blob: 91fc48351cad35d1e1a69428910577457a8e9b03 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "CameraProviderManager"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
#include "CameraProviderManager.h"
#include <android/hardware/camera/device/3.7/ICameraDevice.h>
#include <algorithm>
#include <chrono>
#include "common/DepthPhotoProcessor.h"
#include <dlfcn.h>
#include <future>
#include <inttypes.h>
#include <android/hidl/manager/1.2/IServiceManager.h>
#include <hidl/ServiceManagement.h>
#include <functional>
#include <camera_metadata_hidden.h>
#include <android-base/parseint.h>
#include <android-base/logging.h>
#include <cutils/properties.h>
#include <hwbinder/IPCThreadState.h>
#include <utils/SessionConfigurationUtils.h>
#include <utils/Trace.h>
#include "api2/HeicCompositeStream.h"
#include "device3/ZoomRatioMapper.h"
namespace android {
using namespace ::android::hardware::camera;
using namespace ::android::hardware::camera::common::V1_0;
using camera3::SessionConfigurationUtils;
using std::literals::chrono_literals::operator""s;
using hardware::camera2::utils::CameraIdAndSessionConfiguration;
using hardware::camera::provider::V2_7::CameraIdAndStreamCombination;
namespace {
const bool kEnableLazyHal(property_get_bool("ro.camera.enableLazyHal", false));
} // anonymous namespace
const float CameraProviderManager::kDepthARTolerance = .1f;
CameraProviderManager::HardwareServiceInteractionProxy
CameraProviderManager::sHardwareServiceInteractionProxy{};
CameraProviderManager::~CameraProviderManager() {
}
hardware::hidl_vec<hardware::hidl_string>
CameraProviderManager::HardwareServiceInteractionProxy::listServices() {
hardware::hidl_vec<hardware::hidl_string> ret;
auto manager = hardware::defaultServiceManager1_2();
if (manager != nullptr) {
manager->listManifestByInterface(provider::V2_4::ICameraProvider::descriptor,
[&ret](const hardware::hidl_vec<hardware::hidl_string> &registered) {
ret = registered;
});
}
return ret;
}
status_t CameraProviderManager::initialize(wp<CameraProviderManager::StatusListener> listener,
ServiceInteractionProxy* proxy) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
if (proxy == nullptr) {
ALOGE("%s: No valid service interaction proxy provided", __FUNCTION__);
return BAD_VALUE;
}
mListener = listener;
mServiceProxy = proxy;
mDeviceState = static_cast<hardware::hidl_bitfield<provider::V2_5::DeviceState>>(
provider::V2_5::DeviceState::NORMAL);
// Registering will trigger notifications for all already-known providers
bool success = mServiceProxy->registerForNotifications(
/* instance name, empty means no filter */ "",
this);
if (!success) {
ALOGE("%s: Unable to register with hardware service manager for notifications "
"about camera providers", __FUNCTION__);
return INVALID_OPERATION;
}
for (const auto& instance : mServiceProxy->listServices()) {
this->addProviderLocked(instance);
}
IPCThreadState::self()->flushCommands();
return OK;
}
std::pair<int, int> CameraProviderManager::getCameraCount() const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
int systemCameraCount = 0;
int publicCameraCount = 0;
for (auto& provider : mProviders) {
for (auto &id : provider->mUniqueCameraIds) {
SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
if (getSystemCameraKindLocked(id, &deviceKind) != OK) {
ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, id.c_str());
continue;
}
switch(deviceKind) {
case SystemCameraKind::PUBLIC:
publicCameraCount++;
break;
case SystemCameraKind::SYSTEM_ONLY_CAMERA:
systemCameraCount++;
break;
default:
break;
}
}
}
return std::make_pair(systemCameraCount, publicCameraCount);
}
std::vector<std::string> CameraProviderManager::getCameraDeviceIds() const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
std::vector<std::string> deviceIds;
for (auto& provider : mProviders) {
for (auto& id : provider->mUniqueCameraIds) {
deviceIds.push_back(id);
}
}
return deviceIds;
}
void CameraProviderManager::collectDeviceIdsLocked(const std::vector<std::string> deviceIds,
std::vector<std::string>& publicDeviceIds,
std::vector<std::string>& systemDeviceIds) const {
for (auto &deviceId : deviceIds) {
SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
if (getSystemCameraKindLocked(deviceId, &deviceKind) != OK) {
ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, deviceId.c_str());
continue;
}
if (deviceKind == SystemCameraKind::SYSTEM_ONLY_CAMERA) {
systemDeviceIds.push_back(deviceId);
} else {
publicDeviceIds.push_back(deviceId);
}
}
}
std::vector<std::string> CameraProviderManager::getAPI1CompatibleCameraDeviceIds() const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
std::vector<std::string> publicDeviceIds;
std::vector<std::string> systemDeviceIds;
std::vector<std::string> deviceIds;
for (auto& provider : mProviders) {
std::vector<std::string> providerDeviceIds = provider->mUniqueAPI1CompatibleCameraIds;
// Secure cameras should not be exposed through camera 1 api
providerDeviceIds.erase(std::remove_if(providerDeviceIds.begin(), providerDeviceIds.end(),
[this](const std::string& s) {
SystemCameraKind deviceKind = SystemCameraKind::PUBLIC;
if (getSystemCameraKindLocked(s, &deviceKind) != OK) {
ALOGE("%s: Invalid camera id %s, skipping", __FUNCTION__, s.c_str());
return true;
}
return deviceKind == SystemCameraKind::HIDDEN_SECURE_CAMERA;}),
providerDeviceIds.end());
// API1 app doesn't handle logical and physical camera devices well. So
// for each camera facing, only take the first id advertised by HAL in
// all [logical, physical1, physical2, ...] id combos, and filter out the rest.
filterLogicalCameraIdsLocked(providerDeviceIds);
collectDeviceIdsLocked(providerDeviceIds, publicDeviceIds, systemDeviceIds);
}
auto sortFunc =
[](const std::string& a, const std::string& b) -> bool {
uint32_t aUint = 0, bUint = 0;
bool aIsUint = base::ParseUint(a, &aUint);
bool bIsUint = base::ParseUint(b, &bUint);
// Uint device IDs first
if (aIsUint && bIsUint) {
return aUint < bUint;
} else if (aIsUint) {
return true;
} else if (bIsUint) {
return false;
}
// Simple string compare if both id are not uint
return a < b;
};
// We put device ids for system cameras at the end since they will be pared
// off for processes not having system camera permissions.
std::sort(publicDeviceIds.begin(), publicDeviceIds.end(), sortFunc);
std::sort(systemDeviceIds.begin(), systemDeviceIds.end(), sortFunc);
deviceIds.insert(deviceIds.end(), publicDeviceIds.begin(), publicDeviceIds.end());
deviceIds.insert(deviceIds.end(), systemDeviceIds.begin(), systemDeviceIds.end());
return deviceIds;
}
bool CameraProviderManager::isValidDevice(const std::string &id, uint16_t majorVersion) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return isValidDeviceLocked(id, majorVersion);
}
bool CameraProviderManager::isValidDeviceLocked(const std::string &id, uint16_t majorVersion) const {
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id && deviceInfo->mVersion.get_major() == majorVersion) {
return true;
}
}
}
return false;
}
bool CameraProviderManager::hasFlashUnit(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
return deviceInfo->hasFlashUnit();
}
bool CameraProviderManager::supportNativeZoomRatio(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
return deviceInfo->supportNativeZoomRatio();
}
status_t CameraProviderManager::getResourceCost(const std::string &id,
CameraResourceCost* cost) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
*cost = deviceInfo->mResourceCost;
return OK;
}
status_t CameraProviderManager::getCameraInfo(const std::string &id,
hardware::CameraInfo* info) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
return deviceInfo->getCameraInfo(info);
}
status_t CameraProviderManager::isSessionConfigurationSupported(const std::string& id,
const hardware::camera::device::V3_7::StreamConfiguration &configuration,
bool *status /*out*/) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) {
return NAME_NOT_FOUND;
}
return deviceInfo->isSessionConfigurationSupported(configuration, status);
}
status_t CameraProviderManager::getCameraCharacteristics(const std::string &id,
bool overrideForPerfClass, CameraMetadata* characteristics) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return getCameraCharacteristicsLocked(id, overrideForPerfClass, characteristics);
}
status_t CameraProviderManager::getHighestSupportedVersion(const std::string &id,
hardware::hidl_version *v) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
hardware::hidl_version maxVersion{0,0};
bool found = false;
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id) {
if (deviceInfo->mVersion > maxVersion) {
maxVersion = deviceInfo->mVersion;
found = true;
}
}
}
}
if (!found) {
return NAME_NOT_FOUND;
}
*v = maxVersion;
return OK;
}
bool CameraProviderManager::supportSetTorchMode(const std::string &id) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo != nullptr) {
return provider->mSetTorchModeSupported;
}
}
return false;
}
status_t CameraProviderManager::setTorchMode(const std::string &id, bool enabled) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
// Pass the camera ID to start interface so that it will save it to the map of ICameraProviders
// that are currently in use.
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
const sp<provider::V2_4::ICameraProvider> interface = parentProvider->startProviderInterface();
if (interface == nullptr) {
return DEAD_OBJECT;
}
saveRef(DeviceMode::TORCH, deviceInfo->mId, interface);
return deviceInfo->setTorchMode(enabled);
}
status_t CameraProviderManager::setUpVendorTags() {
sp<VendorTagDescriptorCache> tagCache = new VendorTagDescriptorCache();
for (auto& provider : mProviders) {
tagCache->addVendorDescriptor(provider->mProviderTagid, provider->mVendorTagDescriptor);
}
VendorTagDescriptorCache::setAsGlobalVendorTagCache(tagCache);
return OK;
}
status_t CameraProviderManager::notifyDeviceStateChange(
hardware::hidl_bitfield<provider::V2_5::DeviceState> newState) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
mDeviceState = newState;
status_t res = OK;
for (auto& provider : mProviders) {
ALOGV("%s: Notifying %s for new state 0x%" PRIx64,
__FUNCTION__, provider->mProviderName.c_str(), newState);
// b/199240726 Camera providers can for example try to add/remove
// camera devices as part of the state change notification. Holding
// 'mInterfaceMutex' while calling 'notifyDeviceStateChange' can
// result in a recursive deadlock.
mInterfaceMutex.unlock();
status_t singleRes = provider->notifyDeviceStateChange(mDeviceState);
mInterfaceMutex.lock();
if (singleRes != OK) {
ALOGE("%s: Unable to notify provider %s about device state change",
__FUNCTION__,
provider->mProviderName.c_str());
res = singleRes;
// continue to do the rest of the providers instead of returning now
}
provider->notifyDeviceInfoStateChangeLocked(mDeviceState);
}
return res;
}
status_t CameraProviderManager::openSession(const std::string &id,
const sp<device::V3_2::ICameraDeviceCallback>& callback,
/*out*/
sp<device::V3_2::ICameraDeviceSession> *session) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
auto deviceInfo = findDeviceInfoLocked(id,
/*minVersion*/ {3,0}, /*maxVersion*/ {4,0});
if (deviceInfo == nullptr) return NAME_NOT_FOUND;
auto *deviceInfo3 = static_cast<ProviderInfo::DeviceInfo3*>(deviceInfo);
sp<ProviderInfo> parentProvider = deviceInfo->mParentProvider.promote();
if (parentProvider == nullptr) {
return DEAD_OBJECT;
}
const sp<provider::V2_4::ICameraProvider> provider = parentProvider->startProviderInterface();
if (provider == nullptr) {
return DEAD_OBJECT;
}
saveRef(DeviceMode::CAMERA, id, provider);
Status status;
hardware::Return<void> ret;
auto interface = deviceInfo3->startDeviceInterface<
CameraProviderManager::ProviderInfo::DeviceInfo3::InterfaceT>();
if (interface == nullptr) {
return DEAD_OBJECT;
}
ret = interface->open(callback, [&status, &session]
(Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) {
status = s;
if (status == Status::OK) {
*session = cameraSession;
}
});
if (!ret.isOk()) {
removeRef(DeviceMode::CAMERA, id);
ALOGE("%s: Transaction error opening a session for camera device %s: %s",
__FUNCTION__, id.c_str(), ret.description().c_str());
return DEAD_OBJECT;
}
return mapToStatusT(status);
}
void CameraProviderManager::saveRef(DeviceMode usageType, const std::string &cameraId,
sp<provider::V2_4::ICameraProvider> provider) {
if (!kEnableLazyHal) {
return;
}
ALOGV("Saving camera provider %s for camera device %s", provider->descriptor, cameraId.c_str());
std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock);
std::unordered_map<std::string, sp<provider::V2_4::ICameraProvider>> *primaryMap, *alternateMap;
if (usageType == DeviceMode::TORCH) {
primaryMap = &mTorchProviderByCameraId;
alternateMap = &mCameraProviderByCameraId;
} else {
primaryMap = &mCameraProviderByCameraId;
alternateMap = &mTorchProviderByCameraId;
}
auto id = cameraId.c_str();
(*primaryMap)[id] = provider;
auto search = alternateMap->find(id);
if (search != alternateMap->end()) {
ALOGW("%s: Camera device %s is using both torch mode and camera mode simultaneously. "
"That should not be possible", __FUNCTION__, id);
}
ALOGV("%s: Camera device %s connected", __FUNCTION__, id);
}
void CameraProviderManager::removeRef(DeviceMode usageType, const std::string &cameraId) {
if (!kEnableLazyHal) {
return;
}
ALOGV("Removing camera device %s", cameraId.c_str());
std::unordered_map<std::string, sp<provider::V2_4::ICameraProvider>> *providerMap;
if (usageType == DeviceMode::TORCH) {
providerMap = &mTorchProviderByCameraId;
} else {
providerMap = &mCameraProviderByCameraId;
}
std::lock_guard<std::mutex> lock(mProviderInterfaceMapLock);
auto search = providerMap->find(cameraId.c_str());
if (search != providerMap->end()) {
// Drop the reference to this ICameraProvider. This is safe to do immediately (without an
// added delay) because hwservicemanager guarantees to hold the reference for at least five
// more seconds. We depend on this behavior so that if the provider is unreferenced and
// then referenced again quickly, we do not let the HAL exit and then need to immediately
// restart it. An example when this could happen is switching from a front-facing to a
// rear-facing camera. If the HAL were to exit during the camera switch, the camera could
// appear janky to the user.
