blob: 0be934a50c711cb29e6c16bc82d82624efeec1cd [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "FrameReassembler.h"
#include <gtest/gtest.h>
#include <C2PlatformSupport.h>
#include <media/stagefright/foundation/ABuffer.h>
#include <media/stagefright/foundation/AMessage.h>
namespace android {
static size_t BytesPerSample(C2Config::pcm_encoding_t encoding) {
return encoding == PCM_8 ? 1
: encoding == PCM_16 ? 2
: encoding == PCM_FLOAT ? 4 : 0;
}
static uint64_t Diff(c2_cntr64_t a, c2_cntr64_t b) {
return std::abs((a - b).peek());
}
class FrameReassemblerTest : public ::testing::Test {
public:
static const C2MemoryUsage kUsage;
static constexpr uint64_t kTimestampToleranceUs = 100;
FrameReassemblerTest() {
mInitStatus = GetCodec2BlockPool(C2BlockPool::BASIC_LINEAR, nullptr, &mPool);
}
status_t initStatus() const { return mInitStatus; }
void testPushSameSize(
size_t encoderFrameSize,
size_t sampleRate,
size_t channelCount,
C2Config::pcm_encoding_t encoding,
size_t inputFrameSizeInBytes,
size_t count,
size_t expectedOutputSize,
bool separateEos) {
FrameReassembler frameReassembler;
frameReassembler.init(
mPool,
kUsage,
encoderFrameSize,
sampleRate,
channelCount,
encoding);
ASSERT_TRUE(frameReassembler) << "FrameReassembler init failed";
size_t inputIndex = 0, outputIndex = 0;
size_t expectCount = 0;
for (size_t i = 0; i < count + (separateEos ? 1 : 0); ++i) {
sp<MediaCodecBuffer> buffer = new MediaCodecBuffer(
new AMessage, new ABuffer(inputFrameSizeInBytes));
buffer->setRange(0, inputFrameSizeInBytes);
buffer->meta()->setInt64(
"timeUs",
inputIndex * 1000000 / sampleRate / channelCount / BytesPerSample(encoding));
if (i == count - 1) {
buffer->meta()->setInt32("eos", 1);
}
if (i == count && separateEos) {
buffer->setRange(0, 0);
} else {
for (size_t j = 0; j < inputFrameSizeInBytes; ++j, ++inputIndex) {
buffer->base()[j] = (inputIndex & 0xFF);
}
}
std::list<std::unique_ptr<C2Work>> items;
ASSERT_EQ(C2_OK, frameReassembler.process(buffer, &items));
while (!items.empty()) {
std::unique_ptr<C2Work> work = std::move(*items.begin());
items.erase(items.begin());
// Verify timestamp
uint64_t expectedTimeUs =
outputIndex * 1000000 / sampleRate / channelCount / BytesPerSample(encoding);
EXPECT_GE(
kTimestampToleranceUs,
Diff(expectedTimeUs, work->input.ordinal.timestamp))
<< "expected timestamp: " << expectedTimeUs
<< " actual timestamp: " << work->input.ordinal.timestamp.peeku()
<< " output index: " << outputIndex;
// Verify buffer
ASSERT_EQ(1u, work->input.buffers.size());
std::shared_ptr<C2Buffer> buffer = work->input.buffers.front();
ASSERT_EQ(C2BufferData::LINEAR, buffer->data().type());
ASSERT_EQ(1u, buffer->data().linearBlocks().size());
C2ReadView view = buffer->data().linearBlocks().front().map().get();
ASSERT_EQ(C2_OK, view.error());
ASSERT_EQ(encoderFrameSize * BytesPerSample(encoding), view.capacity());
for (size_t j = 0; j < view.capacity(); ++j, ++outputIndex) {
ASSERT_TRUE(outputIndex < inputIndex
|| inputIndex == inputFrameSizeInBytes * count)
<< "inputIndex = " << inputIndex << " outputIndex = " << outputIndex;
uint8_t expected = outputIndex < inputIndex ? (outputIndex & 0xFF) : 0;
if (expectCount < 10) {
++expectCount;
EXPECT_EQ(expected, view.data()[j]) << "output index = " << outputIndex;
}
}
}
}
ASSERT_EQ(inputFrameSizeInBytes * count, inputIndex);
size_t encoderFrameSizeInBytes =
encoderFrameSize * channelCount * BytesPerSample(encoding);
ASSERT_EQ(0, outputIndex % encoderFrameSizeInBytes)
<< "output size must be multiple of frame size: output size = " << outputIndex
<< " frame size = " << encoderFrameSizeInBytes;
ASSERT_EQ(expectedOutputSize, outputIndex)
<< "output size must be smallest multiple of frame size, "
<< "equal to or larger than input size. output size = " << outputIndex
<< " input size = " << inputIndex << " frame size = " << encoderFrameSizeInBytes;
}
private:
status_t mInitStatus;
std::shared_ptr<C2BlockPool> mPool;
};
const C2MemoryUsage FrameReassemblerTest::kUsage{C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
// Push frames with exactly the same size as the encoder requested.
