blob: 4fe3a75faebe808eace27226fcb531fbc5adb2d4 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "EffectHG_Processors"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <assert.h>
#include <cmath>
#include "Processors.h"
#if defined(__aarch64__) || defined(__ARM_NEON__)
#ifndef USE_NEON
#define USE_NEON (true)
#endif
#else
#define USE_NEON (false)
#endif
#if USE_NEON
#include <arm_neon.h>
#endif
namespace android::audio_effect::haptic_generator {
float getRealPoleZ(float cornerFrequency, float sampleRate) {
// This will be a pole of a first order filter.
float realPoleS = -2 * M_PI * cornerFrequency;
return exp(realPoleS / sampleRate); // zero-pole matching
}
std::pair<float, float> getComplexPoleZ(float ringingFrequency, float q, float sampleRate) {
// This is the pole for 1/(s^2 + s/q + 1) in normalized frequency. The other pole is
// the complex conjugate of this.
float poleImagS = 2 * M_PI * ringingFrequency;
float poleRealS = -poleImagS / (2 * q);
float poleRadius = exp(poleRealS / sampleRate);
float poleImagZ = poleRadius * sin(poleImagS / sampleRate);
float poleRealZ = poleRadius * cos(poleImagS / sampleRate);
return {poleRealZ, poleImagZ};
}
// Implementation of Ramp
Ramp::Ramp(size_t channelCount) : mChannelCount(channelCount) {}
void Ramp::process(float *out, const float *in, size_t frameCount) {
size_t i = 0;
#if USE_NEON
size_t sampleCount = frameCount * mChannelCount;
float32x2_t allZero = vdup_n_f32(0.0f);
while (i + 1 < sampleCount) {
vst1_f32(out, vmax_f32(vld1_f32(in), allZero));
in += 2;
out += 2;
i += 2;
}
#endif // USE_NEON
for (; i < frameCount * mChannelCount; ++i) {
*out = *in >= 0.0f ? *in : 0.0f;
out++;
in++;
}
}
// Implementation of SlowEnvelope
SlowEnvelope::SlowEnvelope(
float cornerFrequency,
float sampleRate,
float normalizationPower,
float envOffset,
size_t channelCount)
: mLpf(createLPF(cornerFrequency, sampleRate, channelCount)),
mNormalizationPower(normalizationPower),
mEnvOffset(envOffset),
mChannelCount(channelCount) {}
void SlowEnvelope::process(float* out, const float* in, size_t frameCount) {
size_t sampleCount = frameCount * mChannelCount;
if (sampleCount > mLpfOutBuffer.size()) {
mLpfOutBuffer.resize(sampleCount);
mLpfInBuffer.resize(sampleCount);
}
for (size_t i = 0; i < sampleCount; ++i) {
mLpfInBuffer[i] = fabs(in[i]);
}
mLpf->process(mLpfOutBuffer.data(), mLpfInBuffer.data(), frameCount);
for (size_t i = 0; i < sampleCount; ++i) {
out[i] = in[i] * pow(mLpfOutBuffer[i] + mEnvOffset, mNormalizationPower);
}
}
void SlowEnvelope::setNormalizationPower(float normalizationPower) {
mNormalizationPower = normalizationPower;
}
void SlowEnvelope::clear() {
mLpf->clear();
}
// Implementation of distortion
Distortion::Distortion(
float cornerFrequency,
float sampleRate,
float inputGain,
float cubeThreshold,
float outputGain,
size_t channelCount)
: mLpf(createLPF2(cornerFrequency, sampleRate, channelCount)),
mSampleRate(sampleRate),
mCornerFrequency(cornerFrequency),
mInputGain(inputGain),
mCubeThreshold(cubeThreshold),
mOutputGain(outputGain),
mChannelCount(channelCount) {}
void Distortion::process(float *out, const float *in, size_t frameCount) {
size_t sampleCount = frameCount * mChannelCount;
if (sampleCount > mLpfInBuffer.size()) {
mLpfInBuffer.resize(sampleCount);
}
for (size_t i = 0; i < sampleCount; ++i) {
const float x = mInputGain * in[i];
mLpfInBuffer[i] = x * x * x / (mCubeThreshold + x * x); // "Coring" nonlinearity.
}
mLpf->process(out, mLpfInBuffer.data(), frameCount); // Reduce 3*F components.
for (size_t i = 0; i < sampleCount; ++i) {
const float x = out[i];
out[i] = mOutputGain * x / (1.0f + fabs(x)); // Soft limiter.
