blob: 4f79dd62bb76b4c62b5329ca9ff5a91f4e502fd1 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "FastMixerDumpState"
//#define LOG_NDEBUG 0
#include "Configuration.h"
#ifdef FAST_THREAD_STATISTICS
#include <audio_utils/Statistics.h>
#ifdef CPU_FREQUENCY_STATISTICS
#include <cpustats/ThreadCpuUsage.h>
#endif
#endif
#include <utils/Log.h>
#include "FastMixerDumpState.h"
namespace android {
// helper function called by qsort()
static int compare_uint32_t(const void *pa, const void *pb)
{
const uint32_t a = *(const uint32_t *)pa;
const uint32_t b = *(const uint32_t *)pb;
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else {
return 0;
}
}
void FastMixerDumpState::dump(int fd) const
{
if (mCommand == FastMixerState::INITIAL) {
dprintf(fd, " FastMixer not initialized\n");
return;
}
const double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1000.0) +
(mMeasuredWarmupTs.tv_nsec / 1000000.0);
const double mixPeriodSec = (double) mFrameCount / mSampleRate;
dprintf(fd, " FastMixer command=%s writeSequence=%u framesWritten=%u\n"
" numTracks=%u writeErrors=%u underruns=%u overruns=%u\n"
" sampleRate=%u frameCount=%zu measuredWarmup=%.3g ms, warmupCycles=%u\n"
" mixPeriod=%.2f ms latency=%.2f ms\n",
FastMixerState::commandToString(mCommand), mWriteSequence, mFramesWritten,
mNumTracks, mWriteErrors, mUnderruns, mOverruns,
mSampleRate, mFrameCount, measuredWarmupMs, mWarmupCycles,
mixPeriodSec * 1e3, mLatencyMs);
dprintf(fd, " FastMixer Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
#ifdef FAST_THREAD_STATISTICS
// find the interval of valid samples
const uint32_t bounds = mBounds;
const uint32_t newestOpen = bounds & 0xFFFF;
uint32_t oldestClosed = bounds >> 16;
//uint32_t n = (newestOpen - oldestClosed) & 0xFFFF;
uint32_t n;
__builtin_sub_overflow(newestOpen, oldestClosed, &n);
n &= 0xFFFF;
if (n > mSamplingN) {
ALOGE("too many samples %u", n);
n = mSamplingN;
}
// statistics for monotonic (wall clock) time, thread raw CPU load in time, CPU clock frequency,
// and adjusted CPU load in MHz normalized for CPU clock frequency
audio_utils::Statistics<double> wall, loadNs;
#ifdef CPU_FREQUENCY_STATISTICS
audio_utils::Statistics<double> kHz, loadMHz;
uint32_t previousCpukHz = 0;
#endif
// Assuming a normal distribution for cycle times, three standard deviations on either side of
// the mean account for 99.73% of the population. So if we take each tail to be 1/1000 of the
// sample set, we get 99.8% combined, or close to three standard deviations.
