blob: f4d37bc133fe5e9ad6f3a22ffd3fcf96f16795af [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <string>
#include <tuple>
#include <vector>
// #define LOG_NDEBUG 0
#define LOG_TAG "AudioEffectAnalyser"
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <binder/ProcessState.h>
#include <gtest/gtest.h>
#include <media/AudioEffect.h>
#include <system/audio_effects/effect_bassboost.h>
#include <system/audio_effects/effect_equalizer.h>
#include "audio_test_utils.h"
#include "pffft.hpp"
#include "test_execution_tracer.h"
#define CHECK_OK(expr, msg) \
mStatus = (expr); \
if (OK != mStatus) { \
mMsg = (msg); \
return; \
}
using namespace android;
constexpr float kDefAmplitude = 0.60f;
constexpr float kPlayBackDurationSec = 1.5;
constexpr float kCaptureDurationSec = 1.0;
constexpr float kPrimeDurationInSec = 0.5;
// chosen to safely sample largest center freq of eq bands
constexpr uint32_t kSamplingFrequency = 48000;
// allows no fmt conversion before fft
constexpr audio_format_t kFormat = AUDIO_FORMAT_PCM_FLOAT;
// playback and capture are done with channel mask configured to mono.
// effect analysis should not depend on mask, mono makes it easier.
constexpr int kNPointFFT = 16384;
constexpr float kBinWidth = (float)kSamplingFrequency / kNPointFFT;
const char* gPackageName = "AudioEffectAnalyser";
static_assert(kPrimeDurationInSec + 2 * kNPointFFT / kSamplingFrequency < kCaptureDurationSec,
"capture at least, prime, pad, nPointFft size of samples");
static_assert(kPrimeDurationInSec + 2 * kNPointFFT / kSamplingFrequency < kPlayBackDurationSec,
"playback needs to be active during capture");
struct CaptureEnv {
// input args
uint32_t mSampleRate{kSamplingFrequency};
audio_format_t mFormat{kFormat};
audio_channel_mask_t mChannelMask{AUDIO_CHANNEL_IN_MONO};
float mCaptureDuration{kCaptureDurationSec};
// output val
status_t mStatus{OK};
std::string mMsg;
std::string mDumpFileName;
~CaptureEnv();
void capture();
};
CaptureEnv::~CaptureEnv() {
if (!mDumpFileName.empty()) {
std::ifstream f(mDumpFileName);
if (f.good()) {
f.close();
remove(mDumpFileName.c_str());
}
}
}
void CaptureEnv::capture() {
audio_port_v7 port;
CHECK_OK(getPortByAttributes(AUDIO_PORT_ROLE_SOURCE, AUDIO_PORT_TYPE_DEVICE,
AUDIO_DEVICE_IN_REMOTE_SUBMIX, "0", port),
"Could not find port")
const auto capture =
sp<AudioCapture>::make(AUDIO_SOURCE_REMOTE_SUBMIX, mSampleRate, mFormat, mChannelMask);
CHECK_OK(capture->create(), "record creation failed")
CHECK_OK(capture->setRecordDuration(mCaptureDuration), "set record duration failed")
CHECK_OK(capture->enableRecordDump(), "enable record dump failed")
auto cbCapture = sp<OnAudioDeviceUpdateNotifier>::make();
CHECK_OK(capture->getAudioRecordHandle()->addAudioDeviceCallback(cbCapture),
"addAudioDeviceCallback failed")
CHECK_OK(capture->start(), "start recording failed")
CHECK_OK(capture->audioProcess(), "recording process failed")
CHECK_OK(cbCapture->waitForAudioDeviceCb(), "audio device callback notification timed out");
if (port.id != capture->getAudioRecordHandle()->getRoutedDeviceId()) {
CHECK_OK(BAD_VALUE, "Capture NOT routed on expected port")
}
CHECK_OK(getPortByAttributes(AUDIO_PORT_ROLE_SINK, AUDIO_PORT_TYPE_DEVICE,
AUDIO_DEVICE_OUT_REMOTE_SUBMIX, "0", port),
"Could not find port")
CHECK_OK(capture->stop(), "record stop failed")
mDumpFileName = capture->getRecordDumpFileName();
}
