blob: 318889248186ad3e810077aeb335b66c1ac2e76d [file] [log] [blame]
/*
* Copyright (C) 2013-2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Camera3-Device"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0 // Per-frame verbose logging
#ifdef LOG_NNDEBUG
#define ALOGVV(...) ALOGV(__VA_ARGS__)
#else
#define ALOGVV(...) ((void)0)
#endif
// Convenience macro for transient errors
#define CLOGE(fmt, ...) ALOGE("Camera %s: %s: " fmt, mId.string(), __FUNCTION__, \
##__VA_ARGS__)
#define CLOGW(fmt, ...) ALOGW("Camera %s: %s: " fmt, mId.string(), __FUNCTION__, \
##__VA_ARGS__)
// Convenience macros for transitioning to the error state
#define SET_ERR(fmt, ...) setErrorState( \
"%s: " fmt, __FUNCTION__, \
##__VA_ARGS__)
#define SET_ERR_L(fmt, ...) setErrorStateLocked( \
"%s: " fmt, __FUNCTION__, \
##__VA_ARGS__)
#include <inttypes.h>
#include <utility>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <utils/Timers.h>
#include <cutils/properties.h>
#include <android/hardware/camera2/ICameraDeviceUser.h>
#include "utils/CameraTraces.h"
#include "mediautils/SchedulingPolicyService.h"
#include "device3/Camera3Device.h"
#include "device3/Camera3OutputStream.h"
#include "device3/Camera3InputStream.h"
#include "device3/Camera3DummyStream.h"
#include "device3/Camera3SharedOutputStream.h"
#include "CameraService.h"
#include "utils/CameraThreadState.h"
#include <tuple>
using namespace android::camera3;
using namespace android::hardware::camera;
using namespace android::hardware::camera::device::V3_2;
namespace android {
Camera3Device::Camera3Device(const String8 &id):
mId(id),
mOperatingMode(NO_MODE),
mIsConstrainedHighSpeedConfiguration(false),
mStatus(STATUS_UNINITIALIZED),
mStatusWaiters(0),
mUsePartialResult(false),
mNumPartialResults(1),
mTimestampOffset(0),
mNextResultFrameNumber(0),
mNextReprocessResultFrameNumber(0),
mNextZslStillResultFrameNumber(0),
mNextShutterFrameNumber(0),
mNextReprocessShutterFrameNumber(0),
mNextZslStillShutterFrameNumber(0),
mListener(NULL),
mVendorTagId(CAMERA_METADATA_INVALID_VENDOR_ID),
mLastTemplateId(-1),
mNeedFixupMonochromeTags(false)
{
ATRACE_CALL();
ALOGV("%s: Created device for camera %s", __FUNCTION__, mId.string());
}
Camera3Device::~Camera3Device()
{
ATRACE_CALL();
ALOGV("%s: Tearing down for camera id %s", __FUNCTION__, mId.string());
disconnectImpl();
}
const String8& Camera3Device::getId() const {
return mId;
}
status_t Camera3Device::initialize(sp<CameraProviderManager> manager, const String8& monitorTags) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
ALOGV("%s: Initializing HIDL device for camera %s", __FUNCTION__, mId.string());
if (mStatus != STATUS_UNINITIALIZED) {
CLOGE("Already initialized!");
return INVALID_OPERATION;
}
if (manager == nullptr) return INVALID_OPERATION;
sp<ICameraDeviceSession> session;
ATRACE_BEGIN("CameraHal::openSession");
status_t res = manager->openSession(mId.string(), this,
/*out*/ &session);
ATRACE_END();
if (res != OK) {
SET_ERR_L("Could not open camera session: %s (%d)", strerror(-res), res);
return res;
}
res = manager->getCameraCharacteristics(mId.string(), &mDeviceInfo);
if (res != OK) {
SET_ERR_L("Could not retrieve camera characteristics: %s (%d)", strerror(-res), res);
session->close();
return res;
}
std::vector<std::string> physicalCameraIds;
bool isLogical = manager->isLogicalCamera(mId.string(), &physicalCameraIds);
if (isLogical) {
for (auto& physicalId : physicalCameraIds) {
res = manager->getCameraCharacteristics(
physicalId, &mPhysicalDeviceInfoMap[physicalId]);
if (res != OK) {
SET_ERR_L("Could not retrieve camera %s characteristics: %s (%d)",
physicalId.c_str(), strerror(-res), res);
session->close();
return res;
}
if (DistortionMapper::isDistortionSupported(mPhysicalDeviceInfoMap[physicalId])) {
mDistortionMappers[physicalId].setupStaticInfo(mPhysicalDeviceInfoMap[physicalId]);
if (res != OK) {
SET_ERR_L("Unable to read camera %s's calibration fields for distortion "
"correction", physicalId.c_str());
session->close();
return res;
}
}
}
}
std::shared_ptr<RequestMetadataQueue> queue;
auto requestQueueRet = session->getCaptureRequestMetadataQueue(
[&queue](const auto& descriptor) {
queue = std::make_shared<RequestMetadataQueue>(descriptor);
if (!queue->isValid() || queue->availableToWrite() <= 0) {
ALOGE("HAL returns empty request metadata fmq, not use it");
queue = nullptr;
// don't use the queue onwards.
}
});
if (!requestQueueRet.isOk()) {
ALOGE("Transaction error when getting request metadata fmq: %s, not use it",
requestQueueRet.description().c_str());
return DEAD_OBJECT;
}
std::unique_ptr<ResultMetadataQueue>& resQueue = mResultMetadataQueue;
auto resultQueueRet = session->getCaptureResultMetadataQueue(
[&resQueue](const auto& descriptor) {
resQueue = std::make_unique<ResultMetadataQueue>(descriptor);
if (!resQueue->isValid() || resQueue->availableToWrite() <= 0) {
ALOGE("HAL returns empty result metadata fmq, not use it");
resQueue = nullptr;
// Don't use the resQueue onwards.
}
});
if (!resultQueueRet.isOk()) {
ALOGE("Transaction error when getting result metadata queue from camera session: %s",
resultQueueRet.description().c_str());
return DEAD_OBJECT;
}
IF_ALOGV() {
session->interfaceChain([](
::android::hardware::hidl_vec<::android::hardware::hidl_string> interfaceChain) {
ALOGV("Session interface chain:");
for (const auto& iface : interfaceChain) {
ALOGV(" %s", iface.c_str());
}
});
}
camera_metadata_entry bufMgrMode =
mDeviceInfo.find(ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION);
if (bufMgrMode.count > 0) {
mUseHalBufManager = (bufMgrMode.data.u8[0] ==
ANDROID_INFO_SUPPORTED_BUFFER_MANAGEMENT_VERSION_HIDL_DEVICE_3_5);
}
mInterface = new HalInterface(session, queue, mUseHalBufManager);
std::string providerType;
mVendorTagId = manager->getProviderTagIdLocked(mId.string());
mTagMonitor.initialize(mVendorTagId);
if (!monitorTags.isEmpty()) {
mTagMonitor.parseTagsToMonitor(String8(monitorTags));
}
// Metadata tags needs fixup for monochrome camera device version less
// than 3.5.
hardware::hidl_version maxVersion{0,0};
res = manager->getHighestSupportedVersion(mId.string(), &maxVersion);
if (res != OK) {
ALOGE("%s: Error in getting camera device version id: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
int deviceVersion = HARDWARE_DEVICE_API_VERSION(
maxVersion.get_major(), maxVersion.get_minor());
bool isMonochrome = false;
camera_metadata_entry_t entry = mDeviceInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
for (size_t i = 0; i < entry.count; i++) {
uint8_t capability = entry.data.u8[i];
if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MONOCHROME) {
isMonochrome = true;
}
}
mNeedFixupMonochromeTags = (isMonochrome && deviceVersion < CAMERA_DEVICE_API_VERSION_3_5);
return initializeCommonLocked();
}
status_t Camera3Device::initializeCommonLocked() {
/** Start up status tracker thread */
mStatusTracker = new StatusTracker(this);
status_t res = mStatusTracker->run(String8::format("C3Dev-%s-Status", mId.string()).string());
if (res != OK) {
SET_ERR_L("Unable to start status tracking thread: %s (%d)",
strerror(-res), res);
mInterface->close();
mStatusTracker.clear();
return res;
}
/** Register in-flight map to the status tracker */
mInFlightStatusId = mStatusTracker->addComponent();
if (mUseHalBufManager) {
res = mRequestBufferSM.initialize(mStatusTracker);
if (res != OK) {
SET_ERR_L("Unable to start request buffer state machine: %s (%d)",
strerror(-res), res);
mInterface->close();
mStatusTracker.clear();
return res;
}
}
/** Create buffer manager */
mBufferManager = new Camera3BufferManager();
Vector<int32_t> sessionParamKeys;
camera_metadata_entry_t sessionKeysEntry = mDeviceInfo.find(
ANDROID_REQUEST_AVAILABLE_SESSION_KEYS);
if (sessionKeysEntry.count > 0) {
sessionParamKeys.insertArrayAt(sessionKeysEntry.data.i32, 0, sessionKeysEntry.count);
}
/** Start up request queue thread */
mRequestThread = new RequestThread(
this, mStatusTracker, mInterface, sessionParamKeys, mUseHalBufManager);
res = mRequestThread->run(String8::format("C3Dev-%s-ReqQueue", mId.string()).string());
if (res != OK) {
SET_ERR_L("Unable to start request queue thread: %s (%d)",
strerror(-res), res);
mInterface->close();
mRequestThread.clear();
return res;
}
mPreparerThread = new PreparerThread();
internalUpdateStatusLocked(STATUS_UNCONFIGURED);
mNextStreamId = 0;
mDummyStreamId = NO_STREAM;
mNeedConfig = true;
mPauseStateNotify = false;
// Measure the clock domain offset between camera and video/hw_composer
camera_metadata_entry timestampSource =
mDeviceInfo.find(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE);
if (timestampSource.count > 0 && timestampSource.data.u8[0] ==
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME) {
mTimestampOffset = getMonoToBoottimeOffset();
}
// Will the HAL be sending in early partial result metadata?
camera_metadata_entry partialResultsCount =
mDeviceInfo.find(ANDROID_REQUEST_PARTIAL_RESULT_COUNT);
if (partialResultsCount.count > 0) {
mNumPartialResults = partialResultsCount.data.i32[0];
mUsePartialResult = (mNumPartialResults > 1);
}
camera_metadata_entry configs =
mDeviceInfo.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
for (uint32_t i = 0; i < configs.count; i += 4) {
if (configs.data.i32[i] == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
configs.data.i32[i + 3] ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_INPUT) {
mSupportedOpaqueInputSizes.add(Size(configs.data.i32[i + 1],
configs.data.i32[i + 2]));
}
}
if (DistortionMapper::isDistortionSupported(mDeviceInfo)) {
res = mDistortionMappers[mId.c_str()].setupStaticInfo(mDeviceInfo);
if (res != OK) {
SET_ERR_L("Unable to read necessary calibration fields for distortion correction");
return res;
}
}
return OK;
}
status_t Camera3Device::disconnect() {
return disconnectImpl();
}
status_t Camera3Device::disconnectImpl() {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGI("%s: E", __FUNCTION__);
status_t res = OK;
std::vector<wp<Camera3StreamInterface>> streams;
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
{
Mutex::Autolock l(mLock);
if (mStatus == STATUS_UNINITIALIZED) return res;
if (mStatus == STATUS_ACTIVE ||
(mStatus == STATUS_ERROR && mRequestThread != NULL)) {
res = mRequestThread->clearRepeatingRequests();
if (res != OK) {
SET_ERR_L("Can't stop streaming");
// Continue to close device even in case of error
} else {
res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration);
if (res != OK) {
SET_ERR_L("Timeout waiting for HAL to drain (% " PRIi64 " ns)",
maxExpectedDuration);
// Continue to close device even in case of error
}
}
}
if (mStatus == STATUS_ERROR) {
CLOGE("Shutting down in an error state");
}
if (mStatusTracker != NULL) {
mStatusTracker->requestExit();
}
if (mRequestThread != NULL) {
mRequestThread->requestExit();
}
streams.reserve(mOutputStreams.size() + (mInputStream != nullptr ? 1 : 0));
for (size_t i = 0; i < mOutputStreams.size(); i++) {
streams.push_back(mOutputStreams[i]);
}
if (mInputStream != nullptr) {
streams.push_back(mInputStream);
}
}
// Joining done without holding mLock, otherwise deadlocks may ensue
// as the threads try to access parent state
if (mRequestThread != NULL && mStatus != STATUS_ERROR) {
// HAL may be in a bad state, so waiting for request thread
// (which may be stuck in the HAL processCaptureRequest call)
// could be dangerous.
mRequestThread->join();
}
if (mStatusTracker != NULL) {
mStatusTracker->join();
}
HalInterface* interface;
{
Mutex::Autolock l(mLock);
mRequestThread.clear();
Mutex::Autolock stLock(mTrackerLock);
mStatusTracker.clear();
interface = mInterface.get();
}
// Call close without internal mutex held, as the HAL close may need to
// wait on assorted callbacks,etc, to complete before it can return.
interface->close();
flushInflightRequests();
{
Mutex::Autolock l(mLock);
mInterface->clear();
mOutputStreams.clear();
mInputStream.clear();
mDeletedStreams.clear();
mBufferManager.clear();
internalUpdateStatusLocked(STATUS_UNINITIALIZED);
}
for (auto& weakStream : streams) {
sp<Camera3StreamInterface> stream = weakStream.promote();
if (stream != nullptr) {
ALOGE("%s: Stream %d leaked! strong reference (%d)!",
__FUNCTION__, stream->getId(), stream->getStrongCount() - 1);
}
}
ALOGI("%s: X", __FUNCTION__);
return res;
}
// For dumping/debugging only -
// try to acquire a lock a few times, eventually give up to proceed with
// debug/dump operations
bool Camera3Device::tryLockSpinRightRound(Mutex& lock) {
bool gotLock = false;
for (size_t i = 0; i < kDumpLockAttempts; ++i) {
if (lock.tryLock() == NO_ERROR) {
gotLock = true;
break;
} else {
usleep(kDumpSleepDuration);
}
}
return gotLock;
}
Camera3Device::Size Camera3Device::getMaxJpegResolution() const {
int32_t maxJpegWidth = 0, maxJpegHeight = 0;
const int STREAM_CONFIGURATION_SIZE = 4;
const int STREAM_FORMAT_OFFSET = 0;
const int STREAM_WIDTH_OFFSET = 1;
const int STREAM_HEIGHT_OFFSET = 2;
const int STREAM_IS_INPUT_OFFSET = 3;
camera_metadata_ro_entry_t availableStreamConfigs =
mDeviceInfo.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
if (availableStreamConfigs.count == 0 ||
availableStreamConfigs.count % STREAM_CONFIGURATION_SIZE != 0) {
return Size(0, 0);
}
// Get max jpeg size (area-wise).