providerMap->erase(cameraId.c_str());
IPCThreadState::self()->flushCommands();
} else {
ALOGE("%s: Asked to remove reference for camera %s, but no reference to it was found. This "
"could mean removeRef was called twice for the same camera ID.", __FUNCTION__,
cameraId.c_str());
}
}
hardware::Return<void> CameraProviderManager::onRegistration(
const hardware::hidl_string& /*fqName*/,
const hardware::hidl_string& name,
bool preexisting) {
status_t res = OK;
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
{
std::lock_guard<std::mutex> lock(mInterfaceMutex);
res = addProviderLocked(name, preexisting);
}
sp<StatusListener> listener = getStatusListener();
if (nullptr != listener.get() && res == OK) {
listener->onNewProviderRegistered();
}
IPCThreadState::self()->flushCommands();
return hardware::Return<void>();
}
status_t CameraProviderManager::dump(int fd, const Vector<String16>& args) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
provider->dump(fd, args);
}
return OK;
}
CameraProviderManager::ProviderInfo::DeviceInfo* CameraProviderManager::findDeviceInfoLocked(
const std::string& id,
hardware::hidl_version minVersion, hardware::hidl_version maxVersion) const {
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id &&
minVersion <= deviceInfo->mVersion && maxVersion >= deviceInfo->mVersion) {
return deviceInfo.get();
}
}
}
return nullptr;
}
metadata_vendor_id_t CameraProviderManager::getProviderTagIdLocked(
const std::string& id, hardware::hidl_version minVersion,
hardware::hidl_version maxVersion) const {
metadata_vendor_id_t ret = CAMERA_METADATA_INVALID_VENDOR_ID;
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == id &&
minVersion <= deviceInfo->mVersion &&
maxVersion >= deviceInfo->mVersion) {
return provider->mProviderTagid;
}
}
}
return ret;
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::queryPhysicalCameraIds() {
camera_metadata_entry_t entryCap;
entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < entryCap.count; ++i) {
uint8_t capability = entryCap.data.u8[i];
if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA) {
mIsLogicalCamera = true;
break;
}
}
if (!mIsLogicalCamera) {
return;
}
camera_metadata_entry_t entryIds = mCameraCharacteristics.find(
ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS);
const uint8_t* ids = entryIds.data.u8;
size_t start = 0;
for (size_t i = 0; i < entryIds.count; ++i) {
if (ids[i] == '\0') {
if (start != i) {
mPhysicalIds.push_back((const char*)ids+start);
}
start = i+1;
}
}
}
SystemCameraKind CameraProviderManager::ProviderInfo::DeviceInfo3::getSystemCameraKind() {
camera_metadata_entry_t entryCap;
entryCap = mCameraCharacteristics.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
if (entryCap.count == 1 &&
entryCap.data.u8[0] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SECURE_IMAGE_DATA) {
return SystemCameraKind::HIDDEN_SECURE_CAMERA;
}
// Go through the capabilities and check if it has
// ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA
for (size_t i = 0; i < entryCap.count; ++i) {
uint8_t capability = entryCap.data.u8[i];
if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_SYSTEM_CAMERA) {
return SystemCameraKind::SYSTEM_ONLY_CAMERA;
}
}
return SystemCameraKind::PUBLIC;
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedSizes(
const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format,
std::vector<std::tuple<size_t, size_t>> *sizes/*out*/) {
if (sizes == nullptr) {
return;
}
auto scalerDims = ch.find(tag);
if (scalerDims.count > 0) {
// Scaler entry contains 4 elements (format, width, height, type)
for (size_t i = 0; i < scalerDims.count; i += 4) {
if ((scalerDims.data.i32[i] == format) &&
(scalerDims.data.i32[i+3] ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) {
sizes->push_back(std::make_tuple(scalerDims.data.i32[i+1],
scalerDims.data.i32[i+2]));
}
}
}
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDurations(
const CameraMetadata& ch, uint32_t tag, android_pixel_format_t format,
const std::vector<std::tuple<size_t, size_t>>& sizes,
std::vector<int64_t> *durations/*out*/) {
if (durations == nullptr) {
return;
}
auto availableDurations = ch.find(tag);
if (availableDurations.count > 0) {
// Duration entry contains 4 elements (format, width, height, duration)
for (size_t i = 0; i < availableDurations.count; i += 4) {
for (const auto& size : sizes) {
int64_t width = std::get<0>(size);
int64_t height = std::get<1>(size);
if ((availableDurations.data.i64[i] == format) &&
(availableDurations.data.i64[i+1] == width) &&
(availableDurations.data.i64[i+2] == height)) {
durations->push_back(availableDurations.data.i64[i+3]);
}
}
}
}
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthDurations(
const std::vector<int64_t>& depthDurations, const std::vector<int64_t>& blobDurations,
std::vector<int64_t> *dynamicDepthDurations /*out*/) {
if ((dynamicDepthDurations == nullptr) || (depthDurations.size() != blobDurations.size())) {
return;
}
// Unfortunately there is no direct way to calculate the dynamic depth stream duration.
// Processing time on camera service side can vary greatly depending on multiple
// variables which are not under our control. Make a guesstimate by taking the maximum
// corresponding duration value from depth and blob.
auto depthDuration = depthDurations.begin();
auto blobDuration = blobDurations.begin();
dynamicDepthDurations->reserve(depthDurations.size());
while ((depthDuration != depthDurations.end()) && (blobDuration != blobDurations.end())) {
dynamicDepthDurations->push_back(std::max(*depthDuration, *blobDuration));
depthDuration++; blobDuration++;
}
}
void CameraProviderManager::ProviderInfo::DeviceInfo3::getSupportedDynamicDepthSizes(
const std::vector<std::tuple<size_t, size_t>>& blobSizes,
const std::vector<std::tuple<size_t, size_t>>& depthSizes,
std::vector<std::tuple<size_t, size_t>> *dynamicDepthSizes /*out*/,
std::vector<std::tuple<size_t, size_t>> *internalDepthSizes /*out*/) {
if (dynamicDepthSizes == nullptr || internalDepthSizes == nullptr) {
return;
}
// The dynamic depth spec. does not mention how close the AR ratio should be.
// Try using something appropriate.
float ARTolerance = kDepthARTolerance;
for (const auto& blobSize : blobSizes) {
float jpegAR = static_cast<float> (std::get<0>(blobSize)) /
static_cast<float>(std::get<1>(blobSize));
bool found = false;
for (const auto& depthSize : depthSizes) {
if (depthSize == blobSize) {
internalDepthSizes->push_back(depthSize);
found = true;
break;
} else {
float depthAR = static_cast<float> (std::get<0>(depthSize)) /
static_cast<float>(std::get<1>(depthSize));
if (std::fabs(jpegAR - depthAR) <= ARTolerance) {
internalDepthSizes->push_back(depthSize);
found = true;
break;
}
}
}
if (found) {
dynamicDepthSizes->push_back(blobSize);
}
}
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addDynamicDepthTags(
bool maxResolution) {
const int32_t depthExclTag = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE;
const int32_t scalerSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
const int32_t scalerMinFrameDurationsTag =
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS;
const int32_t scalerStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS, maxResolution);
const int32_t depthSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, maxResolution);
const int32_t depthStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS, maxResolution);
const int32_t depthMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS, maxResolution);
const int32_t dynamicDepthSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS, maxResolution);
const int32_t dynamicDepthStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STALL_DURATIONS, maxResolution);
const int32_t dynamicDepthMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_MIN_FRAME_DURATIONS, maxResolution);
auto& c = mCameraCharacteristics;
std::vector<std::tuple<size_t, size_t>> supportedBlobSizes, supportedDepthSizes,
supportedDynamicDepthSizes, internalDepthSizes;
auto chTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
if (chTags.count == 0) {
ALOGE("%s: Supported camera characteristics is empty!", __FUNCTION__);
return BAD_VALUE;
}
bool isDepthExclusivePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count,
depthExclTag) != (chTags.data.i32 + chTags.count);
bool isDepthSizePresent = std::find(chTags.data.i32, chTags.data.i32 + chTags.count,
depthSizesTag) != (chTags.data.i32 + chTags.count);
if (!(isDepthExclusivePresent && isDepthSizePresent)) {
// No depth support, nothing more to do.
return OK;
}
auto depthExclusiveEntry = c.find(depthExclTag);
if (depthExclusiveEntry.count > 0) {
if (depthExclusiveEntry.data.u8[0] != ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE) {
// Depth support is exclusive, nothing more to do.
return OK;
}
} else {
ALOGE("%s: Advertised depth exclusive tag but value is not present!", __FUNCTION__);
return BAD_VALUE;
}
getSupportedSizes(c, scalerSizesTag, HAL_PIXEL_FORMAT_BLOB,
&supportedBlobSizes);
getSupportedSizes(c, depthSizesTag, HAL_PIXEL_FORMAT_Y16, &supportedDepthSizes);
if (supportedBlobSizes.empty() || supportedDepthSizes.empty()) {
// Nothing to do in this case.
return OK;
}
getSupportedDynamicDepthSizes(supportedBlobSizes, supportedDepthSizes,
&supportedDynamicDepthSizes, &internalDepthSizes);
if (supportedDynamicDepthSizes.empty()) {
// Nothing more to do.
return OK;
}
std::vector<int32_t> dynamicDepthEntries;
for (const auto& it : supportedDynamicDepthSizes) {
int32_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(it)),
static_cast<int32_t> (std::get<1>(it)),
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT };
dynamicDepthEntries.insert(dynamicDepthEntries.end(), entry, entry + 4);
}
std::vector<int64_t> depthMinDurations, depthStallDurations;
std::vector<int64_t> blobMinDurations, blobStallDurations;
std::vector<int64_t> dynamicDepthMinDurations, dynamicDepthStallDurations;
getSupportedDurations(c, depthMinFrameDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes,
&depthMinDurations);
getSupportedDurations(c, scalerMinFrameDurationsTag, HAL_PIXEL_FORMAT_BLOB,
supportedDynamicDepthSizes, &blobMinDurations);
if (blobMinDurations.empty() || depthMinDurations.empty() ||
(depthMinDurations.size() != blobMinDurations.size())) {
ALOGE("%s: Unexpected number of available depth min durations! %zu vs. %zu",
__FUNCTION__, depthMinDurations.size(), blobMinDurations.size());
return BAD_VALUE;
}
getSupportedDurations(c, depthStallDurationsTag, HAL_PIXEL_FORMAT_Y16, internalDepthSizes,
&depthStallDurations);
getSupportedDurations(c, scalerStallDurationsTag, HAL_PIXEL_FORMAT_BLOB,
supportedDynamicDepthSizes, &blobStallDurations);
if (blobStallDurations.empty() || depthStallDurations.empty() ||
(depthStallDurations.size() != blobStallDurations.size())) {
ALOGE("%s: Unexpected number of available depth stall durations! %zu vs. %zu",
__FUNCTION__, depthStallDurations.size(), blobStallDurations.size());
return BAD_VALUE;
}
getSupportedDynamicDepthDurations(depthMinDurations, blobMinDurations,
&dynamicDepthMinDurations);
getSupportedDynamicDepthDurations(depthStallDurations, blobStallDurations,
&dynamicDepthStallDurations);
if (dynamicDepthMinDurations.empty() || dynamicDepthStallDurations.empty() ||
(dynamicDepthMinDurations.size() != dynamicDepthStallDurations.size())) {
ALOGE("%s: Unexpected number of dynamic depth stall/min durations! %zu vs. %zu",
__FUNCTION__, dynamicDepthMinDurations.size(), dynamicDepthStallDurations.size());
return BAD_VALUE;
}
std::vector<int64_t> dynamicDepthMinDurationEntries;
auto itDuration = dynamicDepthMinDurations.begin();
auto itSize = supportedDynamicDepthSizes.begin();
while (itDuration != dynamicDepthMinDurations.end()) {
int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
dynamicDepthMinDurationEntries.insert(dynamicDepthMinDurationEntries.end(), entry,
entry + 4);
itDuration++; itSize++;
}
std::vector<int64_t> dynamicDepthStallDurationEntries;
itDuration = dynamicDepthStallDurations.begin();
itSize = supportedDynamicDepthSizes.begin();
while (itDuration != dynamicDepthStallDurations.end()) {
int64_t entry[4] = {HAL_PIXEL_FORMAT_BLOB, static_cast<int32_t> (std::get<0>(*itSize)),
static_cast<int32_t> (std::get<1>(*itSize)), *itDuration};
dynamicDepthStallDurationEntries.insert(dynamicDepthStallDurationEntries.end(), entry,
entry + 4);
itDuration++; itSize++;
}
std::vector<int32_t> supportedChTags;
supportedChTags.reserve(chTags.count + 3);
supportedChTags.insert(supportedChTags.end(), chTags.data.i32,
chTags.data.i32 + chTags.count);
supportedChTags.push_back(dynamicDepthSizesTag);
supportedChTags.push_back(dynamicDepthMinFrameDurationsTag);
supportedChTags.push_back(dynamicDepthStallDurationsTag);
c.update(dynamicDepthSizesTag, dynamicDepthEntries.data(), dynamicDepthEntries.size());
c.update(dynamicDepthMinFrameDurationsTag, dynamicDepthMinDurationEntries.data(),
dynamicDepthMinDurationEntries.size());
c.update(dynamicDepthStallDurationsTag, dynamicDepthStallDurationEntries.data(),
dynamicDepthStallDurationEntries.size());
c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedChTags.data(),