}
}
void Distortion::setCornerFrequency(float cornerFrequency) {
mCornerFrequency = cornerFrequency;
BiquadFilterCoefficients coefficient = lpfCoefs(cornerFrequency, mSampleRate);
mLpf->setCoefficients(coefficient);
}
void Distortion::setInputGain(float inputGain) {
mInputGain = inputGain;
}
void Distortion::setCubeThrehold(float cubeThreshold) {
mCubeThreshold = cubeThreshold;
}
void Distortion::setOutputGain(float outputGain) {
mOutputGain = outputGain;
}
void Distortion::clear() {
mLpf->clear();
}
// Implementation of helper functions
BiquadFilterCoefficients cascadeFirstOrderFilters(const BiquadFilterCoefficients &coefs1,
const BiquadFilterCoefficients &coefs2) {
assert(coefs1[2] == 0.0f);
assert(coefs2[2] == 0.0f);
assert(coefs1[4] == 0.0f);
assert(coefs2[4] == 0.0f);
return {coefs1[0] * coefs2[0],
coefs1[0] * coefs2[1] + coefs1[1] * coefs2[0],
coefs1[1] * coefs2[1],
coefs1[3] + coefs2[3],
coefs1[3] * coefs2[3]};
}
BiquadFilterCoefficients lpfCoefs(const float cornerFrequency, const float sampleRate) {
BiquadFilterCoefficients coefficient;
float realPoleZ = getRealPoleZ(cornerFrequency, sampleRate);
// This is a zero at nyquist
coefficient[0] = 0.5f * (1 - realPoleZ);
coefficient[1] = coefficient[0];
coefficient[2] = 0.0f;
coefficient[3] = -realPoleZ; // This is traditional 1/(s+1) filter
coefficient[4] = 0.0f;
return coefficient;
}
BiquadFilterCoefficients bpfCoefs(const float ringingFrequency,
const float q,
const float sampleRate) {
BiquadFilterCoefficients coefficient;
const auto [real, img] = getComplexPoleZ(ringingFrequency, q, sampleRate);
// Note: this is not a standard cookbook BPF, but a low pass filter with zero at DC
coefficient[0] = 1.0f;
coefficient[1] = -1.0f;
coefficient[2] = 0.0f;
coefficient[3] = -2 * real;
coefficient[4] = real * real + img * img;
return coefficient;
}
BiquadFilterCoefficients bsfCoefs(const float ringingFrequency,
const float zq,
const float pq,
const float sampleRate) {
BiquadFilterCoefficients coefficient;
const auto [zeroReal, zeroImg] = getComplexPoleZ(ringingFrequency, zq, sampleRate);
float zeroCoeff1 = -2 * zeroReal;
float zeroCoeff2 = zeroReal* zeroReal + zeroImg * zeroImg;
const auto [poleReal, poleImg] = getComplexPoleZ(ringingFrequency, pq, sampleRate);
float poleCoeff1 = -2 * poleReal;
float poleCoeff2 = poleReal * poleReal + poleImg * poleImg;
const float norm = (1.0f + poleCoeff1 + poleCoeff2) / (1.0f + zeroCoeff1 + zeroCoeff2);
coefficient[0] = 1.0f * norm;
coefficient[1] = zeroCoeff1 * norm;
coefficient[2] = zeroCoeff2 * norm;
coefficient[3] = poleCoeff1;
coefficient[4] = poleCoeff2;
return coefficient;
}
std::shared_ptr<HapticBiquadFilter> createLPF(const float cornerFrequency,
const float sampleRate,
const size_t channelCount) {
BiquadFilterCoefficients coefficient = lpfCoefs(cornerFrequency, sampleRate);
return std::make_shared<HapticBiquadFilter>(channelCount, coefficient);
}
std::shared_ptr<HapticBiquadFilter> createLPF2(const float cornerFrequency,
const float sampleRate,
const size_t channelCount) {
BiquadFilterCoefficients coefficient = lpfCoefs(cornerFrequency, sampleRate);
return std::make_shared<HapticBiquadFilter>(
channelCount, cascadeFirstOrderFilters(coefficient, coefficient));
}
std::shared_ptr<HapticBiquadFilter> createHPF2(const float cornerFrequency,
const float sampleRate,
const size_t channelCount) {
BiquadFilterCoefficients coefficient;
// Note: this is valid only when corner frequency is less than nyquist / 2.
float realPoleZ = getRealPoleZ(cornerFrequency, sampleRate);
// Note: this is a zero at DC
coefficient[0] = 0.5f * (1 + realPoleZ);
coefficient[1] = -coefficient[0];
coefficient[2] = 0.0f;
coefficient[3] = -realPoleZ;
coefficient[4] = 0.0f;
return std::make_shared<HapticBiquadFilter>(
channelCount, cascadeFirstOrderFilters(coefficient, coefficient));
}
std::shared_ptr<HapticBiquadFilter> createBPF(const float ringingFrequency,
const float q,
const float sampleRate,
const size_t channelCount) {
BiquadFilterCoefficients coefficient = bpfCoefs(ringingFrequency, q, sampleRate);
return std::make_shared<HapticBiquadFilter>(channelCount, coefficient);
}
std::shared_ptr<HapticBiquadFilter> createBSF(const float ringingFrequency,
const float zq,
const float pq,
const float sampleRate,
const size_t channelCount) {
BiquadFilterCoefficients coefficient = bsfCoefs(ringingFrequency, zq, pq, sampleRate);
return std::make_shared<HapticBiquadFilter>(channelCount, coefficient);
}
} // namespace android::audio_effect::haptic_generator