struct PlaybackEnv {
// input args
uint32_t mSampleRate{kSamplingFrequency};
audio_format_t mFormat{kFormat};
audio_channel_mask_t mChannelMask{AUDIO_CHANNEL_OUT_MONO};
audio_session_t mSessionId{AUDIO_SESSION_NONE};
std::string mRes;
// output val
status_t mStatus{OK};
std::string mMsg;
void play();
};
void PlaybackEnv::play() {
const auto ap =
sp<AudioPlayback>::make(mSampleRate, mFormat, mChannelMask, AUDIO_OUTPUT_FLAG_NONE,
mSessionId, AudioTrack::TRANSFER_OBTAIN);
CHECK_OK(ap->loadResource(mRes.c_str()), "Unable to open Resource")
const auto cbPlayback = sp<OnAudioDeviceUpdateNotifier>::make();
CHECK_OK(ap->create(), "track creation failed")
ap->getAudioTrackHandle()->setVolume(1.0f);
CHECK_OK(ap->getAudioTrackHandle()->addAudioDeviceCallback(cbPlayback),
"addAudioDeviceCallback failed")
CHECK_OK(ap->start(), "audio track start failed")
CHECK_OK(cbPlayback->waitForAudioDeviceCb(), "audio device callback notification timed out")
CHECK_OK(ap->onProcess(), "playback process failed")
ap->stop();
}
void generateMultiTone(const std::vector<int>& toneFrequencies, float samplingFrequency,
float duration, float amplitude, float* buffer, int numSamples) {
int totalFrameCount = (samplingFrequency * duration);
int limit = std::min(totalFrameCount, numSamples);
for (auto i = 0; i < limit; i++) {
buffer[i] = 0;
for (auto j = 0; j < toneFrequencies.size(); j++) {
buffer[i] += sin(2 * M_PI * toneFrequencies[j] * i / samplingFrequency);
}
buffer[i] *= (amplitude / toneFrequencies.size());
}
}
sp<AudioEffect> createEffect(const effect_uuid_t* type,
audio_session_t sessionId = AUDIO_SESSION_OUTPUT_MIX) {
std::string packageName{gPackageName};
AttributionSourceState attributionSource;
attributionSource.packageName = packageName;
attributionSource.uid = VALUE_OR_FATAL(legacy2aidl_uid_t_int32_t(getuid()));
attributionSource.pid = VALUE_OR_FATAL(legacy2aidl_pid_t_int32_t(getpid()));
attributionSource.token = sp<BBinder>::make();
sp<AudioEffect> effect = sp<AudioEffect>::make(attributionSource);
effect->set(type, nullptr, 0, nullptr, sessionId, AUDIO_IO_HANDLE_NONE, {}, false, false);
return effect;
}
void computeFilterGainsAtTones(float captureDuration, int nPointFft, std::vector<int>& binOffsets,
float* inputMag, float* gaindB, const char* res,
audio_session_t sessionId) {
int totalFrameCount = captureDuration * kSamplingFrequency;
auto output = pffft::AlignedVector<float>(totalFrameCount);
auto fftOutput = pffft::AlignedVector<float>(nPointFft);
PlaybackEnv argsP;
argsP.mRes = std::string{res};
argsP.mSessionId = sessionId;
CaptureEnv argsR;
argsR.mCaptureDuration = captureDuration;
std::thread playbackThread(&PlaybackEnv::play, &argsP);
std::thread captureThread(&CaptureEnv::capture, &argsR);
captureThread.join();
playbackThread.join();
ASSERT_EQ(OK, argsR.mStatus) << argsR.mMsg;
ASSERT_EQ(OK, argsP.mStatus) << argsP.mMsg;
ASSERT_FALSE(argsR.mDumpFileName.empty()) << "recorded not written to file";
std::ifstream fin(argsR.mDumpFileName, std::ios::in | std::ios::binary);
fin.read((char*)output.data(), totalFrameCount * sizeof(output[0]));
fin.close();
PFFFT_Setup* handle = pffft_new_setup(nPointFft, PFFFT_REAL);
// ignore first few samples. This is to not analyse until audio track is re-routed to remote
// submix source, also for the effect filter response to reach steady-state (priming / pruning
// samples).