supportedChTags.size());
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fixupMonochromeTags() {
status_t res = OK;
auto& c = mCameraCharacteristics;
// Override static metadata for MONOCHROME camera with older device version
if (mVersion.get_major() == 3 && mVersion.get_minor() < 5) {
camera_metadata_entry cap = c.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < cap.count; i++) {
if (cap.data.u8[i] == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME) {
// ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT
uint8_t cfa = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_MONO;
res = c.update(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT, &cfa, 1);
if (res != OK) {
ALOGE("%s: Failed to update COLOR_FILTER_ARRANGEMENT: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS
const std::vector<uint32_t> sKeys = {
ANDROID_SENSOR_REFERENCE_ILLUMINANT1,
ANDROID_SENSOR_REFERENCE_ILLUMINANT2,
ANDROID_SENSOR_CALIBRATION_TRANSFORM1,
ANDROID_SENSOR_CALIBRATION_TRANSFORM2,
ANDROID_SENSOR_COLOR_TRANSFORM1,
ANDROID_SENSOR_COLOR_TRANSFORM2,
ANDROID_SENSOR_FORWARD_MATRIX1,
ANDROID_SENSOR_FORWARD_MATRIX2,
};
res = removeAvailableKeys(c, sKeys,
ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS
const std::vector<uint32_t> reqKeys = {
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
res = removeAvailableKeys(c, reqKeys, ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS);
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_REQUEST_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_REQUEST_AVAILABLE_RESULT_KEYS
const std::vector<uint32_t> resKeys = {
ANDROID_SENSOR_GREEN_SPLIT,
ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
res = removeAvailableKeys(c, resKeys, ANDROID_REQUEST_AVAILABLE_RESULT_KEYS);
if (res != OK) {
ALOGE("%s: Failed to update REQUEST_AVAILABLE_RESULT_KEYS: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
// ANDROID_SENSOR_BLACK_LEVEL_PATTERN
camera_metadata_entry blEntry = c.find(ANDROID_SENSOR_BLACK_LEVEL_PATTERN);
for (size_t j = 1; j < blEntry.count; j++) {
blEntry.data.i32[j] = blEntry.data.i32[0];
}
}
}
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addRotateCropTags() {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto availableRotateCropEntry = c.find(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES);
if (availableRotateCropEntry.count == 0) {
uint8_t defaultAvailableRotateCropEntry = ANDROID_SCALER_ROTATE_AND_CROP_NONE;
res = c.update(ANDROID_SCALER_AVAILABLE_ROTATE_AND_CROP_MODES,
&defaultAvailableRotateCropEntry, 1);
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::addPreCorrectionActiveArraySize() {
status_t res = OK;
auto& c = mCameraCharacteristics;
auto activeArraySize = c.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
auto preCorrectionActiveArraySize = c.find(
ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
if (activeArraySize.count == 4 && preCorrectionActiveArraySize.count == 0) {
std::vector<int32_t> preCorrectionArray(
activeArraySize.data.i32, activeArraySize.data.i32+4);
res = c.update(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE,
preCorrectionArray.data(), 4);
if (res != OK) {
ALOGE("%s: Failed to add ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE: %s(%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
} else {
return res;
}
auto charTags = c.find(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
bool hasPreCorrectionActiveArraySize = std::find(charTags.data.i32,
charTags.data.i32 + charTags.count,
ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE) !=
(charTags.data.i32 + charTags.count);
if (!hasPreCorrectionActiveArraySize) {
std::vector<int32_t> supportedCharTags;
supportedCharTags.reserve(charTags.count + 1);
supportedCharTags.insert(supportedCharTags.end(), charTags.data.i32,
charTags.data.i32 + charTags.count);
supportedCharTags.push_back(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
res = c.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, supportedCharTags.data(),
supportedCharTags.size());
if (res != OK) {
ALOGE("%s: Failed to update ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS: %s(%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::removeAvailableKeys(
CameraMetadata& c, const std::vector<uint32_t>& keys, uint32_t keyTag) {
status_t res = OK;
camera_metadata_entry keysEntry = c.find(keyTag);
if (keysEntry.count == 0) {
ALOGE("%s: Failed to find tag %u: %s (%d)", __FUNCTION__, keyTag, strerror(-res), res);
return res;
}
std::vector<int32_t> vKeys;
vKeys.reserve(keysEntry.count);
for (size_t i = 0; i < keysEntry.count; i++) {
if (std::find(keys.begin(), keys.end(), keysEntry.data.i32[i]) == keys.end()) {
vKeys.push_back(keysEntry.data.i32[i]);
}
}
res = c.update(keyTag, vKeys.data(), vKeys.size());
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::fillHeicStreamCombinations(
std::vector<int32_t>* outputs,
std::vector<int64_t>* durations,
std::vector<int64_t>* stallDurations,
const camera_metadata_entry& halStreamConfigs,
const camera_metadata_entry& halStreamDurations) {
if (outputs == nullptr || durations == nullptr || stallDurations == nullptr) {
return BAD_VALUE;
}
static bool supportInMemoryTempFile =
camera3::HeicCompositeStream::isInMemoryTempFileSupported();
if (!supportInMemoryTempFile) {
ALOGI("%s: No HEIC support due to absence of in memory temp file support",
__FUNCTION__);
return OK;
}
for (size_t i = 0; i < halStreamConfigs.count; i += 4) {
int32_t format = halStreamConfigs.data.i32[i];
// Only IMPLEMENTATION_DEFINED and YUV_888 can be used to generate HEIC
// image.
if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
format != HAL_PIXEL_FORMAT_YCBCR_420_888) {
continue;
}
bool sizeAvail = false;
for (size_t j = 0; j < outputs->size(); j+= 4) {
if ((*outputs)[j+1] == halStreamConfigs.data.i32[i+1] &&
(*outputs)[j+2] == halStreamConfigs.data.i32[i+2]) {
sizeAvail = true;
break;
}
}
if (sizeAvail) continue;
int64_t stall = 0;
bool useHeic = false;
bool useGrid = false;
if (camera3::HeicCompositeStream::isSizeSupportedByHeifEncoder(
halStreamConfigs.data.i32[i+1], halStreamConfigs.data.i32[i+2],
&useHeic, &useGrid, &stall)) {
if (useGrid != (format == HAL_PIXEL_FORMAT_YCBCR_420_888)) {
continue;
}
// HEIC configuration
int32_t config[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
halStreamConfigs.data.i32[i+2], 0 /*isInput*/};
outputs->insert(outputs->end(), config, config + 4);
// HEIC minFrameDuration
for (size_t j = 0; j < halStreamDurations.count; j += 4) {
if (halStreamDurations.data.i64[j] == format &&
halStreamDurations.data.i64[j+1] == halStreamConfigs.data.i32[i+1] &&
halStreamDurations.data.i64[j+2] == halStreamConfigs.data.i32[i+2]) {
int64_t duration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
halStreamConfigs.data.i32[i+2], halStreamDurations.data.i64[j+3]};
durations->insert(durations->end(), duration, duration+4);
break;
}
}
// HEIC stallDuration
int64_t stallDuration[] = {HAL_PIXEL_FORMAT_BLOB, halStreamConfigs.data.i32[i+1],
halStreamConfigs.data.i32[i+2], stall};
stallDurations->insert(stallDurations->end(), stallDuration, stallDuration+4);
}
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::deriveHeicTags(bool maxResolution) {
int32_t scalerStreamSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution);
int32_t scalerMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS, maxResolution);
int32_t heicStreamSizesTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, maxResolution);
int32_t heicMinFrameDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_HEIC_AVAILABLE_HEIC_MIN_FRAME_DURATIONS, maxResolution);
int32_t heicStallDurationsTag =
SessionConfigurationUtils::getAppropriateModeTag(
ANDROID_HEIC_AVAILABLE_HEIC_STALL_DURATIONS, maxResolution);
auto& c = mCameraCharacteristics;
camera_metadata_entry halHeicSupport = c.find(ANDROID_HEIC_INFO_SUPPORTED);
if (halHeicSupport.count > 1) {
ALOGE("%s: Invalid entry count %zu for ANDROID_HEIC_INFO_SUPPORTED",
__FUNCTION__, halHeicSupport.count);
return BAD_VALUE;
} else if (halHeicSupport.count == 0 ||
halHeicSupport.data.u8[0] == ANDROID_HEIC_INFO_SUPPORTED_FALSE) {
// Camera HAL doesn't support mandatory stream combinations for HEIC.
return OK;
}
camera_metadata_entry maxJpegAppsSegments =
c.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT);
if (maxJpegAppsSegments.count != 1 || maxJpegAppsSegments.data.u8[0] == 0 ||
maxJpegAppsSegments.data.u8[0] > 16) {
ALOGE("%s: ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT must be within [1, 16]",
__FUNCTION__);
return BAD_VALUE;
}
// Populate HEIC output configurations and its related min frame duration
// and stall duration.
std::vector<int32_t> heicOutputs;
std::vector<int64_t> heicDurations;
std::vector<int64_t> heicStallDurations;
camera_metadata_entry halStreamConfigs = c.find(scalerStreamSizesTag);
camera_metadata_entry minFrameDurations = c.find(scalerMinFrameDurationsTag);
status_t res = fillHeicStreamCombinations(&heicOutputs, &heicDurations, &heicStallDurations,
halStreamConfigs, minFrameDurations);
if (res != OK) {
ALOGE("%s: Failed to fill HEIC stream combinations: %s (%d)", __FUNCTION__,
strerror(-res), res);
return res;
}
c.update(heicStreamSizesTag, heicOutputs.data(), heicOutputs.size());
c.update(heicMinFrameDurationsTag, heicDurations.data(), heicDurations.size());
c.update(heicStallDurationsTag, heicStallDurations.data(), heicStallDurations.size());
return OK;
}
bool CameraProviderManager::isLogicalCameraLocked(const std::string& id,
std::vector<std::string>* physicalCameraIds) {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo == nullptr) return false;
if (deviceInfo->mIsLogicalCamera && physicalCameraIds != nullptr) {
*physicalCameraIds = deviceInfo->mPhysicalIds;
}
return deviceInfo->mIsLogicalCamera;
}
bool CameraProviderManager::isLogicalCamera(const std::string& id,
std::vector<std::string>* physicalCameraIds) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return isLogicalCameraLocked(id, physicalCameraIds);
}
status_t CameraProviderManager::getSystemCameraKind(const std::string& id,
SystemCameraKind *kind) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return getSystemCameraKindLocked(id, kind);
}
status_t CameraProviderManager::getSystemCameraKindLocked(const std::string& id,
SystemCameraKind *kind) const {
auto deviceInfo = findDeviceInfoLocked(id);
if (deviceInfo != nullptr) {
*kind = deviceInfo->mSystemCameraKind;
return OK;
}
// If this is a hidden physical camera, we should return what kind of
// camera the enclosing logical camera is.
auto isHiddenAndParent = isHiddenPhysicalCameraInternal(id);
if (isHiddenAndParent.first) {
LOG_ALWAYS_FATAL_IF(id == isHiddenAndParent.second->mId,
"%s: hidden physical camera id %s and enclosing logical camera id %s are the same",
__FUNCTION__, id.c_str(), isHiddenAndParent.second->mId.c_str());
return getSystemCameraKindLocked(isHiddenAndParent.second->mId, kind);
}
// Neither a hidden physical camera nor a logical camera
return NAME_NOT_FOUND;
}
bool CameraProviderManager::isHiddenPhysicalCamera(const std::string& cameraId) const {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
return isHiddenPhysicalCameraInternal(cameraId).first;
}
status_t CameraProviderManager::filterSmallJpegSizes(const std::string& cameraId) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == cameraId) {
return deviceInfo->filterSmallJpegSizes();
}
}
}
return NAME_NOT_FOUND;
}
std::pair<bool, CameraProviderManager::ProviderInfo::DeviceInfo *>
CameraProviderManager::isHiddenPhysicalCameraInternal(const std::string& cameraId) const {
auto falseRet = std::make_pair(false, nullptr);
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
if (deviceInfo->mId == cameraId) {
// cameraId is found in public camera IDs advertised by the
// provider.
return falseRet;
}
}
}
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
std::vector<std::string> physicalIds;
if (deviceInfo->mIsLogicalCamera) {
if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(),
cameraId) != deviceInfo->mPhysicalIds.end()) {
int deviceVersion = HARDWARE_DEVICE_API_VERSION(
deviceInfo->mVersion.get_major(), deviceInfo->mVersion.get_minor());
if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_5) {
ALOGE("%s: Wrong deviceVersion %x for hiddenPhysicalCameraId %s",
__FUNCTION__, deviceVersion, cameraId.c_str());
return falseRet;
} else {
return std::make_pair(true, deviceInfo.get());
}
}
}
}
}
return falseRet;
}
status_t CameraProviderManager::tryToInitializeProviderLocked(
const std::string& providerName, const sp<ProviderInfo>& providerInfo) {
sp<provider::V2_4::ICameraProvider> interface;
interface = mServiceProxy->tryGetService(providerName);
if (interface == nullptr) {
// The interface may not be started yet. In that case, this is not a
// fatal error.
ALOGW("%s: Camera provider HAL '%s' is not actually available", __FUNCTION__,
providerName.c_str());
return BAD_VALUE;
}
return providerInfo->initialize(interface, mDeviceState);
}
status_t CameraProviderManager::addProviderLocked(const std::string& newProvider,
bool preexisting) {
// Several camera provider instances can be temporarily present.