for (size_t i=0; i < availableStreamConfigs.count; i+= STREAM_CONFIGURATION_SIZE) {
int32_t format = availableStreamConfigs.data.i32[i + STREAM_FORMAT_OFFSET];
int32_t width = availableStreamConfigs.data.i32[i + STREAM_WIDTH_OFFSET];
int32_t height = availableStreamConfigs.data.i32[i + STREAM_HEIGHT_OFFSET];
int32_t isInput = availableStreamConfigs.data.i32[i + STREAM_IS_INPUT_OFFSET];
if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT
&& format == HAL_PIXEL_FORMAT_BLOB &&
(width * height > maxJpegWidth * maxJpegHeight)) {
maxJpegWidth = width;
maxJpegHeight = height;
}
}
return Size(maxJpegWidth, maxJpegHeight);
}
nsecs_t Camera3Device::getMonoToBoottimeOffset() {
// try three times to get the clock offset, choose the one
// with the minimum gap in measurements.
const int tries = 3;
nsecs_t bestGap, measured;
for (int i = 0; i < tries; ++i) {
const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
const nsecs_t tbase = systemTime(SYSTEM_TIME_BOOTTIME);
const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
const nsecs_t gap = tmono2 - tmono;
if (i == 0 || gap < bestGap) {
bestGap = gap;
measured = tbase - ((tmono + tmono2) >> 1);
}
}
return measured;
}
hardware::graphics::common::V1_0::PixelFormat Camera3Device::mapToPixelFormat(
int frameworkFormat) {
return (hardware::graphics::common::V1_0::PixelFormat) frameworkFormat;
}
DataspaceFlags Camera3Device::mapToHidlDataspace(
android_dataspace dataSpace) {
return dataSpace;
}
BufferUsageFlags Camera3Device::mapToConsumerUsage(
uint64_t usage) {
return usage;
}
StreamRotation Camera3Device::mapToStreamRotation(camera3_stream_rotation_t rotation) {
switch (rotation) {
case CAMERA3_STREAM_ROTATION_0:
return StreamRotation::ROTATION_0;
case CAMERA3_STREAM_ROTATION_90:
return StreamRotation::ROTATION_90;
case CAMERA3_STREAM_ROTATION_180:
return StreamRotation::ROTATION_180;
case CAMERA3_STREAM_ROTATION_270:
return StreamRotation::ROTATION_270;
}
ALOGE("%s: Unknown stream rotation %d", __FUNCTION__, rotation);
return StreamRotation::ROTATION_0;
}
status_t Camera3Device::mapToStreamConfigurationMode(
camera3_stream_configuration_mode_t operationMode, StreamConfigurationMode *mode) {
if (mode == nullptr) return BAD_VALUE;
if (operationMode < CAMERA3_VENDOR_STREAM_CONFIGURATION_MODE_START) {
switch(operationMode) {
case CAMERA3_STREAM_CONFIGURATION_NORMAL_MODE:
*mode = StreamConfigurationMode::NORMAL_MODE;
break;
case CAMERA3_STREAM_CONFIGURATION_CONSTRAINED_HIGH_SPEED_MODE:
*mode = StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE;
break;
default:
ALOGE("%s: Unknown stream configuration mode %d", __FUNCTION__, operationMode);
return BAD_VALUE;
}
} else {
*mode = static_cast<StreamConfigurationMode>(operationMode);
}
return OK;
}
camera3_buffer_status_t Camera3Device::mapHidlBufferStatus(BufferStatus status) {
switch (status) {
case BufferStatus::OK: return CAMERA3_BUFFER_STATUS_OK;
case BufferStatus::ERROR: return CAMERA3_BUFFER_STATUS_ERROR;
}
return CAMERA3_BUFFER_STATUS_ERROR;
}
int Camera3Device::mapToFrameworkFormat(
hardware::graphics::common::V1_0::PixelFormat pixelFormat) {
return static_cast<uint32_t>(pixelFormat);
}
android_dataspace Camera3Device::mapToFrameworkDataspace(
DataspaceFlags dataSpace) {
return static_cast<android_dataspace>(dataSpace);
}
uint64_t Camera3Device::mapConsumerToFrameworkUsage(
BufferUsageFlags usage) {
return usage;
}
uint64_t Camera3Device::mapProducerToFrameworkUsage(
BufferUsageFlags usage) {
return usage;
}
ssize_t Camera3Device::getJpegBufferSize(uint32_t width, uint32_t height) const {
// Get max jpeg size (area-wise).
Size maxJpegResolution = getMaxJpegResolution();
if (maxJpegResolution.width == 0) {
ALOGE("%s: Camera %s: Can't find valid available jpeg sizes in static metadata!",
__FUNCTION__, mId.string());
return BAD_VALUE;
}
// Get max jpeg buffer size
ssize_t maxJpegBufferSize = 0;
camera_metadata_ro_entry jpegBufMaxSize = mDeviceInfo.find(ANDROID_JPEG_MAX_SIZE);
if (jpegBufMaxSize.count == 0) {
ALOGE("%s: Camera %s: Can't find maximum JPEG size in static metadata!", __FUNCTION__,
mId.string());
return BAD_VALUE;
}
maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
assert(kMinJpegBufferSize < maxJpegBufferSize);
// Calculate final jpeg buffer size for the given resolution.
float scaleFactor = ((float) (width * height)) /
(maxJpegResolution.width * maxJpegResolution.height);
ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) +
kMinJpegBufferSize;
if (jpegBufferSize > maxJpegBufferSize) {
jpegBufferSize = maxJpegBufferSize;
}
return jpegBufferSize;
}
ssize_t Camera3Device::getPointCloudBufferSize() const {
const int FLOATS_PER_POINT=4;
camera_metadata_ro_entry maxPointCount = mDeviceInfo.find(ANDROID_DEPTH_MAX_DEPTH_SAMPLES);
if (maxPointCount.count == 0) {
ALOGE("%s: Camera %s: Can't find maximum depth point cloud size in static metadata!",
__FUNCTION__, mId.string());
return BAD_VALUE;
}
ssize_t maxBytesForPointCloud = sizeof(android_depth_points) +
maxPointCount.data.i32[0] * sizeof(float) * FLOATS_PER_POINT;
return maxBytesForPointCloud;
}
ssize_t Camera3Device::getRawOpaqueBufferSize(int32_t width, int32_t height) const {
const int PER_CONFIGURATION_SIZE = 3;
const int WIDTH_OFFSET = 0;
const int HEIGHT_OFFSET = 1;
const int SIZE_OFFSET = 2;
camera_metadata_ro_entry rawOpaqueSizes =
mDeviceInfo.find(ANDROID_SENSOR_OPAQUE_RAW_SIZE);
size_t count = rawOpaqueSizes.count;
if (count == 0 || (count % PER_CONFIGURATION_SIZE)) {
ALOGE("%s: Camera %s: bad opaque RAW size static metadata length(%zu)!",
__FUNCTION__, mId.string(), count);
return BAD_VALUE;
}
for (size_t i = 0; i < count; i += PER_CONFIGURATION_SIZE) {
if (width == rawOpaqueSizes.data.i32[i + WIDTH_OFFSET] &&
height == rawOpaqueSizes.data.i32[i + HEIGHT_OFFSET]) {
return rawOpaqueSizes.data.i32[i + SIZE_OFFSET];
}
}
ALOGE("%s: Camera %s: cannot find size for %dx%d opaque RAW image!",
__FUNCTION__, mId.string(), width, height);
return BAD_VALUE;
}
status_t Camera3Device::dump(int fd, const Vector<String16> &args) {
ATRACE_CALL();
(void)args;
// Try to lock, but continue in case of failure (to avoid blocking in
// deadlocks)
bool gotInterfaceLock = tryLockSpinRightRound(mInterfaceLock);
bool gotLock = tryLockSpinRightRound(mLock);
ALOGW_IF(!gotInterfaceLock,
"Camera %s: %s: Unable to lock interface lock, proceeding anyway",
mId.string(), __FUNCTION__);
ALOGW_IF(!gotLock,
"Camera %s: %s: Unable to lock main lock, proceeding anyway",
mId.string(), __FUNCTION__);
bool dumpTemplates = false;
String16 templatesOption("-t");
int n = args.size();
for (int i = 0; i < n; i++) {
if (args[i] == templatesOption) {
dumpTemplates = true;
}
if (args[i] == TagMonitor::kMonitorOption) {
if (i + 1 < n) {
String8 monitorTags = String8(args[i + 1]);
if (monitorTags == "off") {
mTagMonitor.disableMonitoring();
} else {
mTagMonitor.parseTagsToMonitor(monitorTags);
}
} else {
mTagMonitor.disableMonitoring();
}
}
}
String8 lines;
const char *status =
mStatus == STATUS_ERROR ? "ERROR" :
mStatus == STATUS_UNINITIALIZED ? "UNINITIALIZED" :
mStatus == STATUS_UNCONFIGURED ? "UNCONFIGURED" :
mStatus == STATUS_CONFIGURED ? "CONFIGURED" :
mStatus == STATUS_ACTIVE ? "ACTIVE" :
"Unknown";
lines.appendFormat(" Device status: %s\n", status);
if (mStatus == STATUS_ERROR) {
lines.appendFormat(" Error cause: %s\n", mErrorCause.string());
}
lines.appendFormat(" Stream configuration:\n");
const char *mode =
mOperatingMode == static_cast<int>(StreamConfigurationMode::NORMAL_MODE) ? "NORMAL" :
mOperatingMode == static_cast<int>(
StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE) ? "CONSTRAINED_HIGH_SPEED" :
"CUSTOM";
lines.appendFormat(" Operation mode: %s (%d) \n", mode, mOperatingMode);
if (mInputStream != NULL) {
write(fd, lines.string(), lines.size());
mInputStream->dump(fd, args);
} else {
lines.appendFormat(" No input stream.\n");
write(fd, lines.string(), lines.size());
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
mOutputStreams[i]->dump(fd,args);
}
if (mBufferManager != NULL) {
lines = String8(" Camera3 Buffer Manager:\n");
write(fd, lines.string(), lines.size());
mBufferManager->dump(fd, args);
}
lines = String8(" In-flight requests:\n");
if (mInFlightMap.size() == 0) {
lines.append(" None\n");
} else {
for (size_t i = 0; i < mInFlightMap.size(); i++) {
InFlightRequest r = mInFlightMap.valueAt(i);
lines.appendFormat(" Frame %d | Timestamp: %" PRId64 ", metadata"
" arrived: %s, buffers left: %d\n", mInFlightMap.keyAt(i),
r.shutterTimestamp, r.haveResultMetadata ? "true" : "false",
r.numBuffersLeft);
}
}
write(fd, lines.string(), lines.size());
if (mRequestThread != NULL) {
mRequestThread->dumpCaptureRequestLatency(fd,
" ProcessCaptureRequest latency histogram:");
}
{
lines = String8(" Last request sent:\n");
write(fd, lines.string(), lines.size());
CameraMetadata lastRequest = getLatestRequestLocked();
lastRequest.dump(fd, /*verbosity*/2, /*indentation*/6);
}
if (dumpTemplates) {
const char *templateNames[CAMERA3_TEMPLATE_COUNT] = {
"TEMPLATE_PREVIEW",
"TEMPLATE_STILL_CAPTURE",
"TEMPLATE_VIDEO_RECORD",
"TEMPLATE_VIDEO_SNAPSHOT",
"TEMPLATE_ZERO_SHUTTER_LAG",
"TEMPLATE_MANUAL",
};
for (int i = 1; i < CAMERA3_TEMPLATE_COUNT; i++) {
camera_metadata_t *templateRequest = nullptr;
mInterface->constructDefaultRequestSettings(
(camera3_request_template_t) i, &templateRequest);
lines = String8::format(" HAL Request %s:\n", templateNames[i-1]);
if (templateRequest == nullptr) {
lines.append(" Not supported\n");
write(fd, lines.string(), lines.size());
} else {
write(fd, lines.string(), lines.size());
dump_indented_camera_metadata(templateRequest,
fd, /*verbosity*/2, /*indentation*/8);
}
free_camera_metadata(templateRequest);
}
}
mTagMonitor.dumpMonitoredMetadata(fd);
if (mInterface->valid()) {
lines = String8(" HAL device dump:\n");
write(fd, lines.string(), lines.size());
mInterface->dump(fd);
}
if (gotLock) mLock.unlock();
if (gotInterfaceLock) mInterfaceLock.unlock();
return OK;
}
const CameraMetadata& Camera3Device::info(const String8& physicalId) const {
ALOGVV("%s: E", __FUNCTION__);
if (CC_UNLIKELY(mStatus == STATUS_UNINITIALIZED ||
mStatus == STATUS_ERROR)) {
ALOGW("%s: Access to static info %s!", __FUNCTION__,
mStatus == STATUS_ERROR ?
