterpolatorType; |
| } |
| |
| status_t setInterpolatorType(InterpolatorType interpolatorType) { |
| switch (interpolatorType) { |
| case INTERPOLATOR_TYPE_STEP: // Not continuous |
| case INTERPOLATOR_TYPE_LINEAR: // C0 |
| case INTERPOLATOR_TYPE_CUBIC: // C1 |
| case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: // C1 + other constraints |
| // case INTERPOLATOR_TYPE_CUBIC_C2: |
| mInterpolatorType = interpolatorType; |
| return NO_ERROR; |
| default: |
| ALOGE("invalid interpolatorType: %d", interpolatorType); |
| return BAD_VALUE; |
| } |
| } |
| |
| T getFirstSlope() const { |
| return mFirstSlope; |
| } |
| |
| void setFirstSlope(T slope) { |
| mFirstSlope = slope; |
| } |
| |
| T getLastSlope() const { |
| return mLastSlope; |
| } |
| |
| void setLastSlope(T slope) { |
| mLastSlope = slope; |
| } |
| |
| void clearCache() { |
| mMemo.clear(); |
| } |
| |
| status_t writeToParcel(Parcel *parcel) const { |
| if (parcel == nullptr) { |
| return BAD_VALUE; |
| } |
| status_t res = parcel->writeInt32(mInterpolatorType) |
| ?: parcel->writeFloat(mFirstSlope) |
| ?: parcel->writeFloat(mLastSlope) |
| ?: parcel->writeUint32((uint32_t)this->size()); // silent truncation |
| if (res != NO_ERROR) { |
| return res; |
| } |
| for (const auto &pt : *this) { |
| res = parcel->writeFloat(pt.first) |
| ?: parcel->writeFloat(pt.second); |
| if (res != NO_ERROR) { |
| return res; |
| } |
| } |
| return NO_ERROR; |
| } |
| |
| status_t readFromParcel(const Parcel &parcel) { |
| this->clear(); |
| int32_t type; |
| uint32_t size; |
| status_t res = parcel.readInt32(&type) |
| ?: parcel.readFloat(&mFirstSlope) |
| ?: parcel.readFloat(&mLastSlope) |
| ?: parcel.readUint32(&size) |
| ?: setInterpolatorType((InterpolatorType)type); |
| if (res != NO_ERROR) { |
| return res; |
| } |
| // Note: We don't need to check size is within some bounds as |
| // the Parcel read will fail if size is incorrectly specified too large. |
| float lastx; |
| for (uint32_t i = 0; i < size; ++i) { |
| float x, y; |
| res = parcel.readFloat(&x) |
| ?: parcel.readFloat(&y); |
| if (res != NO_ERROR) { |
| return res; |
| } |
| if ((i > 0 && !(x > lastx)) /* handle nan */ |
| || y != y /* handle nan */) { |
| // This is a std::map object which imposes sorted order |
| // automatically on emplace. |
| // Nevertheless for reading from a Parcel, |
| // we require that the points be specified monotonic in x. |
| return BAD_VALUE; |
| } |
| this->emplace(x, y); |
| lastx = x; |
| } |
| return NO_ERROR; |
| } |
| |
| std::string toString() const { |
| std::stringstream ss; |
| ss << "Interpolator{mInterpolatorType=" << static_cast<int32_t>(mInterpolatorType); |
| ss << ", mFirstSlope=" << mFirstSlope; |
| ss << ", mLastSlope=" << mLastSlope; |
| ss << ", {"; |
| bool first = true; |
| for (const auto &pt : *this) { |
| if (first) { |
| first = false; |
| ss << "{"; |
| } else { |
| ss << ", {"; |
| } |
| ss << pt.first << ", " << pt.second << "}"; |
| } |
| ss << "}}"; |
| return ss.str(); |
| } |
| |
| private: |
| static S constrainSlope(S slope, S maxSlope) { |
| if (maxSlope > 0) { |
| slope = std::min(slope, maxSlope); |
| slope = std::max(slope, S(0)); // not globally monotonic |
| } else { |
| slope = std::max(slope, maxSlope); |
| slope = std::min(slope, S(0)); // not globally monotonic |
| } |
| return slope; |
| } |
| |
| InterpolatorType mInterpolatorType; |
| bool mCache; // whether we cache spline coefficient computation |
| |
| // for cubic interpolation, the boundary conditions in slope. |
| S mFirstSlope; |
| S mLastSlope; |
| |
| // spline cubic polynomial coefficient cache |
| std::unordered_map<S, std::tuple<S /* c1 */, S /* c2 */, S /* c3 */>> mMemo; |
| }; // Interpolator |
| |
| } // namespace android |
| |
| #pragma pop_macro("LOG_TAG") |
| |
| #endif // ANDROID_INTERPOLATOR_H |