| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "system/graphics-base-v1.0.h" |
| #include "system/graphics-base-v1.1.h" |
| #define LOG_TAG "CameraProviderManager" |
| #define ATRACE_TAG ATRACE_TAG_CAMERA |
| //#define LOG_NDEBUG 0 |
| |
| #include "CameraProviderManager.h" |
| |
| #include <aidl/android/hardware/camera/device/ICameraDevice.h> |
| |
| #include <algorithm> |
| #include <chrono> |
| #include "common/DepthPhotoProcessor.h" |
| #include "hidl/HidlProviderInfo.h" |
| #include "aidl/AidlProviderInfo.h" |
| #include <dlfcn.h> |
| #include <future> |
| #include <inttypes.h> |
| #include <android/binder_manager.h> |
| #include <android/hidl/manager/1.2/IServiceManager.h> |
| #include <hidl/ServiceManagement.h> |
| #include <com_android_internal_camera_flags.h> |
| #include <functional> |
| #include <camera_metadata_hidden.h> |
| #include <android-base/parseint.h> |
| #include <android-base/logging.h> |
| #include <cutils/properties.h> |
| #include <hwbinder/IPCThreadState.h> |
| #include <utils/Trace.h> |
| #include <ui/PublicFormat.h> |
| #include <camera/StringUtils.h> |
| |
| #include "api2/HeicCompositeStream.h" |
| #include "device3/ZoomRatioMapper.h" |
| |
| namespace android { |
| |
| using namespace ::android::hardware::camera; |
| using namespace ::android::camera3; |
| using android::hardware::camera::common::V1_0::Status; |
| using namespace camera3::SessionConfigurationUtils; |
| using std::literals::chrono_literals::operator""s; |
| using hardware::camera2::utils::CameraIdAndSessionConfiguration; |
| |
| namespace flags = com::android::internal::camera::flags; |
| |
| namespace { |
| const bool kEnableLazyHal(property_get_bool("ro.camera.enableLazyHal", false)); |
| const std::string kExternalProviderName = "external/0"; |
| } // anonymous namespace |
| |
| const float CameraProviderManager::kDepthARTolerance = .1f; |
| const bool CameraProviderManager::kFrameworkJpegRDisabled = |
| property_get_bool("ro.camera.disableJpegR", false); |
| |
| CameraProviderManager::HidlServiceInteractionProxyImpl |
| CameraProviderManager::sHidlServiceInteractionProxy{}; |
| |
| CameraProviderManager::~CameraProviderManager() { |
| } |
| |
| const char* FrameworkTorchStatusToString(const TorchModeStatus& s) { |
| switch (s) { |
| case TorchModeStatus::NOT_AVAILABLE: |
| return "NOT_AVAILABLE"; |
| case TorchModeStatus::AVAILABLE_OFF: |
| return "AVAILABLE_OFF"; |
| case TorchModeStatus::AVAILABLE_ON: |
| return "AVAILABLE_ON"; |
| } |
| ALOGW("Unexpected HAL torch mode status code %d", s); |
| return "UNKNOWN_STATUS"; |
| } |
| |
| const char* FrameworkDeviceStatusToString(const CameraDeviceStatus& s) { |
| switch (s) { |
| case CameraDeviceStatus::NOT_PRESENT: |
| return "NOT_PRESENT"; |
| case CameraDeviceStatus::PRESENT: |
| return "PRESENT"; |
| case CameraDeviceStatus::ENUMERATING: |
| return "ENUMERATING"; |
| } |
| ALOGW("Unexpected HAL device status code %d", s); |
| return "UNKNOWN_STATUS"; |
| } |
| |
| hardware::hidl_vec<hardware::hidl_string> |
| CameraProviderManager::HidlServiceInteractionProxyImpl::listServices() { |
| hardware::hidl_vec<hardware::hidl_string> ret; |
| auto manager = hardware::defaultServiceManager1_2(); |
| if (manager != nullptr) { |
| manager->listManifestByInterface(provider::V2_4::ICameraProvider::descriptor, |
| [&ret](const hardware::hidl_vec<hardware::hidl_string> ®istered) { |
| ret = registered; |
| }); |
| } |
| return ret; |
| } |
| |
| status_t CameraProviderManager::tryToInitAndAddHidlProvidersLocked( |
| HidlServiceInteractionProxy *hidlProxy) { |
| mHidlServiceProxy = hidlProxy; |
| // Registering will trigger notifications for all already-known providers |
| bool success = mHidlServiceProxy->registerForNotifications( |
| /* instance name, empty means no filter */ "", |
| this); |
| if (!success) { |
| ALOGE("%s: Unable to register with hardware service manager for notifications " |
| "about camera providers", __FUNCTION__); |
| return INVALID_OPERATION; |
| } |
| |
| for (const auto& instance : mHidlServiceProxy->listServices()) { |
| this->addHidlProviderLocked(instance); |
| } |
| return OK; |
| } |
| |
| static std::string getFullAidlProviderName(const std::string instance) { |
| std::string aidlHalServiceDescriptor = |
| std::string(aidl::android::hardware::camera::provider::ICameraProvider::descriptor); |
| return aidlHalServiceDescriptor + "/" + instance; |
| } |
| |
| status_t CameraProviderManager::tryToAddAidlProvidersLocked() { |
| const char * aidlHalServiceDescriptor = |
| aidl::android::hardware::camera::provider::ICameraProvider::descriptor; |
| auto sm = defaultServiceManager(); |
| auto aidlProviders = sm->getDeclaredInstances( |
| String16(aidlHalServiceDescriptor)); |
| for (const auto &aidlInstance : aidlProviders) { |
| std::string aidlServiceName = |
| getFullAidlProviderName(toStdString(aidlInstance)); |
| auto res = sm->registerForNotifications(String16(aidlServiceName.c_str()), this); |
| if (res != OK) { |
| ALOGE("%s Unable to register for notifications with AIDL service manager", |
| __FUNCTION__); |
| return res; |
| } |
| addAidlProviderLocked(aidlServiceName); |
| } |
| return OK; |
| } |
| |
| status_t CameraProviderManager::initialize(wp<CameraProviderManager::StatusListener> listener, |
| HidlServiceInteractionProxy* hidlProxy) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| if (hidlProxy == nullptr) { |
| ALOGE("%s: No valid service interaction proxy provided", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| mListener = listener; |
| mDeviceState = 0; |
| auto res = tryToInitAndAddHidlProvidersLocked(hidlProxy); |
| if (res != OK) { |
| // Logging done in called function; |
| return res; |
| } |
| res = tryToAddAidlProvidersLocked(); |
| |
| IPCThreadState::self()->flushCommands(); |
| |
| return res; |
| } |
| |
| std::pair<int, int> CameraProviderManager::getCameraCount() const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| int systemCameraCount = 0; |
| int publicCameraCount = 0; |
| for (auto& provider : mProviders) { |
| for (auto &id : provider->mUniqueCameraIds) { |
| SystemCameraKind deviceKind = SystemCameraKind::PUBLIC; |
| if (getSystemCameraKindLocked(id, &deviceKind) != OK) { |
| ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, id.c_str()); |
| continue; |
| } |
| switch(deviceKind) { |
| case SystemCameraKind::PUBLIC: |
| publicCameraCount++; |
| break; |
| case SystemCameraKind::SYSTEM_ONLY_CAMERA: |
| systemCameraCount++; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| return std::make_pair(systemCameraCount, publicCameraCount); |
| } |
| |
| std::vector<std::string> CameraProviderManager::getCameraDeviceIds(std::unordered_map< |
| std::string, std::set<std::string>>* unavailablePhysicalIds) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| std::vector<std::string> deviceIds; |
| for (auto& provider : mProviders) { |
| for (auto& id : provider->mUniqueCameraIds) { |
| deviceIds.push_back(id); |
| if (unavailablePhysicalIds != nullptr && |
| provider->mUnavailablePhysicalCameras.count(id) > 0) { |
| (*unavailablePhysicalIds)[id] = provider->mUnavailablePhysicalCameras.at(id); |
| } |
| } |
| } |
| return deviceIds; |
| } |
| |
| void CameraProviderManager::collectDeviceIdsLocked(const std::vector<std::string> deviceIds, |
| std::vector<std::string>& publicDeviceIds, |
| std::vector<std::string>& systemDeviceIds) const { |
| for (auto &deviceId : deviceIds) { |
| SystemCameraKind deviceKind = SystemCameraKind::PUBLIC; |
| if (getSystemCameraKindLocked(deviceId, &deviceKind) != OK) { |
| ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, deviceId.c_str()); |
| continue; |
| } |
| if (deviceKind == SystemCameraKind::SYSTEM_ONLY_CAMERA) { |
| systemDeviceIds.push_back(deviceId); |
| } else { |
| publicDeviceIds.push_back(deviceId); |
| } |
| } |
| } |
| |
| std::vector<std::string> CameraProviderManager::getAPI1CompatibleCameraDeviceIds() const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| std::vector<std::string> publicDeviceIds; |
| std::vector<std::string> systemDeviceIds; |
| std::vector<std::string> deviceIds; |
| for (auto& provider : mProviders) { |
| std::vector<std::string> providerDeviceIds = provider->mUniqueAPI1CompatibleCameraIds; |
| // Secure cameras should not be exposed through camera 1 api |
| providerDeviceIds.erase(std::remove_if(providerDeviceIds.begin(), providerDeviceIds.end(), |
| [this](const std::string& s) { |
| SystemCameraKind deviceKind = SystemCameraKind::PUBLIC; |
| if (getSystemCameraKindLocked(s, &deviceKind) != OK) { |
| ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, s.c_str()); |
| return true; |
| } |
| return deviceKind == SystemCameraKind::HIDDEN_SECURE_CAMERA;}), |
| providerDeviceIds.end()); |
| // API1 app doesn't handle logical and physical camera devices well. So |
| // for each camera facing, only take the first id advertised by HAL in |
| // all [logical, physical1, physical2, ...] id combos, and filter out the rest. |
| filterLogicalCameraIdsLocked(providerDeviceIds); |
| collectDeviceIdsLocked(providerDeviceIds, publicDeviceIds, systemDeviceIds); |
| } |
| auto sortFunc = |
| [](const std::string& a, const std::string& b) -> bool { |
| uint32_t aUint = 0, bUint = 0; |
| bool aIsUint = base::ParseUint(a, &aUint); |
| bool bIsUint = base::ParseUint(b, &bUint); |
| |
| // Uint device IDs first |
| if (aIsUint && bIsUint) { |
| return aUint < bUint; |
| } else if (aIsUint) { |
| return true; |
| } else if (bIsUint) { |
| return false; |
| } |
| // Simple string compare if both id are not uint |
| return a < b; |
| }; |
| // We put device ids for system cameras at the end since they will be pared |
| // off for processes not having system camera permissions. |
| std::sort(publicDeviceIds.begin(), publicDeviceIds.end(), sortFunc); |
| std::sort(systemDeviceIds.begin(), systemDeviceIds.end(), sortFunc); |
| deviceIds.insert(deviceIds.end(), publicDeviceIds.begin(), publicDeviceIds.end()); |
| deviceIds.insert(deviceIds.end(), systemDeviceIds.begin(), systemDeviceIds.end()); |
| return deviceIds; |
| } |
| |
| bool CameraProviderManager::isValidDeviceLocked(const std::string &id, uint16_t majorVersion, |
| IPCTransport transport) const { |
| for (auto& provider : mProviders) { |
| IPCTransport providerTransport = provider->getIPCTransport(); |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == id && deviceInfo->mVersion.get_major() == majorVersion && |
| transport == providerTransport) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool CameraProviderManager::hasFlashUnit(const std::string &id) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return false; |
| |
| return deviceInfo->hasFlashUnit(); |
| } |
| |
| bool CameraProviderManager::supportNativeZoomRatio(const std::string &id) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return false; |
| |
| return deviceInfo->supportNativeZoomRatio(); |
| } |
| |
| bool CameraProviderManager::isCompositeJpegRDisabled(const std::string &id) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| return isCompositeJpegRDisabledLocked(id); |
| } |
| |
| bool CameraProviderManager::isCompositeJpegRDisabledLocked(const std::string &id) const { |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return false; |
| |
| return deviceInfo->isCompositeJpegRDisabled(); |
| } |
| |
| status_t CameraProviderManager::getResourceCost(const std::string &id, |
| CameraResourceCost* cost) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| *cost = deviceInfo->mResourceCost; |
| return OK; |
| } |
| |
| status_t CameraProviderManager::getCameraInfo(const std::string &id, |
| bool overrideToPortrait, int *portraitRotation, hardware::CameraInfo* info) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| return deviceInfo->getCameraInfo(overrideToPortrait, portraitRotation, info); |
| } |
| |
| status_t CameraProviderManager::isSessionConfigurationSupported(const std::string& id, |
| const SessionConfiguration &configuration, bool overrideForPerfClass, |
| metadataGetter getMetadata, bool *status /*out*/) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) { |
| return NAME_NOT_FOUND; |
| } |
| |
| return deviceInfo->isSessionConfigurationSupported(configuration, |
| overrideForPerfClass, getMetadata, status); |
| } |
| |
| status_t CameraProviderManager::getCameraIdIPCTransport(const std::string &id, |
| IPCTransport *providerTransport) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) { |
| return NAME_NOT_FOUND; |
| } |
| sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote(); |
| if (parentProvider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| *providerTransport = parentProvider->getIPCTransport(); |
| return OK; |
| } |
| |
| status_t CameraProviderManager::getCameraCharacteristics(const std::string &id, |
| bool overrideForPerfClass, CameraMetadata* characteristics, |
| bool overrideToPortrait) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| return getCameraCharacteristicsLocked(id, overrideForPerfClass, characteristics, |
| overrideToPortrait); |
| } |
| |
| status_t CameraProviderManager::getHighestSupportedVersion(const std::string &id, |
| hardware::hidl_version *v, IPCTransport *transport) { |
| if (v == nullptr || transport == nullptr) { |
| return BAD_VALUE; |
| } |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| hardware::hidl_version maxVersion{0,0}; |
| bool found = false; |
| IPCTransport providerTransport = IPCTransport::INVALID; |
| for (auto& provider : mProviders) { |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == id) { |
| if (deviceInfo->mVersion > maxVersion) { |
| maxVersion = deviceInfo->mVersion; |
| providerTransport = provider->getIPCTransport(); |
| found = true; |
| } |
| } |
| } |
| } |
| if (!found || providerTransport == IPCTransport::INVALID) { |
| return NAME_NOT_FOUND; |
| } |
| *v = maxVersion; |
| *transport = providerTransport; |
| return OK; |
| } |
| |
| status_t CameraProviderManager::getTorchStrengthLevel(const std::string &id, |
| int32_t* torchStrength /*out*/) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| return deviceInfo->getTorchStrengthLevel(torchStrength); |