// Defer initialization of a new instance until the older instance is properly removed.
auto providerInstance = newProvider + "-" + std::to_string(mProviderInstanceId);
bool providerPresent = false;
for (const auto& providerInfo : mProviders) {
if (providerInfo->mProviderName == newProvider) {
ALOGW("%s: Camera provider HAL with name '%s' already registered",
__FUNCTION__, newProvider.c_str());
if (preexisting) {
return ALREADY_EXISTS;
} else{
ALOGW("%s: The new provider instance will get initialized immediately after the"
" currently present instance is removed!", __FUNCTION__);
providerPresent = true;
break;
}
}
}
sp<ProviderInfo> providerInfo = new ProviderInfo(newProvider, providerInstance, this);
if (!providerPresent) {
status_t res = tryToInitializeProviderLocked(newProvider, providerInfo);
if (res != OK) {
return res;
}
}
mProviders.push_back(providerInfo);
mProviderInstanceId++;
return OK;
}
status_t CameraProviderManager::removeProvider(const std::string& provider) {
std::lock_guard<std::mutex> providerLock(mProviderLifecycleLock);
std::unique_lock<std::mutex> lock(mInterfaceMutex);
std::vector<String8> removedDeviceIds;
status_t res = NAME_NOT_FOUND;
std::string removedProviderName;
for (auto it = mProviders.begin(); it != mProviders.end(); it++) {
if ((*it)->mProviderInstance == provider) {
removedDeviceIds.reserve((*it)->mDevices.size());
for (auto& deviceInfo : (*it)->mDevices) {
removedDeviceIds.push_back(String8(deviceInfo->mId.c_str()));
}
removedProviderName = (*it)->mProviderName;
mProviders.erase(it);
res = OK;
break;
}
}
if (res != OK) {
ALOGW("%s: Camera provider HAL with name '%s' is not registered", __FUNCTION__,
provider.c_str());
} else {
// Check if there are any newer camera instances from the same provider and try to
// initialize.
for (const auto& providerInfo : mProviders) {
if (providerInfo->mProviderName == removedProviderName) {
return tryToInitializeProviderLocked(removedProviderName, providerInfo);
}
}
// Inform camera service of loss of presence for all the devices from this provider,
// without lock held for reentrancy
sp<StatusListener> listener = getStatusListener();
if (listener != nullptr) {
lock.unlock();
for (auto& id : removedDeviceIds) {
listener->onDeviceStatusChanged(id, CameraDeviceStatus::NOT_PRESENT);
}
lock.lock();
}
}
return res;
}
sp<CameraProviderManager::StatusListener> CameraProviderManager::getStatusListener() const {
return mListener.promote();
}
/**** Methods for ProviderInfo ****/
CameraProviderManager::ProviderInfo::ProviderInfo(
const std::string &providerName,
const std::string &providerInstance,
CameraProviderManager *manager) :
mProviderName(providerName),
mProviderInstance(providerInstance),
mProviderTagid(generateVendorTagId(providerName)),
mUniqueDeviceCount(0),
mManager(manager) {
(void) mManager;
}
status_t CameraProviderManager::ProviderInfo::initialize(
sp<provider::V2_4::ICameraProvider>& interface,
hardware::hidl_bitfield<provider::V2_5::DeviceState> currentDeviceState) {
status_t res = parseProviderName(mProviderName, &mType, &mId);
if (res != OK) {
ALOGE("%s: Invalid provider name, ignoring", __FUNCTION__);
return BAD_VALUE;
}
ALOGI("Connecting to new camera provider: %s, isRemote? %d",
mProviderName.c_str(), interface->isRemote());
// Determine minor version
mMinorVersion = 4;
auto cast2_6 = provider::V2_6::ICameraProvider::castFrom(interface);
sp<provider::V2_6::ICameraProvider> interface2_6 = nullptr;
if (cast2_6.isOk()) {
interface2_6 = cast2_6;
if (interface2_6 != nullptr) {
mMinorVersion = 6;
}
}
// We need to check again since cast2_6.isOk() succeeds even if the provider
// version isn't actually 2.6.
if (interface2_6 == nullptr){
auto cast2_5 =
provider::V2_5::ICameraProvider::castFrom(interface);
sp<provider::V2_5::ICameraProvider> interface2_5 = nullptr;
if (cast2_5.isOk()) {
interface2_5 = cast2_5;
if (interface != nullptr) {
mMinorVersion = 5;
}
}
} else {
auto cast2_7 = provider::V2_7::ICameraProvider::castFrom(interface);
if (cast2_7.isOk()) {
sp<provider::V2_7::ICameraProvider> interface2_7 = cast2_7;
if (interface2_7 != nullptr) {
mMinorVersion = 7;
}
}
}
// cameraDeviceStatusChange callbacks may be called (and causing new devices added)
// before setCallback returns
hardware::Return<Status> status = interface->setCallback(this);
if (!status.isOk()) {
ALOGE("%s: Transaction error setting up callbacks with camera provider '%s': %s",
__FUNCTION__, mProviderName.c_str(), status.description().c_str());
return DEAD_OBJECT;
}
if (status != Status::OK) {
ALOGE("%s: Unable to register callbacks with camera provider '%s'",
__FUNCTION__, mProviderName.c_str());
return mapToStatusT(status);
}
hardware::Return<bool> linked = interface->linkToDeath(this, /*cookie*/ mId);
if (!linked.isOk()) {
ALOGE("%s: Transaction error in linking to camera provider '%s' death: %s",
__FUNCTION__, mProviderName.c_str(), linked.description().c_str());
return DEAD_OBJECT;
} else if (!linked) {
ALOGW("%s: Unable to link to provider '%s' death notifications",
__FUNCTION__, mProviderName.c_str());
}
if (!kEnableLazyHal) {
// Save HAL reference indefinitely
mSavedInterface = interface;
} else {
mActiveInterface = interface;
}
ALOGV("%s: Setting device state for %s: 0x%" PRIx64,
__FUNCTION__, mProviderName.c_str(), mDeviceState);
notifyDeviceStateChange(currentDeviceState);
res = setUpVendorTags();
if (res != OK) {
ALOGE("%s: Unable to set up vendor tags from provider '%s'",
__FUNCTION__, mProviderName.c_str());
return res;
}
// Get initial list of camera devices, if any
std::vector<std::string> devices;
hardware::Return<void> ret = interface->getCameraIdList([&status, this, &devices](
Status idStatus,
const hardware::hidl_vec<hardware::hidl_string>& cameraDeviceNames) {
status = idStatus;
if (status == Status::OK) {
for (auto& name : cameraDeviceNames) {
uint16_t major, minor;
std::string type, id;
status_t res = parseDeviceName(name, &major, &minor, &type, &id);
if (res != OK) {
ALOGE("%s: Error parsing deviceName: %s: %d", __FUNCTION__, name.c_str(), res);
status = Status::INTERNAL_ERROR;
} else {
devices.push_back(name);
mProviderPublicCameraIds.push_back(id);
}
}
} });
if (!ret.isOk()) {
ALOGE("%s: Transaction error in getting camera ID list from provider '%s': %s",
__FUNCTION__, mProviderName.c_str(), linked.description().c_str());
return DEAD_OBJECT;
}
if (status != Status::OK) {
ALOGE("%s: Unable to query for camera devices from provider '%s'",
__FUNCTION__, mProviderName.c_str());
return mapToStatusT(status);
}
// Get list of concurrent streaming camera device combinations
if (mMinorVersion >= 6) {
res = getConcurrentCameraIdsInternalLocked(interface2_6);
if (res != OK) {
return res;
}
}
ret = interface->isSetTorchModeSupported(
[this](auto status, bool supported) {
if (status == Status::OK) {
mSetTorchModeSupported = supported;
}
});
if (!ret.isOk()) {
ALOGE("%s: Transaction error checking torch mode support '%s': %s",
__FUNCTION__, mProviderName.c_str(), ret.description().c_str());
return DEAD_OBJECT;
}
mIsRemote = interface->isRemote();
sp<StatusListener> listener = mManager->getStatusListener();
for (auto& device : devices) {
std::string id;
status_t res = addDevice(device, common::V1_0::CameraDeviceStatus::PRESENT, &id);
if (res != OK) {
ALOGE("%s: Unable to enumerate camera device '%s': %s (%d)",
__FUNCTION__, device.c_str(), strerror(-res), res);
continue;
}
}
ALOGI("Camera provider %s ready with %zu camera devices",
mProviderName.c_str(), mDevices.size());
// Process cached status callbacks
std::unique_ptr<std::vector<CameraStatusInfoT>> cachedStatus =
std::make_unique<std::vector<CameraStatusInfoT>>();
{
std::lock_guard<std::mutex> lock(mInitLock);
for (auto& statusInfo : mCachedStatus) {
std::string id, physicalId;
status_t res = OK;
if (statusInfo.isPhysicalCameraStatus) {
res = physicalCameraDeviceStatusChangeLocked(&id, &physicalId,
statusInfo.cameraId, statusInfo.physicalCameraId, statusInfo.status);
} else {
res = cameraDeviceStatusChangeLocked(&id, statusInfo.cameraId, statusInfo.status);
}
if (res == OK) {
cachedStatus->emplace_back(statusInfo.isPhysicalCameraStatus,
id.c_str(), physicalId.c_str(), statusInfo.status);
}
}
mCachedStatus.clear();
mInitialized = true;
}
// The cached status change callbacks cannot be fired directly from this
// function, due to same-thread deadlock trying to acquire mInterfaceMutex
// twice.
if (listener != nullptr) {
mInitialStatusCallbackFuture = std::async(std::launch::async,
&CameraProviderManager::ProviderInfo::notifyInitialStatusChange, this,
listener, std::move(cachedStatus));
}
return OK;
}
const sp<provider::V2_4::ICameraProvider>
CameraProviderManager::ProviderInfo::startProviderInterface() {
ATRACE_CALL();
ALOGV("Request to start camera provider: %s", mProviderName.c_str());
if (mSavedInterface != nullptr) {
return mSavedInterface;
}
if (!kEnableLazyHal) {
ALOGE("Bad provider state! Should not be here on a non-lazy HAL!");
return nullptr;
}
auto interface = mActiveInterface.promote();
if (interface == nullptr) {
ALOGI("Camera HAL provider needs restart, calling getService(%s)", mProviderName.c_str());
interface = mManager->mServiceProxy->getService(mProviderName);
interface->setCallback(this);
hardware::Return<bool> linked = interface->linkToDeath(this, /*cookie*/ mId);
if (!linked.isOk()) {
ALOGE("%s: Transaction error in linking to camera provider '%s' death: %s",
__FUNCTION__, mProviderName.c_str(), linked.description().c_str());
mManager->removeProvider(mProviderName);
return nullptr;
} else if (!linked) {
ALOGW("%s: Unable to link to provider '%s' death notifications",
__FUNCTION__, mProviderName.c_str());
}
// Send current device state
if (mMinorVersion >= 5) {
auto castResult = provider::V2_5::ICameraProvider::castFrom(interface);
if (castResult.isOk()) {
sp<provider::V2_5::ICameraProvider> interface_2_5 = castResult;
if (interface_2_5 != nullptr) {
ALOGV("%s: Initial device state for %s: 0x %" PRIx64,
__FUNCTION__, mProviderName.c_str(), mDeviceState);
interface_2_5->notifyDeviceStateChange(mDeviceState);
}
}
}
mActiveInterface = interface;
} else {
ALOGV("Camera provider (%s) already in use. Re-using instance.", mProviderName.c_str());
}
return interface;
}
const std::string& CameraProviderManager::ProviderInfo::getType() const {
return mType;
}
status_t CameraProviderManager::ProviderInfo::addDevice(const std::string& name,
CameraDeviceStatus initialStatus, /*out*/ std::string* parsedId) {
ALOGI("Enumerating new camera device: %s", name.c_str());
uint16_t major, minor;
std::string type, id;
status_t res = parseDeviceName(name, &major, &minor, &type, &id);
if (res != OK) {
return res;
}
if (type != mType) {
ALOGE("%s: Device type %s does not match provider type %s", __FUNCTION__,
type.c_str(), mType.c_str());
return BAD_VALUE;
}
if (mManager->isValidDeviceLocked(id, major)) {
ALOGE("%s: Device %s: ID %s is already in use for device major version %d", __FUNCTION__,
name.c_str(), id.c_str(), major);
return BAD_VALUE;
}
std::unique_ptr<DeviceInfo> deviceInfo;
switch (major) {
case 1:
ALOGE("%s: Device %s: Unsupported HIDL device HAL major version %d:", __FUNCTION__,
name.c_str(), major);
return BAD_VALUE;
case 3:
deviceInfo = initializeDeviceInfo<DeviceInfo3>(name, mProviderTagid,
id, minor);
break;
default:
ALOGE("%s: Device %s: Unknown HIDL device HAL major version %d:", __FUNCTION__,
name.c_str(), major);
return BAD_VALUE;
}
if (deviceInfo == nullptr) return BAD_VALUE;
deviceInfo->mStatus = initialStatus;
bool isAPI1Compatible = deviceInfo->isAPI1Compatible();
mDevices.push_back(std::move(deviceInfo));
mUniqueCameraIds.insert(id);
if (isAPI1Compatible) {
// addDevice can be called more than once for the same camera id if HAL
// supports openLegacy.