"when in error state" : "before init");
}
if (physicalId.isEmpty()) {
return mDeviceInfo;
} else {
std::string id(physicalId.c_str());
if (mPhysicalDeviceInfoMap.find(id) != mPhysicalDeviceInfoMap.end()) {
return mPhysicalDeviceInfoMap.at(id);
} else {
ALOGE("%s: Invalid physical camera id %s", __FUNCTION__, physicalId.c_str());
return mDeviceInfo;
}
}
}
const CameraMetadata& Camera3Device::info() const {
String8 emptyId;
return info(emptyId);
}
status_t Camera3Device::checkStatusOkToCaptureLocked() {
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
return OK;
}
status_t Camera3Device::convertMetadataListToRequestListLocked(
const List<const PhysicalCameraSettingsList> &metadataList,
const std::list<const SurfaceMap> &surfaceMaps,
bool repeating,
RequestList *requestList) {
if (requestList == NULL) {
CLOGE("requestList cannot be NULL.");
return BAD_VALUE;
}
int32_t burstId = 0;
List<const PhysicalCameraSettingsList>::const_iterator metadataIt = metadataList.begin();
std::list<const SurfaceMap>::const_iterator surfaceMapIt = surfaceMaps.begin();
for (; metadataIt != metadataList.end() && surfaceMapIt != surfaceMaps.end();
++metadataIt, ++surfaceMapIt) {
sp<CaptureRequest> newRequest = setUpRequestLocked(*metadataIt, *surfaceMapIt);
if (newRequest == 0) {
CLOGE("Can't create capture request");
return BAD_VALUE;
}
newRequest->mRepeating = repeating;
// Setup burst Id and request Id
newRequest->mResultExtras.burstId = burstId++;
if (metadataIt->begin()->metadata.exists(ANDROID_REQUEST_ID)) {
if (metadataIt->begin()->metadata.find(ANDROID_REQUEST_ID).count == 0) {
CLOGE("RequestID entry exists; but must not be empty in metadata");
return BAD_VALUE;
}
newRequest->mResultExtras.requestId = metadataIt->begin()->metadata.find(
ANDROID_REQUEST_ID).data.i32[0];
} else {
CLOGE("RequestID does not exist in metadata");
return BAD_VALUE;
}
requestList->push_back(newRequest);
ALOGV("%s: requestId = %" PRId32, __FUNCTION__, newRequest->mResultExtras.requestId);
}
if (metadataIt != metadataList.end() || surfaceMapIt != surfaceMaps.end()) {
ALOGE("%s: metadataList and surfaceMaps are not the same size!", __FUNCTION__);
return BAD_VALUE;
}
// Setup batch size if this is a high speed video recording request.
if (mIsConstrainedHighSpeedConfiguration && requestList->size() > 0) {
auto firstRequest = requestList->begin();
for (auto& outputStream : (*firstRequest)->mOutputStreams) {
if (outputStream->isVideoStream()) {
(*firstRequest)->mBatchSize = requestList->size();
break;
}
}
}
return OK;
}
status_t Camera3Device::capture(CameraMetadata &request, int64_t* lastFrameNumber) {
ATRACE_CALL();
List<const PhysicalCameraSettingsList> requestsList;
std::list<const SurfaceMap> surfaceMaps;
convertToRequestList(requestsList, surfaceMaps, request);
return captureList(requestsList, surfaceMaps, lastFrameNumber);
}
void Camera3Device::convertToRequestList(List<const PhysicalCameraSettingsList>& requestsList,
std::list<const SurfaceMap>& surfaceMaps,
const CameraMetadata& request) {
PhysicalCameraSettingsList requestList;
requestList.push_back({std::string(getId().string()), request});
requestsList.push_back(requestList);
SurfaceMap surfaceMap;
camera_metadata_ro_entry streams = request.find(ANDROID_REQUEST_OUTPUT_STREAMS);
// With no surface list passed in, stream and surface will have 1-to-1
// mapping. So the surface index is 0 for each stream in the surfaceMap.
for (size_t i = 0; i < streams.count; i++) {
surfaceMap[streams.data.i32[i]].push_back(0);
}
surfaceMaps.push_back(surfaceMap);
}
status_t Camera3Device::submitRequestsHelper(
const List<const PhysicalCameraSettingsList> &requests,
const std::list<const SurfaceMap> &surfaceMaps,
bool repeating,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
status_t res = checkStatusOkToCaptureLocked();
if (res != OK) {
// error logged by previous call
return res;
}
RequestList requestList;
res = convertMetadataListToRequestListLocked(requests, surfaceMaps,
repeating, /*out*/&requestList);
if (res != OK) {
// error logged by previous call
return res;
}
if (repeating) {
res = mRequestThread->setRepeatingRequests(requestList, lastFrameNumber);
} else {
res = mRequestThread->queueRequestList(requestList, lastFrameNumber);
}
if (res == OK) {
waitUntilStateThenRelock(/*active*/true, kActiveTimeout);
if (res != OK) {
SET_ERR_L("Can't transition to active in %f seconds!",
kActiveTimeout/1e9);
}
ALOGV("Camera %s: Capture request %" PRId32 " enqueued", mId.string(),
(*(requestList.begin()))->mResultExtras.requestId);
} else {
CLOGE("Cannot queue request. Impossible.");
return BAD_VALUE;
}
return res;
}
hardware::Return<void> Camera3Device::requestStreamBuffers(
const hardware::hidl_vec<hardware::camera::device::V3_5::BufferRequest>& bufReqs,
requestStreamBuffers_cb _hidl_cb) {
using hardware::camera::device::V3_5::BufferRequestStatus;
using hardware::camera::device::V3_5::StreamBufferRet;
using hardware::camera::device::V3_5::StreamBufferRequestError;
std::lock_guard<std::mutex> lock(mRequestBufferInterfaceLock);
hardware::hidl_vec<StreamBufferRet> bufRets;
if (!mUseHalBufManager) {
ALOGE("%s: Camera %s does not support HAL buffer management",
__FUNCTION__, mId.string());
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return hardware::Void();
}
SortedVector<int32_t> streamIds;
ssize_t sz = streamIds.setCapacity(bufReqs.size());
if (sz < 0 || static_cast<size_t>(sz) != bufReqs.size()) {
ALOGE("%s: failed to allocate memory for %zu buffer requests",
__FUNCTION__, bufReqs.size());
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return hardware::Void();
}
if (bufReqs.size() > mOutputStreams.size()) {
ALOGE("%s: too many buffer requests (%zu > # of output streams %zu)",
__FUNCTION__, bufReqs.size(), mOutputStreams.size());
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return hardware::Void();
}
// Check for repeated streamId
for (const auto& bufReq : bufReqs) {
if (streamIds.indexOf(bufReq.streamId) != NAME_NOT_FOUND) {
ALOGE("%s: Stream %d appear multiple times in buffer requests",
__FUNCTION__, bufReq.streamId);
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, bufRets);
return hardware::Void();
}
streamIds.add(bufReq.streamId);
}
if (!mRequestBufferSM.startRequestBuffer()) {
ALOGE("%s: request buffer disallowed while camera service is configuring",
__FUNCTION__);
_hidl_cb(BufferRequestStatus::FAILED_CONFIGURING, bufRets);
return hardware::Void();
}
bufRets.resize(bufReqs.size());
bool allReqsSucceeds = true;
bool oneReqSucceeds = false;
for (size_t i = 0; i < bufReqs.size(); i++) {
const auto& bufReq = bufReqs[i];
auto& bufRet = bufRets[i];
int32_t streamId = bufReq.streamId;
sp<Camera3OutputStreamInterface> outputStream = mOutputStreams.get(streamId);
if (outputStream == nullptr) {
ALOGE("%s: Output stream id %d not found!", __FUNCTION__, streamId);
hardware::hidl_vec<StreamBufferRet> emptyBufRets;
_hidl_cb(BufferRequestStatus::FAILED_ILLEGAL_ARGUMENTS, emptyBufRets);
mRequestBufferSM.endRequestBuffer();
return hardware::Void();
}
if (outputStream->isAbandoned()) {
bufRet.val.error(StreamBufferRequestError::STREAM_DISCONNECTED);
allReqsSucceeds = false;
continue;
}
bufRet.streamId = streamId;
size_t handOutBufferCount = outputStream->getOutstandingBuffersCount();
uint32_t numBuffersRequested = bufReq.numBuffersRequested;
size_t totalHandout = handOutBufferCount + numBuffersRequested;
uint32_t maxBuffers = outputStream->asHalStream()->max_buffers;
if (totalHandout > maxBuffers) {
// Not able to allocate enough buffer. Exit early for this stream
ALOGE("%s: request too much buffers for stream %d: at HAL: %zu + requesting: %d"
" > max: %d", __FUNCTION__, streamId, handOutBufferCount,
numBuffersRequested, maxBuffers);
bufRet.val.error(StreamBufferRequestError::MAX_BUFFER_EXCEEDED);
allReqsSucceeds = false;
continue;
}
hardware::hidl_vec<StreamBuffer> tmpRetBuffers(numBuffersRequested);
bool currentReqSucceeds = true;
std::vector<camera3_stream_buffer_t> streamBuffers(numBuffersRequested);
size_t numAllocatedBuffers = 0;
size_t numPushedInflightBuffers = 0;
for (size_t b = 0; b < numBuffersRequested; b++) {
camera3_stream_buffer_t& sb = streamBuffers[b];
// Since this method can run concurrently with request thread
// We need to update the wait duration everytime we call getbuffer
nsecs_t waitDuration = kBaseGetBufferWait + getExpectedInFlightDuration();
status_t res = outputStream->getBuffer(&sb, waitDuration);
if (res != OK) {
if (res == NO_INIT || res == DEAD_OBJECT) {
ALOGV("%s: Can't get output buffer for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
bufRet.val.error(StreamBufferRequestError::STREAM_DISCONNECTED);
} else {
ALOGE("%s: Can't get output buffer for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
if (res == TIMED_OUT || res == NO_MEMORY) {
bufRet.val.error(StreamBufferRequestError::NO_BUFFER_AVAILABLE);
} else {
bufRet.val.error(StreamBufferRequestError::UNKNOWN_ERROR);
}
}
currentReqSucceeds = false;
break;
}
numAllocatedBuffers++;
buffer_handle_t *buffer = sb.buffer;
auto pair = mInterface->getBufferId(*buffer, streamId);
bool isNewBuffer = pair.first;
uint64_t bufferId = pair.second;
StreamBuffer& hBuf = tmpRetBuffers[b];
hBuf.streamId = streamId;
hBuf.bufferId = bufferId;
hBuf.buffer = (isNewBuffer) ? *buffer : nullptr;
hBuf.status = BufferStatus::OK;
hBuf.releaseFence = nullptr;
native_handle_t *acquireFence = nullptr;
if (sb.acquire_fence != -1) {
acquireFence = native_handle_create(1,0);
acquireFence->data[0] = sb.acquire_fence;
}
hBuf.acquireFence.setTo(acquireFence, /*shouldOwn*/true);
hBuf.releaseFence = nullptr;
res = mInterface->pushInflightRequestBuffer(bufferId, buffer, streamId);
if (res != OK) {
ALOGE("%s: Can't get register request buffers for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
bufRet.val.error(StreamBufferRequestError::UNKNOWN_ERROR);
currentReqSucceeds = false;
break;
}
numPushedInflightBuffers++;
}
if (currentReqSucceeds) {
bufRet.val.buffers(std::move(tmpRetBuffers));
oneReqSucceeds = true;
} else {
allReqsSucceeds = false;
for (size_t b = 0; b < numPushedInflightBuffers; b++) {
StreamBuffer& hBuf = tmpRetBuffers[b];
buffer_handle_t* buffer;
status_t res = mInterface->popInflightRequestBuffer(hBuf.bufferId, &buffer);
if (res != OK) {
SET_ERR("%s: popInflightRequestBuffer failed for stream %d: %s (%d)",
__FUNCTION__, streamId, strerror(-res), res);
}
}
for (size_t b = 0; b < numAllocatedBuffers; b++) {
camera3_stream_buffer_t& sb = streamBuffers[b];
sb.acquire_fence = -1;
sb.status = CAMERA3_BUFFER_STATUS_ERROR;
}
returnOutputBuffers(streamBuffers.data(), numAllocatedBuffers, 0);
}
}
_hidl_cb(allReqsSucceeds ? BufferRequestStatus::OK :
oneReqSucceeds ? BufferRequestStatus::FAILED_PARTIAL :
BufferRequestStatus::FAILED_UNKNOWN,
bufRets);
mRequestBufferSM.endRequestBuffer();
return hardware::Void();
}
hardware::Return<void> Camera3Device::returnStreamBuffers(
const hardware::hidl_vec<hardware::camera::device::V3_2::StreamBuffer>& buffers) {
if (!mUseHalBufManager) {
ALOGE("%s: Camera %s does not support HAL buffer managerment",
__FUNCTION__, mId.string());
return hardware::Void();
}
for (const auto& buf : buffers) {
if (buf.bufferId == HalInterface::BUFFER_ID_NO_BUFFER) {
ALOGE("%s: cannot return a buffer without bufferId", __FUNCTION__);
continue;
}
buffer_handle_t* buffer;
status_t res = mInterface->popInflightRequestBuffer(buf.bufferId, &buffer);
if (res != OK) {
ALOGE("%s: cannot find in-flight buffer %" PRIu64 " for stream %d",
__FUNCTION__, buf.bufferId, buf.streamId);
continue;
}
camera3_stream_buffer_t streamBuffer;
streamBuffer.buffer = buffer;
streamBuffer.status = CAMERA3_BUFFER_STATUS_ERROR;
streamBuffer.acquire_fence = -1;
streamBuffer.release_fence = -1;
if (buf.releaseFence == nullptr) {
streamBuffer.release_fence = -1;
} else if (buf.releaseFence->numFds == 1) {
streamBuffer.release_fence = dup(buf.releaseFence->data[0]);
} else {
ALOGE("%s: Invalid release fence, fd count is %d, not 1",
__FUNCTION__, buf.releaseFence->numFds);
continue;
}
sp<Camera3StreamInterface> stream = mOutputStreams.get(buf.streamId);
if (stream == nullptr) {
ALOGE("%s: Output stream id %d not found!", __FUNCTION__, buf.streamId);
continue;
}
streamBuffer.stream = stream->asHalStream();
returnOutputBuffers(&streamBuffer, /*size*/1, /*timestamp*/ 0);
}
return hardware::Void();
}
hardware::Return<void> Camera3Device::processCaptureResult_3_4(
const hardware::hidl_vec<
hardware::camera::device::V3_4::CaptureResult>& results) {
// Ideally we should grab mLock, but that can lead to deadlock, and
// it's not super important to get up to date value of mStatus for this
// warning print, hence skipping the lock here
if (mStatus == STATUS_ERROR) {
// Per API contract, HAL should act as closed after device error
// But mStatus can be set to error by framework as well, so just log
// a warning here.
ALOGW("%s: received capture result in error state.", __FUNCTION__);
}
if (mProcessCaptureResultLock.tryLock() != OK) {
// This should never happen; it indicates a wrong client implementation
// that doesn't follow the contract. But, we can be tolerant here.