int rerouteOffset = kPrimeDurationInSec * kSamplingFrequency;
pffft_transform_ordered(handle, output.data() + rerouteOffset, fftOutput.data(), nullptr,
PFFFT_FORWARD);
pffft_destroy_setup(handle);
for (auto i = 0; i < binOffsets.size(); i++) {
auto k = binOffsets[i];
auto outputMag = sqrt((fftOutput[k * 2] * fftOutput[k * 2]) +
(fftOutput[k * 2 + 1] * fftOutput[k * 2 + 1]));
gaindB[i] = 20 * log10(outputMag / inputMag[i]);
}
}
std::tuple<int, int> roundToFreqCenteredToFftBin(float binWidth, float freq) {
int bin_index = std::round(freq / binWidth);
int cfreq = std::round(bin_index * binWidth);
return std::make_tuple(bin_index, cfreq);
}
TEST(AudioEffectTest, CheckEqualizerEffect) {
audio_session_t sessionId =
(audio_session_t)AudioSystem::newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
sp<AudioEffect> equalizer = createEffect(SL_IID_EQUALIZER, sessionId);
ASSERT_EQ(OK, equalizer->initCheck());
ASSERT_EQ(NO_ERROR, equalizer->setEnabled(true));
if ((equalizer->descriptor().flags & EFFECT_FLAG_HW_ACC_MASK) != 0) {
GTEST_SKIP() << "effect processed output inaccessible, skipping test";
}
#define MAX_PARAMS 64
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + MAX_PARAMS];
effect_param_t* eqParam = (effect_param_t*)(&buf32);
// get num of presets
eqParam->psize = sizeof(uint32_t);
eqParam->vsize = sizeof(uint16_t);
*(int32_t*)eqParam->data = EQ_PARAM_GET_NUM_OF_PRESETS;
EXPECT_EQ(0, equalizer->getParameter(eqParam));
EXPECT_EQ(0, eqParam->status);
int numPresets = *((uint16_t*)((int32_t*)eqParam->data + 1));
// get num of bands
eqParam->psize = sizeof(uint32_t);
eqParam->vsize = sizeof(uint16_t);
*(int32_t*)eqParam->data = EQ_PARAM_NUM_BANDS;
EXPECT_EQ(0, equalizer->getParameter(eqParam));
EXPECT_EQ(0, eqParam->status);
int numBands = *((uint16_t*)((int32_t*)eqParam->data + 1));
const int totalFrameCount = kSamplingFrequency * kPlayBackDurationSec;
// get band center frequencies
std::vector<int> centerFrequencies;
std::vector<int> binOffsets;
for (auto i = 0; i < numBands; i++) {
eqParam->psize = sizeof(uint32_t) * 2;
eqParam->vsize = sizeof(uint32_t);
*(int32_t*)eqParam->data = EQ_PARAM_CENTER_FREQ;
*((uint16_t*)((int32_t*)eqParam->data + 1)) = i;
EXPECT_EQ(0, equalizer->getParameter(eqParam));
EXPECT_EQ(0, eqParam->status);
float cfreq = *((int32_t*)eqParam->data + 2) / 1000; // milli hz
// pick frequency close to bin center frequency
auto [bin_index, bin_freq] = roundToFreqCenteredToFftBin(kBinWidth, cfreq);
centerFrequencies.push_back(bin_freq);
binOffsets.push_back(bin_index);
}
// input for effect module
auto input = pffft::AlignedVector<float>(totalFrameCount);
generateMultiTone(centerFrequencies, kSamplingFrequency, kPlayBackDurationSec, kDefAmplitude,
input.data(), totalFrameCount);
auto fftInput = pffft::AlignedVector<float>(kNPointFFT);
PFFFT_Setup* handle = pffft_new_setup(kNPointFFT, PFFFT_REAL);
pffft_transform_ordered(handle, input.data(), fftInput.data(), nullptr, PFFFT_FORWARD);
pffft_destroy_setup(handle);