if (std::find(mUniqueAPI1CompatibleCameraIds.begin(), mUniqueAPI1CompatibleCameraIds.end(),
id) == mUniqueAPI1CompatibleCameraIds.end()) {
mUniqueAPI1CompatibleCameraIds.push_back(id);
}
}
if (parsedId != nullptr) {
*parsedId = id;
}
return OK;
}
void CameraProviderManager::ProviderInfo::removeDevice(std::string id) {
for (auto it = mDevices.begin(); it != mDevices.end(); it++) {
if ((*it)->mId == id) {
mUniqueCameraIds.erase(id);
if ((*it)->isAPI1Compatible()) {
mUniqueAPI1CompatibleCameraIds.erase(std::remove(
mUniqueAPI1CompatibleCameraIds.begin(),
mUniqueAPI1CompatibleCameraIds.end(), id));
}
mDevices.erase(it);
break;
}
}
}
status_t CameraProviderManager::ProviderInfo::dump(int fd, const Vector<String16>&) const {
dprintf(fd, "== Camera Provider HAL %s (v2.%d, %s) static info: %zu devices: ==\n",
mProviderInstance.c_str(),
mMinorVersion,
mIsRemote ? "remote" : "passthrough",
mDevices.size());
for (auto& device : mDevices) {
dprintf(fd, "== Camera HAL device %s (v%d.%d) static information: ==\n", device->mName.c_str(),
device->mVersion.get_major(), device->mVersion.get_minor());
dprintf(fd, " Resource cost: %d\n", device->mResourceCost.resourceCost);
if (device->mResourceCost.conflictingDevices.size() == 0) {
dprintf(fd, " Conflicting devices: None\n");
} else {
dprintf(fd, " Conflicting devices:\n");
for (size_t i = 0; i < device->mResourceCost.conflictingDevices.size(); i++) {
dprintf(fd, " %s\n",
device->mResourceCost.conflictingDevices[i].c_str());
}
}
dprintf(fd, " API1 info:\n");
dprintf(fd, " Has a flash unit: %s\n",
device->hasFlashUnit() ? "true" : "false");
hardware::CameraInfo info;
status_t res = device->getCameraInfo(&info);
if (res != OK) {
dprintf(fd, " <Error reading camera info: %s (%d)>\n",
strerror(-res), res);
} else {
dprintf(fd, " Facing: %s\n",
info.facing == hardware::CAMERA_FACING_BACK ? "Back" : "Front");
dprintf(fd, " Orientation: %d\n", info.orientation);
}
CameraMetadata info2;
res = device->getCameraCharacteristics(true /*overrideForPerfClass*/, &info2);
if (res == INVALID_OPERATION) {
dprintf(fd, " API2 not directly supported\n");
} else if (res != OK) {
dprintf(fd, " <Error reading camera characteristics: %s (%d)>\n",
strerror(-res), res);
} else {
dprintf(fd, " API2 camera characteristics:\n");
info2.dump(fd, /*verbosity*/ 2, /*indentation*/ 4);
}
// Dump characteristics of non-standalone physical camera
if (device->mIsLogicalCamera) {
for (auto& id : device->mPhysicalIds) {
// Skip if physical id is an independent camera
if (std::find(mProviderPublicCameraIds.begin(), mProviderPublicCameraIds.end(), id)
!= mProviderPublicCameraIds.end()) {
continue;
}
CameraMetadata physicalInfo;
status_t status = device->getPhysicalCameraCharacteristics(id, &physicalInfo);
if (status == OK) {
dprintf(fd, " Physical camera %s characteristics:\n", id.c_str());
physicalInfo.dump(fd, /*verbosity*/ 2, /*indentation*/ 4);
}
}
}
dprintf(fd, "== Camera HAL device %s (v%d.%d) dumpState: ==\n", device->mName.c_str(),
device->mVersion.get_major(), device->mVersion.get_minor());
res = device->dumpState(fd);
if (res != OK) {
dprintf(fd, " <Error dumping device %s state: %s (%d)>\n",
device->mName.c_str(), strerror(-res), res);
}
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::getConcurrentCameraIdsInternalLocked(
sp<provider::V2_6::ICameraProvider> &interface2_6) {
if (interface2_6 == nullptr) {
ALOGE("%s: null interface provided", __FUNCTION__);
return BAD_VALUE;
}
Status status = Status::OK;
hardware::Return<void> ret =
interface2_6->getConcurrentStreamingCameraIds([&status, this](
Status concurrentIdStatus, // TODO: Move all instances of hidl_string to 'using'
const hardware::hidl_vec<hardware::hidl_vec<hardware::hidl_string>>&
cameraDeviceIdCombinations) {
status = concurrentIdStatus;
if (status == Status::OK) {
mConcurrentCameraIdCombinations.clear();
for (auto& combination : cameraDeviceIdCombinations) {
std::unordered_set<std::string> deviceIds;
for (auto &cameraDeviceId : combination) {
deviceIds.insert(cameraDeviceId.c_str());
}
mConcurrentCameraIdCombinations.push_back(std::move(deviceIds));
}
} });
if (!ret.isOk()) {
ALOGE("%s: Transaction error in getting concurrent camera ID list from provider '%s'",
__FUNCTION__, mProviderName.c_str());
return DEAD_OBJECT;
}
if (status != Status::OK) {
ALOGE("%s: Unable to query for camera devices from provider '%s'",
__FUNCTION__, mProviderName.c_str());
return mapToStatusT(status);
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::reCacheConcurrentStreamingCameraIdsLocked() {
if (mMinorVersion < 6) {
// Unsupported operation, nothing to do here
return OK;
}
// Check if the provider is currently active - not going to start it up for this notification
auto interface = mSavedInterface != nullptr ? mSavedInterface : mActiveInterface.promote();
if (interface == nullptr) {
ALOGE("%s: camera provider interface for %s is not valid", __FUNCTION__,
mProviderName.c_str());
return INVALID_OPERATION;
}
auto castResult = provider::V2_6::ICameraProvider::castFrom(interface);
if (castResult.isOk()) {
sp<provider::V2_6::ICameraProvider> interface2_6 = castResult;
if (interface2_6 != nullptr) {
return getConcurrentCameraIdsInternalLocked(interface2_6);
} else {
// This should not happen since mMinorVersion >= 6
ALOGE("%s: mMinorVersion was >= 6, but interface2_6 was nullptr", __FUNCTION__);
return UNKNOWN_ERROR;
}
}
return OK;
}
std::vector<std::unordered_set<std::string>>
CameraProviderManager::ProviderInfo::getConcurrentCameraIdCombinations() {
std::lock_guard<std::mutex> lock(mLock);
return mConcurrentCameraIdCombinations;
}
hardware::Return<void> CameraProviderManager::ProviderInfo::cameraDeviceStatusChange(
const hardware::hidl_string& cameraDeviceName,
CameraDeviceStatus newStatus) {
sp<StatusListener> listener;
std::string id;
std::lock_guard<std::mutex> lock(mInitLock);
if (!mInitialized) {
mCachedStatus.emplace_back(false /*isPhysicalCameraStatus*/,
cameraDeviceName.c_str(), std::string().c_str(), newStatus);
return hardware::Void();
}
{
std::lock_guard<std::mutex> lock(mLock);
if (OK != cameraDeviceStatusChangeLocked(&id, cameraDeviceName, newStatus)) {
return hardware::Void();
}
listener = mManager->getStatusListener();
}
// Call without lock held to allow reentrancy into provider manager
if (listener != nullptr) {
listener->onDeviceStatusChanged(String8(id.c_str()), newStatus);
}
return hardware::Void();
}
status_t CameraProviderManager::ProviderInfo::cameraDeviceStatusChangeLocked(
std::string* id, const hardware::hidl_string& cameraDeviceName,
CameraDeviceStatus newStatus) {
bool known = false;
std::string cameraId;
for (auto& deviceInfo : mDevices) {
if (deviceInfo->mName == cameraDeviceName) {
ALOGI("Camera device %s status is now %s, was %s", cameraDeviceName.c_str(),
deviceStatusToString(newStatus), deviceStatusToString(deviceInfo->mStatus));
deviceInfo->mStatus = newStatus;
// TODO: Handle device removal (NOT_PRESENT)
cameraId = deviceInfo->mId;
known = true;
break;
}
}
// Previously unseen device; status must not be NOT_PRESENT
if (!known) {
if (newStatus == CameraDeviceStatus::NOT_PRESENT) {
ALOGW("Camera provider %s says an unknown camera device %s is not present. Curious.",
mProviderName.c_str(), cameraDeviceName.c_str());
return BAD_VALUE;
}
addDevice(cameraDeviceName, newStatus, &cameraId);
} else if (newStatus == CameraDeviceStatus::NOT_PRESENT) {
removeDevice(cameraId);
}
if (reCacheConcurrentStreamingCameraIdsLocked() != OK) {
ALOGE("%s: CameraProvider %s could not re-cache concurrent streaming camera id list ",
__FUNCTION__, mProviderName.c_str());
}
*id = cameraId;
return OK;
}
hardware::Return<void> CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChange(
const hardware::hidl_string& cameraDeviceName,
const hardware::hidl_string& physicalCameraDeviceName,
CameraDeviceStatus newStatus) {
sp<StatusListener> listener;
std::string id;
std::string physicalId;
std::lock_guard<std::mutex> lock(mInitLock);
if (!mInitialized) {
mCachedStatus.emplace_back(true /*isPhysicalCameraStatus*/, cameraDeviceName,
physicalCameraDeviceName, newStatus);
return hardware::Void();
}
{
std::lock_guard<std::mutex> lock(mLock);
if (OK != physicalCameraDeviceStatusChangeLocked(&id, &physicalId, cameraDeviceName,
physicalCameraDeviceName, newStatus)) {
return hardware::Void();
}
listener = mManager->getStatusListener();
}
// Call without lock held to allow reentrancy into provider manager
if (listener != nullptr) {
listener->onDeviceStatusChanged(String8(id.c_str()),
String8(physicalId.c_str()), newStatus);
}
return hardware::Void();
}
status_t CameraProviderManager::ProviderInfo::physicalCameraDeviceStatusChangeLocked(
std::string* id, std::string* physicalId,
const hardware::hidl_string& cameraDeviceName,
const hardware::hidl_string& physicalCameraDeviceName,
CameraDeviceStatus newStatus) {
bool known = false;
std::string cameraId;
for (auto& deviceInfo : mDevices) {
if (deviceInfo->mName == cameraDeviceName) {
cameraId = deviceInfo->mId;
if (!deviceInfo->mIsLogicalCamera) {
ALOGE("%s: Invalid combination of camera id %s, physical id %s",
__FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str());
return BAD_VALUE;
}
if (std::find(deviceInfo->mPhysicalIds.begin(), deviceInfo->mPhysicalIds.end(),
physicalCameraDeviceName) == deviceInfo->mPhysicalIds.end()) {
ALOGE("%s: Invalid combination of camera id %s, physical id %s",
__FUNCTION__, cameraId.c_str(), physicalCameraDeviceName.c_str());
return BAD_VALUE;
}
ALOGI("Camera device %s physical device %s status is now %s",
cameraDeviceName.c_str(), physicalCameraDeviceName.c_str(),
deviceStatusToString(newStatus));
known = true;
break;
}
}
// Previously unseen device; status must not be NOT_PRESENT
if (!known) {
ALOGW("Camera provider %s says an unknown camera device %s-%s is not present. Curious.",
mProviderName.c_str(), cameraDeviceName.c_str(),
physicalCameraDeviceName.c_str());
return BAD_VALUE;
}
*id = cameraId;
*physicalId = physicalCameraDeviceName.c_str();
return OK;
}
hardware::Return<void> CameraProviderManager::ProviderInfo::torchModeStatusChange(
const hardware::hidl_string& cameraDeviceName,
TorchModeStatus newStatus) {
sp<StatusListener> listener;
SystemCameraKind systemCameraKind = SystemCameraKind::PUBLIC;
std::string id;
bool known = false;
{
// Hold mLock for accessing mDevices
std::lock_guard<std::mutex> lock(mLock);
for (auto& deviceInfo : mDevices) {
if (deviceInfo->mName == cameraDeviceName) {
ALOGI("Camera device %s torch status is now %s", cameraDeviceName.c_str(),
torchStatusToString(newStatus));
id = deviceInfo->mId;
known = true;
systemCameraKind = deviceInfo->mSystemCameraKind;
if (TorchModeStatus::AVAILABLE_ON != newStatus) {
mManager->removeRef(DeviceMode::TORCH, id);
}
break;
}
}
if (!known) {
ALOGW("Camera provider %s says an unknown camera %s now has torch status %d. Curious.",
mProviderName.c_str(), cameraDeviceName.c_str(), newStatus);
return hardware::Void();
}
// no lock needed since listener is set up only once during
// CameraProviderManager initialization and then never changed till it is
// destructed.
listener = mManager->getStatusListener();
}
// Call without lock held to allow reentrancy into provider manager
// The problem with holding mLock here is that we
// might be limiting re-entrancy : CameraService::onTorchStatusChanged calls
// back into CameraProviderManager which might try to hold mLock again (eg:
// findDeviceInfo, which should be holding mLock while iterating through
// each provider's devices).
if (listener != nullptr) {
listener->onTorchStatusChanged(String8(id.c_str()), newStatus, systemCameraKind);
}
return hardware::Void();
}
void CameraProviderManager::ProviderInfo::serviceDied(uint64_t cookie,
const wp<hidl::base::V1_0::IBase>& who) {
(void) who;
ALOGI("Camera provider '%s' has died; removing it", mProviderInstance.c_str());
if (cookie != mId) {
ALOGW("%s: Unexpected serviceDied cookie %" PRIu64 ", expected %" PRIu32,
__FUNCTION__, cookie, mId);
}
mManager->removeProvider(mProviderInstance);
}
status_t CameraProviderManager::ProviderInfo::setUpVendorTags() {
if (mVendorTagDescriptor != nullptr)
return OK;
hardware::hidl_vec<VendorTagSection> vts;
Status status;
hardware::Return<void> ret;
const sp<provider::V2_4::ICameraProvider> interface = startProviderInterface();
if (interface == nullptr) {
return DEAD_OBJECT;
}
ret = interface->getVendorTags(
[&](auto s, const auto& vendorTagSecs) {
status = s;
if (s == Status::OK) {
vts = vendorTagSecs;
}
});
if (!ret.isOk()) {
ALOGE("%s: Transaction error getting vendor tags from provider '%s': %s",
__FUNCTION__, mProviderName.c_str(), ret.description().c_str());
return DEAD_OBJECT;
}
if (status != Status::OK) {
return mapToStatusT(status);
}
// Read all vendor tag definitions into a descriptor
status_t res;
if ((res = HidlVendorTagDescriptor::createDescriptorFromHidl(vts, /*out*/mVendorTagDescriptor))
!= OK) {
ALOGE("%s: Could not generate descriptor from vendor tag operations,"
"received error %s (%d). Camera clients will not be able to use"
"vendor tags", __FUNCTION__, strerror(res), res);
return res;
}
return OK;
}
void CameraProviderManager::ProviderInfo::notifyDeviceInfoStateChangeLocked(
hardware::hidl_bitfield<provider::V2_5::DeviceState> newDeviceState) {
std::lock_guard<std::mutex> lock(mLock);
for (auto it = mDevices.begin(); it != mDevices.end(); it++) {
(*it)->notifyDeviceStateChange(newDeviceState);
}
}
status_t CameraProviderManager::ProviderInfo::notifyDeviceStateChange(
hardware::hidl_bitfield<provider::V2_5::DeviceState> newDeviceState) {
mDeviceState = newDeviceState;
if (mMinorVersion >= 5) {
// Check if the provider is currently active - not going to start it up for this notification
auto interface = mSavedInterface != nullptr ? mSavedInterface : mActiveInterface.promote();
if (interface != nullptr) {
// Send current device state
auto castResult = provider::V2_5::ICameraProvider::castFrom(interface);
if (castResult.isOk()) {
sp<provider::V2_5::ICameraProvider> interface_2_5 = castResult;
if (interface_2_5 != nullptr) {
interface_2_5->notifyDeviceStateChange(mDeviceState);
}
}
}
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::isConcurrentSessionConfigurationSupported(
const hardware::hidl_vec<CameraIdAndStreamCombination> &halCameraIdsAndStreamCombinations,
bool *isSupported) {
status_t res = OK;
if (mMinorVersion >= 6) {
// Check if the provider is currently active - not going to start it up for this notification
auto interface = mSavedInterface != nullptr ? mSavedInterface : mActiveInterface.promote();
if (interface == nullptr) {
// TODO: This might be some other problem
return INVALID_OPERATION;
}
auto castResult2_6 = provider::V2_6::ICameraProvider::castFrom(interface);
auto castResult2_7 = provider::V2_7::ICameraProvider::castFrom(interface);
Status callStatus;
auto cb =
[&isSupported, &callStatus](Status s, bool supported) {
callStatus = s;
*isSupported = supported; };
::android::hardware::Return<void> ret;
sp<provider::V2_7::ICameraProvider> interface_2_7;
sp<provider::V2_6::ICameraProvider> interface_2_6;
if (mMinorVersion >= 7 && castResult2_7.isOk()) {
interface_2_7 = castResult2_7;
if (interface_2_7 != nullptr) {
ret = interface_2_7->isConcurrentStreamCombinationSupported_2_7(
halCameraIdsAndStreamCombinations, cb);
}
} else if (mMinorVersion == 6 && castResult2_6.isOk()) {
interface_2_6 = castResult2_6;
if (interface_2_6 != nullptr) {
hardware::hidl_vec<provider::V2_6::CameraIdAndStreamCombination>
halCameraIdsAndStreamCombinations_2_6;
size_t numStreams = halCameraIdsAndStreamCombinations.size();
halCameraIdsAndStreamCombinations_2_6.resize(numStreams);
for (size_t i = 0; i < numStreams; i++) {
using namespace camera3;
auto const& combination = halCameraIdsAndStreamCombinations[i];
halCameraIdsAndStreamCombinations_2_6[i].cameraId = combination.cameraId;
bool success =
SessionConfigurationUtils::convertHALStreamCombinationFromV37ToV34(
halCameraIdsAndStreamCombinations_2_6[i].streamConfiguration,
combination.streamConfiguration);
if (!success) {
*isSupported = false;
return OK;
}
}
ret = interface_2_6->isConcurrentStreamCombinationSupported(
halCameraIdsAndStreamCombinations_2_6, cb);
}
}
if (interface_2_7 != nullptr || interface_2_6 != nullptr) {
if (ret.isOk()) {
switch (callStatus) {
case Status::OK:
// Expected case, do nothing.