ALOGE("%s: callback overlapped! waiting 1s...",
__FUNCTION__);
if (mProcessCaptureResultLock.timedLock(1000000000 /* 1s */) != OK) {
ALOGE("%s: cannot acquire lock in 1s, dropping results",
__FUNCTION__);
// really don't know what to do, so bail out.
return hardware::Void();
}
}
for (const auto& result : results) {
processOneCaptureResultLocked(result.v3_2, result.physicalCameraMetadata);
}
mProcessCaptureResultLock.unlock();
return hardware::Void();
}
// Only one processCaptureResult should be called at a time, so
// the locks won't block. The locks are present here simply to enforce this.
hardware::Return<void> Camera3Device::processCaptureResult(
const hardware::hidl_vec<
hardware::camera::device::V3_2::CaptureResult>& results) {
hardware::hidl_vec<hardware::camera::device::V3_4::PhysicalCameraMetadata> noPhysMetadata;
// Ideally we should grab mLock, but that can lead to deadlock, and
// it's not super important to get up to date value of mStatus for this
// warning print, hence skipping the lock here
if (mStatus == STATUS_ERROR) {
// Per API contract, HAL should act as closed after device error
// But mStatus can be set to error by framework as well, so just log
// a warning here.
ALOGW("%s: received capture result in error state.", __FUNCTION__);
}
if (mProcessCaptureResultLock.tryLock() != OK) {
// This should never happen; it indicates a wrong client implementation
// that doesn't follow the contract. But, we can be tolerant here.
ALOGE("%s: callback overlapped! waiting 1s...",
__FUNCTION__);
if (mProcessCaptureResultLock.timedLock(1000000000 /* 1s */) != OK) {
ALOGE("%s: cannot acquire lock in 1s, dropping results",
__FUNCTION__);
// really don't know what to do, so bail out.
return hardware::Void();
}
}
for (const auto& result : results) {
processOneCaptureResultLocked(result, noPhysMetadata);
}
mProcessCaptureResultLock.unlock();
return hardware::Void();
}
status_t Camera3Device::readOneCameraMetadataLocked(
uint64_t fmqResultSize, hardware::camera::device::V3_2::CameraMetadata& resultMetadata,
const hardware::camera::device::V3_2::CameraMetadata& result) {
if (fmqResultSize > 0) {
resultMetadata.resize(fmqResultSize);
if (mResultMetadataQueue == nullptr) {
return NO_MEMORY; // logged in initialize()
}
if (!mResultMetadataQueue->read(resultMetadata.data(), fmqResultSize)) {
ALOGE("%s: Cannot read camera metadata from fmq, size = %" PRIu64,
__FUNCTION__, fmqResultSize);
return INVALID_OPERATION;
}
} else {
resultMetadata.setToExternal(const_cast<uint8_t *>(result.data()),
result.size());
}
if (resultMetadata.size() != 0) {
status_t res;
const camera_metadata_t* metadata =
reinterpret_cast<const camera_metadata_t*>(resultMetadata.data());
size_t expected_metadata_size = resultMetadata.size();
if ((res = validate_camera_metadata_structure(metadata, &expected_metadata_size)) != OK) {
ALOGE("%s: Invalid camera metadata received by camera service from HAL: %s (%d)",
__FUNCTION__, strerror(-res), res);
return INVALID_OPERATION;
}
}
return OK;
}
void Camera3Device::processOneCaptureResultLocked(
const hardware::camera::device::V3_2::CaptureResult& result,
const hardware::hidl_vec<
hardware::camera::device::V3_4::PhysicalCameraMetadata> physicalCameraMetadata) {
camera3_capture_result r;
status_t res;
r.frame_number = result.frameNumber;
// Read and validate the result metadata.
hardware::camera::device::V3_2::CameraMetadata resultMetadata;
res = readOneCameraMetadataLocked(result.fmqResultSize, resultMetadata, result.result);
if (res != OK) {
ALOGE("%s: Frame %d: Failed to read capture result metadata",
__FUNCTION__, result.frameNumber);
return;
}
r.result = reinterpret_cast<const camera_metadata_t*>(resultMetadata.data());
// Read and validate physical camera metadata
size_t physResultCount = physicalCameraMetadata.size();
std::vector<const char*> physCamIds(physResultCount);
std::vector<const camera_metadata_t *> phyCamMetadatas(physResultCount);
std::vector<hardware::camera::device::V3_2::CameraMetadata> physResultMetadata;
physResultMetadata.resize(physResultCount);
for (size_t i = 0; i < physicalCameraMetadata.size(); i++) {
res = readOneCameraMetadataLocked(physicalCameraMetadata[i].fmqMetadataSize,
physResultMetadata[i], physicalCameraMetadata[i].metadata);
if (res != OK) {
ALOGE("%s: Frame %d: Failed to read capture result metadata for camera %s",
__FUNCTION__, result.frameNumber,
physicalCameraMetadata[i].physicalCameraId.c_str());
return;
}
physCamIds[i] = physicalCameraMetadata[i].physicalCameraId.c_str();
phyCamMetadatas[i] = reinterpret_cast<const camera_metadata_t*>(
physResultMetadata[i].data());
}
r.num_physcam_metadata = physResultCount;
r.physcam_ids = physCamIds.data();
r.physcam_metadata = phyCamMetadatas.data();
std::vector<camera3_stream_buffer_t> outputBuffers(result.outputBuffers.size());
std::vector<buffer_handle_t> outputBufferHandles(result.outputBuffers.size());
for (size_t i = 0; i < result.outputBuffers.size(); i++) {
auto& bDst = outputBuffers[i];
const StreamBuffer &bSrc = result.outputBuffers[i];
sp<Camera3StreamInterface> stream = mOutputStreams.get(bSrc.streamId);
if (stream == nullptr) {
ALOGE("%s: Frame %d: Buffer %zu: Invalid output stream id %d",
__FUNCTION__, result.frameNumber, i, bSrc.streamId);
return;
}
bDst.stream = stream->asHalStream();
bool noBufferReturned = false;
buffer_handle_t *buffer = nullptr;
if (mUseHalBufManager) {
// This is suspicious most of the time but can be correct during flush where HAL
// has to return capture result before a buffer is requested
if (bSrc.bufferId == HalInterface::BUFFER_ID_NO_BUFFER) {
if (bSrc.status == BufferStatus::OK) {
ALOGE("%s: Frame %d: Buffer %zu: No bufferId for stream %d",
__FUNCTION__, result.frameNumber, i, bSrc.streamId);
// Still proceeds so other buffers can be returned
}
noBufferReturned = true;
}
if (noBufferReturned) {
res = OK;
} else {
res = mInterface->popInflightRequestBuffer(bSrc.bufferId, &buffer);
}
} else {
res = mInterface->popInflightBuffer(result.frameNumber, bSrc.streamId, &buffer);
}
if (res != OK) {
ALOGE("%s: Frame %d: Buffer %zu: No in-flight buffer for stream %d",
__FUNCTION__, result.frameNumber, i, bSrc.streamId);
return;
}
bDst.buffer = buffer;
bDst.status = mapHidlBufferStatus(bSrc.status);
bDst.acquire_fence = -1;
if (bSrc.releaseFence == nullptr) {
bDst.release_fence = -1;
} else if (bSrc.releaseFence->numFds == 1) {
if (noBufferReturned) {
ALOGE("%s: got releaseFence without output buffer!", __FUNCTION__);
}
bDst.release_fence = dup(bSrc.releaseFence->data[0]);
} else {
ALOGE("%s: Frame %d: Invalid release fence for buffer %zu, fd count is %d, not 1",
__FUNCTION__, result.frameNumber, i, bSrc.releaseFence->numFds);
return;
}
}
r.num_output_buffers = outputBuffers.size();
r.output_buffers = outputBuffers.data();
camera3_stream_buffer_t inputBuffer;
if (result.inputBuffer.streamId == -1) {
r.input_buffer = nullptr;
} else {
if (mInputStream->getId() != result.inputBuffer.streamId) {
ALOGE("%s: Frame %d: Invalid input stream id %d", __FUNCTION__,
result.frameNumber, result.inputBuffer.streamId);
return;
}
inputBuffer.stream = mInputStream->asHalStream();
buffer_handle_t *buffer;
res = mInterface->popInflightBuffer(result.frameNumber, result.inputBuffer.streamId,
&buffer);
if (res != OK) {
ALOGE("%s: Frame %d: Input buffer: No in-flight buffer for stream %d",
__FUNCTION__, result.frameNumber, result.inputBuffer.streamId);
return;
}
inputBuffer.buffer = buffer;
inputBuffer.status = mapHidlBufferStatus(result.inputBuffer.status);
inputBuffer.acquire_fence = -1;
if (result.inputBuffer.releaseFence == nullptr) {
inputBuffer.release_fence = -1;
} else if (result.inputBuffer.releaseFence->numFds == 1) {
inputBuffer.release_fence = dup(result.inputBuffer.releaseFence->data[0]);
} else {
ALOGE("%s: Frame %d: Invalid release fence for input buffer, fd count is %d, not 1",
__FUNCTION__, result.frameNumber, result.inputBuffer.releaseFence->numFds);
return;
}
r.input_buffer = &inputBuffer;
}
r.partial_result = result.partialResult;
processCaptureResult(&r);
}
hardware::Return<void> Camera3Device::notify(
const hardware::hidl_vec<hardware::camera::device::V3_2::NotifyMsg>& msgs) {
// Ideally we should grab mLock, but that can lead to deadlock, and
// it's not super important to get up to date value of mStatus for this
// warning print, hence skipping the lock here
if (mStatus == STATUS_ERROR) {
// Per API contract, HAL should act as closed after device error
// But mStatus can be set to error by framework as well, so just log
// a warning here.
ALOGW("%s: received notify message in error state.", __FUNCTION__);
}
for (const auto& msg : msgs) {
notify(msg);
}
return hardware::Void();
}
void Camera3Device::notify(
const hardware::camera::device::V3_2::NotifyMsg& msg) {
camera3_notify_msg m;
switch (msg.type) {
case MsgType::ERROR:
m.type = CAMERA3_MSG_ERROR;
m.message.error.frame_number = msg.msg.error.frameNumber;
if (msg.msg.error.errorStreamId >= 0) {
sp<Camera3StreamInterface> stream = mOutputStreams.get(msg.msg.error.errorStreamId);
if (stream == nullptr) {
ALOGE("%s: Frame %d: Invalid error stream id %d", __FUNCTION__,
m.message.error.frame_number, msg.msg.error.errorStreamId);
return;
}
m.message.error.error_stream = stream->asHalStream();
} else {
m.message.error.error_stream = nullptr;
}
switch (msg.msg.error.errorCode) {
case ErrorCode::ERROR_DEVICE:
m.message.error.error_code = CAMERA3_MSG_ERROR_DEVICE;
break;
case ErrorCode::ERROR_REQUEST:
m.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
break;
case ErrorCode::ERROR_RESULT:
m.message.error.error_code = CAMERA3_MSG_ERROR_RESULT;
break;
case ErrorCode::ERROR_BUFFER:
m.message.error.error_code = CAMERA3_MSG_ERROR_BUFFER;
break;
}
break;
case MsgType::SHUTTER:
m.type = CAMERA3_MSG_SHUTTER;
m.message.shutter.frame_number = msg.msg.shutter.frameNumber;
m.message.shutter.timestamp = msg.msg.shutter.timestamp;
break;
}
notify(&m);
}
status_t Camera3Device::captureList(const List<const PhysicalCameraSettingsList> &requestsList,
const std::list<const SurfaceMap> &surfaceMaps,
int64_t *lastFrameNumber) {
ATRACE_CALL();
return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/false, lastFrameNumber);
}
status_t Camera3Device::setStreamingRequest(const CameraMetadata &request,
int64_t* /*lastFrameNumber*/) {
ATRACE_CALL();
List<const PhysicalCameraSettingsList> requestsList;
std::list<const SurfaceMap> surfaceMaps;
convertToRequestList(requestsList, surfaceMaps, request);
return setStreamingRequestList(requestsList, /*surfaceMap*/surfaceMaps,
/*lastFrameNumber*/NULL);
}
status_t Camera3Device::setStreamingRequestList(
const List<const PhysicalCameraSettingsList> &requestsList,
const std::list<const SurfaceMap> &surfaceMaps, int64_t *lastFrameNumber) {
ATRACE_CALL();
return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/true, lastFrameNumber);
}
sp<Camera3Device::CaptureRequest> Camera3Device::setUpRequestLocked(
const PhysicalCameraSettingsList &request, const SurfaceMap &surfaceMap) {
status_t res;
if (mStatus == STATUS_UNCONFIGURED || mNeedConfig) {
// This point should only be reached via API1 (API2 must explicitly call configureStreams)
// so unilaterally select normal operating mode.
res = filterParamsAndConfigureLocked(request.begin()->metadata,
CAMERA3_STREAM_CONFIGURATION_NORMAL_MODE);
// Stream configuration failed. Client might try other configuraitons.
if (res != OK) {
CLOGE("Can't set up streams: %s (%d)", strerror(-res), res);
return NULL;
} else if (mStatus == STATUS_UNCONFIGURED) {
// Stream configuration successfully configure to empty stream configuration.