TEST_F(FrameReassemblerTest, PushExactFrameSize) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
1024 /* input frame size in bytes = 1024 samples * 1 channel * 1 bytes/sample */,
10 /* count */,
10240 /* expected output size = 10 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
2048 /* input frame size in bytes = 1024 samples * 1 channel * 2 bytes/sample */,
10 /* count */,
20480 /* expected output size = 10 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
4096 /* input frame size in bytes = 1024 samples * 1 channel * 4 bytes/sample */,
10 /* count */,
40960 /* expected output size = 10 * 4096 bytes/frame */,
separateEos);
}
}
// Push frames with half the size that the encoder requested.
TEST_F(FrameReassemblerTest, PushHalfFrameSize) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
512 /* input frame size in bytes = 512 samples * 1 channel * 1 bytes/sample */,
10 /* count */,
5120 /* expected output size = 5 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
1024 /* input frame size in bytes = 512 samples * 1 channel * 2 bytes/sample */,
10 /* count */,
10240 /* expected output size = 5 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
2048 /* input frame size in bytes = 512 samples * 1 channel * 4 bytes/sample */,
10 /* count */,
20480 /* expected output size = 5 * 4096 bytes/frame */,
separateEos);
}
}
// Push frames with twice the size that the encoder requested.
TEST_F(FrameReassemblerTest, PushDoubleFrameSize) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
2048 /* input frame size in bytes = 2048 samples * 1 channel * 1 bytes/sample */,
10 /* count */,
20480 /* expected output size = 20 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
4096 /* input frame size in bytes = 2048 samples * 1 channel * 2 bytes/sample */,
10 /* count */,
40960 /* expected output size = 20 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
8192 /* input frame size in bytes = 2048 samples * 1 channel * 4 bytes/sample */,
10 /* count */,
81920 /* expected output size = 20 * 4096 bytes/frame */,
separateEos);
}
}
// Push frames with a little bit larger (+5 samples) than the requested size.
TEST_F(FrameReassemblerTest, PushLittleLargerFrameSize) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
1029 /* input frame size in bytes = 1029 samples * 1 channel * 1 bytes/sample */,
10 /* count */,
11264 /* expected output size = 11 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
2058 /* input frame size in bytes = 1029 samples * 1 channel * 2 bytes/sample */,
10 /* count */,
22528 /* expected output size = 11 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
4116 /* input frame size in bytes = 1029 samples * 1 channel * 4 bytes/sample */,
10 /* count */,
45056 /* expected output size = 11 * 4096 bytes/frame */,
separateEos);
}
}
// Push frames with a little bit smaller (-5 samples) than the requested size.
TEST_F(FrameReassemblerTest, PushLittleSmallerFrameSize) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
1019 /* input frame size in bytes = 1019 samples * 1 channel * 1 bytes/sample */,
10 /* count */,
10240 /* expected output size = 10 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
2038 /* input frame size in bytes = 1019 samples * 1 channel * 2 bytes/sample */,
10 /* count */,
20480 /* expected output size = 10 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
4076 /* input frame size in bytes = 1019 samples * 1 channel * 4 bytes/sample */,
10 /* count */,
40960 /* expected output size = 10 * 4096 bytes/frame */,
separateEos);
}
}
// Push single-byte frames
TEST_F(FrameReassemblerTest, PushSingleByte) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
1 /* input frame size in bytes */,
100000 /* count */,
100352 /* expected output size = 98 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
1 /* input frame size in bytes */,
100000 /* count */,
100352 /* expected output size = 49 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
1 /* input frame size in bytes */,
100000 /* count */,
102400 /* expected output size = 25 * 4096 bytes/frame */,
separateEos);
}
}
// Push one big chunk.
TEST_F(FrameReassemblerTest, PushBigChunk) {
ASSERT_EQ(OK, initStatus());
for (bool separateEos : {false, true}) {
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_8,
100000 /* input frame size in bytes */,
1 /* count */,
100352 /* expected output size = 98 * 1024 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_16,
100000 /* input frame size in bytes */,
1 /* count */,
100352 /* expected output size = 49 * 2048 bytes/frame */,
separateEos);
testPushSameSize(
1024 /* frame size in samples */,
48000 /* sample rate */,
1 /* channel count */,
PCM_FLOAT,
100000 /* input frame size in bytes */,
1 /* count */,
102400 /* expected output size = 25 * 4096 bytes/frame */,
separateEos);
}
}
} // namespace android