float inputMag[numBands];
for (auto i = 0; i < numBands; i++) {
auto k = binOffsets[i];
inputMag[i] = sqrt((fftInput[k * 2] * fftInput[k * 2]) +
(fftInput[k * 2 + 1] * fftInput[k * 2 + 1]));
}
TemporaryFile tf("/data/local/tmp");
close(tf.release());
std::ofstream fout(tf.path, std::ios::out | std::ios::binary);
fout.write((char*)input.data(), input.size() * sizeof(input[0]));
fout.close();
float expGaindB[numBands], actGaindB[numBands];
std::string msg = "";
int numPresetsOk = 0;
for (auto preset = 0; preset < numPresets; preset++) {
// set preset
eqParam->psize = sizeof(uint32_t);
eqParam->vsize = sizeof(uint32_t);
*(int32_t*)eqParam->data = EQ_PARAM_CUR_PRESET;
*((uint16_t*)((int32_t*)eqParam->data + 1)) = preset;
EXPECT_EQ(0, equalizer->setParameter(eqParam));
EXPECT_EQ(0, eqParam->status);
// get preset gains
eqParam->psize = sizeof(uint32_t);
eqParam->vsize = (numBands + 1) * sizeof(uint32_t);
*(int32_t*)eqParam->data = EQ_PARAM_PROPERTIES;
EXPECT_EQ(0, equalizer->getParameter(eqParam));
EXPECT_EQ(0, eqParam->status);
t_equalizer_settings* settings =
reinterpret_cast<t_equalizer_settings*>((int32_t*)eqParam->data + 1);
EXPECT_EQ(preset, settings->curPreset);
EXPECT_EQ(numBands, settings->numBands);
for (auto i = 0; i < numBands; i++) {
expGaindB[i] = ((int16_t)settings->bandLevels[i]) / 100.0f; // gain in milli bels
}
memset(actGaindB, 0, sizeof(actGaindB));
ASSERT_NO_FATAL_FAILURE(computeFilterGainsAtTones(kCaptureDurationSec, kNPointFFT,
binOffsets, inputMag, actGaindB, tf.path,
sessionId));
bool isOk = true;
for (auto i = 0; i < numBands - 1; i++) {
auto diffA = expGaindB[i] - expGaindB[i + 1];
auto diffB = actGaindB[i] - actGaindB[i + 1];
if (diffA == 0 && fabs(diffA - diffB) > 1.0f) {
msg += (android::base::StringPrintf(
"For eq preset : %d, between bands %d and %d, expected relative gain is : "
"%f, got relative gain is : %f, error : %f \n",
preset, i, i + 1, diffA, diffB, diffA - diffB));
isOk = false;
} else if (diffA * diffB < 0) {
msg += (android::base::StringPrintf(
"For eq preset : %d, between bands %d and %d, expected relative gain and "
"seen relative gain are of opposite signs \n. Expected relative gain is : "
"%f, seen relative gain is : %f \n",
preset, i, i + 1, diffA, diffB));
isOk = false;
}
}
if (isOk) numPresetsOk++;
}
EXPECT_EQ(numPresetsOk, numPresets) << msg;
}
TEST(AudioEffectTest, CheckBassBoostEffect) {
audio_session_t sessionId =
(audio_session_t)AudioSystem::newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
sp<AudioEffect> bassboost = createEffect(SL_IID_BASSBOOST, sessionId);
ASSERT_EQ(OK, bassboost->initCheck());
ASSERT_EQ(NO_ERROR, bassboost->setEnabled(true));
if ((bassboost->descriptor().flags & EFFECT_FLAG_HW_ACC_MASK) != 0) {
GTEST_SKIP() << "effect processed output inaccessible, skipping test";
}
int32_t buf32[sizeof(effect_param_t) / sizeof(int32_t) + MAX_PARAMS];
effect_param_t* bbParam = (effect_param_t*)(&buf32);
bbParam->psize = sizeof(int32_t);
bbParam->vsize = sizeof(int32_t);