| } |
| |
| status_t CameraProviderManager::turnOnTorchWithStrengthLevel(const std::string &id, |
| int32_t torchStrength) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| return deviceInfo->turnOnTorchWithStrengthLevel(torchStrength); |
| } |
| |
| bool CameraProviderManager::shouldSkipTorchStrengthUpdate(const std::string &id, |
| int32_t torchStrength) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| if (deviceInfo->mTorchStrengthLevel == torchStrength) { |
| ALOGV("%s: Skipping torch strength level updates prev_level: %d, new_level: %d", |
| __FUNCTION__, deviceInfo->mTorchStrengthLevel, torchStrength); |
| return true; |
| } |
| return false; |
| } |
| |
| int32_t CameraProviderManager::getTorchDefaultStrengthLevel(const std::string &id) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| return deviceInfo->mTorchDefaultStrengthLevel; |
| } |
| |
| bool CameraProviderManager::supportSetTorchMode(const std::string &id) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| for (auto& provider : mProviders) { |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == id) { |
| return provider->mSetTorchModeSupported; |
| } |
| } |
| } |
| return false; |
| } |
| |
| template <class ProviderInfoType, class HalCameraProviderType> |
| status_t CameraProviderManager::setTorchModeT(sp<ProviderInfo> &parentProvider, |
| std::shared_ptr<HalCameraProvider> *halCameraProvider) { |
| if (halCameraProvider == nullptr) { |
| return BAD_VALUE; |
| } |
| ProviderInfoType *idlProviderInfo = static_cast<ProviderInfoType *>(parentProvider.get()); |
| auto idlInterface = idlProviderInfo->startProviderInterface(); |
| if (idlInterface == nullptr) { |
| return DEAD_OBJECT; |
| } |
| *halCameraProvider = |
| std::make_shared<HalCameraProviderType>(idlInterface, idlInterface->descriptor); |
| return OK; |
| } |
| |
| status_t CameraProviderManager::setTorchMode(const std::string &id, bool enabled) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| // Pass the camera ID to start interface so that it will save it to the map of ICameraProviders |
| // that are currently in use. |
| sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote(); |
| if (parentProvider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| std::shared_ptr<HalCameraProvider> halCameraProvider = nullptr; |
| IPCTransport providerTransport = parentProvider->getIPCTransport(); |
| status_t res = OK; |
| if (providerTransport == IPCTransport::HIDL) { |
| res = setTorchModeT<HidlProviderInfo, HidlHalCameraProvider>(parentProvider, |
| &halCameraProvider); |
| if (res != OK) { |
| return res; |
| } |
| } else if (providerTransport == IPCTransport::AIDL) { |
| res = setTorchModeT<AidlProviderInfo, AidlHalCameraProvider>(parentProvider, |
| &halCameraProvider); |
| if (res != OK) { |
| return res; |
| } |
| } else { |
| ALOGE("%s Invalid provider transport", __FUNCTION__); |
| return INVALID_OPERATION; |
| } |
| saveRef(DeviceMode::TORCH, deviceInfo->mId, halCameraProvider); |
| |
| return deviceInfo->setTorchMode(enabled); |
| } |
| |
| status_t CameraProviderManager::setUpVendorTags() { |
| sp<VendorTagDescriptorCache> tagCache = new VendorTagDescriptorCache(); |
| |
| for (auto& provider : mProviders) { |
| tagCache->addVendorDescriptor(provider->mProviderTagid, provider->mVendorTagDescriptor); |
| } |
| |
| VendorTagDescriptorCache::setAsGlobalVendorTagCache(tagCache); |
| |
| return OK; |
| } |
| |
| sp<CameraProviderManager::ProviderInfo> CameraProviderManager::startExternalLazyProvider() const { |
| std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock); |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| for (const auto& providerInfo : mProviders) { |
| if (providerInfo->isExternalLazyHAL()) { |
| if (!providerInfo->successfullyStartedProviderInterface()) { |
| return nullptr; |
| } else { |
| return providerInfo; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| status_t CameraProviderManager::notifyUsbDeviceEvent(int32_t eventId, |
| const std::string& usbDeviceId) { |
| if (!kEnableLazyHal) { |
| return OK; |
| } |
| |
| ALOGV("notifySystemEvent: %d usbDeviceId : %s", eventId, usbDeviceId.c_str()); |
| |
| if (eventId == android::hardware::ICameraService::EVENT_USB_DEVICE_ATTACHED) { |
| sp<ProviderInfo> externalProvider = startExternalLazyProvider(); |
| if (externalProvider != nullptr) { |
| auto usbDevices = mExternalUsbDevicesForProvider.first; |
| usbDevices.push_back(usbDeviceId); |
| mExternalUsbDevicesForProvider = {usbDevices, externalProvider}; |
| } |
| } else if (eventId |
| == android::hardware::ICameraService::EVENT_USB_DEVICE_DETACHED) { |
| usbDeviceDetached(usbDeviceId); |
| } |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::usbDeviceDetached(const std::string &usbDeviceId) { |
| std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock); |
| std::lock_guard<std::mutex> interfaceLock(mInterfaceMutex); |
| |
| auto usbDevices = mExternalUsbDevicesForProvider.first; |
| auto foundId = std::find(usbDevices.begin(), usbDevices.end(), usbDeviceId); |
| if (foundId != usbDevices.end()) { |
| sp<ProviderInfo> providerInfo = mExternalUsbDevicesForProvider.second; |
| if (providerInfo == nullptr) { |
| ALOGE("%s No valid external provider for USB device: %s", |
| __FUNCTION__, |
| usbDeviceId.c_str()); |
| mExternalUsbDevicesForProvider = {std::vector<std::string>(), nullptr}; |
| return DEAD_OBJECT; |
| } else { |
| mInterfaceMutex.unlock(); |
| providerInfo->removeAllDevices(); |
| mInterfaceMutex.lock(); |
| mExternalUsbDevicesForProvider = {std::vector<std::string>(), nullptr}; |
| } |
| } else { |
| return DEAD_OBJECT; |
| } |
| return OK; |
| } |
| |
| status_t CameraProviderManager::notifyDeviceStateChange(int64_t newState) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| mDeviceState = newState; |
| status_t res = OK; |
| // Make a copy of mProviders because we unlock mInterfaceMutex temporarily |
| // within the loop. It's possible that during the time mInterfaceMutex is |
| // unlocked, mProviders has changed. |
| auto providers = mProviders; |
| for (auto& provider : providers) { |
| ALOGV("%s: Notifying %s for new state 0x%" PRIx64, |
| __FUNCTION__, provider->mProviderName.c_str(), newState); |
| // b/199240726 Camera providers can for example try to add/remove |
| // camera devices as part of the state change notification. Holding |
| // 'mInterfaceMutex' while calling 'notifyDeviceStateChange' can |
| // result in a recursive deadlock. |
| mInterfaceMutex.unlock(); |
| status_t singleRes = provider->notifyDeviceStateChange(mDeviceState); |
| mInterfaceMutex.lock(); |
| if (singleRes != OK) { |
| ALOGE("%s: Unable to notify provider %s about device state change", |
| __FUNCTION__, |
| provider->mProviderName.c_str()); |
| res = singleRes; |
| // continue to do the rest of the providers instead of returning now |
| } |
| provider->notifyDeviceInfoStateChangeLocked(mDeviceState); |
| } |
| return res; |
| } |
| |
| status_t CameraProviderManager::openAidlSession(const std::string &id, |
| const std::shared_ptr< |
| aidl::android::hardware::camera::device::ICameraDeviceCallback>& callback, |
| /*out*/ |
| std::shared_ptr<aidl::android::hardware::camera::device::ICameraDeviceSession> *session) { |
| |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| auto *aidlDeviceInfo3 = static_cast<AidlProviderInfo::AidlDeviceInfo3*>(deviceInfo); |
| sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote(); |
| if (parentProvider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| auto provider = |
| static_cast<AidlProviderInfo *>(parentProvider.get())->startProviderInterface(); |
| if (provider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| std::shared_ptr<HalCameraProvider> halCameraProvider = |
| std::make_shared<AidlHalCameraProvider>(provider, provider->descriptor); |
| saveRef(DeviceMode::CAMERA, id, halCameraProvider); |
| |
| auto interface = aidlDeviceInfo3->startDeviceInterface(); |
| if (interface == nullptr) { |
| removeRef(DeviceMode::CAMERA, id); |
| return DEAD_OBJECT; |
| } |
| |
| auto ret = interface->open(callback, session); |
| if (!ret.isOk()) { |
| removeRef(DeviceMode::CAMERA, id); |
| ALOGE("%s: Transaction error opening a session for camera device %s: %s", |
| __FUNCTION__, id.c_str(), ret.getMessage()); |
| return AidlProviderInfo::mapToStatusT(ret); |
| } |
| return OK; |
| } |
| |
| status_t CameraProviderManager::openAidlInjectionSession(const std::string &id, |
| const std::shared_ptr< |
| aidl::android::hardware::camera::device::ICameraDeviceCallback>& callback, |
| /*out*/ |
| std::shared_ptr< |
| aidl::android::hardware::camera::device::ICameraInjectionSession> *session) { |
| |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| auto *aidlDeviceInfo3 = static_cast<AidlProviderInfo::AidlDeviceInfo3*>(deviceInfo); |
| sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote(); |
| if (parentProvider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| auto provider = |
| static_cast<AidlProviderInfo *>(parentProvider.get())->startProviderInterface(); |
| if (provider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| std::shared_ptr<HalCameraProvider> halCameraProvider = |
| std::make_shared<AidlHalCameraProvider>(provider, provider->descriptor); |
| saveRef(DeviceMode::CAMERA, id, halCameraProvider); |
| |
| auto interface = aidlDeviceInfo3->startDeviceInterface(); |
| if (interface == nullptr) { |
| return DEAD_OBJECT; |
| } |
| |
| auto ret = interface->openInjectionSession(callback, session); |
| if (!ret.isOk()) { |
| removeRef(DeviceMode::CAMERA, id); |
| ALOGE("%s: Transaction error opening a session for camera device %s: %s", |
| __FUNCTION__, id.c_str(), ret.getMessage()); |
| return DEAD_OBJECT; |
| } |
| return OK; |
| } |
| |
| status_t CameraProviderManager::openHidlSession(const std::string &id, |
| const sp<device::V3_2::ICameraDeviceCallback>& callback, |
| /*out*/ |
| sp<device::V3_2::ICameraDeviceSession> *session) { |
| |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return NAME_NOT_FOUND; |
| |
| auto *hidlDeviceInfo3 = static_cast<HidlProviderInfo::HidlDeviceInfo3*>(deviceInfo); |
| sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote(); |
| if (parentProvider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| const sp<provider::V2_4::ICameraProvider> provider = |
| static_cast<HidlProviderInfo *>(parentProvider.get())->startProviderInterface(); |
| if (provider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| std::shared_ptr<HalCameraProvider> halCameraProvider = |
| std::make_shared<HidlHalCameraProvider>(provider, provider->descriptor); |
| saveRef(DeviceMode::CAMERA, id, halCameraProvider); |
| |
| Status status; |
| hardware::Return<void> ret; |
| auto interface = hidlDeviceInfo3->startDeviceInterface(); |
| if (interface == nullptr) { |
| return DEAD_OBJECT; |
| } |
| |
| ret = interface->open(callback, [&status, &session] |
| (Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) { |
| status = s; |
| if (status == Status::OK) { |
| *session = cameraSession; |
| } |
| }); |
| if (!ret.isOk()) { |
| removeRef(DeviceMode::CAMERA, id); |
| ALOGE("%s: Transaction error opening a session for camera device %s: %s", |
| __FUNCTION__, id.c_str(), ret.description().c_str()); |
| return DEAD_OBJECT; |
| } |
| return HidlProviderInfo::mapToStatusT(status); |
| } |
| |
| void CameraProviderManager::saveRef(DeviceMode usageType, const std::string &cameraId, |
| std::shared_ptr<HalCameraProvider> provider) { |
| if (!kEnableLazyHal) { |
| return; |
| } |
| ALOGV("Saving camera provider %s for camera device %s", provider->mDescriptor.c_str(), |
| cameraId.c_str()); |
| std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock); |
| std::unordered_map<std::string, std::shared_ptr<HalCameraProvider>> *primaryMap, *alternateMap; |
| if (usageType == DeviceMode::TORCH) { |
| primaryMap = &mTorchProviderByCameraId; |
| alternateMap = &mCameraProviderByCameraId; |
| } else { |
| primaryMap = &mCameraProviderByCameraId; |
| alternateMap = &mTorchProviderByCameraId; |
| } |
| |
| (*primaryMap)[cameraId] = provider; |
| auto search = alternateMap->find(cameraId); |
| if (search != alternateMap->end()) { |
| ALOGW("%s: Camera device %s is using both torch mode and camera mode simultaneously. " |
| "That should not be possible", __FUNCTION__, cameraId.c_str()); |
| } |
| ALOGV("%s: Camera device %s connected", __FUNCTION__, cameraId.c_str()); |
| } |
| |
| void CameraProviderManager::removeRef(DeviceMode usageType, const std::string &cameraId) { |
| if (!kEnableLazyHal) { |
| return; |
| } |
| ALOGV("Removing camera device %s", cameraId.c_str()); |
| std::unordered_map<std::string, std::shared_ptr<HalCameraProvider>> *providerMap; |
| if (usageType == DeviceMode::TORCH) { |
| providerMap = &mTorchProviderByCameraId; |
| } else { |
| providerMap = &mCameraProviderByCameraId; |
| } |
| std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock); |
| auto search = providerMap->find(cameraId); |
| if (search != providerMap->end()) { |
| // Drop the reference to this ICameraProvider. This is safe to do immediately (without an |
| // added delay) because hwservicemanager guarantees to hold the reference for at least five |
| // more seconds. We depend on this behavior so that if the provider is unreferenced and |
| // then referenced again quickly, we do not let the HAL exit and then need to immediately |
| // restart it. An example when this could happen is switching from a front-facing to a |
| // rear-facing camera. If the HAL were to exit during the camera switch, the camera could |
| // appear janky to the user. |
| providerMap->erase(cameraId); |
| IPCThreadState::self()->flushCommands(); |
| } else { |
| ALOGE("%s: Asked to remove reference for camera %s, but no reference to it was found. This " |
| "could mean removeRef was called twice for the same camera ID.", __FUNCTION__, |
| cameraId.c_str()); |
| } |
| } |
| |
| // We ignore sp<IBinder> param here since we need std::shared_ptr<...> which |
| // will be retrieved through the ndk api through addAidlProviderLocked -> |