res = OK;
break;
case Status::METHOD_NOT_SUPPORTED:
res = INVALID_OPERATION;
break;
default:
ALOGE("%s: Session configuration query failed: %d", __FUNCTION__,
callStatus);
res = UNKNOWN_ERROR;
}
} else {
ALOGE("%s: Unexpected binder error: %s", __FUNCTION__, ret.description().c_str());
res = UNKNOWN_ERROR;
}
return res;
}
}
// unsupported operation
return INVALID_OPERATION;
}
void CameraProviderManager::ProviderInfo::notifyInitialStatusChange(
sp<StatusListener> listener,
std::unique_ptr<std::vector<CameraStatusInfoT>> cachedStatus) {
for (auto& statusInfo : *cachedStatus) {
if (statusInfo.isPhysicalCameraStatus) {
listener->onDeviceStatusChanged(String8(statusInfo.cameraId.c_str()),
String8(statusInfo.physicalCameraId.c_str()), statusInfo.status);
} else {
listener->onDeviceStatusChanged(
String8(statusInfo.cameraId.c_str()), statusInfo.status);
}
}
}
template<class DeviceInfoT>
std::unique_ptr<CameraProviderManager::ProviderInfo::DeviceInfo>
CameraProviderManager::ProviderInfo::initializeDeviceInfo(
const std::string &name, const metadata_vendor_id_t tagId,
const std::string &id, uint16_t minorVersion) {
Status status;
auto cameraInterface =
startDeviceInterface<typename DeviceInfoT::InterfaceT>(name);
if (cameraInterface == nullptr) return nullptr;
CameraResourceCost resourceCost;
cameraInterface->getResourceCost([&status, &resourceCost](
Status s, CameraResourceCost cost) {
status = s;
resourceCost = cost;
});
if (status != Status::OK) {
ALOGE("%s: Unable to obtain resource costs for camera device %s: %s", __FUNCTION__,
name.c_str(), statusToString(status));
return nullptr;
}
for (auto& conflictName : resourceCost.conflictingDevices) {
uint16_t major, minor;
std::string type, id;
status_t res = parseDeviceName(conflictName, &major, &minor, &type, &id);
if (res != OK) {
ALOGE("%s: Failed to parse conflicting device %s", __FUNCTION__, conflictName.c_str());
return nullptr;
}
conflictName = id;
}
return std::unique_ptr<DeviceInfo>(
new DeviceInfoT(name, tagId, id, minorVersion, resourceCost, this,
mProviderPublicCameraIds, cameraInterface));
}
template<class InterfaceT>
sp<InterfaceT>
CameraProviderManager::ProviderInfo::startDeviceInterface(const std::string &name) {
ALOGE("%s: Device %s: Unknown HIDL device HAL major version %d:", __FUNCTION__,
name.c_str(), InterfaceT::version.get_major());
return nullptr;
}
template<>
sp<device::V3_2::ICameraDevice>
CameraProviderManager::ProviderInfo::startDeviceInterface
<device::V3_2::ICameraDevice>(const std::string &name) {
Status status;
sp<device::V3_2::ICameraDevice> cameraInterface;
hardware::Return<void> ret;
const sp<provider::V2_4::ICameraProvider> interface = startProviderInterface();
if (interface == nullptr) {
return nullptr;
}
ret = interface->getCameraDeviceInterface_V3_x(name, [&status, &cameraInterface](
Status s, sp<device::V3_2::ICameraDevice> interface) {
status = s;
cameraInterface = interface;
});
if (!ret.isOk()) {
ALOGE("%s: Transaction error trying to obtain interface for camera device %s: %s",
__FUNCTION__, name.c_str(), ret.description().c_str());
return nullptr;
}
if (status != Status::OK) {
ALOGE("%s: Unable to obtain interface for camera device %s: %s", __FUNCTION__,
name.c_str(), statusToString(status));
return nullptr;
}
return cameraInterface;
}
CameraProviderManager::ProviderInfo::DeviceInfo::~DeviceInfo() {}
template<class InterfaceT>
sp<InterfaceT> CameraProviderManager::ProviderInfo::DeviceInfo::startDeviceInterface() {
sp<InterfaceT> device;
ATRACE_CALL();
if (mSavedInterface == nullptr) {
sp<ProviderInfo> parentProvider = mParentProvider.promote();
if (parentProvider != nullptr) {
device = parentProvider->startDeviceInterface<InterfaceT>(mName);
}
} else {
device = (InterfaceT *) mSavedInterface.get();
}
return device;
}
template<class InterfaceT>
status_t CameraProviderManager::ProviderInfo::DeviceInfo::setTorchMode(InterfaceT& interface,
bool enabled) {
Status s = interface->setTorchMode(enabled ? TorchMode::ON : TorchMode::OFF);
return mapToStatusT(s);
}
CameraProviderManager::ProviderInfo::DeviceInfo3::DeviceInfo3(const std::string& name,
const metadata_vendor_id_t tagId, const std::string &id,
uint16_t minorVersion,
const CameraResourceCost& resourceCost,
sp<ProviderInfo> parentProvider,
const std::vector<std::string>& publicCameraIds,
sp<InterfaceT> interface) :
DeviceInfo(name, tagId, id, hardware::hidl_version{3, minorVersion},
publicCameraIds, resourceCost, parentProvider) {
// Get camera characteristics and initialize flash unit availability
Status status;
hardware::Return<void> ret;
ret = interface->getCameraCharacteristics([&status, this](Status s,
device::V3_2::CameraMetadata metadata) {
status = s;
if (s == Status::OK) {
camera_metadata_t *buffer =
reinterpret_cast<camera_metadata_t*>(metadata.data());
size_t expectedSize = metadata.size();
int res = validate_camera_metadata_structure(buffer, &expectedSize);
if (res == OK || res == CAMERA_METADATA_VALIDATION_SHIFTED) {
set_camera_metadata_vendor_id(buffer, mProviderTagid);
mCameraCharacteristics = buffer;
} else {
ALOGE("%s: Malformed camera metadata received from HAL", __FUNCTION__);
status = Status::INTERNAL_ERROR;
}
}
});
if (!ret.isOk()) {
ALOGE("%s: Transaction error getting camera characteristics for device %s"
" to check for a flash unit: %s", __FUNCTION__, id.c_str(),
ret.description().c_str());
return;
}
if (status != Status::OK) {
ALOGE("%s: Unable to get camera characteristics for device %s: %s (%d)",
__FUNCTION__, id.c_str(), CameraProviderManager::statusToString(status), status);
return;
}
if (mCameraCharacteristics.exists(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS)) {
const auto &stateMap = mCameraCharacteristics.find(ANDROID_INFO_DEVICE_STATE_ORIENTATIONS);
if ((stateMap.count > 0) && ((stateMap.count % 2) == 0)) {
for (size_t i = 0; i < stateMap.count; i += 2) {
mDeviceStateOrientationMap.emplace(stateMap.data.i64[i], stateMap.data.i64[i+1]);
}
} else {
ALOGW("%s: Invalid ANDROID_INFO_DEVICE_STATE_ORIENTATIONS map size: %zu", __FUNCTION__,
stateMap.count);
}
}
mSystemCameraKind = getSystemCameraKind();
status_t res = fixupMonochromeTags();
if (OK != res) {
ALOGE("%s: Unable to fix up monochrome tags based for older HAL version: %s (%d)",
__FUNCTION__, strerror(-res), res);
return;
}
auto stat = addDynamicDepthTags();
if (OK != stat) {
ALOGE("%s: Failed appending dynamic depth tags: %s (%d)", __FUNCTION__, strerror(-stat),
stat);
}
res = deriveHeicTags();
if (OK != res) {
ALOGE("%s: Unable to derive HEIC tags based on camera and media capabilities: %s (%d)",
__FUNCTION__, strerror(-res), res);
}
if (SessionConfigurationUtils::isUltraHighResolutionSensor(mCameraCharacteristics)) {
status_t status = addDynamicDepthTags(/*maxResolution*/true);
if (OK != status) {
ALOGE("%s: Failed appending dynamic depth tags for maximum resolution mode: %s (%d)",
__FUNCTION__, strerror(-status), status);
}
status = deriveHeicTags(/*maxResolution*/true);
if (OK != status) {
ALOGE("%s: Unable to derive HEIC tags based on camera and media capabilities for"
"maximum resolution mode: %s (%d)", __FUNCTION__, strerror(-status), status);
}
}
res = addRotateCropTags();
if (OK != res) {
ALOGE("%s: Unable to add default SCALER_ROTATE_AND_CROP tags: %s (%d)", __FUNCTION__,
strerror(-res), res);
}
res = addPreCorrectionActiveArraySize();
if (OK != res) {
ALOGE("%s: Unable to add PRE_CORRECTION_ACTIVE_ARRAY_SIZE: %s (%d)", __FUNCTION__,
strerror(-res), res);
}
res = camera3::ZoomRatioMapper::overrideZoomRatioTags(
&mCameraCharacteristics, &mSupportNativeZoomRatio);
if (OK != res) {
ALOGE("%s: Unable to override zoomRatio related tags: %s (%d)",
__FUNCTION__, strerror(-res), res);
}
camera_metadata_entry flashAvailable =
mCameraCharacteristics.find(ANDROID_FLASH_INFO_AVAILABLE);
if (flashAvailable.count == 1 &&
flashAvailable.data.u8[0] == ANDROID_FLASH_INFO_AVAILABLE_TRUE) {
mHasFlashUnit = true;
} else {
mHasFlashUnit = false;
}
queryPhysicalCameraIds();
// Get physical camera characteristics if applicable
auto castResult = device::V3_5::ICameraDevice::castFrom(interface);
if (!castResult.isOk()) {
ALOGV("%s: Unable to convert ICameraDevice instance to version 3.5", __FUNCTION__);
return;
}
sp<device::V3_5::ICameraDevice> interface_3_5 = castResult;
if (interface_3_5 == nullptr) {
ALOGE("%s: Converted ICameraDevice instance to nullptr", __FUNCTION__);
return;
}
if (mIsLogicalCamera) {
for (auto& id : mPhysicalIds) {
if (std::find(mPublicCameraIds.begin(), mPublicCameraIds.end(), id) !=
mPublicCameraIds.end()) {
continue;
}
hardware::hidl_string hidlId(id);
ret = interface_3_5->getPhysicalCameraCharacteristics(hidlId,
[&status, &id, this](Status s, device::V3_2::CameraMetadata metadata) {
status = s;
if (s == Status::OK) {
camera_metadata_t *buffer =
reinterpret_cast<camera_metadata_t*>(metadata.data());
size_t expectedSize = metadata.size();
int res = validate_camera_metadata_structure(buffer, &expectedSize);
if (res == OK || res == CAMERA_METADATA_VALIDATION_SHIFTED) {
set_camera_metadata_vendor_id(buffer, mProviderTagid);
mPhysicalCameraCharacteristics[id] = buffer;
} else {
ALOGE("%s: Malformed camera metadata received from HAL", __FUNCTION__);
status = Status::INTERNAL_ERROR;
}
}
});
if (!ret.isOk()) {
ALOGE("%s: Transaction error getting physical camera %s characteristics for %s: %s",
__FUNCTION__, id.c_str(), id.c_str(), ret.description().c_str());
return;
}
if (status != Status::OK) {
ALOGE("%s: Unable to get physical camera %s characteristics for device %s: %s (%d)",
__FUNCTION__, id.c_str(), mId.c_str(),
CameraProviderManager::statusToString(status), status);
return;
}
res = camera3::ZoomRatioMapper::overrideZoomRatioTags(
&mPhysicalCameraCharacteristics[id], &mSupportNativeZoomRatio);
if (OK != res) {
ALOGE("%s: Unable to override zoomRatio related tags: %s (%d)",
__FUNCTION__, strerror(-res), res);
}
}
}
if (!kEnableLazyHal) {
// Save HAL reference indefinitely
mSavedInterface = interface;
}
}
CameraProviderManager::ProviderInfo::DeviceInfo3::~DeviceInfo3() {}
void CameraProviderManager::ProviderInfo::DeviceInfo3::notifyDeviceStateChange(
hardware::hidl_bitfield<hardware::camera::provider::V2_5::DeviceState> newState) {
if (!mDeviceStateOrientationMap.empty() &&
(mDeviceStateOrientationMap.find(newState) != mDeviceStateOrientationMap.end())) {
mCameraCharacteristics.update(ANDROID_SENSOR_ORIENTATION,
&mDeviceStateOrientationMap[newState], 1);
}
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::setTorchMode(bool enabled) {
return setTorchModeForDevice<InterfaceT>(enabled);
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraInfo(
hardware::CameraInfo *info) const {
if (info == nullptr) return BAD_VALUE;
camera_metadata_ro_entry facing =
mCameraCharacteristics.find(ANDROID_LENS_FACING);
if (facing.count == 1) {
switch (facing.data.u8[0]) {
case ANDROID_LENS_FACING_BACK:
info->facing = hardware::CAMERA_FACING_BACK;
break;
case ANDROID_LENS_FACING_EXTERNAL:
// Map external to front for legacy API
case ANDROID_LENS_FACING_FRONT:
info->facing = hardware::CAMERA_FACING_FRONT;
break;
}
} else {
ALOGE("%s: Unable to find android.lens.facing static metadata", __FUNCTION__);
return NAME_NOT_FOUND;
}
camera_metadata_ro_entry orientation =
mCameraCharacteristics.find(ANDROID_SENSOR_ORIENTATION);
if (orientation.count == 1) {
info->orientation = orientation.data.i32[0];
} else {
ALOGE("%s: Unable to find android.sensor.orientation static metadata", __FUNCTION__);
return NAME_NOT_FOUND;
}
return OK;
}
bool CameraProviderManager::ProviderInfo::DeviceInfo3::isAPI1Compatible() const {
// Do not advertise NIR cameras to API1 camera app.
