blob: e245c808485c3eb8b69fb302baa3bb3cfd8dfb02 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "media/QuaternionUtil.h"
#include <cassert>
namespace android {
namespace media {
using Eigen::NumTraits;
using Eigen::Quaternionf;
using Eigen::Vector3f;
namespace {
Vector3f LogSU2(const Quaternionf& q) {
// Implementation of the logarithmic map of SU(2) using atan.
// This follows Hertzberg et al. "Integrating Generic Sensor Fusion Algorithms
// with Sound State Representations through Encapsulation of Manifolds", Eq.
// (31)
// We use asin and acos instead of atan to enable the use of Eigen Autodiff
// with SU2.
const float sign_of_w = q.w() < 0.f ? -1.f : 1.f;
const float abs_w = sign_of_w * q.w();
const Vector3f v = sign_of_w * q.vec();
const float squared_norm_of_v = v.squaredNorm();
assert(abs(1.f - abs_w * abs_w - squared_norm_of_v) < NumTraits<float>::dummy_precision());
if (squared_norm_of_v > NumTraits<float>::dummy_precision()) {
const float norm_of_v = sqrt(squared_norm_of_v);
if (abs_w > NumTraits<float>::dummy_precision()) {
// asin(x) = acos(x) at x = 1/sqrt(2).
if (norm_of_v <= float(M_SQRT1_2)) {
return (asin(norm_of_v) / norm_of_v) * v;
}
return (acos(abs_w) / norm_of_v) * v;
}
return (M_PI_2 / norm_of_v) * v;
}
// Taylor expansion at squared_norm_of_v == 0
return (1.f / abs_w - squared_norm_of_v / (3.f * pow(abs_w, 3))) * v;
}
Quaternionf ExpSU2(const Vector3f& delta) {
Quaternionf q_delta;
const float theta_squared = delta.squaredNorm();
if (theta_squared > NumTraits<float>::dummy_precision()) {
const float theta = sqrt(theta_squared);
q_delta.w() = cos(theta);
q_delta.vec() = (sin(theta) / theta) * delta;
} else {
// taylor expansions around theta == 0
q_delta.w() = 1.f - 0.5f * theta_squared;
q_delta.vec() = (1.f - 1.f / 6.f * theta_squared) * delta;
}
return q_delta;
}
} // namespace
Quaternionf rotationVectorToQuaternion(const Vector3f& rotationVector) {
// SU(2) is a double cover of SO(3), thus we have to half the tangent vector
// delta
const Vector3f half_delta = 0.5f * rotationVector;
return ExpSU2(half_delta);
}
Vector3f quaternionToRotationVector(const Quaternionf& quaternion) {
// SU(2) is a double cover of SO(3), thus we have to multiply the tangent
// vector delta by two
return 2.f * LogSU2(quaternion);
}
Quaternionf rotateX(float angle) {
return rotationVectorToQuaternion(Vector3f(1, 0, 0) * angle);
}
Quaternionf rotateY(float angle) {
return rotationVectorToQuaternion(Vector3f(0, 1, 0) * angle);
}
Quaternionf rotateZ(float angle) {
return rotationVectorToQuaternion(Vector3f(0, 0, 1) * angle);
}
} // namespace media
} // namespace android