| // tryToInitializeAidlProvider. |
| void CameraProviderManager::onServiceRegistration(const String16 &name, const sp<IBinder>&) { |
| status_t res = OK; |
| std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock); |
| { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| res = addAidlProviderLocked(toStdString(name)); |
| } |
| |
| sp<StatusListener> listener = getStatusListener(); |
| if (nullptr != listener.get() && res == OK) { |
| listener->onNewProviderRegistered(); |
| } |
| |
| IPCThreadState::self()->flushCommands(); |
| } |
| |
| hardware::Return<void> CameraProviderManager::onRegistration( |
| const hardware::hidl_string& /*fqName*/, |
| const hardware::hidl_string& name, |
| bool preexisting) { |
| status_t res = OK; |
| std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock); |
| { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| res = addHidlProviderLocked(name, preexisting); |
| } |
| |
| sp<StatusListener> listener = getStatusListener(); |
| if (nullptr != listener.get() && res == OK) { |
| listener->onNewProviderRegistered(); |
| } |
| |
| IPCThreadState::self()->flushCommands(); |
| |
| return hardware::Return<void>(); |
| } |
| |
| status_t CameraProviderManager::dump(int fd, const Vector<String16>& args) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| |
| for (auto& provider : mProviders) { |
| provider->dump(fd, args); |
| } |
| return OK; |
| } |
| |
| void CameraProviderManager::ProviderInfo::initializeProviderInfoCommon( |
| const std::vector<std::string> &devices) { |
| for (auto& device : devices) { |
| std::string id; |
| status_t res = addDevice(device, CameraDeviceStatus::PRESENT, &id); |
| if (res != OK) { |
| ALOGE("%s: Unable to enumerate camera device '%s': %s (%d)", |
| __FUNCTION__, device.c_str(), strerror(-res), res); |
| continue; |
| } |
| } |
| |
| ALOGI("Camera provider %s ready with %zu camera devices", |
| mProviderName.c_str(), mDevices.size()); |
| |
| // Process cached status callbacks |
| { |
| std::lock_guard<std::mutex> lock(mInitLock); |
| |
| for (auto& statusInfo : mCachedStatus) { |
| std::string id, physicalId; |
| if (statusInfo.isPhysicalCameraStatus) { |
| physicalCameraDeviceStatusChangeLocked(&id, &physicalId, |
| statusInfo.cameraId, statusInfo.physicalCameraId, statusInfo.status); |
| } else { |
| cameraDeviceStatusChangeLocked(&id, statusInfo.cameraId, statusInfo.status); |
| } |
| } |
| mCachedStatus.clear(); |
| |
| mInitialized = true; |
| } |
| } |
| |
| CameraProviderManager::ProviderInfo::DeviceInfo* CameraProviderManager::findDeviceInfoLocked( |
| const std::string& id) const { |
| for (auto& provider : mProviders) { |
| using hardware::hidl_version; |
| IPCTransport transport = provider->getIPCTransport(); |
| // AIDL min version starts at major: 1 minor: 1 |
| hidl_version minVersion = |
| (transport == IPCTransport::HIDL) ? hidl_version{3, 2} : hidl_version{1, 1} ; |
| hidl_version maxVersion = |
| (transport == IPCTransport::HIDL) ? hidl_version{3, 7} : hidl_version{1000, 0}; |
| |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == id && |
| minVersion <= deviceInfo->mVersion && maxVersion >= deviceInfo->mVersion) { |
| return deviceInfo.get(); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| metadata_vendor_id_t CameraProviderManager::getProviderTagIdLocked( |
| const std::string& id) const { |
| metadata_vendor_id_t ret = CAMERA_METADATA_INVALID_VENDOR_ID; |
| |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| for (auto& provider : mProviders) { |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == id) { |
| return provider->mProviderTagid; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| void CameraProviderManager::ProviderInfo::DeviceInfo3::queryPhysicalCameraIds() { |
| camera_metadata_entry_t entryCap; |
| |
| entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); |
| for (size_t i = 0; i < entryCap.count; ++i) { |
| uint8_t capability = entryCap.data.u8[i]; |
| if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA) { |
| mIsLogicalCamera = true; |
| break; |
| } |
| } |
| if (!mIsLogicalCamera) { |
| return; |
| } |
| |
| camera_metadata_entry_t entryIds = mCameraCharacteristics.find( |
| ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS); |
| const uint8_t* ids = entryIds.data.u8; |
| size_t start = 0; |
| for (size_t i = 0; i < entryIds.count; ++i) { |
| if (ids[i] == '\0') { |
| if (start != i) { |
| mPhysicalIds.push_back((const char*)ids+start); |
| } |
| start = i+1; |
| } |
| } |
| } |
| |
| SystemCameraKind CameraProviderManager::ProviderInfo::DeviceInfo3::getSystemCameraKind() { |
| camera_metadata_entry_t entryCap; |
| entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); |
| if (entryCap.count == 1 && |
| entryCap.data.u8[0] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SECURE_IMAGE_DATA) { |
| return SystemCameraKind::HIDDEN_SECURE_CAMERA; |
| } |
| |
| // Go through the capabilities and check if it has |
| // ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA |
| for (size_t i = 0; i < entryCap.count; ++i) { |
| uint8_t capability = entryCap.data.u8[i]; |
| if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA) { |
| return SystemCameraKind::SYSTEM_ONLY_CAMERA; |
| } |
| } |
| return SystemCameraKind::PUBLIC; |
| } |
| |
| void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedSizes( |
| const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format, |
| std::vector<std::tuple<size_t, size_t>> *sizes/*out*/) { |
| if (sizes == nullptr) { |
| return; |
| } |
| |
| auto scalerDims = ch.find(tag); |
| if (scalerDims.count > 0) { |
| // Scaler entry contains 4 elements (format, width, height, type) |
| for (size_t i = 0; i < scalerDims.count; i += 4) { |
| if ((scalerDims.data.i32[i] == format) && |
| (scalerDims.data.i32[i+3] == |
| ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) { |
| sizes->push_back(std::make_tuple(scalerDims.data.i32[i+1], |
| scalerDims.data.i32[i+2])); |
| } |
| } |
| } |
| } |
| |
| void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDurations( |
| const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format, |
| const std::vector<std::tuple<size_t, size_t>>& sizes, |
| std::vector<int64_t> *durations/*out*/) { |
| if (durations == nullptr) { |
| return; |
| } |
| |
| auto availableDurations = ch.find(tag); |
| if (availableDurations.count > 0) { |
| // Duration entry contains 4 elements (format, width, height, duration) |
| for (const auto& size : sizes) { |
| int64_t width = std::get<0>(size); |
| int64_t height = std::get<1>(size); |
| for (size_t i = 0; i < availableDurations.count; i += 4) { |
| if ((availableDurations.data.i64[i] == format) && |
| (availableDurations.data.i64[i+1] == width) && |
| (availableDurations.data.i64[i+2] == height)) { |
| durations->push_back(availableDurations.data.i64[i+3]); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthDurations( |
| const std::vector<int64_t>& depthDurations, const std::vector<int64_t>& blobDurations, |
| std::vector<int64_t> *dynamicDepthDurations /*out*/) { |
| if ((dynamicDepthDurations == nullptr) || (depthDurations.size() != blobDurations.size())) { |
| return; |
| } |
| |
| // Unfortunately there is no direct way to calculate the dynamic depth stream duration. |
| // Processing time on camera service side can vary greatly depending on multiple |
| // variables which are not under our control. Make a guesstimate by taking the maximum |
| // corresponding duration value from depth and blob. |
| auto depthDuration = depthDurations.begin(); |
| auto blobDuration = blobDurations.begin(); |
| dynamicDepthDurations->reserve(depthDurations.size()); |
| while ((depthDuration != depthDurations.end()) && (blobDuration != blobDurations.end())) { |
| dynamicDepthDurations->push_back(std::max(*depthDuration, *blobDuration)); |
| depthDuration++; blobDuration++; |
| } |
| } |
| |
| void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthSizes( |
| const std::vector<std::tuple<size_t, size_t>>& blobSizes, |
| const std::vector<std::tuple<size_t, size_t>>& depthSizes, |
| std::vector<std::tuple<size_t, size_t>> *dynamicDepthSizes /*out*/, |
| std::vector<std::tuple<size_t, size_t>> *internalDepthSizes /*out*/) { |
| if (dynamicDepthSizes == nullptr || internalDepthSizes == nullptr) { |
| return; |
| } |
| |
| // The dynamic depth spec. does not mention how close the AR ratio should be. |
| // Try using something appropriate. |
| float ARTolerance = kDepthARTolerance; |
| |
| for (const auto& blobSize : blobSizes) { |
| float jpegAR = static_cast<float> (std::get<0>(blobSize)) / |
| static_cast<float>(std::get<1>(blobSize)); |
| bool found = false; |
| for (const auto& depthSize : depthSizes) { |
| if (depthSize == blobSize) { |
| internalDepthSizes->push_back(depthSize); |
| found = true; |
| break; |
| } else { |
| float depthAR = static_cast<float> (std::get<0>(depthSize)) / |
| static_cast<float>(std::get<1>(depthSize)); |
| if (std::fabs(jpegAR - depthAR) <= ARTolerance) { |
| internalDepthSizes->push_back(depthSize); |
| found = true; |
| break; |
| } |
| } |
| } |
| |
| if (found) { |
| dynamicDepthSizes->push_back(blobSize); |
| } |
| } |
| } |
| |
| bool CameraProviderManager::isConcurrentDynamicRangeCaptureSupported( |
| const CameraMetadata& deviceInfo, int64_t profile, int64_t concurrentProfile) { |
| auto entry = deviceInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); |
| if (entry.count == 0) { |
| return false; |
| } |
| |
| const auto it = std::find(entry.data.u8, entry.data.u8 + entry.count, |
| ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT); |
| if (it == entry.data.u8 + entry.count) { |
| return false; |
| } |
| |
| entry = deviceInfo.find(ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP); |
| if (entry.count == 0 || ((entry.count % 3) != 0)) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < entry.count; i += 3) { |
| if (entry.data.i64[i] == profile) { |
| if ((entry.data.i64[i+1] == 0) || (entry.data.i64[i+1] & concurrentProfile)) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveJpegRTags(bool maxResolution) { |
| if (kFrameworkJpegRDisabled || mCompositeJpegRDisabled) { |
| return OK; |
| } |
| |
| const int32_t scalerSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution); |
| const int32_t scalerMinFrameDurationsTag = SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution); |
| const int32_t scalerStallDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution); |
| |
| const int32_t jpegRSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS, maxResolution); |
| const int32_t jpegRStallDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_JPEGR_AVAILABLE_JPEG_R_STALL_DURATIONS, maxResolution); |
| const int32_t jpegRMinFrameDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_JPEGR_AVAILABLE_JPEG_R_MIN_FRAME_DURATIONS, maxResolution); |
| |
| auto& c = mCameraCharacteristics; |
| std::vector<int32_t> supportedChTags; |
| auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS); |
| if (chTags.count == 0) { |
| ALOGE("%s: No supported camera characteristics keys!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| std::vector<std::tuple<size_t, size_t>> supportedP010Sizes, supportedBlobSizes; |
| auto capabilities = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); |
| if (capabilities.count == 0) { |
| ALOGE("%s: Supported camera capabilities is empty!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| auto end = capabilities.data.u8 + capabilities.count; |
| bool isTenBitOutputSupported = std::find(capabilities.data.u8, end, |
| ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT) != end; |
| if (!isTenBitOutputSupported) { |
| // No 10-bit support, nothing more to do. |
| return OK; |
| } |
| |
| if (!isConcurrentDynamicRangeCaptureSupported(c, |
| ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10, |
| ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD) && |
| !property_get_bool("ro.camera.enableCompositeAPI0JpegR", false)) { |
| // API0, P010 only Jpeg/R support is meant to be used only as a reference due to possible |
| // impact on quality and performance. |
| // This data path will be turned off by default and individual device builds must enable |
| // 'ro.camera.enableCompositeAPI0JpegR' in order to experiment using it. |
| mCompositeJpegRDisabled = true; |
| return OK; |
| } |
| |
| getSupportedSizes(c, scalerSizesTag, |
| static_cast<android_pixel_format_t>(HAL_PIXEL_FORMAT_BLOB), &supportedBlobSizes); |
| getSupportedSizes(c, scalerSizesTag, |
| static_cast<android_pixel_format_t>(HAL_PIXEL_FORMAT_YCBCR_P010), &supportedP010Sizes); |
| auto it = supportedP010Sizes.begin(); |
| while (it != supportedP010Sizes.end()) { |
| if (std::find(supportedBlobSizes.begin(), supportedBlobSizes.end(), *it) == |
| supportedBlobSizes.end()) { |
| it = supportedP010Sizes.erase(it); |
| } else { |
| it++; |
| } |
| } |
| if (supportedP010Sizes.empty()) { |
| // Nothing to do in this case. |
| return OK; |
| } |
| |
| std::vector<int32_t> jpegREntries; |
| for (const auto& it : supportedP010Sizes) { |
| int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)), |
| static_cast<int32_t> (std::get<1>(it)), |
| ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS_OUTPUT }; |
| jpegREntries.insert(jpegREntries.end(), entry, entry + 4); |
| } |
| |
| std::vector<int64_t> blobMinDurations, blobStallDurations; |
| std::vector<int64_t> jpegRMinDurations, jpegRStallDurations; |
| |
| // We use the jpeg stall and min frame durations to approximate the respective jpeg/r |
| // durations. |
| getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB, |
| supportedP010Sizes, &blobMinDurations); |
| getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB, |
| supportedP010Sizes, &blobStallDurations); |
| if (blobStallDurations.empty() || blobMinDurations.empty() || |
| supportedP010Sizes.size() != blobMinDurations.size() || |
| blobMinDurations.size() != blobStallDurations.size()) { |
| ALOGE("%s: Unexpected number of available blob durations! %zu vs. %zu with " |
| "supportedP010Sizes size: %zu", __FUNCTION__, blobMinDurations.size(), |