static const uint32_t kTailDenominator = 1000;
uint32_t *tail = n >= kTailDenominator ? new uint32_t[n] : nullptr;
// loop over all the samples
for (uint32_t j = 0; j < n; ++j) {
const size_t i = oldestClosed++ & (mSamplingN - 1);
const uint32_t wallNs = mMonotonicNs[i];
if (tail != nullptr) {
tail[j] = wallNs;
}
wall.add(wallNs);
const uint32_t sampleLoadNs = mLoadNs[i];
loadNs.add(sampleLoadNs);
#ifdef CPU_FREQUENCY_STATISTICS
uint32_t sampleCpukHz = mCpukHz[i];
// skip bad kHz samples
if ((sampleCpukHz & ~0xF) != 0) {
kHz.add(sampleCpukHz >> 4);
if (sampleCpukHz == previousCpukHz) {
double megacycles = (double) sampleLoadNs * (double) (sampleCpukHz >> 4) * 1e-12;
double adjMHz = megacycles / mixPeriodSec; // _not_ wallNs * 1e9
loadMHz.add(adjMHz);
}
}
previousCpukHz = sampleCpukHz;
#endif
}
if (n) {
dprintf(fd, " Simple moving statistics over last %.1f seconds:\n",
wall.getN() * mixPeriodSec);
dprintf(fd, " wall clock time in ms per mix cycle:\n"
" mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
wall.getMean()*1e-6, wall.getMin()*1e-6, wall.getMax()*1e-6,
wall.getStdDev()*1e-6);
dprintf(fd, " raw CPU load in us per mix cycle:\n"
" mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
loadNs.getMean()*1e-3, loadNs.getMin()*1e-3, loadNs.getMax()*1e-3,
loadNs.getStdDev()*1e-3);
} else {
dprintf(fd, " No FastMixer statistics available currently\n");
}
#ifdef CPU_FREQUENCY_STATISTICS
dprintf(fd, " CPU clock frequency in MHz:\n"
" mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
kHz.getMean()*1e-3, kHz.getMin()*1e-3, kHz.getMax()*1e-3, kHz.getStdDev()*1e-3);
dprintf(fd, " adjusted CPU load in MHz (i.e. normalized for CPU clock frequency):\n"
" mean=%.1f min=%.1f max=%.1f stddev=%.1f\n",
loadMHz.getMean(), loadMHz.getMin(), loadMHz.getMax(), loadMHz.getStdDev());
#endif
if (tail != nullptr) {
qsort(tail, n, sizeof(uint32_t), compare_uint32_t);
// assume same number of tail samples on each side, left and right
const uint32_t count = n / kTailDenominator;
audio_utils::Statistics<double> left, right;
for (uint32_t i = 0; i < count; ++i) {
left.add(tail[i]);
right.add(tail[n - (i + 1)]);
}
dprintf(fd, " Distribution of mix cycle times in ms for the tails "
"(> ~3 stddev outliers):\n"
" left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n"
" right tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
left.getMean()*1e-6, left.getMin()*1e-6, left.getMax()*1e-6, left.getStdDev()*1e-6,
right.getMean()*1e-6, right.getMin()*1e-6, right.getMax()*1e-6,
right.getStdDev()*1e-6);
delete[] tail;
}
#endif
// The active track mask and track states are updated non-atomically.
// So if we relied on isActive to decide whether to display,
// then we might display an obsolete track or omit an active track.
// Instead we always display all tracks, with an indication
// of whether we think the track is active.
uint32_t trackMask = mTrackMask;
dprintf(fd, " Fast tracks: sMaxFastTracks=%u activeMask=%#x\n",
FastMixerState::sMaxFastTracks, trackMask);
dprintf(fd, " Index Active Full Partial Empty Recent Ready Written\n");
for (uint32_t i = 0; i < FastMixerState::sMaxFastTracks; ++i, trackMask >>= 1) {
const bool isActive = trackMask & 1;
const FastTrackDump *ftDump = &mTracks[i];
const FastTrackUnderruns& underruns = ftDump->mUnderruns;
const char *mostRecent;
switch (underruns.mBitFields.mMostRecent) {
case UNDERRUN_FULL:
mostRecent = "full";
break;
case UNDERRUN_PARTIAL:
mostRecent = "partial";
break;
case UNDERRUN_EMPTY:
mostRecent = "empty";
break;
default:
mostRecent = "?";
break;
}
dprintf(fd, " %5u %6s %4u %7u %5u %7s %5zu %10lld\n",
i, isActive ? "yes" : "no",
(underruns.mBitFields.mFull) & UNDERRUN_MASK,
(underruns.mBitFields.mPartial) & UNDERRUN_MASK,
(underruns.mBitFields.mEmpty) & UNDERRUN_MASK,
mostRecent, ftDump->mFramesReady,
(long long)ftDump->mFramesWritten);
}
}
} // namespace android