CLOGE("No streams configured");
return NULL;
}
}
sp<CaptureRequest> newRequest = createCaptureRequest(request, surfaceMap);
return newRequest;
}
status_t Camera3Device::clearStreamingRequest(int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
ALOGV("Camera %s: Clearing repeating request", mId.string());
return mRequestThread->clearRepeatingRequests(lastFrameNumber);
}
status_t Camera3Device::waitUntilRequestReceived(int32_t requestId, nsecs_t timeout) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
return mRequestThread->waitUntilRequestProcessed(requestId, timeout);
}
status_t Camera3Device::createInputStream(
uint32_t width, uint32_t height, int format, int *id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
ALOGV("Camera %s: Creating new input stream %d: %d x %d, format %d",
mId.string(), mNextStreamId, width, height, format);
status_t res;
bool wasActive = false;
switch (mStatus) {
case STATUS_ERROR:
ALOGE("%s: Device has encountered a serious error", __FUNCTION__);
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
ALOGE("%s: Device not initialized", __FUNCTION__);
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
// OK
break;
case STATUS_ACTIVE:
ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__);
res = internalPauseAndWaitLocked(maxExpectedDuration);
if (res != OK) {
SET_ERR_L("Can't pause captures to reconfigure streams!");
return res;
}
wasActive = true;
break;
default:
SET_ERR_L("%s: Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
assert(mStatus != STATUS_ACTIVE);
if (mInputStream != 0) {
ALOGE("%s: Cannot create more than 1 input stream", __FUNCTION__);
return INVALID_OPERATION;
}
sp<Camera3InputStream> newStream = new Camera3InputStream(mNextStreamId,
width, height, format);
newStream->setStatusTracker(mStatusTracker);
mInputStream = newStream;
*id = mNextStreamId++;
// Continue captures if active at start
if (wasActive) {
ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__);
// Reuse current operating mode and session parameters for new stream config
res = configureStreamsLocked(mOperatingMode, mSessionParams);
if (res != OK) {
ALOGE("%s: Can't reconfigure device for new stream %d: %s (%d)",
__FUNCTION__, mNextStreamId, strerror(-res), res);
return res;
}
internalResumeLocked();
}
ALOGV("Camera %s: Created input stream", mId.string());
return OK;
}
status_t Camera3Device::StreamSet::add(
int streamId, sp<camera3::Camera3OutputStreamInterface> stream) {
if (stream == nullptr) {
ALOGE("%s: cannot add null stream", __FUNCTION__);
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mLock);
return mData.add(streamId, stream);
}
ssize_t Camera3Device::StreamSet::remove(int streamId) {
std::lock_guard<std::mutex> lock(mLock);
return mData.removeItem(streamId);
}
sp<camera3::Camera3OutputStreamInterface>
Camera3Device::StreamSet::get(int streamId) {
std::lock_guard<std::mutex> lock(mLock);
ssize_t idx = mData.indexOfKey(streamId);
if (idx == NAME_NOT_FOUND) {
return nullptr;
}
return mData.editValueAt(idx);
}
sp<camera3::Camera3OutputStreamInterface>
Camera3Device::StreamSet::operator[] (size_t index) {
std::lock_guard<std::mutex> lock(mLock);
return mData.editValueAt(index);
}
size_t Camera3Device::StreamSet::size() const {
std::lock_guard<std::mutex> lock(mLock);
return mData.size();
}
void Camera3Device::StreamSet::clear() {
std::lock_guard<std::mutex> lock(mLock);
return mData.clear();
}
std::vector<int> Camera3Device::StreamSet::getStreamIds() {
std::lock_guard<std::mutex> lock(mLock);
std::vector<int> streamIds(mData.size());
for (size_t i = 0; i < mData.size(); i++) {
streamIds[i] = mData.keyAt(i);
}
return streamIds;
}
status_t Camera3Device::createStream(sp<Surface> consumer,
uint32_t width, uint32_t height, int format,
android_dataspace dataSpace, camera3_stream_rotation_t rotation, int *id,
const String8& physicalCameraId,
std::vector<int> *surfaceIds, int streamSetId, bool isShared, uint64_t consumerUsage) {
ATRACE_CALL();
if (consumer == nullptr) {
ALOGE("%s: consumer must not be null", __FUNCTION__);
return BAD_VALUE;
}
std::vector<sp<Surface>> consumers;
consumers.push_back(consumer);
return createStream(consumers, /*hasDeferredConsumer*/ false, width, height,
format, dataSpace, rotation, id, physicalCameraId, surfaceIds, streamSetId,
isShared, consumerUsage);
}
status_t Camera3Device::createStream(const std::vector<sp<Surface>>& consumers,
bool hasDeferredConsumer, uint32_t width, uint32_t height, int format,
android_dataspace dataSpace, camera3_stream_rotation_t rotation, int *id,
const String8& physicalCameraId,
std::vector<int> *surfaceIds, int streamSetId, bool isShared, uint64_t consumerUsage) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
ALOGV("Camera %s: Creating new stream %d: %d x %d, format %d, dataspace %d rotation %d"
" consumer usage %" PRIu64 ", isShared %d, physicalCameraId %s", mId.string(),
mNextStreamId, width, height, format, dataSpace, rotation, consumerUsage, isShared,
physicalCameraId.string());
status_t res;
bool wasActive = false;
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
// OK
break;
case STATUS_ACTIVE:
ALOGV("%s: Stopping activity to reconfigure streams", __FUNCTION__);
res = internalPauseAndWaitLocked(maxExpectedDuration);
if (res != OK) {
SET_ERR_L("Can't pause captures to reconfigure streams!");
return res;
}
wasActive = true;
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
assert(mStatus != STATUS_ACTIVE);
sp<Camera3OutputStream> newStream;
if (consumers.size() == 0 && !hasDeferredConsumer) {
ALOGE("%s: Number of consumers cannot be smaller than 1", __FUNCTION__);
return BAD_VALUE;
}
if (hasDeferredConsumer && format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
ALOGE("Deferred consumer stream creation only support IMPLEMENTATION_DEFINED format");
return BAD_VALUE;
}
if (format == HAL_PIXEL_FORMAT_BLOB) {
ssize_t blobBufferSize;
if (dataSpace == HAL_DATASPACE_DEPTH) {
blobBufferSize = getPointCloudBufferSize();
if (blobBufferSize <= 0) {
SET_ERR_L("Invalid point cloud buffer size %zd", blobBufferSize);
return BAD_VALUE;
}
} else if (dataSpace == static_cast<android_dataspace>(HAL_DATASPACE_JPEG_APP_SEGMENTS)) {
blobBufferSize = width * height;
} else {
blobBufferSize = getJpegBufferSize(width, height);
if (blobBufferSize <= 0) {
SET_ERR_L("Invalid jpeg buffer size %zd", blobBufferSize);
return BAD_VALUE;
}
}
newStream = new Camera3OutputStream(mNextStreamId, consumers[0],
width, height, blobBufferSize, format, dataSpace, rotation,
mTimestampOffset, physicalCameraId, streamSetId);
} else if (format == HAL_PIXEL_FORMAT_RAW_OPAQUE) {
ssize_t rawOpaqueBufferSize = getRawOpaqueBufferSize(width, height);
if (rawOpaqueBufferSize <= 0) {
SET_ERR_L("Invalid RAW opaque buffer size %zd", rawOpaqueBufferSize);
return BAD_VALUE;
}
newStream = new Camera3OutputStream(mNextStreamId, consumers[0],
width, height, rawOpaqueBufferSize, format, dataSpace, rotation,
mTimestampOffset, physicalCameraId, streamSetId);
} else if (isShared) {
newStream = new Camera3SharedOutputStream(mNextStreamId, consumers,
width, height, format, consumerUsage, dataSpace, rotation,
mTimestampOffset, physicalCameraId, streamSetId,
mUseHalBufManager);
} else if (consumers.size() == 0 && hasDeferredConsumer) {
newStream = new Camera3OutputStream(mNextStreamId,
width, height, format, consumerUsage, dataSpace, rotation,
mTimestampOffset, physicalCameraId, streamSetId);
} else {
newStream = new Camera3OutputStream(mNextStreamId, consumers[0],
width, height, format, dataSpace, rotation,
mTimestampOffset, physicalCameraId, streamSetId);
}
size_t consumerCount = consumers.size();
for (size_t i = 0; i < consumerCount; i++) {
int id = newStream->getSurfaceId(consumers[i]);
if (id < 0) {
SET_ERR_L("Invalid surface id");
return BAD_VALUE;
}
if (surfaceIds != nullptr) {
surfaceIds->push_back(id);
}
}
newStream->setStatusTracker(mStatusTracker);
newStream->setBufferManager(mBufferManager);
res = mOutputStreams.add(mNextStreamId, newStream);
if (res < 0) {
SET_ERR_L("Can't add new stream to set: %s (%d)", strerror(-res), res);
return res;
}
*id = mNextStreamId++;
mNeedConfig = true;
// Continue captures if active at start
if (wasActive) {
ALOGV("%s: Restarting activity to reconfigure streams", __FUNCTION__);
// Reuse current operating mode and session parameters for new stream config
res = configureStreamsLocked(mOperatingMode, mSessionParams);
if (res != OK) {
CLOGE("Can't reconfigure device for new stream %d: %s (%d)",
mNextStreamId, strerror(-res), res);
return res;
}
internalResumeLocked();
}
ALOGV("Camera %s: Created new stream", mId.string());
return OK;
}
status_t Camera3Device::getStreamInfo(int id, StreamInfo *streamInfo) {
ATRACE_CALL();
if (nullptr == streamInfo) {
return BAD_VALUE;
}
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized!");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
sp<Camera3StreamInterface> stream = mOutputStreams.get(id);
if (stream == nullptr) {
CLOGE("Stream %d is unknown", id);
return BAD_VALUE;
}
streamInfo->width = stream->getWidth();
streamInfo->height = stream->getHeight();
streamInfo->format = stream->getFormat();
streamInfo->dataSpace = stream->getDataSpace();
streamInfo->formatOverridden = stream->isFormatOverridden();
streamInfo->originalFormat = stream->getOriginalFormat();
streamInfo->dataSpaceOverridden = stream->isDataSpaceOverridden();
streamInfo->originalDataSpace = stream->getOriginalDataSpace();
return OK;
}
status_t Camera3Device::setStreamTransform(int id,
int transform) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device not initialized");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(id);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", id);
return BAD_VALUE;
}
return stream->setTransform(transform);
}
status_t Camera3Device::deleteStream(int id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
status_t res;
ALOGV("%s: Camera %s: Deleting stream %d", __FUNCTION__, mId.string(), id);
// CameraDevice semantics require device to already be idle before
// deleteStream is called, unlike for createStream.
if (mStatus == STATUS_ACTIVE) {
ALOGW("%s: Camera %s: Device not idle", __FUNCTION__, mId.string());
return -EBUSY;
}
if (mStatus == STATUS_ERROR) {
ALOGW("%s: Camera %s: deleteStream not allowed in ERROR state",
__FUNCTION__, mId.string());
return -EBUSY;
}
sp<Camera3StreamInterface> deletedStream;
sp<Camera3StreamInterface> stream = mOutputStreams.get(id);
if (mInputStream != NULL && id == mInputStream->getId()) {
deletedStream = mInputStream;
mInputStream.clear();
} else {
if (stream == nullptr) {
CLOGE("Stream %d does not exist", id);
return BAD_VALUE;
}
}
// Delete output stream or the output part of a bi-directional stream.
if (stream != nullptr) {
deletedStream = stream;
mOutputStreams.remove(id);
}
// Free up the stream endpoint so that it can be used by some other stream
res = deletedStream->disconnect();
if (res != OK) {
SET_ERR_L("Can't disconnect deleted stream %d", id);
// fall through since we want to still list the stream as deleted.
}
mDeletedStreams.add(deletedStream);
mNeedConfig = true;
return res;
}
status_t Camera3Device::configureStreams(const CameraMetadata& sessionParams, int operatingMode) {
ATRACE_CALL();
ALOGV("%s: E", __FUNCTION__);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
// In case the client doesn't include any session parameter, try a
// speculative configuration using the values from the last cached
// default request.
if (sessionParams.isEmpty() &&
((mLastTemplateId > 0) && (mLastTemplateId < CAMERA3_TEMPLATE_COUNT)) &&
(!mRequestTemplateCache[mLastTemplateId].isEmpty())) {
ALOGV("%s: Speculative session param configuration with template id: %d", __func__,
mLastTemplateId);
return filterParamsAndConfigureLocked(mRequestTemplateCache[mLastTemplateId],
operatingMode);
}
return filterParamsAndConfigureLocked(sessionParams, operatingMode);
}
status_t Camera3Device::filterParamsAndConfigureLocked(const CameraMetadata& sessionParams,
int operatingMode) {
//Filter out any incoming session parameters
const CameraMetadata params(sessionParams);
camera_metadata_entry_t availableSessionKeys = mDeviceInfo.find(
ANDROID_REQUEST_AVAILABLE_SESSION_KEYS);
CameraMetadata filteredParams(availableSessionKeys.count);
camera_metadata_t *meta = const_cast<camera_metadata_t *>(
filteredParams.getAndLock());
set_camera_metadata_vendor_id(meta, mVendorTagId);
filteredParams.unlock(meta);
if (availableSessionKeys.count > 0) {
for (size_t i = 0; i < availableSessionKeys.count; i++) {
camera_metadata_ro_entry entry = params.find(
availableSessionKeys.data.i32[i]);
if (entry.count > 0) {
filteredParams.update(entry);
}
}
}
return configureStreamsLocked(operatingMode, filteredParams);
}
status_t Camera3Device::getInputBufferProducer(
sp<IGraphicBufferProducer> *producer) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (producer == NULL) {
return BAD_VALUE;
} else if (mInputStream == NULL) {
return INVALID_OPERATION;
}
return mInputStream->getInputBufferProducer(producer);
}
status_t Camera3Device::createDefaultRequest(int templateId,
CameraMetadata *request) {
ATRACE_CALL();
ALOGV("%s: for template %d", __FUNCTION__, templateId);
if (templateId <= 0 || templateId >= CAMERA3_TEMPLATE_COUNT) {
android_errorWriteWithInfoLog(CameraService::SN_EVENT_LOG_ID, "26866110",
CameraThreadState::getCallingUid(), nullptr, 0);
return BAD_VALUE;
}
Mutex::Autolock il(mInterfaceLock);
{
Mutex::Autolock l(mLock);
switch (mStatus) {
case STATUS_ERROR:
CLOGE("Device has encountered a serious error");
return INVALID_OPERATION;
case STATUS_UNINITIALIZED:
CLOGE("Device is not initialized!");
return INVALID_OPERATION;
case STATUS_UNCONFIGURED:
case STATUS_CONFIGURED:
case STATUS_ACTIVE:
// OK
break;
default:
SET_ERR_L("Unexpected status: %d", mStatus);
return INVALID_OPERATION;
}
if (!mRequestTemplateCache[templateId].isEmpty()) {
*request = mRequestTemplateCache[templateId];
mLastTemplateId = templateId;
return OK;
}
}
camera_metadata_t *rawRequest;
status_t res = mInterface->constructDefaultRequestSettings(
(camera3_request_template_t) templateId, &rawRequest);
{
Mutex::Autolock l(mLock);
if (res == BAD_VALUE) {
ALOGI("%s: template %d is not supported on this camera device",
__FUNCTION__, templateId);
return res;
} else if (res != OK) {
CLOGE("Unable to construct request template %d: %s (%d)",
templateId, strerror(-res), res);
return res;
}
set_camera_metadata_vendor_id(rawRequest, mVendorTagId);
mRequestTemplateCache[templateId].acquire(rawRequest);
*request = mRequestTemplateCache[templateId];
mLastTemplateId = templateId;
}
return OK;
}
status_t Camera3Device::waitUntilDrained() {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
return waitUntilDrainedLocked(maxExpectedDuration);
}
status_t Camera3Device::waitUntilDrainedLocked(nsecs_t maxExpectedDuration) {
switch (mStatus) {
case STATUS_UNINITIALIZED:
case STATUS_UNCONFIGURED:
ALOGV("%s: Already idle", __FUNCTION__);
return OK;
case STATUS_CONFIGURED:
// To avoid race conditions, check with tracker to be sure
case STATUS_ERROR:
case STATUS_ACTIVE:
// Need to verify shut down
break;
default:
SET_ERR_L("Unexpected status: %d",mStatus);
return INVALID_OPERATION;
}
ALOGV("%s: Camera %s: Waiting until idle (%" PRIi64 "ns)", __FUNCTION__, mId.string(),
maxExpectedDuration);
status_t res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration);
if (res != OK) {
SET_ERR_L("Error waiting for HAL to drain: %s (%d)", strerror(-res),
res);
}
return res;
}
void Camera3Device::internalUpdateStatusLocked(Status status) {
mStatus = status;
mRecentStatusUpdates.add(mStatus);
mStatusChanged.broadcast();
}
void Camera3Device::pauseStateNotify(bool enable) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
mPauseStateNotify = enable;
}
// Pause to reconfigure
status_t Camera3Device::internalPauseAndWaitLocked(nsecs_t maxExpectedDuration) {
if (mRequestThread.get() != nullptr) {
mRequestThread->setPaused(true);
} else {
return NO_INIT;
}
ALOGV("%s: Camera %s: Internal wait until idle (% " PRIi64 " ns)", __FUNCTION__, mId.string(),
maxExpectedDuration);
status_t res = waitUntilStateThenRelock(/*active*/ false, maxExpectedDuration);
if (res != OK) {
SET_ERR_L("Can't idle device in %f seconds!",
maxExpectedDuration/1e9);
}
return res;
}
// Resume after internalPauseAndWaitLocked
status_t Camera3Device::internalResumeLocked() {
status_t res;
mRequestThread->setPaused(false);
ALOGV("%s: Camera %s: Internal wait until active (% " PRIi64 " ns)", __FUNCTION__, mId.string(),
kActiveTimeout);
res = waitUntilStateThenRelock(/*active*/ true, kActiveTimeout);
if (res != OK) {
SET_ERR_L("Can't transition to active in %f seconds!",
kActiveTimeout/1e9);
}
mPauseStateNotify = false;
return OK;
}
status_t Camera3Device::waitUntilStateThenRelock(bool active, nsecs_t timeout) {
status_t res = OK;
size_t startIndex = 0;
if (mStatusWaiters == 0) {
// Clear the list of recent statuses if there are no existing threads waiting on updates to
// this status list
mRecentStatusUpdates.clear();
} else {
// If other threads are waiting on updates to this status list, set the position of the
// first element that this list will check rather than clearing the list.