| blobStallDurations.size(), supportedP010Sizes.size()); |
| return BAD_VALUE; |
| } |
| |
| auto itDuration = blobMinDurations.begin(); |
| auto itSize = supportedP010Sizes.begin(); |
| while (itDuration != blobMinDurations.end()) { |
| int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)), |
| static_cast<int32_t> (std::get<1>(*itSize)), *itDuration}; |
| jpegRMinDurations.insert(jpegRMinDurations.end(), entry, entry + 4); |
| itDuration++; itSize++; |
| } |
| |
| itDuration = blobStallDurations.begin(); |
| itSize = supportedP010Sizes.begin(); |
| while (itDuration != blobStallDurations.end()) { |
| int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)), |
| static_cast<int32_t> (std::get<1>(*itSize)), *itDuration}; |
| jpegRStallDurations.insert(jpegRStallDurations.end(), entry, entry + 4); |
| itDuration++; itSize++; |
| } |
| |
| supportedChTags.reserve(chTags.count + 3); |
| supportedChTags.insert(supportedChTags.end(), chTags.data.i32, |
| chTags.data.i32 + chTags.count); |
| supportedChTags.push_back(jpegRSizesTag); |
| supportedChTags.push_back(jpegRMinFrameDurationsTag); |
| supportedChTags.push_back(jpegRStallDurationsTag); |
| c.update(jpegRSizesTag, jpegREntries.data(), jpegREntries.size()); |
| c.update(jpegRMinFrameDurationsTag, jpegRMinDurations.data(), jpegRMinDurations.size()); |
| c.update(jpegRStallDurationsTag, jpegRStallDurations.data(), jpegRStallDurations.size()); |
| c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(), |
| supportedChTags.size()); |
| |
| auto colorSpaces = c.find(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP); |
| if (colorSpaces.count > 0 && !maxResolution) { |
| bool displayP3Support = false; |
| int64_t dynamicRange = ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD; |
| for (size_t i = 0; i < colorSpaces.count; i += 3) { |
| auto colorSpace = colorSpaces.data.i64[i]; |
| auto format = colorSpaces.data.i64[i+1]; |
| bool formatMatch = (format == static_cast<int64_t>(PublicFormat::JPEG)) || |
| (format == static_cast<int64_t>(PublicFormat::UNKNOWN)); |
| bool colorSpaceMatch = |
| colorSpace == ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3; |
| if (formatMatch && colorSpaceMatch) { |
| displayP3Support = true; |
| } |
| |
| // Jpeg/R will support the same dynamic range profiles as P010 |
| if (format == static_cast<int64_t>(PublicFormat::YCBCR_P010)) { |
| dynamicRange |= colorSpaces.data.i64[i+2]; |
| } |
| } |
| if (displayP3Support) { |
| std::vector<int64_t> supportedColorSpaces; |
| // Jpeg/R must support the default system as well ase display P3 color space |
| supportedColorSpaces.reserve(colorSpaces.count + 3*2); |
| supportedColorSpaces.insert(supportedColorSpaces.end(), colorSpaces.data.i64, |
| colorSpaces.data.i64 + colorSpaces.count); |
| |
| supportedColorSpaces.push_back(static_cast<int64_t>( |
| ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_SRGB)); |
| supportedColorSpaces.push_back(static_cast<int64_t>(PublicFormat::JPEG_R)); |
| supportedColorSpaces.push_back(dynamicRange); |
| |
| supportedColorSpaces.push_back(static_cast<int64_t>( |
| ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3)); |
| supportedColorSpaces.push_back(static_cast<int64_t>(PublicFormat::JPEG_R)); |
| supportedColorSpaces.push_back(dynamicRange); |
| c.update(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP, |
| supportedColorSpaces.data(), supportedColorSpaces.size()); |
| } |
| } |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addDynamicDepthTags( |
| bool maxResolution) { |
| const int32_t depthExclTag = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE; |
| |
| const int32_t scalerSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution); |
| const int32_t scalerMinFrameDurationsTag = |
| ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS; |
| const int32_t scalerStallDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution); |
| |
| const int32_t depthSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, maxResolution); |
| const int32_t depthStallDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS, maxResolution); |
| const int32_t depthMinFrameDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS, maxResolution); |
| |
| const int32_t dynamicDepthSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS, maxResolution); |
| const int32_t dynamicDepthStallDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STALL_DURATIONS, maxResolution); |
| const int32_t dynamicDepthMinFrameDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_MIN_FRAME_DURATIONS, maxResolution); |
| |
| auto& c = mCameraCharacteristics; |
| std::vector<std::tuple<size_t, size_t>> supportedBlobSizes, supportedDepthSizes, |
| supportedDynamicDepthSizes, internalDepthSizes; |
| auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS); |
| if (chTags.count == 0) { |
| ALOGE("%s: Supported camera characteristics is empty!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| bool isDepthExclusivePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count, |
| depthExclTag) != (chTags.data.i32 + chTags.count); |
| bool isDepthSizePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count, |
| depthSizesTag) != (chTags.data.i32 + chTags.count); |
| if (!(isDepthExclusivePresent && isDepthSizePresent)) { |
| // No depth support, nothing more to do. |
| return OK; |
| } |
| |
| auto depthExclusiveEntry = c.find(depthExclTag); |
| if (depthExclusiveEntry.count > 0) { |
| if (depthExclusiveEntry.data.u8[0] != ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE) { |
| // Depth support is exclusive, nothing more to do. |
| return OK; |
| } |
| } else { |
| ALOGE("%s: Advertised depth exclusive tag but value is not present!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| getSupportedSizes(c, scalerSizesTag, HAL_PIXEL_FORMAT_BLOB, |
| &supportedBlobSizes); |
| getSupportedSizes(c, depthSizesTag, HAL_PIXEL_FORMAT_Y16, &supportedDepthSizes); |
| if (supportedBlobSizes.empty() || supportedDepthSizes.empty()) { |
| // Nothing to do in this case. |
| return OK; |
| } |
| |
| getSupportedDynamicDepthSizes(supportedBlobSizes, supportedDepthSizes, |
| &supportedDynamicDepthSizes, &internalDepthSizes); |
| if (supportedDynamicDepthSizes.empty()) { |
| // Nothing more to do. |
| return OK; |
| } |
| |
| std::vector<int32_t> dynamicDepthEntries; |
| for (const auto& it : supportedDynamicDepthSizes) { |
| int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)), |
| static_cast<int32_t> (std::get<1>(it)), |
| ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT }; |
| dynamicDepthEntries.insert(dynamicDepthEntries.end(), entry, entry + 4); |
| } |
| |
| std::vector<int64_t> depthMinDurations, depthStallDurations; |
| std::vector<int64_t> blobMinDurations, blobStallDurations; |
| std::vector<int64_t> dynamicDepthMinDurations, dynamicDepthStallDurations; |
| |
| getSupportedDurations(c, depthMinFrameDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes, |
| &depthMinDurations); |
| getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB, |
| supportedDynamicDepthSizes, &blobMinDurations); |
| if (blobMinDurations.empty() || depthMinDurations.empty() || |
| (depthMinDurations.size() != blobMinDurations.size())) { |
| ALOGE("%s: Unexpected number of available depth min durations! %zu vs. %zu", |
| __FUNCTION__, depthMinDurations.size(), blobMinDurations.size()); |
| return BAD_VALUE; |
| } |
| |
| getSupportedDurations(c, depthStallDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes, |
| &depthStallDurations); |
| getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB, |
| supportedDynamicDepthSizes, &blobStallDurations); |
| if (blobStallDurations.empty() || depthStallDurations.empty() || |
| (depthStallDurations.size() != blobStallDurations.size())) { |
| ALOGE("%s: Unexpected number of available depth stall durations! %zu vs. %zu", |
| __FUNCTION__, depthStallDurations.size(), blobStallDurations.size()); |
| return BAD_VALUE; |
| } |
| |
| getSupportedDynamicDepthDurations(depthMinDurations, blobMinDurations, |
| &dynamicDepthMinDurations); |
| getSupportedDynamicDepthDurations(depthStallDurations, blobStallDurations, |
| &dynamicDepthStallDurations); |
| if (dynamicDepthMinDurations.empty() || dynamicDepthStallDurations.empty() || |
| (dynamicDepthMinDurations.size() != dynamicDepthStallDurations.size())) { |
| ALOGE("%s: Unexpected number of dynamic depth stall/min durations! %zu vs. %zu", |
| __FUNCTION__, dynamicDepthMinDurations.size(), dynamicDepthStallDurations.size()); |
| return BAD_VALUE; |
| } |
| |
| std::vector<int64_t> dynamicDepthMinDurationEntries; |
| auto itDuration = dynamicDepthMinDurations.begin(); |
| auto itSize = supportedDynamicDepthSizes.begin(); |
| while (itDuration != dynamicDepthMinDurations.end()) { |
| int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)), |
| static_cast<int32_t> (std::get<1>(*itSize)), *itDuration}; |
| dynamicDepthMinDurationEntries.insert(dynamicDepthMinDurationEntries.end(), entry, |
| entry + 4); |
| itDuration++; itSize++; |
| } |
| |
| std::vector<int64_t> dynamicDepthStallDurationEntries; |
| itDuration = dynamicDepthStallDurations.begin(); |
| itSize = supportedDynamicDepthSizes.begin(); |
| while (itDuration != dynamicDepthStallDurations.end()) { |
| int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)), |
| static_cast<int32_t> (std::get<1>(*itSize)), *itDuration}; |
| dynamicDepthStallDurationEntries.insert(dynamicDepthStallDurationEntries.end(), entry, |
| entry + 4); |
| itDuration++; itSize++; |
| } |
| |
| std::vector<int32_t> supportedChTags; |
| supportedChTags.reserve(chTags.count + 3); |
| supportedChTags.insert(supportedChTags.end(), chTags.data.i32, |
| chTags.data.i32 + chTags.count); |
| supportedChTags.push_back(dynamicDepthSizesTag); |
| supportedChTags.push_back(dynamicDepthMinFrameDurationsTag); |
| supportedChTags.push_back(dynamicDepthStallDurationsTag); |
| c.update(dynamicDepthSizesTag, dynamicDepthEntries.data(), dynamicDepthEntries.size()); |
| c.update(dynamicDepthMinFrameDurationsTag, dynamicDepthMinDurationEntries.data(), |
| dynamicDepthMinDurationEntries.size()); |
| c.update(dynamicDepthStallDurationsTag, dynamicDepthStallDurationEntries.data(), |
| dynamicDepthStallDurationEntries.size()); |
| c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(), |
| supportedChTags.size()); |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupTorchStrengthTags() { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| auto flashInfoStrengthDefaultLevelEntry = c.find(ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL); |
| if (flashInfoStrengthDefaultLevelEntry.count == 0) { |
| int32_t flashInfoStrengthDefaultLevel = 1; |
| res = c.update(ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL, |
| &flashInfoStrengthDefaultLevel, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_FLASH_INFO_STRENGTH_DEFAULT_LEVEL: %s (%d)", |
| __FUNCTION__,strerror(-res), res); |
| return res; |
| } |
| } |
| auto flashInfoStrengthMaximumLevelEntry = c.find(ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL); |
| if (flashInfoStrengthMaximumLevelEntry.count == 0) { |
| int32_t flashInfoStrengthMaximumLevel = 1; |
| res = c.update(ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL, |
| &flashInfoStrengthMaximumLevel, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_FLASH_INFO_STRENGTH_MAXIMUM_LEVEL: %s (%d)", |
| __FUNCTION__,strerror(-res), res); |
| return res; |
| } |
| } |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupManualFlashStrengthControlTags() { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| auto flashSingleStrengthMaxLevelEntry = c.find(ANDROID_FLASH_SINGLE_STRENGTH_MAX_LEVEL); |
| if (flashSingleStrengthMaxLevelEntry.count == 0) { |
| int32_t flashSingleStrengthMaxLevel = 1; |
| res = c.update(ANDROID_FLASH_SINGLE_STRENGTH_MAX_LEVEL, |
| &flashSingleStrengthMaxLevel, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_FLASH_SINGLE_STRENGTH_MAX_LEVEL: %s (%d)", |
| __FUNCTION__,strerror(-res), res); |
| return res; |
| } |
| } |
| auto flashSingleStrengthDefaultLevelEntry = c.find(ANDROID_FLASH_SINGLE_STRENGTH_DEFAULT_LEVEL); |
| if (flashSingleStrengthDefaultLevelEntry.count == 0) { |
| int32_t flashSingleStrengthDefaultLevel = 1; |
| res = c.update(ANDROID_FLASH_SINGLE_STRENGTH_DEFAULT_LEVEL, |
| &flashSingleStrengthDefaultLevel, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_FLASH_SINGLE_STRENGTH_DEFAULT_LEVEL: %s (%d)", |
| __FUNCTION__,strerror(-res), res); |
| return res; |
| } |
| } |
| auto flashTorchStrengthMaxLevelEntry = c.find(ANDROID_FLASH_TORCH_STRENGTH_MAX_LEVEL); |
| if (flashTorchStrengthMaxLevelEntry.count == 0) { |
| int32_t flashTorchStrengthMaxLevel = 1; |
| res = c.update(ANDROID_FLASH_TORCH_STRENGTH_MAX_LEVEL, |
| &flashTorchStrengthMaxLevel, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_FLASH_TORCH_STRENGTH_MAX_LEVEL: %s (%d)", |
| __FUNCTION__,strerror(-res), res); |
| return res; |
| } |
| } |
| auto flashTorchStrengthDefaultLevelEntry = c.find(ANDROID_FLASH_TORCH_STRENGTH_DEFAULT_LEVEL); |
| if (flashTorchStrengthDefaultLevelEntry.count == 0) { |
| int32_t flashTorchStrengthDefaultLevel = 1; |
| res = c.update(ANDROID_FLASH_TORCH_STRENGTH_DEFAULT_LEVEL, |
| &flashTorchStrengthDefaultLevel, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_FLASH_TORCH_STRENGTH_DEFAULT_LEVEL: %s (%d)", |
| __FUNCTION__,strerror(-res), res); |
| return res; |
| } |
| } |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupMonochromeTags() { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| sp<ProviderInfo> parentProvider = mParentProvider.promote(); |
| if (parentProvider == nullptr) { |
| return DEAD_OBJECT; |
| } |
| IPCTransport ipcTransport = parentProvider->getIPCTransport(); |
| // Override static metadata for MONOCHROME camera with older device version |
| if (ipcTransport == IPCTransport::HIDL && |
| (mVersion.get_major() == 3 && mVersion.get_minor() < 5)) { |
| camera_metadata_entry cap = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); |
| for (size_t i = 0; i < cap.count; i++) { |
| if (cap.data.u8[i] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME) { |
| // ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT |
| uint8_t cfa = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_MONO; |
| res = c.update(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT, &cfa, 1); |
| if (res != OK) { |
| ALOGE("%s: Failed to update COLOR_FILTER_ARRANGEMENT: %s (%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| |
| // ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS |
| const std::vector<uint32_t> sKeys = { |
| ANDROID_SENSOR_REFERENCE_ILLUMINANT1, |
| ANDROID_SENSOR_REFERENCE_ILLUMINANT2, |
| ANDROID_SENSOR_CALIBRATION_TRANSFORM1, |
| ANDROID_SENSOR_CALIBRATION_TRANSFORM2, |
| ANDROID_SENSOR_COLOR_TRANSFORM1, |
| ANDROID_SENSOR_COLOR_TRANSFORM2, |
| ANDROID_SENSOR_FORWARD_MATRIX1, |
| ANDROID_SENSOR_FORWARD_MATRIX2, |
| }; |
| res = removeAvailableKeys(c, sKeys, |
| ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS); |
| if (res != OK) { |
| ALOGE("%s: Failed to update REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s (%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| |
| // ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS |
| const std::vector<uint32_t> reqKeys = { |
| ANDROID_COLOR_CORRECTION_MODE, |
| ANDROID_COLOR_CORRECTION_TRANSFORM, |
| ANDROID_COLOR_CORRECTION_GAINS, |
| }; |
| res = removeAvailableKeys(c, reqKeys, ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS); |
| if (res != OK) { |
| ALOGE("%s: Failed to update REQUEST_AVAILABLE_REQUEST_KEYS: %s (%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| |
| // ANDROID_REQUEST_AVAILABLE_RESULT_KEYS |
| const std::vector<uint32_t> resKeys = { |
| ANDROID_SENSOR_GREEN_SPLIT, |
| ANDROID_SENSOR_NEUTRAL_COLOR_POINT, |
| ANDROID_COLOR_CORRECTION_MODE, |
| ANDROID_COLOR_CORRECTION_TRANSFORM, |
| ANDROID_COLOR_CORRECTION_GAINS, |
| }; |
| res = removeAvailableKeys(c, resKeys, ANDROID_REQUEST_AVAILABLE_RESULT_KEYS); |
| if (res != OK) { |
| ALOGE("%s: Failed to update REQUEST_AVAILABLE_RESULT_KEYS: %s (%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| |
| // ANDROID_SENSOR_BLACK_LEVEL_PATTERN |
| camera_metadata_entry blEntry = c.find(ANDROID_SENSOR_BLACK_LEVEL_PATTERN); |
| for (size_t j = 1; j < blEntry.count; j++) { |
| blEntry.data.i32[j] = blEntry.data.i32[0]; |
| } |
| } |
| } |
| } |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addRotateCropTags() { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| |
| auto availableRotateCropEntry = c.find(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES); |
| if (availableRotateCropEntry.count == 0) { |
| uint8_t defaultAvailableRotateCropEntry = ANDROID_SCALER_ROTATE_AND_CROP_NONE; |
| res = c.update(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES, |
| &defaultAvailableRotateCropEntry, 1); |
| } |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addAutoframingTags() { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| |
| auto availableAutoframingEntry = c.find(ANDROID_CONTROL_AUTOFRAMING_AVAILABLE); |
| if (availableAutoframingEntry.count == 0) { |
| uint8_t defaultAutoframingEntry = ANDROID_CONTROL_AUTOFRAMING_AVAILABLE_FALSE; |
| res = c.update(ANDROID_CONTROL_AUTOFRAMING_AVAILABLE, |
| &defaultAutoframingEntry, 1); |
| } |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addPreCorrectionActiveArraySize() { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| |
| auto activeArraySize = c.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE); |
| auto preCorrectionActiveArraySize = c.find( |
| ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE); |
| if (activeArraySize.count == 4 && preCorrectionActiveArraySize.count == 0) { |
| std::vector<int32_t> preCorrectionArray( |
| activeArraySize.data.i32, activeArraySize.data.i32+4); |
| res = c.update(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE, |
| preCorrectionArray.data(), 4); |
| if (res != OK) { |
| ALOGE("%s: Failed to add ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE: %s(%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| } else { |
| return res; |
| } |
| |
| auto charTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS); |
| bool hasPreCorrectionActiveArraySize = std::find(charTags.data.i32, |
| charTags.data.i32 + charTags.count, |
| ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE) != |
| (charTags.data.i32 + charTags.count); |
| if (!hasPreCorrectionActiveArraySize) { |
| std::vector<int32_t> supportedCharTags; |
| supportedCharTags.reserve(charTags.count + 1); |
| supportedCharTags.insert(supportedCharTags.end(), charTags.data.i32, |
| charTags.data.i32 + charTags.count); |
| supportedCharTags.push_back(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE); |
| |
| res = c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedCharTags.data(), |
| supportedCharTags.size()); |
| if (res != OK) { |
| ALOGE("%s: Failed to update ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s(%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| } |
| |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addReadoutTimestampTag( |
| bool readoutTimestampSupported) { |
| status_t res = OK; |
| auto& c = mCameraCharacteristics; |
| |
| auto entry = c.find(ANDROID_SENSOR_READOUT_TIMESTAMP); |
| if (entry.count != 0) { |
| ALOGE("%s: CameraCharacteristics must not contain ANDROID_SENSOR_READOUT_TIMESTAMP!", |
| __FUNCTION__); |
| } |
| |
| uint8_t readoutTimestamp = ANDROID_SENSOR_READOUT_TIMESTAMP_NOT_SUPPORTED; |
| if (readoutTimestampSupported) { |
| readoutTimestamp = ANDROID_SENSOR_READOUT_TIMESTAMP_HARDWARE; |
| } |
| |
| res = c.update(ANDROID_SENSOR_READOUT_TIMESTAMP, &readoutTimestamp, 1); |
| |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::removeAvailableKeys( |
| CameraMetadata& c, const std::vector<uint32_t>& keys, uint32_t keyTag) { |
| status_t res = OK; |
| |
| camera_metadata_entry keysEntry = c.find(keyTag); |
| if (keysEntry.count == 0) { |
| ALOGE("%s: Failed to find tag %u: %s (%d)", __FUNCTION__, keyTag, strerror(-res), res); |
| return res; |
| } |
| std::vector<int32_t> vKeys; |
| vKeys.reserve(keysEntry.count); |
| for (size_t i = 0; i < keysEntry.count; i++) { |
| if (std::find(keys.begin(), keys.end(), keysEntry.data.i32[i]) == keys.end()) { |
| vKeys.push_back(keysEntry.data.i32[i]); |
| } |
| } |
| res = c.update(keyTag, vKeys.data(), vKeys.size()); |
| return res; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fillHeicStreamCombinations( |
| std::vector<int32_t>* outputs, |
| std::vector<int64_t>* durations, |
| std::vector<int64_t>* stallDurations, |
| const camera_metadata_entry& halStreamConfigs, |
| const camera_metadata_entry& halStreamDurations) { |
| if (outputs == nullptr || durations == nullptr || stallDurations == nullptr) { |
| return BAD_VALUE; |
| } |
| |
| static bool supportInMemoryTempFile = |
| camera3::HeicCompositeStream::isInMemoryTempFileSupported(); |
| if (!supportInMemoryTempFile) { |
| ALOGI("%s: No HEIC support due to absence of in memory temp file support", |
| __FUNCTION__); |
| return OK; |
| } |
| |
| for (size_t i = 0; i < halStreamConfigs.count; i += 4) { |
| int32_t format = halStreamConfigs.data.i32[i]; |
| // Only IMPLEMENTATION_DEFINED and YUV_888 can be used to generate HEIC |
| // image. |
| if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED && |
| format != HAL_PIXEL_FORMAT_YCBCR_420_888) { |
| continue; |
| } |
| |
| bool sizeAvail = false; |
| for (size_t j = 0; j < outputs->size(); j+= 4) { |
| if ((*outputs)[j+1] == halStreamConfigs.data.i32[i+1] && |
| (*outputs)[j+2] == halStreamConfigs.data.i32[i+2]) { |
| sizeAvail = true; |
| break; |
| } |
| } |
| if (sizeAvail) continue; |
| |
| int64_t stall = 0; |
| bool useHeic = false; |
| bool useGrid = false; |
| if (camera3::HeicCompositeStream::isSizeSupportedByHeifEncoder( |
| halStreamConfigs.data.i32[i+1], halStreamConfigs.data.i32[i+2], |
| &useHeic, &useGrid, &stall)) { |
| if (useGrid != (format == HAL_PIXEL_FORMAT_YCBCR_420_888)) { |
| continue; |
| } |
| |
| // HEIC configuration |
| int32_t config[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1], |
| halStreamConfigs.data.i32[i+2], 0 /*isInput*/}; |
| outputs->insert(outputs->end(), config, config + 4); |
| |
| // HEIC minFrameDuration |
| for (size_t j = 0; j < halStreamDurations.count; j += 4) { |
| if (halStreamDurations.data.i64[j] == format && |
| halStreamDurations.data.i64[j+1] == halStreamConfigs.data.i32[i+1] && |
| halStreamDurations.data.i64[j+2] == halStreamConfigs.data.i32[i+2]) { |
| int64_t duration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1], |
| halStreamConfigs.data.i32[i+2], halStreamDurations.data.i64[j+3]}; |
| durations->insert(durations->end(), duration, duration+4); |
| break; |
| } |
| } |
| |
| // HEIC stallDuration |
| int64_t stallDuration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1], |
| halStreamConfigs.data.i32[i+2], stall}; |
| stallDurations->insert(stallDurations->end(), stallDuration, stallDuration+4); |
| } |
| } |
| return OK; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveHeicTags(bool maxResolution) { |
| int32_t scalerStreamSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution); |
| int32_t scalerMinFrameDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution); |
| |
| int32_t heicStreamSizesTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, maxResolution); |
| int32_t heicMinFrameDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_HEIC_AVAILABLE_HEIC_MIN_FRAME_DURATIONS, maxResolution); |
| int32_t heicStallDurationsTag = |
| SessionConfigurationUtils::getAppropriateModeTag( |
| ANDROID_HEIC_AVAILABLE_HEIC_STALL_DURATIONS, maxResolution); |
| |
| auto& c = mCameraCharacteristics; |
| |
| camera_metadata_entry halHeicSupport = c.find(ANDROID_HEIC_INFO_SUPPORTED); |
| if (halHeicSupport.count > 1) { |
| ALOGE("%s: Invalid entry count %zu for ANDROID_HEIC_INFO_SUPPORTED", |
| __FUNCTION__, halHeicSupport.count); |
| return BAD_VALUE; |
| } else if (halHeicSupport.count == 0 || |
| halHeicSupport.data.u8[0] == ANDROID_HEIC_INFO_SUPPORTED_FALSE) { |
| // Camera HAL doesn't support mandatory stream combinations for HEIC. |
| return OK; |
| } |
| |
| camera_metadata_entry maxJpegAppsSegments = |
| c.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT); |
| if (maxJpegAppsSegments.count != 1 || maxJpegAppsSegments.data.u8[0] == 0 || |
| maxJpegAppsSegments.data.u8[0] > 16) { |
| ALOGE("%s: ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT must be within [1, 16]", |
| __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| // Populate HEIC output configurations and its related min frame duration |
| // and stall duration. |
| std::vector<int32_t> heicOutputs; |
| std::vector<int64_t> heicDurations; |
| std::vector<int64_t> heicStallDurations; |
| |
| camera_metadata_entry halStreamConfigs = c.find(scalerStreamSizesTag); |
| camera_metadata_entry minFrameDurations = c.find(scalerMinFrameDurationsTag); |
| |
| status_t res = fillHeicStreamCombinations(&heicOutputs, &heicDurations, &heicStallDurations, |
| halStreamConfigs, minFrameDurations); |
| if (res != OK) { |
| ALOGE("%s: Failed to fill HEIC stream combinations: %s (%d)", __FUNCTION__, |
| strerror(-res), res); |
| return res; |
| } |
| |
| c.update(heicStreamSizesTag, heicOutputs.data(), heicOutputs.size()); |
| c.update(heicMinFrameDurationsTag, heicDurations.data(), heicDurations.size()); |
| c.update(heicStallDurationsTag, heicStallDurations.data(), heicStallDurations.size()); |
| |
| return OK; |
| } |
| |
| bool CameraProviderManager::isLogicalCameraLocked(const std::string& id, |
| std::vector<std::string>* physicalCameraIds) { |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo == nullptr) return false; |
| |
| if (deviceInfo->mIsLogicalCamera && physicalCameraIds != nullptr) { |
| *physicalCameraIds = deviceInfo->mPhysicalIds; |
| } |
| return deviceInfo->mIsLogicalCamera; |
| } |
| |
| bool CameraProviderManager::isLogicalCamera(const std::string& id, |
| std::vector<std::string>* physicalCameraIds) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| return isLogicalCameraLocked(id, physicalCameraIds); |
| } |
| |
| status_t CameraProviderManager::getSystemCameraKind(const std::string& id, |
| SystemCameraKind *kind) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| return getSystemCameraKindLocked(id, kind); |
| } |
| |
| status_t CameraProviderManager::getSystemCameraKindLocked(const std::string& id, |
| SystemCameraKind *kind) const { |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo != nullptr) { |
| *kind = deviceInfo->mSystemCameraKind; |
| return OK; |
| } |
| // If this is a hidden physical camera, we should return what kind of |
| // camera the enclosing logical camera is. |
| auto isHiddenAndParent = isHiddenPhysicalCameraInternal(id); |
| if (isHiddenAndParent.first) { |
| LOG_ALWAYS_FATAL_IF(id == isHiddenAndParent.second->mId, |
| "%s: hidden physical camera id %s and enclosing logical camera id %s are the same", |
| __FUNCTION__, id.c_str(), isHiddenAndParent.second->mId.c_str()); |
| return getSystemCameraKindLocked(isHiddenAndParent.second->mId, kind); |
| } |
| // Neither a hidden physical camera nor a logical camera |
| return NAME_NOT_FOUND; |
| } |
| |
| bool CameraProviderManager::isHiddenPhysicalCamera(const std::string& cameraId) const { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| return isHiddenPhysicalCameraInternal(cameraId).first; |
| } |
| |
| status_t CameraProviderManager::filterSmallJpegSizes(const std::string& cameraId) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| for (auto& provider : mProviders) { |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == cameraId) { |
| return deviceInfo->filterSmallJpegSizes(); |
| } |
| } |
| } |
| return NAME_NOT_FOUND; |
| } |
| |
| std::pair<bool, CameraProviderManager::ProviderInfo::DeviceInfo *> |
| CameraProviderManager::isHiddenPhysicalCameraInternal(const std::string& cameraId) const { |
| auto falseRet = std::make_pair(false, nullptr); |
| for (auto& provider : mProviders) { |
| for (auto& deviceInfo : provider->mDevices) { |
| if (deviceInfo->mId == cameraId) { |