*(int32_t*)bbParam->data = BASSBOOST_PARAM_STRENGTH_SUPPORTED;
EXPECT_EQ(0, bassboost->getParameter(bbParam));
EXPECT_EQ(0, bbParam->status);
bool strengthSupported = *((int32_t*)bbParam->data + 1);
const int totalFrameCount = kSamplingFrequency * kPlayBackDurationSec;
// selecting bass frequency, speech tone (for relative gain)
std::vector<int> testFrequencies{100, 1200};
std::vector<int> binOffsets;
for (auto i = 0; i < testFrequencies.size(); i++) {
// pick frequency close to bin center frequency
auto [bin_index, bin_freq] = roundToFreqCenteredToFftBin(kBinWidth, testFrequencies[i]);
testFrequencies[i] = bin_freq;
binOffsets.push_back(bin_index);
}
// input for effect module
auto input = pffft::AlignedVector<float>(totalFrameCount);
generateMultiTone(testFrequencies, kSamplingFrequency, kPlayBackDurationSec, kDefAmplitude,
input.data(), totalFrameCount);
auto fftInput = pffft::AlignedVector<float>(kNPointFFT);
PFFFT_Setup* handle = pffft_new_setup(kNPointFFT, PFFFT_REAL);
pffft_transform_ordered(handle, input.data(), fftInput.data(), nullptr, PFFFT_FORWARD);
pffft_destroy_setup(handle);
float inputMag[testFrequencies.size()];
for (auto i = 0; i < testFrequencies.size(); i++) {
auto k = binOffsets[i];
inputMag[i] = sqrt((fftInput[k * 2] * fftInput[k * 2]) +
(fftInput[k * 2 + 1] * fftInput[k * 2 + 1]));
}
TemporaryFile tf("/data/local/tmp");
close(tf.release());
std::ofstream fout(tf.path, std::ios::out | std::ios::binary);
fout.write((char*)input.data(), input.size() * sizeof(input[0]));
fout.close();
float gainWithOutFilter[testFrequencies.size()];
memset(gainWithOutFilter, 0, sizeof(gainWithOutFilter));
ASSERT_NO_FATAL_FAILURE(computeFilterGainsAtTones(kCaptureDurationSec, kNPointFFT, binOffsets,
inputMag, gainWithOutFilter, tf.path,
AUDIO_SESSION_OUTPUT_MIX));
float diffA = gainWithOutFilter[0] - gainWithOutFilter[1];
float prevGain = -100.f;
for (auto strength = 150; strength < 1000; strength += strengthSupported ? 150 : 1000) {
// configure filter strength
if (strengthSupported) {
bbParam->psize = sizeof(int32_t);
bbParam->vsize = sizeof(int16_t);
*(int32_t*)bbParam->data = BASSBOOST_PARAM_STRENGTH;
*((int16_t*)((int32_t*)bbParam->data + 1)) = strength;
EXPECT_EQ(0, bassboost->setParameter(bbParam));
EXPECT_EQ(0, bbParam->status);
}
float gainWithFilter[testFrequencies.size()];
memset(gainWithFilter, 0, sizeof(gainWithFilter));
ASSERT_NO_FATAL_FAILURE(computeFilterGainsAtTones(kCaptureDurationSec, kNPointFFT,
binOffsets, inputMag, gainWithFilter,
tf.path, sessionId));
float diffB = gainWithFilter[0] - gainWithFilter[1];
EXPECT_GT(diffB, diffA) << "bassboost effect not seen";
EXPECT_GE(diffB, prevGain) << "increase in boost strength causing fall in gain";
prevGain = diffB;
}
}
int main(int argc, char** argv) {
android::ProcessState::self()->startThreadPool();
::testing::InitGoogleTest(&argc, argv);
::testing::UnitTest::GetInstance()->listeners().Append(new TestExecutionTracer());
return RUN_ALL_TESTS();
}