startIndex = mRecentStatusUpdates.size();
}
mStatusWaiters++;
if (!active && mUseHalBufManager) {
auto streamIds = mOutputStreams.getStreamIds();
if (mStatus == STATUS_ACTIVE) {
mRequestThread->signalPipelineDrain(streamIds);
}
mRequestBufferSM.onWaitUntilIdle();
}
bool stateSeen = false;
do {
if (active == (mStatus == STATUS_ACTIVE)) {
// Desired state is current
break;
}
res = mStatusChanged.waitRelative(mLock, timeout);
if (res != OK) break;
// This is impossible, but if not, could result in subtle deadlocks and invalid state
// transitions.
LOG_ALWAYS_FATAL_IF(startIndex > mRecentStatusUpdates.size(),
"%s: Skipping status updates in Camera3Device, may result in deadlock.",
__FUNCTION__);
// Encountered desired state since we began waiting
for (size_t i = startIndex; i < mRecentStatusUpdates.size(); i++) {
if (active == (mRecentStatusUpdates[i] == STATUS_ACTIVE) ) {
stateSeen = true;
break;
}
}
} while (!stateSeen);
mStatusWaiters--;
return res;
}
status_t Camera3Device::setNotifyCallback(wp<NotificationListener> listener) {
ATRACE_CALL();
Mutex::Autolock l(mOutputLock);
if (listener != NULL && mListener != NULL) {
ALOGW("%s: Replacing old callback listener", __FUNCTION__);
}
mListener = listener;
mRequestThread->setNotificationListener(listener);
mPreparerThread->setNotificationListener(listener);
return OK;
}
bool Camera3Device::willNotify3A() {
return false;
}
status_t Camera3Device::waitForNextFrame(nsecs_t timeout) {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mOutputLock);
while (mResultQueue.empty()) {
res = mResultSignal.waitRelative(mOutputLock, timeout);
if (res == TIMED_OUT) {
return res;
} else if (res != OK) {
ALOGW("%s: Camera %s: No frame in %" PRId64 " ns: %s (%d)",
__FUNCTION__, mId.string(), timeout, strerror(-res), res);
return res;
}
}
return OK;
}
status_t Camera3Device::getNextResult(CaptureResult *frame) {
ATRACE_CALL();
Mutex::Autolock l(mOutputLock);
if (mResultQueue.empty()) {
return NOT_ENOUGH_DATA;
}
if (frame == NULL) {
ALOGE("%s: argument cannot be NULL", __FUNCTION__);
return BAD_VALUE;
}
CaptureResult &result = *(mResultQueue.begin());
frame->mResultExtras = result.mResultExtras;
frame->mMetadata.acquire(result.mMetadata);
frame->mPhysicalMetadatas = std::move(result.mPhysicalMetadatas);
mResultQueue.erase(mResultQueue.begin());
return OK;
}
status_t Camera3Device::triggerAutofocus(uint32_t id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGV("%s: Triggering autofocus, id %d", __FUNCTION__, id);
// Mix-in this trigger into the next request and only the next request.
RequestTrigger trigger[] = {
{
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AF_TRIGGER_START
},
{
ANDROID_CONTROL_AF_TRIGGER_ID,
static_cast<int32_t>(id)
}
};
return mRequestThread->queueTrigger(trigger,
sizeof(trigger)/sizeof(trigger[0]));
}
status_t Camera3Device::triggerCancelAutofocus(uint32_t id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGV("%s: Triggering cancel autofocus, id %d", __FUNCTION__, id);
// Mix-in this trigger into the next request and only the next request.
RequestTrigger trigger[] = {
{
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AF_TRIGGER_CANCEL
},
{
ANDROID_CONTROL_AF_TRIGGER_ID,
static_cast<int32_t>(id)
}
};
return mRequestThread->queueTrigger(trigger,
sizeof(trigger)/sizeof(trigger[0]));
}
status_t Camera3Device::triggerPrecaptureMetering(uint32_t id) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
ALOGV("%s: Triggering precapture metering, id %d", __FUNCTION__, id);
// Mix-in this trigger into the next request and only the next request.
RequestTrigger trigger[] = {
{
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START
},
{
ANDROID_CONTROL_AE_PRECAPTURE_ID,
static_cast<int32_t>(id)
}
};
return mRequestThread->queueTrigger(trigger,
sizeof(trigger)/sizeof(trigger[0]));
}
status_t Camera3Device::flush(int64_t *frameNumber) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Flushing all requests", __FUNCTION__, mId.string());
Mutex::Autolock il(mInterfaceLock);
{
Mutex::Autolock l(mLock);
// b/116514106 "disconnect()" can get called twice for the same device. The
// camera device will not be initialized during the second run.
if (mStatus == STATUS_UNINITIALIZED) {
return OK;
}
mRequestThread->clear(/*out*/frameNumber);
}
return mRequestThread->flush();
}
status_t Camera3Device::prepare(int streamId) {
return prepare(camera3::Camera3StreamInterface::ALLOCATE_PIPELINE_MAX, streamId);
}
status_t Camera3Device::prepare(int maxCount, int streamId) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Preparing stream %d", __FUNCTION__, mId.string(), streamId);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", streamId);
return BAD_VALUE;
}
if (stream->isUnpreparable() || stream->hasOutstandingBuffers() ) {
CLOGE("Stream %d has already been a request target", streamId);
return BAD_VALUE;
}
if (mRequestThread->isStreamPending(stream)) {
CLOGE("Stream %d is already a target in a pending request", streamId);
return BAD_VALUE;
}
return mPreparerThread->prepare(maxCount, stream);
}
status_t Camera3Device::tearDown(int streamId) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Tearing down stream %d", __FUNCTION__, mId.string(), streamId);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", streamId);
return BAD_VALUE;
}
if (stream->hasOutstandingBuffers() || mRequestThread->isStreamPending(stream)) {
CLOGE("Stream %d is a target of a in-progress request", streamId);
return BAD_VALUE;
}
return stream->tearDown();
}
status_t Camera3Device::addBufferListenerForStream(int streamId,
wp<Camera3StreamBufferListener> listener) {
ATRACE_CALL();
ALOGV("%s: Camera %s: Adding buffer listener for stream %d", __FUNCTION__, mId.string(), streamId);
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d does not exist", streamId);
return BAD_VALUE;
}
stream->addBufferListener(listener);
return OK;
}
/**
* Methods called by subclasses
*/
void Camera3Device::notifyStatus(bool idle) {
ATRACE_CALL();
{
// Need mLock to safely update state and synchronize to current
// state of methods in flight.
Mutex::Autolock l(mLock);
// We can get various system-idle notices from the status tracker
// while starting up. Only care about them if we've actually sent
// in some requests recently.
if (mStatus != STATUS_ACTIVE && mStatus != STATUS_CONFIGURED) {
return;
}
ALOGV("%s: Camera %s: Now %s, pauseState: %s", __FUNCTION__, mId.string(),
idle ? "idle" : "active", mPauseStateNotify ? "true" : "false");
internalUpdateStatusLocked(idle ? STATUS_CONFIGURED : STATUS_ACTIVE);
// Skip notifying listener if we're doing some user-transparent
// state changes
if (mPauseStateNotify) return;
}
sp<NotificationListener> listener;
{
Mutex::Autolock l(mOutputLock);
listener = mListener.promote();
}
if (idle && listener != NULL) {
listener->notifyIdle();
}
}
status_t Camera3Device::setConsumerSurfaces(int streamId,
const std::vector<sp<Surface>>& consumers, std::vector<int> *surfaceIds) {
ATRACE_CALL();
ALOGV("%s: Camera %s: set consumer surface for stream %d",
__FUNCTION__, mId.string(), streamId);
if (surfaceIds == nullptr) {
return BAD_VALUE;
}
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
if (consumers.size() == 0) {
CLOGE("No consumer is passed!");
return BAD_VALUE;
}
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d is unknown", streamId);
return BAD_VALUE;
}
// isConsumerConfigurationDeferred will be off after setConsumers
bool isDeferred = stream->isConsumerConfigurationDeferred();
status_t res = stream->setConsumers(consumers);
if (res != OK) {
CLOGE("Stream %d set consumer failed (error %d %s) ", streamId, res, strerror(-res));
return res;
}
for (auto &consumer : consumers) {
int id = stream->getSurfaceId(consumer);
if (id < 0) {
CLOGE("Invalid surface id!");
return BAD_VALUE;
}
surfaceIds->push_back(id);
}
if (isDeferred) {
if (!stream->isConfiguring()) {
CLOGE("Stream %d was already fully configured.", streamId);
return INVALID_OPERATION;
}
res = stream->finishConfiguration();
if (res != OK) {
// If finishConfiguration fails due to abandoned surface, do not set
// device to error state.
bool isSurfaceAbandoned =
(res == NO_INIT || res == DEAD_OBJECT) && stream->isAbandoned();
if (!isSurfaceAbandoned) {
SET_ERR_L("Can't finish configuring output stream %d: %s (%d)",
stream->getId(), strerror(-res), res);
}
return res;
}
}
return OK;
}
status_t Camera3Device::updateStream(int streamId, const std::vector<sp<Surface>> &newSurfaces,
const std::vector<OutputStreamInfo> &outputInfo,
const std::vector<size_t> &removedSurfaceIds, KeyedVector<sp<Surface>, size_t> *outputMap) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
CLOGE("Stream %d is unknown", streamId);
return BAD_VALUE;
}
for (const auto &it : removedSurfaceIds) {
if (mRequestThread->isOutputSurfacePending(streamId, it)) {
CLOGE("Shared surface still part of a pending request!");
return -EBUSY;
}
}
status_t res = stream->updateStream(newSurfaces, outputInfo, removedSurfaceIds, outputMap);
if (res != OK) {
CLOGE("Stream %d failed to update stream (error %d %s) ",
streamId, res, strerror(-res));
if (res == UNKNOWN_ERROR) {
SET_ERR_L("%s: Stream update failed to revert to previous output configuration!",
__FUNCTION__);
}
return res;
}
return res;
}
status_t Camera3Device::dropStreamBuffers(bool dropping, int streamId) {
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
ALOGE("%s: Stream %d is not found.", __FUNCTION__, streamId);
return BAD_VALUE;
}
return stream->dropBuffers(dropping);
}
/**
* Camera3Device private methods
*/
sp<Camera3Device::CaptureRequest> Camera3Device::createCaptureRequest(
const PhysicalCameraSettingsList &request, const SurfaceMap &surfaceMap) {
ATRACE_CALL();
sp<CaptureRequest> newRequest = new CaptureRequest;
newRequest->mSettingsList = request;
camera_metadata_entry_t inputStreams =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_INPUT_STREAMS);
if (inputStreams.count > 0) {
if (mInputStream == NULL ||
mInputStream->getId() != inputStreams.data.i32[0]) {
CLOGE("Request references unknown input stream %d",
inputStreams.data.u8[0]);
return NULL;
}
if (mInputStream->isConfiguring()) {
SET_ERR_L("%s: input stream %d is not configured!",
__FUNCTION__, mInputStream->getId());
return NULL;
}
// Check if stream prepare is blocking requests.