| // cameraId is found in public camera IDs advertised by the |
| // provider. |
| return falseRet; |
| } |
| } |
| } |
| |
| for (auto& provider : mProviders) { |
| IPCTransport transport = provider->getIPCTransport(); |
| for (auto& deviceInfo : provider->mDevices) { |
| std::vector<std::string> physicalIds; |
| if (deviceInfo->mIsLogicalCamera) { |
| if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(), |
| cameraId) != deviceInfo->mPhysicalIds.end()) { |
| int deviceVersion = HARDWARE_DEVICE_API_VERSION( |
| deviceInfo->mVersion.get_major(), deviceInfo->mVersion.get_minor()); |
| if (transport == IPCTransport::HIDL && |
| deviceVersion < CAMERA_DEVICE_API_VERSION_3_5) { |
| ALOGE("%s: Wrong deviceVersion %x for hiddenPhysicalCameraId %s", |
| __FUNCTION__, deviceVersion, cameraId.c_str()); |
| return falseRet; |
| } else { |
| return std::make_pair(true, deviceInfo.get()); |
| } |
| } |
| } |
| } |
| } |
| |
| return falseRet; |
| } |
| |
| status_t CameraProviderManager::tryToInitializeAidlProviderLocked( |
| const std::string& providerName, const sp<ProviderInfo>& providerInfo) { |
| using aidl::android::hardware::camera::provider::ICameraProvider; |
| |
| AIBinder *binder = nullptr; |
| if (flags::lazy_aidl_wait_for_service()) { |
| binder = AServiceManager_waitForService(providerName.c_str()); |
| } else { |
| binder = AServiceManager_getService(providerName.c_str()); |
| } |
| std::shared_ptr<ICameraProvider> interface = |
| ICameraProvider::fromBinder(ndk::SpAIBinder(binder)); |
| |
| if (interface == nullptr) { |
| ALOGW("%s: AIDL Camera provider HAL '%s' is not actually available", __FUNCTION__, |
| providerName.c_str()); |
| return BAD_VALUE; |
| } |
| |
| AidlProviderInfo *aidlProviderInfo = static_cast<AidlProviderInfo *>(providerInfo.get()); |
| return aidlProviderInfo->initializeAidlProvider(interface, mDeviceState); |
| } |
| |
| status_t CameraProviderManager::tryToInitializeHidlProviderLocked( |
| const std::string& providerName, const sp<ProviderInfo>& providerInfo) { |
| sp<provider::V2_4::ICameraProvider> interface; |
| interface = mHidlServiceProxy->tryGetService(providerName); |
| |
| if (interface == nullptr) { |
| // The interface may not be started yet. In that case, this is not a |
| // fatal error. |
| ALOGW("%s: HIDL Camera provider HAL '%s' is not actually available", __FUNCTION__, |
| providerName.c_str()); |
| return BAD_VALUE; |
| } |
| |
| HidlProviderInfo *hidlProviderInfo = static_cast<HidlProviderInfo *>(providerInfo.get()); |
| return hidlProviderInfo->initializeHidlProvider(interface, mDeviceState); |
| } |
| |
| status_t CameraProviderManager::addAidlProviderLocked(const std::string& newProvider) { |
| // Several camera provider instances can be temporarily present. |
| // Defer initialization of a new instance until the older instance is properly removed. |
| auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId); |
| bool providerPresent = false; |
| bool preexisting = |
| (mAidlProviderWithBinders.find(newProvider) != mAidlProviderWithBinders.end()); |
| using aidl::android::hardware::camera::provider::ICameraProvider; |
| std::string providerNameUsed = |
| newProvider.substr(std::string(ICameraProvider::descriptor).size() + 1); |
| if (flags::lazy_aidl_wait_for_service()) { |
| // 'newProvider' has the fully qualified name of the provider service in case of AIDL. |
| // ProviderInfo::mProviderName also has the fully qualified name - so we just compare them |
| // here. |
| providerNameUsed = newProvider; |
| } |
| |
| for (const auto& providerInfo : mProviders) { |
| if (providerInfo->mProviderName == providerNameUsed) { |
| ALOGW("%s: Camera provider HAL with name '%s' already registered", |
| __FUNCTION__, newProvider.c_str()); |
| // Do not add new instances for lazy HAL external provider or aidl |
| // binders previously seen. |
| if (preexisting || providerInfo->isExternalLazyHAL()) { |
| return ALREADY_EXISTS; |
| } else { |
| ALOGW("%s: The new provider instance will get initialized immediately after the" |
| " currently present instance is removed!", __FUNCTION__); |
| providerPresent = true; |
| break; |
| } |
| } |
| } |
| |
| sp<AidlProviderInfo> providerInfo = |
| new AidlProviderInfo(providerNameUsed, providerInstance, this); |
| |
| if (!providerPresent) { |
| status_t res = tryToInitializeAidlProviderLocked(newProvider, providerInfo); |
| if (res != OK) { |
| return res; |
| } |
| mAidlProviderWithBinders.emplace(newProvider); |
| } |
| |
| mProviders.push_back(providerInfo); |
| mProviderInstanceId++; |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::addHidlProviderLocked(const std::string& newProvider, |
| bool preexisting) { |
| // Several camera provider instances can be temporarily present. |
| // Defer initialization of a new instance until the older instance is properly removed. |
| auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId); |
| bool providerPresent = false; |
| for (const auto& providerInfo : mProviders) { |
| if (providerInfo->mProviderName == newProvider) { |
| ALOGW("%s: Camera provider HAL with name '%s' already registered", |
| __FUNCTION__, newProvider.c_str()); |
| // Do not add new instances for lazy HAL external provider |
| if (preexisting || providerInfo->isExternalLazyHAL()) { |
| return ALREADY_EXISTS; |
| } else { |
| ALOGW("%s: The new provider instance will get initialized immediately after the" |
| " currently present instance is removed!", __FUNCTION__); |
| providerPresent = true; |
| break; |
| } |
| } |
| } |
| |
| sp<HidlProviderInfo> providerInfo = new HidlProviderInfo(newProvider, providerInstance, this); |
| if (!providerPresent) { |
| status_t res = tryToInitializeHidlProviderLocked(newProvider, providerInfo); |
| if (res != OK) { |
| return res; |
| } |
| } |
| |
| mProviders.push_back(providerInfo); |
| mProviderInstanceId++; |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::removeProvider(const std::string& provider) { |
| std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock); |
| std::unique_lock<std::mutex> lock(mInterfaceMutex); |
| std::vector<std::string> removedDeviceIds; |
| status_t res = NAME_NOT_FOUND; |
| std::string removedProviderName; |
| for (auto it = mProviders.begin(); it != mProviders.end(); it++) { |
| if ((*it)->mProviderInstance == provider) { |
| removedDeviceIds.reserve((*it)->mDevices.size()); |
| for (auto& deviceInfo : (*it)->mDevices) { |
| removedDeviceIds.push_back(deviceInfo->mId); |
| } |
| removedProviderName = (*it)->mProviderName; |
| mProviders.erase(it); |
| res = OK; |
| break; |
| } |
| } |
| if (res != OK) { |
| ALOGW("%s: Camera provider HAL with name '%s' is not registered", __FUNCTION__, |
| provider.c_str()); |
| } else { |
| // Check if there are any newer camera instances from the same provider and try to |
| // initialize. |
| for (const auto& providerInfo : mProviders) { |
| if (providerInfo->mProviderName == removedProviderName) { |
| IPCTransport providerTransport = providerInfo->getIPCTransport(); |
| std::string removedAidlProviderName = getFullAidlProviderName(removedProviderName); |
| if (flags::lazy_aidl_wait_for_service()) { |
| removedAidlProviderName = removedProviderName; |
| } |
| switch(providerTransport) { |
| case IPCTransport::HIDL: |
| return tryToInitializeHidlProviderLocked(removedProviderName, providerInfo); |
| case IPCTransport::AIDL: |
| return tryToInitializeAidlProviderLocked(removedAidlProviderName, |
| providerInfo); |
| default: |
| ALOGE("%s Unsupported Transport %d", __FUNCTION__, providerTransport); |
| } |
| } |
| } |
| |
| // Inform camera service of loss of presence for all the devices from this provider, |
| // without lock held for reentrancy |
| sp<StatusListener> listener = getStatusListener(); |
| if (listener != nullptr) { |
| lock.unlock(); |
| for (auto& id : removedDeviceIds) { |
| listener->onDeviceStatusChanged(id, CameraDeviceStatus::NOT_PRESENT); |
| } |
| lock.lock(); |
| } |
| |
| } |
| return res; |
| } |
| |
| sp<CameraProviderManager::StatusListener> CameraProviderManager::getStatusListener() const { |
| return mListener.promote(); |
| } |
| /**** Methods for ProviderInfo ****/ |
| |
| |
| CameraProviderManager::ProviderInfo::ProviderInfo( |
| const std::string &providerName, |
| const std::string &providerInstance, |
| [[maybe_unused]] CameraProviderManager *manager) : |
| mProviderName(providerName), |
| mProviderInstance(providerInstance), |
| mProviderTagid(generateVendorTagId(providerName)), |
| mUniqueDeviceCount(0), |
| mManager(manager) { |
| } |
| |
| const std::string& CameraProviderManager::ProviderInfo::getType() const { |
| return mType; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::addDevice( |
| const std::string& name, CameraDeviceStatus initialStatus, |
| /*out*/ std::string* parsedId) { |
| |
| ALOGI("Enumerating new camera device: %s", name.c_str()); |
| |
| uint16_t major, minor; |
| std::string type, id; |
| IPCTransport transport = getIPCTransport(); |
| |
| status_t res = parseDeviceName(name, &major, &minor, &type, &id); |
| if (res != OK) { |
| return res; |
| } |
| |
| if (type != mType) { |
| ALOGE("%s: Device type %s does not match provider type %s", __FUNCTION__, |
| type.c_str(), mType.c_str()); |
| return BAD_VALUE; |
| } |
| if (mManager->isValidDeviceLocked(id, major, transport)) { |
| ALOGE("%s: Device %s: ID %s is already in use for device major version %d", __FUNCTION__, |
| name.c_str(), id.c_str(), major); |
| return BAD_VALUE; |
| } |
| |
| std::unique_ptr<DeviceInfo> deviceInfo; |
| switch (transport) { |
| case IPCTransport::HIDL: |
| switch (major) { |
| case 3: |
| break; |
| default: |
| ALOGE("%s: Device %s: Unsupported HIDL device HAL major version %d:", |
| __FUNCTION__, name.c_str(), major); |
| return BAD_VALUE; |
| } |
| break; |
| case IPCTransport::AIDL: |
| if (major != 1) { |
| ALOGE("%s: Device %s: Unsupported AIDL device HAL major version %d:", __FUNCTION__, |
| name.c_str(), major); |
| return BAD_VALUE; |
| } |
| break; |
| default: |
| ALOGE("%s Invalid transport %d", __FUNCTION__, transport); |
| return BAD_VALUE; |
| } |
| |
| deviceInfo = initializeDeviceInfo(name, mProviderTagid, id, minor); |
| if (deviceInfo == nullptr) return BAD_VALUE; |
| deviceInfo->notifyDeviceStateChange(getDeviceState()); |
| deviceInfo->mStatus = initialStatus; |
| bool isAPI1Compatible = deviceInfo->isAPI1Compatible(); |
| |
| mDevices.push_back(std::move(deviceInfo)); |
| |
| mUniqueCameraIds.insert(id); |
| if (isAPI1Compatible) { |
| // addDevice can be called more than once for the same camera id if HAL |
| // supports openLegacy. |
| if (std::find(mUniqueAPI1CompatibleCameraIds.begin(), mUniqueAPI1CompatibleCameraIds.end(), |
| id) == mUniqueAPI1CompatibleCameraIds.end()) { |
| mUniqueAPI1CompatibleCameraIds.push_back(id); |
| } |
| } |
| |
| if (parsedId != nullptr) { |
| *parsedId = id; |
| } |
| return OK; |
| } |
| |
| void CameraProviderManager::ProviderInfo::removeDevice(const std::string &id) { |
| for (auto it = mDevices.begin(); it != mDevices.end(); it++) { |
| if ((*it)->mId == id) { |
| mUniqueCameraIds.erase(id); |
| mUnavailablePhysicalCameras.erase(id); |
| if ((*it)->isAPI1Compatible()) { |
| mUniqueAPI1CompatibleCameraIds.erase(std::remove( |
| mUniqueAPI1CompatibleCameraIds.begin(), |
| mUniqueAPI1CompatibleCameraIds.end(), id)); |
| } |
| |
| // Remove reference to camera provider to avoid pointer leak when |
| // unplugging external camera while in use with lazy HALs |
| mManager->removeRef(DeviceMode::CAMERA, id); |
| mManager->removeRef(DeviceMode::TORCH, id); |
| |
| mDevices.erase(it); |
| break; |
| } |
| } |
| } |
| |
| void CameraProviderManager::ProviderInfo::removeAllDevices() { |
| std::lock_guard<std::mutex> lock(mLock); |
| |
| auto itDevices = mDevices.begin(); |
| while (itDevices != mDevices.end()) { |
| std::string id = (*itDevices)->mId; |
| std::string deviceName = (*itDevices)->mName; |
| removeDevice(id); |
| // device was removed, reset iterator |
| itDevices = mDevices.begin(); |
| |
| //notify CameraService of status change |
| sp<StatusListener> listener = mManager->getStatusListener(); |
| if (listener != nullptr) { |
| mLock.unlock(); |
| ALOGV("%s: notify device not_present: %s", |
| __FUNCTION__, |
| deviceName.c_str()); |
| listener->onDeviceStatusChanged(id, CameraDeviceStatus::NOT_PRESENT); |
| mLock.lock(); |
| } |
| } |
| } |
| |
| bool CameraProviderManager::ProviderInfo::isExternalLazyHAL() const { |
| std::string providerName = mProviderName; |
| if (flags::lazy_aidl_wait_for_service() && getIPCTransport() == IPCTransport::AIDL) { |
| using aidl::android::hardware::camera::provider::ICameraProvider; |
| providerName = |
| mProviderName.substr(std::string(ICameraProvider::descriptor).size() + 1); |
| } |
| return kEnableLazyHal && (providerName == kExternalProviderName); |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::dump(int fd, const Vector<String16>&) const { |
| dprintf(fd, "== Camera Provider HAL %s (v2.%d, %s) static info: %zu devices: ==\n", |
| mProviderInstance.c_str(), |
| mMinorVersion, |
| mIsRemote ? "remote" : "passthrough", |
| mDevices.size()); |
| |
| for (auto& device : mDevices) { |
| dprintf(fd, "== Camera HAL device %s (v%d.%d) static information: ==\n", device->mName.c_str(), |
| device->mVersion.get_major(), device->mVersion.get_minor()); |
| dprintf(fd, " Resource cost: %d\n", device->mResourceCost.resourceCost); |
| if (device->mResourceCost.conflictingDevices.size() == 0) { |
| dprintf(fd, " Conflicting devices: None\n"); |
| } else { |
| dprintf(fd, " Conflicting devices:\n"); |
| for (size_t i = 0; i < device->mResourceCost.conflictingDevices.size(); i++) { |
| dprintf(fd, " %s\n", |
| device->mResourceCost.conflictingDevices[i].c_str()); |
| } |
| } |
| dprintf(fd, " API1 info:\n"); |
| dprintf(fd, " Has a flash unit: %s\n", |
| device->hasFlashUnit() ? "true" : "false"); |
| hardware::CameraInfo info; |
| int portraitRotation; |
| status_t res = device->getCameraInfo(/*overrideToPortrait*/false, &portraitRotation, |
| &info); |
| if (res != OK) { |
| dprintf(fd, " <Error reading camera info: %s (%d)>\n", |