camera_metadata_ro_entry cfa = mCameraCharacteristics.find(
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT);
if (cfa.count == 1 && cfa.data.u8[0] == ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_NIR) {
return false;
}
bool isBackwardCompatible = false;
camera_metadata_ro_entry_t caps = mCameraCharacteristics.find(
ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < caps.count; i++) {
if (caps.data.u8[i] ==
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE) {
isBackwardCompatible = true;
break;
}
}
return isBackwardCompatible;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::dumpState(int fd) {
native_handle_t* handle = native_handle_create(1,0);
handle->data[0] = fd;
const sp<InterfaceT> interface = startDeviceInterface<InterfaceT>();
if (interface == nullptr) {
return DEAD_OBJECT;
}
auto ret = interface->dumpState(handle);
native_handle_delete(handle);
if (!ret.isOk()) {
return INVALID_OPERATION;
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getCameraCharacteristics(
bool overrideForPerfClass, CameraMetadata *characteristics) const {
if (characteristics == nullptr) return BAD_VALUE;
if (!overrideForPerfClass && mCameraCharNoPCOverride != nullptr) {
*characteristics = *mCameraCharNoPCOverride;
} else {
*characteristics = mCameraCharacteristics;
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::getPhysicalCameraCharacteristics(
const std::string& physicalCameraId, CameraMetadata *characteristics) const {
if (characteristics == nullptr) return BAD_VALUE;
if (mPhysicalCameraCharacteristics.find(physicalCameraId) ==
mPhysicalCameraCharacteristics.end()) {
return NAME_NOT_FOUND;
}
*characteristics = mPhysicalCameraCharacteristics.at(physicalCameraId);
return OK;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::isSessionConfigurationSupported(
const hardware::camera::device::V3_7::StreamConfiguration &configuration,
bool *status /*out*/) {
const sp<CameraProviderManager::ProviderInfo::DeviceInfo3::InterfaceT> interface =
this->startDeviceInterface<CameraProviderManager::ProviderInfo::DeviceInfo3::InterfaceT>();
if (interface == nullptr) {
return DEAD_OBJECT;
}
auto castResult_3_5 = device::V3_5::ICameraDevice::castFrom(interface);
sp<hardware::camera::device::V3_5::ICameraDevice> interface_3_5 = castResult_3_5;
auto castResult_3_7 = device::V3_7::ICameraDevice::castFrom(interface);
sp<hardware::camera::device::V3_7::ICameraDevice> interface_3_7 = castResult_3_7;
status_t res;
Status callStatus;
::android::hardware::Return<void> ret;
auto halCb =
[&callStatus, &status] (Status s, bool combStatus) {
callStatus = s;
*status = combStatus;
};
if (interface_3_7 != nullptr) {
ret = interface_3_7->isStreamCombinationSupported_3_7(configuration, halCb);
} else if (interface_3_5 != nullptr) {
hardware::camera::device::V3_4::StreamConfiguration configuration_3_4;
bool success = SessionConfigurationUtils::convertHALStreamCombinationFromV37ToV34(
configuration_3_4, configuration);
if (!success) {
*status = false;
return OK;
}
ret = interface_3_5->isStreamCombinationSupported(configuration_3_4, halCb);
} else {
return INVALID_OPERATION;
}
if (ret.isOk()) {
switch (callStatus) {
case Status::OK:
// Expected case, do nothing.
res = OK;
break;
case Status::METHOD_NOT_SUPPORTED:
res = INVALID_OPERATION;
break;
default:
ALOGE("%s: Session configuration query failed: %d", __FUNCTION__, callStatus);
res = UNKNOWN_ERROR;
}
} else {
ALOGE("%s: Unexpected binder error: %s", __FUNCTION__, ret.description().c_str());
res = UNKNOWN_ERROR;
}
return res;
}
status_t CameraProviderManager::ProviderInfo::DeviceInfo3::filterSmallJpegSizes() {
int32_t thresholdW = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_W;
int32_t thresholdH = SessionConfigurationUtils::PERF_CLASS_JPEG_THRESH_H;
if (mCameraCharNoPCOverride != nullptr) return OK;
mCameraCharNoPCOverride = std::make_unique<CameraMetadata>(mCameraCharacteristics);
// Remove small JPEG sizes from available stream configurations
size_t largeJpegCount = 0;
std::vector<int32_t> newStreamConfigs;
camera_metadata_entry streamConfigs =
mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
for (size_t i = 0; i < streamConfigs.count; i += 4) {
if ((streamConfigs.data.i32[i] == HAL_PIXEL_FORMAT_BLOB) && (streamConfigs.data.i32[i+3] ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT)) {
if (streamConfigs.data.i32[i+1] < thresholdW ||
streamConfigs.data.i32[i+2] < thresholdH) {
continue;
} else {
largeJpegCount ++;
}
}
newStreamConfigs.insert(newStreamConfigs.end(), streamConfigs.data.i32 + i,
streamConfigs.data.i32 + i + 4);
}
if (newStreamConfigs.size() == 0 || largeJpegCount == 0) {
return BAD_VALUE;
}
// Remove small JPEG sizes from available min frame durations
largeJpegCount = 0;
std::vector<int64_t> newMinDurations;
camera_metadata_entry minDurations =
mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS);
for (size_t i = 0; i < minDurations.count; i += 4) {
if (minDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) {
if (minDurations.data.i64[i+1] < thresholdW ||
minDurations.data.i64[i+2] < thresholdH) {
continue;
} else {
largeJpegCount++;
}
}
newMinDurations.insert(newMinDurations.end(), minDurations.data.i64 + i,
minDurations.data.i64 + i + 4);
}
if (newMinDurations.size() == 0 || largeJpegCount == 0) {
return BAD_VALUE;
}
// Remove small JPEG sizes from available stall durations
largeJpegCount = 0;
std::vector<int64_t> newStallDurations;
camera_metadata_entry stallDurations =
mCameraCharacteristics.find(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS);
for (size_t i = 0; i < stallDurations.count; i += 4) {
if (stallDurations.data.i64[i] == HAL_PIXEL_FORMAT_BLOB) {
if (stallDurations.data.i64[i+1] < thresholdW ||
stallDurations.data.i64[i+2] < thresholdH) {
continue;
} else {
largeJpegCount++;
}
}
newStallDurations.insert(newStallDurations.end(), stallDurations.data.i64 + i,
stallDurations.data.i64 + i + 4);
}
if (newStallDurations.size() == 0 || largeJpegCount == 0) {
return BAD_VALUE;
}
mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
newStreamConfigs.data(), newStreamConfigs.size());
mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
newMinDurations.data(), newMinDurations.size());
mCameraCharacteristics.update(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
newStallDurations.data(), newStallDurations.size());
// Re-generate metadata tags that have dependencies on BLOB sizes
auto res = addDynamicDepthTags();
if (OK != res) {
ALOGE("%s: Failed to append dynamic depth tags: %s (%d)", __FUNCTION__,
strerror(-res), res);
// Allow filtering of small JPEG sizes to succeed even if dynamic depth
// tags fail to generate.
}
return OK;
}
status_t CameraProviderManager::ProviderInfo::parseProviderName(const std::string& name,
std::string *type, uint32_t *id) {
// Format must be "<type>/<id>"
#define ERROR_MSG_PREFIX "%s: Invalid provider name '%s'. " \
"Should match '<type>/<id>' - "
if (!type || !id) return INVALID_OPERATION;
std::string::size_type slashIdx = name.find('/');
if (slashIdx == std::string::npos || slashIdx == name.size() - 1) {
ALOGE(ERROR_MSG_PREFIX
"does not have / separator between type and id",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string typeVal = name.substr(0, slashIdx);
char *endPtr;
errno = 0;
long idVal = strtol(name.c_str() + slashIdx + 1, &endPtr, 10);
if (errno != 0) {
ALOGE(ERROR_MSG_PREFIX
"cannot parse provider id as an integer: %s (%d)",
__FUNCTION__, name.c_str(), strerror(errno), errno);
return BAD_VALUE;
}
if (endPtr != name.c_str() + name.size()) {
ALOGE(ERROR_MSG_PREFIX
"provider id has unexpected length",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
if (idVal < 0) {
ALOGE(ERROR_MSG_PREFIX
"id is negative: %ld",
__FUNCTION__, name.c_str(), idVal);
return BAD_VALUE;
}
#undef ERROR_MSG_PREFIX
*type = typeVal;
*id = static_cast<uint32_t>(idVal);
return OK;
}
metadata_vendor_id_t CameraProviderManager::ProviderInfo::generateVendorTagId(
const std::string &name) {
metadata_vendor_id_t ret = std::hash<std::string> {} (name);
// CAMERA_METADATA_INVALID_VENDOR_ID is not a valid hash value
if (CAMERA_METADATA_INVALID_VENDOR_ID == ret) {
ret = 0;
}
return ret;
}
status_t CameraProviderManager::ProviderInfo::parseDeviceName(const std::string& name,
uint16_t *major, uint16_t *minor, std::string *type, std::string *id) {
// Format must be "device@<major>.<minor>/<type>/<id>"
#define ERROR_MSG_PREFIX "%s: Invalid device name '%s'. " \
"Should match 'device@<major>.<minor>/<type>/<id>' - "
if (!major || !minor || !type || !id) return INVALID_OPERATION;
// Verify starting prefix
const char expectedPrefix[] = "device@";
if (name.find(expectedPrefix) != 0) {
ALOGE(ERROR_MSG_PREFIX
"does not start with '%s'",
__FUNCTION__, name.c_str(), expectedPrefix);
return BAD_VALUE;
}
// Extract major/minor versions
constexpr std::string::size_type atIdx = sizeof(expectedPrefix) - 2;
std::string::size_type dotIdx = name.find('.', atIdx);
if (dotIdx == std::string::npos) {
ALOGE(ERROR_MSG_PREFIX
"does not have @<major>. version section",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string::size_type typeSlashIdx = name.find('/', dotIdx);
if (typeSlashIdx == std::string::npos) {
ALOGE(ERROR_MSG_PREFIX
"does not have .<minor>/ version section",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
char *endPtr;
errno = 0;
long majorVal = strtol(name.c_str() + atIdx + 1, &endPtr, 10);
if (errno != 0) {
ALOGE(ERROR_MSG_PREFIX
"cannot parse major version: %s (%d)",
__FUNCTION__, name.c_str(), strerror(errno), errno);
return BAD_VALUE;
}
if (endPtr != name.c_str() + dotIdx) {
ALOGE(ERROR_MSG_PREFIX
"major version has unexpected length",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
long minorVal = strtol(name.c_str() + dotIdx + 1, &endPtr, 10);
if (errno != 0) {
ALOGE(ERROR_MSG_PREFIX
"cannot parse minor version: %s (%d)",
__FUNCTION__, name.c_str(), strerror(errno), errno);
return BAD_VALUE;
}
if (endPtr != name.c_str() + typeSlashIdx) {
ALOGE(ERROR_MSG_PREFIX
"minor version has unexpected length",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
if (majorVal < 0 || majorVal > UINT16_MAX || minorVal < 0 || minorVal > UINT16_MAX) {
ALOGE(ERROR_MSG_PREFIX
"major/minor version is out of range of uint16_t: %ld.%ld",
__FUNCTION__, name.c_str(), majorVal, minorVal);
return BAD_VALUE;
}
// Extract type and id
std::string::size_type instanceSlashIdx = name.find('/', typeSlashIdx + 1);
if (instanceSlashIdx == std::string::npos) {
ALOGE(ERROR_MSG_PREFIX
"does not have /<type>/ component",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string typeVal = name.substr(typeSlashIdx + 1, instanceSlashIdx - typeSlashIdx - 1);
if (instanceSlashIdx == name.size() - 1) {
ALOGE(ERROR_MSG_PREFIX
"does not have an /<id> component",
__FUNCTION__, name.c_str());
return BAD_VALUE;
}
std::string idVal = name.substr(instanceSlashIdx + 1);
#undef ERROR_MSG_PREFIX
*major = static_cast<uint16_t>(majorVal);
*minor = static_cast<uint16_t>(minorVal);
*type = typeVal;
*id = idVal;
return OK;
}
CameraProviderManager::ProviderInfo::~ProviderInfo() {
if (mInitialStatusCallbackFuture.valid()) {
mInitialStatusCallbackFuture.wait();
}
// Destruction of ProviderInfo is only supposed to happen when the respective
// CameraProvider interface dies, so do not unregister callbacks.