if (mInputStream->isBlockedByPrepare()) {
CLOGE("Request references an input stream that's being prepared!");
return NULL;
}
newRequest->mInputStream = mInputStream;
newRequest->mSettingsList.begin()->metadata.erase(ANDROID_REQUEST_INPUT_STREAMS);
}
camera_metadata_entry_t streams =
newRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_OUTPUT_STREAMS);
if (streams.count == 0) {
CLOGE("Zero output streams specified!");
return NULL;
}
for (size_t i = 0; i < streams.count; i++) {
sp<Camera3OutputStreamInterface> stream = mOutputStreams.get(streams.data.i32[i]);
if (stream == nullptr) {
CLOGE("Request references unknown stream %d",
streams.data.i32[i]);
return NULL;
}
// It is illegal to include a deferred consumer output stream into a request
auto iter = surfaceMap.find(streams.data.i32[i]);
if (iter != surfaceMap.end()) {
const std::vector<size_t>& surfaces = iter->second;
for (const auto& surface : surfaces) {
if (stream->isConsumerConfigurationDeferred(surface)) {
CLOGE("Stream %d surface %zu hasn't finished configuration yet "
"due to deferred consumer", stream->getId(), surface);
return NULL;
}
}
newRequest->mOutputSurfaces[streams.data.i32[i]] = surfaces;
}
if (stream->isConfiguring()) {
SET_ERR_L("%s: stream %d is not configured!", __FUNCTION__, stream->getId());
return NULL;
}
// Check if stream prepare is blocking requests.
if (stream->isBlockedByPrepare()) {
CLOGE("Request references an output stream that's being prepared!");
return NULL;
}
newRequest->mOutputStreams.push(stream);
}
newRequest->mSettingsList.begin()->metadata.erase(ANDROID_REQUEST_OUTPUT_STREAMS);
newRequest->mBatchSize = 1;
return newRequest;
}
bool Camera3Device::isOpaqueInputSizeSupported(uint32_t width, uint32_t height) {
for (uint32_t i = 0; i < mSupportedOpaqueInputSizes.size(); i++) {
Size size = mSupportedOpaqueInputSizes[i];
if (size.width == width && size.height == height) {
return true;
}
}
return false;
}
void Camera3Device::cancelStreamsConfigurationLocked() {
int res = OK;
if (mInputStream != NULL && mInputStream->isConfiguring()) {
res = mInputStream->cancelConfiguration();
if (res != OK) {
CLOGE("Can't cancel configuring input stream %d: %s (%d)",
mInputStream->getId(), strerror(-res), res);
}
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
sp<Camera3OutputStreamInterface> outputStream = mOutputStreams[i];
if (outputStream->isConfiguring()) {
res = outputStream->cancelConfiguration();
if (res != OK) {
CLOGE("Can't cancel configuring output stream %d: %s (%d)",
outputStream->getId(), strerror(-res), res);
}
}
}
// Return state to that at start of call, so that future configures
// properly clean things up
internalUpdateStatusLocked(STATUS_UNCONFIGURED);
mNeedConfig = true;
res = mPreparerThread->resume();
if (res != OK) {
ALOGE("%s: Camera %s: Preparer thread failed to resume!", __FUNCTION__, mId.string());
}
}
bool Camera3Device::reconfigureCamera(const CameraMetadata& sessionParams) {
ATRACE_CALL();
bool ret = false;
Mutex::Autolock il(mInterfaceLock);
nsecs_t maxExpectedDuration = getExpectedInFlightDuration();
Mutex::Autolock l(mLock);
auto rc = internalPauseAndWaitLocked(maxExpectedDuration);
if (rc == NO_ERROR) {
mNeedConfig = true;
rc = configureStreamsLocked(mOperatingMode, sessionParams, /*notifyRequestThread*/ false);
if (rc == NO_ERROR) {
ret = true;
mPauseStateNotify = false;
//Moving to active state while holding 'mLock' is important.
//There could be pending calls to 'create-/deleteStream' which
//will trigger another stream configuration while the already
//present streams end up with outstanding buffers that will
//not get drained.
internalUpdateStatusLocked(STATUS_ACTIVE);
} else if (rc == DEAD_OBJECT) {
// DEAD_OBJECT can be returned if either the consumer surface is
// abandoned, or the HAL has died.
// - If the HAL has died, configureStreamsLocked call will set
// device to error state,
// - If surface is abandoned, we should not set device to error
// state.
ALOGE("Failed to re-configure camera due to abandoned surface");
} else {
SET_ERR_L("Failed to re-configure camera: %d", rc);
}
} else {
ALOGE("%s: Failed to pause streaming: %d", __FUNCTION__, rc);
}
return ret;
}
status_t Camera3Device::configureStreamsLocked(int operatingMode,
const CameraMetadata& sessionParams, bool notifyRequestThread) {
ATRACE_CALL();
status_t res;
if (mStatus != STATUS_UNCONFIGURED && mStatus != STATUS_CONFIGURED) {
CLOGE("Not idle");
return INVALID_OPERATION;
}
if (operatingMode < 0) {
CLOGE("Invalid operating mode: %d", operatingMode);
return BAD_VALUE;
}
bool isConstrainedHighSpeed =
static_cast<int>(StreamConfigurationMode::CONSTRAINED_HIGH_SPEED_MODE) ==
operatingMode;
if (mOperatingMode != operatingMode) {
mNeedConfig = true;
mIsConstrainedHighSpeedConfiguration = isConstrainedHighSpeed;
mOperatingMode = operatingMode;
}
// In case called from configureStreams, abort queued input buffers not belonging to
// any pending requests.
if (mInputStream != NULL && notifyRequestThread) {
while (true) {
camera3_stream_buffer_t inputBuffer;
status_t res = mInputStream->getInputBuffer(&inputBuffer,
/*respectHalLimit*/ false);
if (res != OK) {
// Exhausted acquiring all input buffers.
break;
}
inputBuffer.status = CAMERA3_BUFFER_STATUS_ERROR;
res = mInputStream->returnInputBuffer(inputBuffer);
if (res != OK) {
ALOGE("%s: %d: couldn't return input buffer while clearing input queue: "
"%s (%d)", __FUNCTION__, __LINE__, strerror(-res), res);
}
}
}
if (!mNeedConfig) {
ALOGV("%s: Skipping config, no stream changes", __FUNCTION__);
return OK;
}
// Workaround for device HALv3.2 or older spec bug - zero streams requires
// adding a dummy stream instead.
// TODO: Bug: 17321404 for fixing the HAL spec and removing this workaround.
if (mOutputStreams.size() == 0) {
addDummyStreamLocked();
} else {
tryRemoveDummyStreamLocked();
}
// Start configuring the streams
ALOGV("%s: Camera %s: Starting stream configuration", __FUNCTION__, mId.string());
mPreparerThread->pause();
camera3_stream_configuration config;
config.operation_mode = mOperatingMode;
config.num_streams = (mInputStream != NULL) + mOutputStreams.size();
Vector<camera3_stream_t*> streams;
streams.setCapacity(config.num_streams);
std::vector<uint32_t> bufferSizes(config.num_streams, 0);
if (mInputStream != NULL) {
camera3_stream_t *inputStream;
inputStream = mInputStream->startConfiguration();
if (inputStream == NULL) {
CLOGE("Can't start input stream configuration");
cancelStreamsConfigurationLocked();
return INVALID_OPERATION;
}
streams.add(inputStream);
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
// Don't configure bidi streams twice, nor add them twice to the list
if (mOutputStreams[i].get() ==
static_cast<Camera3StreamInterface*>(mInputStream.get())) {
config.num_streams--;
continue;
}
camera3_stream_t *outputStream;
outputStream = mOutputStreams[i]->startConfiguration();
if (outputStream == NULL) {
CLOGE("Can't start output stream configuration");
cancelStreamsConfigurationLocked();
return INVALID_OPERATION;
}
streams.add(outputStream);
if (outputStream->format == HAL_PIXEL_FORMAT_BLOB) {
size_t k = i + ((mInputStream != nullptr) ? 1 : 0); // Input stream if present should
// always occupy the initial entry.
if (outputStream->data_space == HAL_DATASPACE_V0_JFIF) {
bufferSizes[k] = static_cast<uint32_t>(
getJpegBufferSize(outputStream->width, outputStream->height));
} else if (outputStream->data_space ==
static_cast<android_dataspace>(HAL_DATASPACE_JPEG_APP_SEGMENTS)) {
bufferSizes[k] = outputStream->width * outputStream->height;
} else {
ALOGW("%s: Blob dataSpace %d not supported",
__FUNCTION__, outputStream->data_space);
}
}
}
config.streams = streams.editArray();
// Do the HAL configuration; will potentially touch stream
// max_buffers, usage, and priv fields, as well as data_space and format
// fields for IMPLEMENTATION_DEFINED formats.
const camera_metadata_t *sessionBuffer = sessionParams.getAndLock();
res = mInterface->configureStreams(sessionBuffer, &config, bufferSizes);
sessionParams.unlock(sessionBuffer);
if (res == BAD_VALUE) {
// HAL rejected this set of streams as unsupported, clean up config
// attempt and return to unconfigured state
CLOGE("Set of requested inputs/outputs not supported by HAL");
cancelStreamsConfigurationLocked();
return BAD_VALUE;
} else if (res != OK) {
// Some other kind of error from configure_streams - this is not
// expected
SET_ERR_L("Unable to configure streams with HAL: %s (%d)",
strerror(-res), res);
return res;
}
// Finish all stream configuration immediately.
// TODO: Try to relax this later back to lazy completion, which should be
// faster
if (mInputStream != NULL && mInputStream->isConfiguring()) {
bool streamReConfigured = false;
res = mInputStream->finishConfiguration(&streamReConfigured);
if (res != OK) {
CLOGE("Can't finish configuring input stream %d: %s (%d)",
mInputStream->getId(), strerror(-res), res);
cancelStreamsConfigurationLocked();
if ((res == NO_INIT || res == DEAD_OBJECT) && mInputStream->isAbandoned()) {
return DEAD_OBJECT;
}
return BAD_VALUE;
}
if (streamReConfigured) {
mInterface->onStreamReConfigured(mInputStream->getId());
}
}
for (size_t i = 0; i < mOutputStreams.size(); i++) {
sp<Camera3OutputStreamInterface> outputStream = mOutputStreams[i];
if (outputStream->isConfiguring() && !outputStream->isConsumerConfigurationDeferred()) {
bool streamReConfigured = false;
res = outputStream->finishConfiguration(&streamReConfigured);
if (res != OK) {
CLOGE("Can't finish configuring output stream %d: %s (%d)",
outputStream->getId(), strerror(-res), res);
cancelStreamsConfigurationLocked();
if ((res == NO_INIT || res == DEAD_OBJECT) && outputStream->isAbandoned()) {
return DEAD_OBJECT;
}
return BAD_VALUE;
}
if (streamReConfigured) {
mInterface->onStreamReConfigured(outputStream->getId());
}
}
}
// Request thread needs to know to avoid using repeat-last-settings protocol
// across configure_streams() calls
if (notifyRequestThread) {
mRequestThread->configurationComplete(mIsConstrainedHighSpeedConfiguration, sessionParams);
}
char value[PROPERTY_VALUE_MAX];
property_get("camera.fifo.disable", value, "0");
int32_t disableFifo = atoi(value);
if (disableFifo != 1) {
// Boost priority of request thread to SCHED_FIFO.
pid_t requestThreadTid = mRequestThread->getTid();
res = requestPriority(getpid(), requestThreadTid,
kRequestThreadPriority, /*isForApp*/ false, /*asynchronous*/ false);
if (res != OK) {
ALOGW("Can't set realtime priority for request processing thread: %s (%d)",
strerror(-res), res);
} else {
ALOGD("Set real time priority for request queue thread (tid %d)", requestThreadTid);
}
}
// Update device state
const camera_metadata_t *newSessionParams = sessionParams.getAndLock();
const camera_metadata_t *currentSessionParams = mSessionParams.getAndLock();
bool updateSessionParams = (newSessionParams != currentSessionParams) ? true : false;
sessionParams.unlock(newSessionParams);
mSessionParams.unlock(currentSessionParams);
if (updateSessionParams) {
mSessionParams = sessionParams;
}
mNeedConfig = false;
internalUpdateStatusLocked((mDummyStreamId == NO_STREAM) ?
STATUS_CONFIGURED : STATUS_UNCONFIGURED);
ALOGV("%s: Camera %s: Stream configuration complete", __FUNCTION__, mId.string());
// tear down the deleted streams after configure streams.
mDeletedStreams.clear();
auto rc = mPreparerThread->resume();
if (rc != OK) {
SET_ERR_L("%s: Camera %s: Preparer thread failed to resume!", __FUNCTION__, mId.string());
return rc;
}
if (mDummyStreamId == NO_STREAM) {
mRequestBufferSM.onStreamsConfigured();
}
return OK;
}
status_t Camera3Device::addDummyStreamLocked() {
ATRACE_CALL();
status_t res;
if (mDummyStreamId != NO_STREAM) {
// Should never be adding a second dummy stream when one is already
// active
SET_ERR_L("%s: Camera %s: A dummy stream already exists!",
__FUNCTION__, mId.string());
return INVALID_OPERATION;
}
ALOGV("%s: Camera %s: Adding a dummy stream", __FUNCTION__, mId.string());
sp<Camera3OutputStreamInterface> dummyStream =
new Camera3DummyStream(mNextStreamId);
res = mOutputStreams.add(mNextStreamId, dummyStream);
if (res < 0) {
SET_ERR_L("Can't add dummy stream to set: %s (%d)", strerror(-res), res);
return res;
}
mDummyStreamId = mNextStreamId;
mNextStreamId++;
return OK;
}
status_t Camera3Device::tryRemoveDummyStreamLocked() {
ATRACE_CALL();
status_t res;
if (mDummyStreamId == NO_STREAM) return OK;
if (mOutputStreams.size() == 1) return OK;
ALOGV("%s: Camera %s: Removing the dummy stream", __FUNCTION__, mId.string());
// Ok, have a dummy stream and there's at least one other output stream,
// so remove the dummy
sp<Camera3StreamInterface> deletedStream = mOutputStreams.get(mDummyStreamId);
if (deletedStream == nullptr) {
SET_ERR_L("Dummy stream %d does not appear to exist", mDummyStreamId);
return INVALID_OPERATION;
}
mOutputStreams.remove(mDummyStreamId);
// Free up the stream endpoint so that it can be used by some other stream
res = deletedStream->disconnect();
if (res != OK) {
SET_ERR_L("Can't disconnect deleted dummy stream %d", mDummyStreamId);
// fall through since we want to still list the stream as deleted.