| strerror(-res), res); |
| } else { |
| dprintf(fd, " Facing: %s\n", |
| info.facing == hardware::CAMERA_FACING_BACK ? "Back" : "Front"); |
| dprintf(fd, " Orientation: %d\n", info.orientation); |
| } |
| CameraMetadata info2; |
| res = device->getCameraCharacteristics(true /*overrideForPerfClass*/, &info2, |
| /*overrideToPortrait*/false); |
| if (res == INVALID_OPERATION) { |
| dprintf(fd, " API2 not directly supported\n"); |
| } else if (res != OK) { |
| dprintf(fd, " <Error reading camera characteristics: %s (%d)>\n", |
| strerror(-res), res); |
| } else { |
| dprintf(fd, " API2 camera characteristics:\n"); |
| info2.dump(fd, /*verbosity*/ 2, /*indentation*/ 4); |
| } |
| |
| // Dump characteristics of non-standalone physical camera |
| if (device->mIsLogicalCamera) { |
| for (auto& id : device->mPhysicalIds) { |
| // Skip if physical id is an independent camera |
| if (std::find(mProviderPublicCameraIds.begin(), mProviderPublicCameraIds.end(), id) |
| != mProviderPublicCameraIds.end()) { |
| continue; |
| } |
| |
| CameraMetadata physicalInfo; |
| status_t status = device->getPhysicalCameraCharacteristics(id, &physicalInfo); |
| if (status == OK) { |
| dprintf(fd, " Physical camera %s characteristics:\n", id.c_str()); |
| physicalInfo.dump(fd, /*verbosity*/ 2, /*indentation*/ 4); |
| } |
| } |
| } |
| |
| dprintf(fd, "== Camera HAL device %s (v%d.%d) dumpState: ==\n", device->mName.c_str(), |
| device->mVersion.get_major(), device->mVersion.get_minor()); |
| res = device->dumpState(fd); |
| if (res != OK) { |
| dprintf(fd, " <Error dumping device %s state: %s (%d)>\n", |
| device->mName.c_str(), strerror(-res), res); |
| } |
| } |
| return OK; |
| } |
| |
| std::vector<std::unordered_set<std::string>> |
| CameraProviderManager::ProviderInfo::getConcurrentCameraIdCombinations() { |
| std::lock_guard<std::mutex> lock(mLock); |
| return mConcurrentCameraIdCombinations; |
| } |
| |
| void CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeInternal( |
| const std::string& cameraDeviceName, CameraDeviceStatus newStatus) { |
| sp<StatusListener> listener; |
| std::string id; |
| std::lock_guard<std::mutex> lock(mInitLock); |
| CameraDeviceStatus internalNewStatus = newStatus; |
| if (!mInitialized) { |
| mCachedStatus.emplace_back(false /*isPhysicalCameraStatus*/, |
| cameraDeviceName, std::string(), internalNewStatus); |
| return; |
| } |
| |
| { |
| std::lock_guard<std::mutex> lock(mLock); |
| if (OK != cameraDeviceStatusChangeLocked(&id, cameraDeviceName, newStatus)) { |
| return; |
| } |
| listener = mManager->getStatusListener(); |
| } |
| |
| // Call without lock held to allow reentrancy into provider manager |
| if (listener != nullptr) { |
| listener->onDeviceStatusChanged(id, internalNewStatus); |
| } |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeLocked( |
| std::string* id, const std::string& cameraDeviceName, |
| CameraDeviceStatus newStatus) { |
| bool known = false; |
| std::string cameraId; |
| for (auto& deviceInfo : mDevices) { |
| if (deviceInfo->mName == cameraDeviceName) { |
| Mutex::Autolock l(deviceInfo->mDeviceAvailableLock); |
| ALOGI("Camera device %s status is now %s, was %s", cameraDeviceName.c_str(), |
| FrameworkDeviceStatusToString(newStatus), |
| FrameworkDeviceStatusToString(deviceInfo->mStatus)); |
| deviceInfo->mStatus = newStatus; |
| // TODO: Handle device removal (NOT_PRESENT) |
| cameraId = deviceInfo->mId; |
| known = true; |
| deviceInfo->mIsDeviceAvailable = |
| (newStatus == CameraDeviceStatus::PRESENT); |
| deviceInfo->mDeviceAvailableSignal.signal(); |
| break; |
| } |
| } |
| // Previously unseen device; status must not be NOT_PRESENT |
| if (!known) { |
| if (newStatus == CameraDeviceStatus::NOT_PRESENT) { |
| ALOGW("Camera provider %s says an unknown camera device %s is not present. Curious.", |
| mProviderName.c_str(), cameraDeviceName.c_str()); |
| return BAD_VALUE; |
| } |
| addDevice(cameraDeviceName, newStatus, &cameraId); |
| } else if (newStatus == CameraDeviceStatus::NOT_PRESENT) { |
| removeDevice(cameraId); |
| } else if (isExternalLazyHAL()) { |
| // Do not notify CameraService for PRESENT->PRESENT (lazy HAL restart) |
| // because NOT_AVAILABLE is set on CameraService::connect and a PRESENT |
| // notif. would overwrite it |
| return BAD_VALUE; |
| } |
| |
| if (reCacheConcurrentStreamingCameraIdsLocked() != OK) { |
| ALOGE("%s: CameraProvider %s could not re-cache concurrent streaming camera id list ", |
| __FUNCTION__, mProviderName.c_str()); |
| } |
| *id = cameraId; |
| return OK; |
| } |
| |
| void CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeInternal( |
| const std::string& cameraDeviceName, |
| const std::string& physicalCameraDeviceName, |
| CameraDeviceStatus newStatus) { |
| sp<StatusListener> listener; |
| std::string id; |
| std::string physicalId; |
| std::lock_guard<std::mutex> lock(mInitLock); |
| if (!mInitialized) { |
| mCachedStatus.emplace_back(true /*isPhysicalCameraStatus*/, cameraDeviceName, |
| physicalCameraDeviceName, newStatus); |
| return; |
| } |
| |
| { |
| std::lock_guard<std::mutex> lock(mLock); |
| |
| if (OK != physicalCameraDeviceStatusChangeLocked(&id, &physicalId, cameraDeviceName, |
| physicalCameraDeviceName, newStatus)) { |
| return; |
| } |
| |
| listener = mManager->getStatusListener(); |
| } |
| // Call without lock held to allow reentrancy into provider manager |
| if (listener != nullptr) { |
| listener->onDeviceStatusChanged(id, physicalId, newStatus); |
| } |
| return; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeLocked( |
| std::string* id, std::string* physicalId, |
| const std::string& cameraDeviceName, |
| const std::string& physicalCameraDeviceName, |
| CameraDeviceStatus newStatus) { |
| bool known = false; |
| std::string cameraId; |
| for (auto& deviceInfo : mDevices) { |
| if (deviceInfo->mName == cameraDeviceName) { |
| cameraId = deviceInfo->mId; |
| if (!deviceInfo->mIsLogicalCamera) { |
| ALOGE("%s: Invalid combination of camera id %s, physical id %s", |
| __FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str()); |
| return BAD_VALUE; |
| } |
| if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(), |
| physicalCameraDeviceName) == deviceInfo->mPhysicalIds.end()) { |
| ALOGE("%s: Invalid combination of camera id %s, physical id %s", |
| __FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str()); |
| return BAD_VALUE; |
| } |
| ALOGI("Camera device %s physical device %s status is now %s", |
| cameraDeviceName.c_str(), physicalCameraDeviceName.c_str(), |
| FrameworkDeviceStatusToString(newStatus)); |
| known = true; |
| break; |
| } |
| } |
| // Previously unseen device; status must not be NOT_PRESENT |
| if (!known) { |
| ALOGW("Camera provider %s says an unknown camera device %s-%s is not present. Curious.", |
| mProviderName.c_str(), cameraDeviceName.c_str(), |
| physicalCameraDeviceName.c_str()); |
| return BAD_VALUE; |
| } |
| |
| if (mUnavailablePhysicalCameras.count(cameraId) == 0) { |
| mUnavailablePhysicalCameras.emplace(cameraId, std::set<std::string>{}); |
| } |
| if (newStatus != CameraDeviceStatus::PRESENT) { |
| mUnavailablePhysicalCameras[cameraId].insert(physicalCameraDeviceName); |
| } else { |
| mUnavailablePhysicalCameras[cameraId].erase(physicalCameraDeviceName); |
| } |
| |
| *id = cameraId; |
| *physicalId = physicalCameraDeviceName; |
| return OK; |
| } |
| |
| void CameraProviderManager::ProviderInfo::torchModeStatusChangeInternal( |
| const std::string& cameraDeviceName, |
| TorchModeStatus newStatus) { |
| sp<StatusListener> listener; |
| SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC; |
| std::string id; |
| bool known = false; |
| { |
| // Hold mLock for accessing mDevices |
| std::lock_guard<std::mutex> lock(mLock); |
| for (auto& deviceInfo : mDevices) { |
| if (deviceInfo->mName == cameraDeviceName) { |
| ALOGI("Camera device %s torch status is now %s", cameraDeviceName.c_str(), |
| FrameworkTorchStatusToString(newStatus)); |
| id = deviceInfo->mId; |
| known = true; |
| systemCameraKind = deviceInfo->mSystemCameraKind; |
| if (TorchModeStatus::AVAILABLE_ON != newStatus) { |
| mManager->removeRef(CameraProviderManager::DeviceMode::TORCH, id); |
| } |
| break; |
| } |
| } |
| if (!known) { |
| ALOGW("Camera provider %s says an unknown camera %s now has torch status %d. Curious.", |
| mProviderName.c_str(), cameraDeviceName.c_str(), newStatus); |
| return; |
| } |
| // no lock needed since listener is set up only once during |
| // CameraProviderManager initialization and then never changed till it is |
| // destructed. |
| listener = mManager->getStatusListener(); |
| } |
| // Call without lock held to allow reentrancy into provider manager |
| // The problem with holding mLock here is that we |
| // might be limiting re-entrancy : CameraService::onTorchStatusChanged calls |
| // back into CameraProviderManager which might try to hold mLock again (eg: |
| // findDeviceInfo, which should be holding mLock while iterating through |
| // each provider's devices). |
| if (listener != nullptr) { |
| listener->onTorchStatusChanged(id, newStatus, systemCameraKind); |
| } |
| return; |
| } |
| |
| void CameraProviderManager::ProviderInfo::notifyDeviceInfoStateChangeLocked( |
| int64_t newDeviceState) { |
| std::lock_guard<std::mutex> lock(mLock); |
| for (auto it = mDevices.begin(); it != mDevices.end(); it++) { |
| (*it)->notifyDeviceStateChange(newDeviceState); |
| } |
| } |
| |
| CameraProviderManager::ProviderInfo::DeviceInfo3::DeviceInfo3(const std::string& name, |
| const metadata_vendor_id_t tagId, const std::string &id, |
| uint16_t minorVersion, |
| const CameraResourceCost& resourceCost, |
| sp<ProviderInfo> parentProvider, |
| const std::vector<std::string>& publicCameraIds) : |
| DeviceInfo(name, tagId, id, |
| hardware::hidl_version{ |
| static_cast<uint16_t >( |
| parentProvider->getIPCTransport() == IPCTransport::HIDL ? 3 : 1), |
| minorVersion}, |
| publicCameraIds, resourceCost, parentProvider) { } |
| |
| void CameraProviderManager::ProviderInfo::DeviceInfo3::notifyDeviceStateChange(int64_t newState) { |
| if (!mDeviceStateOrientationMap.empty() && |
| (mDeviceStateOrientationMap.find(newState) != mDeviceStateOrientationMap.end())) { |
| mCameraCharacteristics.update(ANDROID_SENSOR_ORIENTATION, |
| &mDeviceStateOrientationMap[newState], 1); |
| if (mCameraCharNoPCOverride.get() != nullptr) { |
| mCameraCharNoPCOverride->update(ANDROID_SENSOR_ORIENTATION, |
| &mDeviceStateOrientationMap[newState], 1); |
| } |
| } |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraInfo( |
| bool overrideToPortrait, int *portraitRotation, |
| hardware::CameraInfo *info) const { |
| if (info == nullptr) return BAD_VALUE; |
| |
| camera_metadata_ro_entry facing = |
| mCameraCharacteristics.find(ANDROID_LENS_FACING); |
| if (facing.count == 1) { |
| switch (facing.data.u8[0]) { |
| case ANDROID_LENS_FACING_BACK: |
| info->facing = hardware::CAMERA_FACING_BACK; |
| break; |
| case ANDROID_LENS_FACING_EXTERNAL: |
| // Map external to front for legacy API |
| case ANDROID_LENS_FACING_FRONT: |
| info->facing = hardware::CAMERA_FACING_FRONT; |
| break; |
| } |
| } else { |
| ALOGE("%s: Unable to find android.lens.facing static metadata", __FUNCTION__); |
| return NAME_NOT_FOUND; |
| } |
| |
| camera_metadata_ro_entry orientation = |
| mCameraCharacteristics.find(ANDROID_SENSOR_ORIENTATION); |
| if (orientation.count == 1) { |
| info->orientation = orientation.data.i32[0]; |
| } else { |
| ALOGE("%s: Unable to find android.sensor.orientation static metadata", __FUNCTION__); |
| return NAME_NOT_FOUND; |
| } |
| |
| if (overrideToPortrait && (info->orientation == 0 || info->orientation == 180)) { |
| *portraitRotation = 90; |
| if (info->facing == hardware::CAMERA_FACING_FRONT) { |
| info->orientation = (360 + info->orientation - 90) % 360; |
| } else { |
| info->orientation = (360 + info->orientation + 90) % 360; |
| } |
| } else { |
| *portraitRotation = 0; |
| } |
| |
| return OK; |
| } |
| bool CameraProviderManager::ProviderInfo::DeviceInfo3::isAPI1Compatible() const { |
| // Do not advertise NIR cameras to API1 camera app. |
| camera_metadata_ro_entry cfa = mCameraCharacteristics.find( |
| ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT); |
| if (cfa.count == 1 && cfa.data.u8[0] == ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_NIR) { |
| return false; |
| } |
| |
| bool isBackwardCompatible = false; |
| camera_metadata_ro_entry_t caps = mCameraCharacteristics.find( |
| ANDROID_REQUEST_AVAILABLE_CAPABILITIES); |
| for (size_t i = 0; i < caps.count; i++) { |
| if (caps.data.u8[i] == |
| ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE) { |
| isBackwardCompatible = true; |
| break; |
| } |
| } |
| |
| return isBackwardCompatible; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraCharacteristics( |
| bool overrideForPerfClass, CameraMetadata *characteristics, bool overrideToPortrait) { |
| if (characteristics == nullptr) return BAD_VALUE; |
| |
| if (!overrideForPerfClass && mCameraCharNoPCOverride != nullptr) { |
| *characteristics = *mCameraCharNoPCOverride; |
| } else { |
| *characteristics = mCameraCharacteristics; |
| } |
| |
| if (overrideToPortrait) { |
| const auto &lensFacingEntry = characteristics->find(ANDROID_LENS_FACING); |
| const auto &sensorOrientationEntry = characteristics->find(ANDROID_SENSOR_ORIENTATION); |
| uint8_t lensFacing = lensFacingEntry.data.u8[0]; |
| if (lensFacingEntry.count > 0 && sensorOrientationEntry.count > 0) { |
| int32_t sensorOrientation = sensorOrientationEntry.data.i32[0]; |
| int32_t newSensorOrientation = sensorOrientation; |
| |
| if (sensorOrientation == 0 || sensorOrientation == 180) { |
| if (lensFacing == ANDROID_LENS_FACING_FRONT) { |
| newSensorOrientation = (360 + sensorOrientation - 90) % 360; |
| } else if (lensFacing == ANDROID_LENS_FACING_BACK) { |
| newSensorOrientation = (360 + sensorOrientation + 90) % 360; |
| } |
| } |
| |
| if (newSensorOrientation != sensorOrientation) { |
| ALOGV("%s: Update ANDROID_SENSOR_ORIENTATION for lens facing %d " |
| "from %d to %d", __FUNCTION__, lensFacing, sensorOrientation, |