}
status_t CameraProviderManager::mapToStatusT(const Status& s) {
switch(s) {
case Status::OK:
return OK;
case Status::ILLEGAL_ARGUMENT:
return BAD_VALUE;
case Status::CAMERA_IN_USE:
return -EBUSY;
case Status::MAX_CAMERAS_IN_USE:
return -EUSERS;
case Status::METHOD_NOT_SUPPORTED:
return UNKNOWN_TRANSACTION;
case Status::OPERATION_NOT_SUPPORTED:
return INVALID_OPERATION;
case Status::CAMERA_DISCONNECTED:
return DEAD_OBJECT;
case Status::INTERNAL_ERROR:
return INVALID_OPERATION;
}
ALOGW("Unexpected HAL status code %d", s);
return INVALID_OPERATION;
}
const char* CameraProviderManager::statusToString(const Status& s) {
switch(s) {
case Status::OK:
return "OK";
case Status::ILLEGAL_ARGUMENT:
return "ILLEGAL_ARGUMENT";
case Status::CAMERA_IN_USE:
return "CAMERA_IN_USE";
case Status::MAX_CAMERAS_IN_USE:
return "MAX_CAMERAS_IN_USE";
case Status::METHOD_NOT_SUPPORTED:
return "METHOD_NOT_SUPPORTED";
case Status::OPERATION_NOT_SUPPORTED:
return "OPERATION_NOT_SUPPORTED";
case Status::CAMERA_DISCONNECTED:
return "CAMERA_DISCONNECTED";
case Status::INTERNAL_ERROR:
return "INTERNAL_ERROR";
}
ALOGW("Unexpected HAL status code %d", s);
return "UNKNOWN_ERROR";
}
const char* CameraProviderManager::deviceStatusToString(const CameraDeviceStatus& s) {
switch(s) {
case CameraDeviceStatus::NOT_PRESENT:
return "NOT_PRESENT";
case CameraDeviceStatus::PRESENT:
return "PRESENT";
case CameraDeviceStatus::ENUMERATING:
return "ENUMERATING";
}
ALOGW("Unexpected HAL device status code %d", s);
return "UNKNOWN_STATUS";
}
const char* CameraProviderManager::torchStatusToString(const TorchModeStatus& s) {
switch(s) {
case TorchModeStatus::NOT_AVAILABLE:
return "NOT_AVAILABLE";
case TorchModeStatus::AVAILABLE_OFF:
return "AVAILABLE_OFF";
case TorchModeStatus::AVAILABLE_ON:
return "AVAILABLE_ON";
}
ALOGW("Unexpected HAL torch mode status code %d", s);
return "UNKNOWN_STATUS";
}
status_t HidlVendorTagDescriptor::createDescriptorFromHidl(
const hardware::hidl_vec<common::V1_0::VendorTagSection>& vts,
/*out*/
sp<VendorTagDescriptor>& descriptor) {
int tagCount = 0;
for (size_t s = 0; s < vts.size(); s++) {
tagCount += vts[s].tags.size();
}
if (tagCount < 0 || tagCount > INT32_MAX) {
ALOGE("%s: tag count %d from vendor tag sections is invalid.", __FUNCTION__, tagCount);
return BAD_VALUE;
}
Vector<uint32_t> tagArray;
LOG_ALWAYS_FATAL_IF(tagArray.resize(tagCount) != tagCount,
"%s: too many (%u) vendor tags defined.", __FUNCTION__, tagCount);
sp<HidlVendorTagDescriptor> desc = new HidlVendorTagDescriptor();
desc->mTagCount = tagCount;
SortedVector<String8> sections;
KeyedVector<uint32_t, String8> tagToSectionMap;
int idx = 0;
for (size_t s = 0; s < vts.size(); s++) {
const common::V1_0::VendorTagSection& section = vts[s];
const char *sectionName = section.sectionName.c_str();
if (sectionName == NULL) {
ALOGE("%s: no section name defined for vendor tag section %zu.", __FUNCTION__, s);
return BAD_VALUE;
}
String8 sectionString(sectionName);
sections.add(sectionString);
for (size_t j = 0; j < section.tags.size(); j++) {
uint32_t tag = section.tags[j].tagId;
if (tag < CAMERA_METADATA_VENDOR_TAG_BOUNDARY) {
ALOGE("%s: vendor tag %d not in vendor tag section.", __FUNCTION__, tag);
return BAD_VALUE;
}
tagArray.editItemAt(idx++) = section.tags[j].tagId;
const char *tagName = section.tags[j].tagName.c_str();
if (tagName == NULL) {
ALOGE("%s: no tag name defined for vendor tag %d.", __FUNCTION__, tag);
return BAD_VALUE;
}
desc->mTagToNameMap.add(tag, String8(tagName));
tagToSectionMap.add(tag, sectionString);
int tagType = (int) section.tags[j].tagType;
if (tagType < 0 || tagType >= NUM_TYPES) {
ALOGE("%s: tag type %d from vendor ops does not exist.", __FUNCTION__, tagType);
return BAD_VALUE;
}
desc->mTagToTypeMap.add(tag, tagType);
}
}
desc->mSections = sections;
for (size_t i = 0; i < tagArray.size(); ++i) {
uint32_t tag = tagArray[i];
String8 sectionString = tagToSectionMap.valueFor(tag);
// Set up tag to section index map
ssize_t index = sections.indexOf(sectionString);
LOG_ALWAYS_FATAL_IF(index < 0, "index %zd must be non-negative", index);
desc->mTagToSectionMap.add(tag, static_cast<uint32_t>(index));
// Set up reverse mapping
ssize_t reverseIndex = -1;
if ((reverseIndex = desc->mReverseMapping.indexOfKey(sectionString)) < 0) {
KeyedVector<String8, uint32_t>* nameMapper = new KeyedVector<String8, uint32_t>();
reverseIndex = desc->mReverseMapping.add(sectionString, nameMapper);
}
desc->mReverseMapping[reverseIndex]->add(desc->mTagToNameMap.valueFor(tag), tag);
}
descriptor = std::move(desc);
return OK;
}
// Expects to have mInterfaceMutex locked
std::vector<std::unordered_set<std::string>>
CameraProviderManager::getConcurrentCameraIds() const {
std::vector<std::unordered_set<std::string>> deviceIdCombinations;
std::lock_guard<std::mutex> lock(mInterfaceMutex);
for (auto &provider : mProviders) {
for (auto &combinations : provider->getConcurrentCameraIdCombinations()) {
deviceIdCombinations.push_back(combinations);
}
}
return deviceIdCombinations;
}
status_t CameraProviderManager::convertToHALStreamCombinationAndCameraIdsLocked(
const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
const std::set<std::string>& perfClassPrimaryCameraIds,
int targetSdkVersion,
hardware::hidl_vec<CameraIdAndStreamCombination> *halCameraIdsAndStreamCombinations,
bool *earlyExit) {
binder::Status bStatus = binder::Status::ok();
std::vector<CameraIdAndStreamCombination> halCameraIdsAndStreamsV;
bool shouldExit = false;
status_t res = OK;
for (auto &cameraIdAndSessionConfig : cameraIdsAndSessionConfigs) {
const std::string& cameraId = cameraIdAndSessionConfig.mCameraId;
hardware::camera::device::V3_7::StreamConfiguration streamConfiguration;
CameraMetadata deviceInfo;
bool overrideForPerfClass =
SessionConfigurationUtils::targetPerfClassPrimaryCamera(
perfClassPrimaryCameraIds, cameraId, targetSdkVersion);
res = getCameraCharacteristicsLocked(cameraId, overrideForPerfClass, &deviceInfo);
if (res != OK) {
return res;
}
camera3::metadataGetter getMetadata =
[this](const String8 &id, bool overrideForPerfClass) {
CameraMetadata physicalDeviceInfo;
getCameraCharacteristicsLocked(id.string(), overrideForPerfClass,
&physicalDeviceInfo);
return physicalDeviceInfo;
};
std::vector<std::string> physicalCameraIds;
isLogicalCameraLocked(cameraId, &physicalCameraIds);
bStatus =
SessionConfigurationUtils::convertToHALStreamCombination(
cameraIdAndSessionConfig.mSessionConfiguration,
String8(cameraId.c_str()), deviceInfo, getMetadata,
physicalCameraIds, streamConfiguration,
overrideForPerfClass, &shouldExit);
if (!bStatus.isOk()) {
ALOGE("%s: convertToHALStreamCombination failed", __FUNCTION__);
return INVALID_OPERATION;
}
if (shouldExit) {
*earlyExit = true;
return OK;
}
CameraIdAndStreamCombination halCameraIdAndStream;
halCameraIdAndStream.cameraId = cameraId;
halCameraIdAndStream.streamConfiguration = streamConfiguration;
halCameraIdsAndStreamsV.push_back(halCameraIdAndStream);
}
*halCameraIdsAndStreamCombinations = halCameraIdsAndStreamsV;
return OK;
}
// Checks if the containing vector of sets has any set that contains all of the
// camera ids in cameraIdsAndSessionConfigs.
static bool checkIfSetContainsAll(
const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
const std::vector<std::unordered_set<std::string>> &containingSets) {
for (auto &containingSet : containingSets) {
bool didHaveAll = true;
for (auto &cameraIdAndSessionConfig : cameraIdsAndSessionConfigs) {
if (containingSet.find(cameraIdAndSessionConfig.mCameraId) == containingSet.end()) {
// a camera id doesn't belong to this set, keep looking in other
// sets
didHaveAll = false;
break;
}
}
if (didHaveAll) {
// found a set that has all camera ids, lets return;
return true;
}
}
return false;
}
status_t CameraProviderManager::isConcurrentSessionConfigurationSupported(
const std::vector<CameraIdAndSessionConfiguration> &cameraIdsAndSessionConfigs,
const std::set<std::string>& perfClassPrimaryCameraIds,
int targetSdkVersion, bool *isSupported) {
std::lock_guard<std::mutex> lock(mInterfaceMutex);
// Check if all the devices are a subset of devices advertised by the
// same provider through getConcurrentStreamingCameraIds()
// TODO: we should also do a findDeviceInfoLocked here ?
for (auto &provider : mProviders) {
if (checkIfSetContainsAll(cameraIdsAndSessionConfigs,
provider->getConcurrentCameraIdCombinations())) {
// For each camera device in cameraIdsAndSessionConfigs collect
// the streamConfigs and create the HAL
// CameraIdAndStreamCombination, exit early if needed
hardware::hidl_vec<CameraIdAndStreamCombination> halCameraIdsAndStreamCombinations;
bool knowUnsupported = false;
status_t res = convertToHALStreamCombinationAndCameraIdsLocked(
cameraIdsAndSessionConfigs, perfClassPrimaryCameraIds,
targetSdkVersion, &halCameraIdsAndStreamCombinations, &knowUnsupported);
if (res != OK) {
ALOGE("%s unable to convert session configurations provided to HAL stream"
"combinations", __FUNCTION__);
return res;
}
if (knowUnsupported) {
// We got to know the streams aren't valid before doing the HAL
// call itself.
*isSupported = false;
return OK;
}
return provider->isConcurrentSessionConfigurationSupported(
halCameraIdsAndStreamCombinations, isSupported);
}
}
*isSupported = false;
//The set of camera devices were not found
return INVALID_OPERATION;
}
status_t CameraProviderManager::getCameraCharacteristicsLocked(const std::string &id,
bool overrideForPerfClass, CameraMetadata* characteristics) const {
auto deviceInfo = findDeviceInfoLocked(id, /*minVersion*/ {3,0}, /*maxVersion*/ {5,0});
if (deviceInfo != nullptr) {
return deviceInfo->getCameraCharacteristics(overrideForPerfClass, characteristics);
}
// Find hidden physical camera characteristics
for (auto& provider : mProviders) {
for (auto& deviceInfo : provider->mDevices) {
status_t res = deviceInfo->getPhysicalCameraCharacteristics(id, characteristics);
if (res != NAME_NOT_FOUND) return res;
}
}
return NAME_NOT_FOUND;
}
void CameraProviderManager::filterLogicalCameraIdsLocked(
std::vector<std::string>& deviceIds) const
{
// Map between camera facing and camera IDs related to logical camera.
std::map<int, std::unordered_set<std::string>> idCombos;
// Collect all logical and its underlying physical camera IDs for each
// facing.
for (auto& deviceId : deviceIds) {
auto deviceInfo = findDeviceInfoLocked(deviceId);
if (deviceInfo == nullptr) continue;
if (!deviceInfo->mIsLogicalCamera) {
continue;
}
// combo contains the ids of a logical camera and its physical cameras
std::vector<std::string> combo = deviceInfo->mPhysicalIds;
combo.push_back(deviceId);
hardware::CameraInfo info;
status_t res = deviceInfo->getCameraInfo(&info);
if (res != OK) {
ALOGE("%s: Error reading camera info: %s (%d)", __FUNCTION__, strerror(-res), res);
continue;
}
idCombos[info.facing].insert(combo.begin(), combo.end());
}
// Only expose one camera ID per facing for all logical and underlying
// physical camera IDs.
for (auto& r : idCombos) {
auto& removedIds = r.second;
for (auto& id : deviceIds) {
auto foundId = std::find(removedIds.begin(), removedIds.end(), id);
if (foundId == removedIds.end()) {
continue;
}
removedIds.erase(foundId);
break;
}
deviceIds.erase(std::remove_if(deviceIds.begin(), deviceIds.end(),
[&removedIds](const std::string& s) {
return removedIds.find(s) != removedIds.end();}),
deviceIds.end());
}
}
} // namespace android