| /* |
| * Copyright (C) 2021 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "media/QuaternionUtil.h" |
| |
| #include <cassert> |
| |
| namespace android { |
| namespace media { |
| |
| using Eigen::NumTraits; |
| using Eigen::Quaternionf; |
| using Eigen::Vector3f; |
| |
| namespace { |
| |
| Vector3f LogSU2(const Quaternionf& q) { |
| // Implementation of the logarithmic map of SU(2) using atan. |
| // This follows Hertzberg et al. "Integrating Generic Sensor Fusion Algorithms |
| // with Sound State Representations through Encapsulation of Manifolds", Eq. |
| // (31) |
| // We use asin and acos instead of atan to enable the use of Eigen Autodiff |
| // with SU2. |
| const float sign_of_w = q.w() < 0.f ? -1.f : 1.f; |
| const float abs_w = sign_of_w * q.w(); |
| const Vector3f v = sign_of_w * q.vec(); |
| const float squared_norm_of_v = v.squaredNorm(); |
| |
| assert(abs(1.f - abs_w * abs_w - squared_norm_of_v) < NumTraits<float>::dummy_precision()); |
| |
| if (squared_norm_of_v > NumTraits<float>::dummy_precision()) { |
| const float norm_of_v = sqrt(squared_norm_of_v); |
| if (abs_w > NumTraits<float>::dummy_precision()) { |
| // asin(x) = acos(x) at x = 1/sqrt(2). |
| if (norm_of_v <= float(M_SQRT1_2)) { |
| return (asin(norm_of_v) / norm_of_v) * v; |
| } |
| return (acos(abs_w) / norm_of_v) * v; |
| } |
| return (M_PI_2 / norm_of_v) * v; |
| } |
| |
| // Taylor expansion at squared_norm_of_v == 0 |
| return (1.f / abs_w - squared_norm_of_v / (3.f * pow(abs_w, 3))) * v; |
| } |
| |
| Quaternionf ExpSU2(const Vector3f& delta) { |
| Quaternionf q_delta; |
| const float theta_squared = delta.squaredNorm(); |
| if (theta_squared > NumTraits<float>::dummy_precision()) { |
| const float theta = sqrt(theta_squared); |
| q_delta.w() = cos(theta); |
| q_delta.vec() = (sin(theta) / theta) * delta; |
| } else { |
| // taylor expansions around theta == 0 |
| q_delta.w() = 1.f - 0.5f * theta_squared; |
| q_delta.vec() = (1.f - 1.f / 6.f * theta_squared) * delta; |
| } |
| return q_delta; |
| } |
| |
| } // namespace |
| |
| Quaternionf rotationVectorToQuaternion(const Vector3f& rotationVector) { |
| // SU(2) is a double cover of SO(3), thus we have to half the tangent vector |
| // delta |
| const Vector3f half_delta = 0.5f * rotationVector; |
| return ExpSU2(half_delta); |
| } |
| |
| Vector3f quaternionToRotationVector(const Quaternionf& quaternion) { |
| // SU(2) is a double cover of SO(3), thus we have to multiply the tangent |
| // vector delta by two |
| return 2.f * LogSU2(quaternion); |
| } |
| |
| Quaternionf rotateX(float angle) { |
| return rotationVectorToQuaternion(Vector3f(1, 0, 0) * angle); |
| } |
| |
| Quaternionf rotateY(float angle) { |
| return rotationVectorToQuaternion(Vector3f(0, 1, 0) * angle); |
| } |
| |
| Quaternionf rotateZ(float angle) { |
| return rotationVectorToQuaternion(Vector3f(0, 0, 1) * angle); |
| } |
| |
| } // namespace media |
| } // namespace android |