| newSensorOrientation); |
| characteristics->update(ANDROID_SENSOR_ORIENTATION, &newSensorOrientation, 1); |
| } |
| } |
| |
| if (characteristics->exists(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS)) { |
| ALOGV("%s: Erasing ANDROID_INFO_DEVICE_STATE_ORIENTATIONS for lens facing %d", |
| __FUNCTION__, lensFacing); |
| characteristics->erase(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS); |
| } |
| } |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getPhysicalCameraCharacteristics( |
| const std::string& physicalCameraId, CameraMetadata *characteristics) const { |
| if (characteristics == nullptr) return BAD_VALUE; |
| if (mPhysicalCameraCharacteristics.find(physicalCameraId) == |
| mPhysicalCameraCharacteristics.end()) { |
| return NAME_NOT_FOUND; |
| } |
| |
| *characteristics = mPhysicalCameraCharacteristics.at(physicalCameraId); |
| return OK; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::DeviceInfo3::filterSmallJpegSizes() { |
| int32_t thresholdW = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_W; |
| int32_t thresholdH = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_H; |
| |
| if (mCameraCharNoPCOverride != nullptr) return OK; |
| |
| mCameraCharNoPCOverride = std::make_unique<CameraMetadata>(mCameraCharacteristics); |
| |
| // Remove small JPEG sizes from available stream configurations |
| size_t largeJpegCount = 0; |
| std::vector<int32_t> newStreamConfigs; |
| camera_metadata_entry streamConfigs = |
| mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS); |
| for (size_t i = 0; i < streamConfigs.count; i += 4) { |
| if ((streamConfigs.data.i32[i] == HAL_PIXEL_FORMAT_BLOB) && (streamConfigs.data.i32[i+3] == |
| ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) { |
| if (streamConfigs.data.i32[i+1] * streamConfigs.data.i32[i+2] < |
| thresholdW * thresholdH) { |
| continue; |
| } else { |
| largeJpegCount ++; |
| } |
| } |
| newStreamConfigs.insert(newStreamConfigs.end(), streamConfigs.data.i32 + i, |
| streamConfigs.data.i32 + i + 4); |
| } |
| if (newStreamConfigs.size() == 0 || largeJpegCount == 0) { |
| return BAD_VALUE; |
| } |
| |
| // Remove small JPEG sizes from available min frame durations |
| largeJpegCount = 0; |
| std::vector<int64_t> newMinDurations; |
| camera_metadata_entry minDurations = |
| mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS); |
| for (size_t i = 0; i < minDurations.count; i += 4) { |
| if (minDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) { |
| if ((int32_t)minDurations.data.i64[i+1] * (int32_t)minDurations.data.i64[i+2] < |
| thresholdW * thresholdH) { |
| continue; |
| } else { |
| largeJpegCount++; |
| } |
| } |
| newMinDurations.insert(newMinDurations.end(), minDurations.data.i64 + i, |
| minDurations.data.i64 + i + 4); |
| } |
| if (newMinDurations.size() == 0 || largeJpegCount == 0) { |
| return BAD_VALUE; |
| } |
| |
| // Remove small JPEG sizes from available stall durations |
| largeJpegCount = 0; |
| std::vector<int64_t> newStallDurations; |
| camera_metadata_entry stallDurations = |
| mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS); |
| for (size_t i = 0; i < stallDurations.count; i += 4) { |
| if (stallDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) { |
| if ((int32_t)stallDurations.data.i64[i+1] * (int32_t)stallDurations.data.i64[i+2] < |
| thresholdW * thresholdH) { |
| continue; |
| } else { |
| largeJpegCount++; |
| } |
| } |
| newStallDurations.insert(newStallDurations.end(), stallDurations.data.i64 + i, |
| stallDurations.data.i64 + i + 4); |
| } |
| if (newStallDurations.size() == 0 || largeJpegCount == 0) { |
| return BAD_VALUE; |
| } |
| |
| mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, |
| newStreamConfigs.data(), newStreamConfigs.size()); |
| mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, |
| newMinDurations.data(), newMinDurations.size()); |
| mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, |
| newStallDurations.data(), newStallDurations.size()); |
| |
| // Re-generate metadata tags that have dependencies on BLOB sizes |
| auto res = addDynamicDepthTags(); |
| if (OK != res) { |
| ALOGE("%s: Failed to append dynamic depth tags: %s (%d)", __FUNCTION__, |
| strerror(-res), res); |
| // Allow filtering of small JPEG sizes to succeed even if dynamic depth |
| // tags fail to generate. |
| } |
| |
| return OK; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::parseProviderName(const std::string& name, |
| std::string *type, uint32_t *id) { |
| // Format must be "<type>/<id>" |
| #define ERROR_MSG_PREFIX "%s: Invalid provider name '%s'. " \ |
| "Should match '<type>/<id>' - " |
| |
| if (!type || !id) return INVALID_OPERATION; |
| |
| std::string::size_type slashIdx = name.find('/'); |
| if (slashIdx == std::string::npos || slashIdx == name.size() - 1) { |
| ALOGE(ERROR_MSG_PREFIX |
| "does not have / separator between type and id", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| |
| std::string typeVal = name.substr(0, slashIdx); |
| |
| char *endPtr; |
| errno = 0; |
| long idVal = strtol(name.c_str() + slashIdx + 1, &endPtr, 10); |
| if (errno != 0) { |
| ALOGE(ERROR_MSG_PREFIX |
| "cannot parse provider id as an integer: %s (%d)", |
| __FUNCTION__, name.c_str(), strerror(errno), errno); |
| return BAD_VALUE; |
| } |
| if (endPtr != name.c_str() + name.size()) { |
| ALOGE(ERROR_MSG_PREFIX |
| "provider id has unexpected length", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| if (idVal < 0) { |
| ALOGE(ERROR_MSG_PREFIX |
| "id is negative: %ld", |
| __FUNCTION__, name.c_str(), idVal); |
| return BAD_VALUE; |
| } |
| |
| #undef ERROR_MSG_PREFIX |
| |
| *type = typeVal; |
| *id = static_cast<uint32_t>(idVal); |
| |
| return OK; |
| } |
| |
| metadata_vendor_id_t CameraProviderManager::ProviderInfo::generateVendorTagId( |
| const std::string &name) { |
| metadata_vendor_id_t ret = std::hash<std::string> {} (name); |
| // CAMERA_METADATA_INVALID_VENDOR_ID is not a valid hash value |
| if (CAMERA_METADATA_INVALID_VENDOR_ID == ret) { |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| status_t CameraProviderManager::ProviderInfo::parseDeviceName(const std::string& name, |
| uint16_t *major, uint16_t *minor, std::string *type, std::string *id) { |
| |
| // Format must be "device@<major>.<minor>/<type>/<id>" |
| |
| #define ERROR_MSG_PREFIX "%s: Invalid device name '%s'. " \ |
| "Should match 'device@<major>.<minor>/<type>/<id>' - " |
| |
| if (!major || !minor || !type || !id) return INVALID_OPERATION; |
| |
| // Verify starting prefix |
| const char expectedPrefix[] = "device@"; |
| |
| if (name.find(expectedPrefix) != 0) { |
| ALOGE(ERROR_MSG_PREFIX |
| "does not start with '%s'", |
| __FUNCTION__, name.c_str(), expectedPrefix); |
| return BAD_VALUE; |
| } |
| |
| // Extract major/minor versions |
| constexpr std::string::size_type atIdx = sizeof(expectedPrefix) - 2; |
| std::string::size_type dotIdx = name.find('.', atIdx); |
| if (dotIdx == std::string::npos) { |
| ALOGE(ERROR_MSG_PREFIX |
| "does not have @<major>. version section", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| std::string::size_type typeSlashIdx = name.find('/', dotIdx); |
| if (typeSlashIdx == std::string::npos) { |
| ALOGE(ERROR_MSG_PREFIX |
| "does not have .<minor>/ version section", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| |
| char *endPtr; |
| errno = 0; |
| long majorVal = strtol(name.c_str() + atIdx + 1, &endPtr, 10); |
| if (errno != 0) { |
| ALOGE(ERROR_MSG_PREFIX |
| "cannot parse major version: %s (%d)", |
| __FUNCTION__, name.c_str(), strerror(errno), errno); |
| return BAD_VALUE; |
| } |
| if (endPtr != name.c_str() + dotIdx) { |
| ALOGE(ERROR_MSG_PREFIX |
| "major version has unexpected length", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| long minorVal = strtol(name.c_str() + dotIdx + 1, &endPtr, 10); |
| if (errno != 0) { |
| ALOGE(ERROR_MSG_PREFIX |
| "cannot parse minor version: %s (%d)", |
| __FUNCTION__, name.c_str(), strerror(errno), errno); |
| return BAD_VALUE; |
| } |
| if (endPtr != name.c_str() + typeSlashIdx) { |
| ALOGE(ERROR_MSG_PREFIX |
| "minor version has unexpected length", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| if (majorVal < 0 || majorVal > UINT16_MAX || minorVal < 0 || minorVal > UINT16_MAX) { |
| ALOGE(ERROR_MSG_PREFIX |
| "major/minor version is out of range of uint16_t: %ld.%ld", |
| __FUNCTION__, name.c_str(), majorVal, minorVal); |
| return BAD_VALUE; |
| } |
| |
| // Extract type and id |
| |
| std::string::size_type instanceSlashIdx = name.find('/', typeSlashIdx + 1); |
| if (instanceSlashIdx == std::string::npos) { |
| ALOGE(ERROR_MSG_PREFIX |
| "does not have /<type>/ component", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| std::string typeVal = name.substr(typeSlashIdx + 1, instanceSlashIdx - typeSlashIdx - 1); |
| |
| if (instanceSlashIdx == name.size() - 1) { |
| ALOGE(ERROR_MSG_PREFIX |
| "does not have an /<id> component", |
| __FUNCTION__, name.c_str()); |
| return BAD_VALUE; |
| } |
| std::string idVal = name.substr(instanceSlashIdx + 1); |
| |
| #undef ERROR_MSG_PREFIX |
| |
| *major = static_cast<uint16_t>(majorVal); |
| *minor = static_cast<uint16_t>(minorVal); |
| *type = typeVal; |
| *id = idVal; |
| |
| return OK; |
| } |
| |
| CameraProviderManager::ProviderInfo::~ProviderInfo() { |
| // Destruction of ProviderInfo is only supposed to happen when the respective |
| // CameraProvider interface dies, so do not unregister callbacks. |
| } |
| |
| // Expects to have mInterfaceMutex locked |
| std::vector<std::unordered_set<std::string>> |
| CameraProviderManager::getConcurrentCameraIds() const { |
| std::vector<std::unordered_set<std::string>> deviceIdCombinations; |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| for (auto &provider : mProviders) { |
| for (auto &combinations : provider->getConcurrentCameraIdCombinations()) { |
| deviceIdCombinations.push_back(combinations); |
| } |
| } |
| return deviceIdCombinations; |
| } |
| |
| // Checks if the containing vector of sets has any set that contains all of the |
| // camera ids in cameraIdsAndSessionConfigs. |
| static bool checkIfSetContainsAll( |
| const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs, |
| const std::vector<std::unordered_set<std::string>> &containingSets) { |
| for (auto &containingSet : containingSets) { |
| bool didHaveAll = true; |
| for (auto &cameraIdAndSessionConfig : cameraIdsAndSessionConfigs) { |
| if (containingSet.find(cameraIdAndSessionConfig.mCameraId) == containingSet.end()) { |
| // a camera id doesn't belong to this set, keep looking in other |
| // sets |
| didHaveAll = false; |
| break; |
| } |
| } |
| if (didHaveAll) { |
| // found a set that has all camera ids, lets return; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| status_t CameraProviderManager::isConcurrentSessionConfigurationSupported( |
| const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs, |
| const std::set<std::string>& perfClassPrimaryCameraIds, |
| int targetSdkVersion, bool *isSupported) { |
| std::lock_guard<std::mutex> lock(mInterfaceMutex); |
| // Check if all the devices are a subset of devices advertised by the |
| // same provider through getConcurrentStreamingCameraIds() |
| // TODO: we should also do a findDeviceInfoLocked here ? |
| for (auto &provider : mProviders) { |
| if (checkIfSetContainsAll(cameraIdsAndSessionConfigs, |
| provider->getConcurrentCameraIdCombinations())) { |
| return provider->isConcurrentSessionConfigurationSupported( |
| cameraIdsAndSessionConfigs, perfClassPrimaryCameraIds, targetSdkVersion, |
| isSupported); |
| } |
| } |
| *isSupported = false; |
| //The set of camera devices were not found |
| return INVALID_OPERATION; |
| } |
| |
| status_t CameraProviderManager::getCameraCharacteristicsLocked(const std::string &id, |
| bool overrideForPerfClass, CameraMetadata* characteristics, |
| bool overrideToPortrait) const { |
| auto deviceInfo = findDeviceInfoLocked(id); |
| if (deviceInfo != nullptr) { |
| return deviceInfo->getCameraCharacteristics(overrideForPerfClass, characteristics, |
| overrideToPortrait); |
| } |
| |
| // Find hidden physical camera characteristics |
| for (auto& provider : mProviders) { |
| for (auto& deviceInfo : provider->mDevices) { |
| status_t res = deviceInfo->getPhysicalCameraCharacteristics(id, characteristics); |
| if (res != NAME_NOT_FOUND) return res; |
| } |
| } |
| |
| return NAME_NOT_FOUND; |
| } |
| |
| void CameraProviderManager::filterLogicalCameraIdsLocked( |
| std::vector<std::string>& deviceIds) const |
| { |
| // Map between camera facing and camera IDs related to logical camera. |
| std::map<int, std::unordered_set<std::string>> idCombos; |
| |
| // Collect all logical and its underlying physical camera IDs for each |
| // facing. |
| for (auto& deviceId : deviceIds) { |
| auto deviceInfo = findDeviceInfoLocked(deviceId); |
| if (deviceInfo == nullptr) continue; |
| |
| if (!deviceInfo->mIsLogicalCamera) { |
| continue; |
| } |
| |
| // combo contains the ids of a logical camera and its physical cameras |
| std::vector<std::string> combo = deviceInfo->mPhysicalIds; |
| combo.push_back(deviceId); |
| |
| hardware::CameraInfo info; |
| int portraitRotation; |
| status_t res = deviceInfo->getCameraInfo(/*overrideToPortrait*/false, &portraitRotation, |
| &info); |
| if (res != OK) { |
| ALOGE("%s: Error reading camera info: %s (%d)", __FUNCTION__, strerror(-res), res); |
| continue; |
| } |
| idCombos[info.facing].insert(combo.begin(), combo.end()); |
| } |
| |
| // Only expose one camera ID per facing for all logical and underlying |
| // physical camera IDs. |
| for (auto& r : idCombos) { |
| auto& removedIds = r.second; |
| for (auto& id : deviceIds) { |
| auto foundId = std::find(removedIds.begin(), removedIds.end(), id); |
| if (foundId == removedIds.end()) { |
| continue; |
| } |
| |
| removedIds.erase(foundId); |
| break; |
| } |
| deviceIds.erase(std::remove_if(deviceIds.begin(), deviceIds.end(), |
| [&removedIds](const std::string& s) { |
| return removedIds.find(s) != removedIds.end();}), |
| deviceIds.end()); |
| } |
| } |
| |
| } // namespace android |