}
mDeletedStreams.add(deletedStream);
mDummyStreamId = NO_STREAM;
return res;
}
void Camera3Device::setErrorState(const char *fmt, ...) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
va_list args;
va_start(args, fmt);
setErrorStateLockedV(fmt, args);
va_end(args);
}
void Camera3Device::setErrorStateV(const char *fmt, va_list args) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
setErrorStateLockedV(fmt, args);
}
void Camera3Device::setErrorStateLocked(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
setErrorStateLockedV(fmt, args);
va_end(args);
}
void Camera3Device::setErrorStateLockedV(const char *fmt, va_list args) {
// Print out all error messages to log
String8 errorCause = String8::formatV(fmt, args);
ALOGE("Camera %s: %s", mId.string(), errorCause.string());
// But only do error state transition steps for the first error
if (mStatus == STATUS_ERROR || mStatus == STATUS_UNINITIALIZED) return;
mErrorCause = errorCause;
if (mRequestThread != nullptr) {
mRequestThread->setPaused(true);
}
internalUpdateStatusLocked(STATUS_ERROR);
// Notify upstream about a device error
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE,
CaptureResultExtras());
}
// Save stack trace. View by dumping it later.
CameraTraces::saveTrace();
// TODO: consider adding errorCause and client pid/procname
}
/**
* In-flight request management
*/
status_t Camera3Device::registerInFlight(uint32_t frameNumber,
int32_t numBuffers, CaptureResultExtras resultExtras, bool hasInput,
bool hasAppCallback, nsecs_t maxExpectedDuration,
std::set<String8>& physicalCameraIds, bool isStillCapture,
bool isZslCapture, const SurfaceMap& outputSurfaces) {
ATRACE_CALL();
Mutex::Autolock l(mInFlightLock);
ssize_t res;
res = mInFlightMap.add(frameNumber, InFlightRequest(numBuffers, resultExtras, hasInput,
hasAppCallback, maxExpectedDuration, physicalCameraIds, isStillCapture, isZslCapture,
outputSurfaces));
if (res < 0) return res;
if (mInFlightMap.size() == 1) {
// Hold a separate dedicated tracker lock to prevent race with disconnect and also
// avoid a deadlock during reprocess requests.
Mutex::Autolock l(mTrackerLock);
if (mStatusTracker != nullptr) {
mStatusTracker->markComponentActive(mInFlightStatusId);
}
}
mExpectedInflightDuration += maxExpectedDuration;
return OK;
}
void Camera3Device::returnOutputBuffers(
const camera3_stream_buffer_t *outputBuffers, size_t numBuffers,
nsecs_t timestamp, bool timestampIncreasing,
const SurfaceMap& outputSurfaces,
const CaptureResultExtras &inResultExtras) {
for (size_t i = 0; i < numBuffers; i++)
{
if (outputBuffers[i].buffer == nullptr) {
if (!mUseHalBufManager) {
// With HAL buffer management API, HAL sometimes will have to return buffers that
// has not got a output buffer handle filled yet. This is though illegal if HAL
// buffer management API is not being used.
ALOGE("%s: cannot return a null buffer!", __FUNCTION__);
}
continue;
}
Camera3StreamInterface *stream = Camera3Stream::cast(outputBuffers[i].stream);
int streamId = stream->getId();
const auto& it = outputSurfaces.find(streamId);
status_t res = OK;
if (it != outputSurfaces.end()) {
res = stream->returnBuffer(
outputBuffers[i], timestamp, timestampIncreasing, it->second,
inResultExtras.frameNumber);
} else {
res = stream->returnBuffer(
outputBuffers[i], timestamp, timestampIncreasing, std::vector<size_t> (),
inResultExtras.frameNumber);
}
// Note: stream may be deallocated at this point, if this buffer was
// the last reference to it.
if (res == NO_INIT || res == DEAD_OBJECT) {
ALOGV("Can't return buffer to its stream: %s (%d)", strerror(-res), res);
} else if (res != OK) {
ALOGE("Can't return buffer to its stream: %s (%d)", strerror(-res), res);
}
// Long processing consumers can cause returnBuffer timeout for shared stream
// If that happens, cancel the buffer and send a buffer error to client
if (it != outputSurfaces.end() && res == TIMED_OUT &&
outputBuffers[i].status == CAMERA3_BUFFER_STATUS_OK) {
// cancel the buffer
camera3_stream_buffer_t sb = outputBuffers[i];
sb.status = CAMERA3_BUFFER_STATUS_ERROR;
stream->returnBuffer(sb, /*timestamp*/0, timestampIncreasing, std::vector<size_t> (),
inResultExtras.frameNumber);
// notify client buffer error
sp<NotificationListener> listener;
{
Mutex::Autolock l(mOutputLock);
listener = mListener.promote();
}
if (listener != nullptr) {
CaptureResultExtras extras = inResultExtras;
extras.errorStreamId = streamId;
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER,
extras);
}
}
}
}
void Camera3Device::removeInFlightMapEntryLocked(int idx) {
ATRACE_CALL();
nsecs_t duration = mInFlightMap.valueAt(idx).maxExpectedDuration;
mInFlightMap.removeItemsAt(idx, 1);
// Indicate idle inFlightMap to the status tracker
if (mInFlightMap.size() == 0) {
mRequestBufferSM.onInflightMapEmpty();
// Hold a separate dedicated tracker lock to prevent race with disconnect and also
// avoid a deadlock during reprocess requests.
Mutex::Autolock l(mTrackerLock);
if (mStatusTracker != nullptr) {
mStatusTracker->markComponentIdle(mInFlightStatusId, Fence::NO_FENCE);
}
}
mExpectedInflightDuration -= duration;
}
void Camera3Device::removeInFlightRequestIfReadyLocked(int idx) {
const InFlightRequest &request = mInFlightMap.valueAt(idx);
const uint32_t frameNumber = mInFlightMap.keyAt(idx);
nsecs_t sensorTimestamp = request.sensorTimestamp;
nsecs_t shutterTimestamp = request.shutterTimestamp;
// Check if it's okay to remove the request from InFlightMap:
// In the case of a successful request:
// all input and output buffers, all result metadata, shutter callback
// arrived.
// In the case of a unsuccessful request:
// all input and output buffers arrived.
if (request.numBuffersLeft == 0 &&
(request.skipResultMetadata ||
(request.haveResultMetadata && shutterTimestamp != 0))) {
if (request.stillCapture) {
ATRACE_ASYNC_END("still capture", frameNumber);
}
ATRACE_ASYNC_END("frame capture", frameNumber);
// Sanity check - if sensor timestamp matches shutter timestamp in the
// case of request having callback.
if (request.hasCallback && request.requestStatus == OK &&
sensorTimestamp != shutterTimestamp) {
SET_ERR("sensor timestamp (%" PRId64
") for frame %d doesn't match shutter timestamp (%" PRId64 ")",
sensorTimestamp, frameNumber, shutterTimestamp);
}
// for an unsuccessful request, it may have pending output buffers to
// return.
assert(request.requestStatus != OK ||
request.pendingOutputBuffers.size() == 0);
returnOutputBuffers(request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(), 0, /*timestampIncreasing*/true,
request.outputSurfaces, request.resultExtras);
removeInFlightMapEntryLocked(idx);
ALOGVV("%s: removed frame %d from InFlightMap", __FUNCTION__, frameNumber);
}
// Sanity check - if we have too many in-flight frames with long total inflight duration,
// something has likely gone wrong. This might still be legit only if application send in
// a long burst of long exposure requests.
if (mExpectedInflightDuration > kMinWarnInflightDuration) {
if (!mIsConstrainedHighSpeedConfiguration && mInFlightMap.size() > kInFlightWarnLimit) {
CLOGW("In-flight list too large: %zu, total inflight duration %" PRIu64,
mInFlightMap.size(), mExpectedInflightDuration);
} else if (mIsConstrainedHighSpeedConfiguration && mInFlightMap.size() >
kInFlightWarnLimitHighSpeed) {
CLOGW("In-flight list too large for high speed configuration: %zu,"
"total inflight duration %" PRIu64,
mInFlightMap.size(), mExpectedInflightDuration);
}
}
}
void Camera3Device::flushInflightRequests() {
ATRACE_CALL();
{ // First return buffers cached in mInFlightMap
Mutex::Autolock l(mInFlightLock);
for (size_t idx = 0; idx < mInFlightMap.size(); idx++) {
const InFlightRequest &request = mInFlightMap.valueAt(idx);
returnOutputBuffers(request.pendingOutputBuffers.array(),
request.pendingOutputBuffers.size(), 0,
/*timestampIncreasing*/true, request.outputSurfaces,
request.resultExtras);
}
mInFlightMap.clear();
mExpectedInflightDuration = 0;
}
// Then return all inflight buffers not returned by HAL
std::vector<std::pair<int32_t, int32_t>> inflightKeys;
mInterface->getInflightBufferKeys(&inflightKeys);
// Inflight buffers for HAL buffer manager
std::vector<uint64_t> inflightRequestBufferKeys;
mInterface->getInflightRequestBufferKeys(&inflightRequestBufferKeys);
// (streamId, frameNumber, buffer_handle_t*) tuple for all inflight buffers.
// frameNumber will be -1 for buffers from HAL buffer manager
std::vector<std::tuple<int32_t, int32_t, buffer_handle_t*>> inflightBuffers;
inflightBuffers.reserve(inflightKeys.size() + inflightRequestBufferKeys.size());
for (auto& pair : inflightKeys) {
int32_t frameNumber = pair.first;
int32_t streamId = pair.second;
buffer_handle_t* buffer;
status_t res = mInterface->popInflightBuffer(frameNumber, streamId, &buffer);
if (res != OK) {
ALOGE("%s: Frame %d: No in-flight buffer for stream %d",
__FUNCTION__, frameNumber, streamId);
continue;
}
inflightBuffers.push_back(std::make_tuple(streamId, frameNumber, buffer));
}
for (auto& bufferId : inflightRequestBufferKeys) {
int32_t streamId = -1;
buffer_handle_t* buffer = nullptr;
status_t res = mInterface->popInflightRequestBuffer(bufferId, &buffer, &streamId);
if (res != OK) {
ALOGE("%s: cannot find in-flight buffer %" PRIu64, __FUNCTION__, bufferId);
continue;
}
inflightBuffers.push_back(std::make_tuple(streamId, /*frameNumber*/-1, buffer));
}
int32_t inputStreamId = (mInputStream != nullptr) ? mInputStream->getId() : -1;
for (auto& tuple : inflightBuffers) {
status_t res = OK;
int32_t streamId = std::get<0>(tuple);
int32_t frameNumber = std::get<1>(tuple);
buffer_handle_t* buffer = std::get<2>(tuple);
camera3_stream_buffer_t streamBuffer;
streamBuffer.buffer = buffer;
streamBuffer.status = CAMERA3_BUFFER_STATUS_ERROR;
streamBuffer.acquire_fence = -1;
streamBuffer.release_fence = -1;
// First check if the buffer belongs to deleted stream
bool streamDeleted = false;
for (auto& stream : mDeletedStreams) {
if (streamId == stream->getId()) {
streamDeleted = true;
// Return buffer to deleted stream
camera3_stream* halStream = stream->asHalStream();
streamBuffer.stream = halStream;
switch (halStream->stream_type) {
case CAMERA3_STREAM_OUTPUT:
res = stream->returnBuffer(streamBuffer, /*timestamp*/ 0,
/*timestampIncreasing*/true, std::vector<size_t> (), frameNumber);
if (res != OK) {
ALOGE("%s: Can't return output buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
break;
case CAMERA3_STREAM_INPUT:
res = stream->returnInputBuffer(streamBuffer);
if (res != OK) {
ALOGE("%s: Can't return input buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
break;
default: // Bi-direcitonal stream is deprecated
ALOGE("%s: stream %d has unknown stream type %d",
__FUNCTION__, streamId, halStream->stream_type);
break;
}
break;
}
}
if (streamDeleted) {
continue;
}
// Then check against configured streams
if (streamId == inputStreamId) {
streamBuffer.stream = mInputStream->asHalStream();
res = mInputStream->returnInputBuffer(streamBuffer);
if (res != OK) {
ALOGE("%s: Can't return input buffer for frame %d to"
" stream %d: %s (%d)", __FUNCTION__,
frameNumber, streamId, strerror(-res), res);
}
} else {
sp<Camera3StreamInterface> stream = mOutputStreams.get(streamId);
if (stream == nullptr) {
ALOGE("%s: Output stream id %d not found!", __FUNCTION__, streamId);
continue;
}
streamBuffer.stream = stream->asHalStream();
returnOutputBuffers(&streamBuffer, /*size*/1, /*timestamp*/ 0);
}
}
}
void Camera3Device::insertResultLocked(CaptureResult *result,
uint32_t frameNumber) {
if (result == nullptr) return;
camera_metadata_t *meta = const_cast<camera_metadata_t *>(
result->mMetadata.getAndLock());
set_camera_metadata_vendor_id(meta, mVendorTagId);
result->mMetadata.unlock(meta);
if (result->mMetadata.update(ANDROID_REQUEST_FRAME_COUNT,
(int32_t*)&frameNumber, 1) != OK) {
SET_ERR("Failed to set frame number %d in metadata", frameNumber);
return;
}
if (result->mMetadata.update(ANDROID_REQUEST_ID, &result->mResultExtras.requestId, 1) != OK) {
SET_ERR("Failed to set request ID in metadata for frame %d", frameNumber);
return;
}
// Update vendor tag id for physical metadata
for (auto& physicalMetadata : result->mPhysicalMetadatas) {
camera_metadata_t *pmeta = const_cast<camera_metadata_t *>(
physicalMetadata.mPhysicalCameraMetadata.getAndLock());
set_camera_metadata_vendor_id(pmeta, mVendorTagId);
physicalMetadata.mPhysicalCameraMetadata.unlock(pmeta);
}
// Valid result, insert into queue
List<CaptureResult>::iterator queuedResult =
mResultQueue.insert(mResultQueue.end(), CaptureResult(*result));
ALOGVV("%s: result requestId = %" PRId32 ", frameNumber = %" PRId64
", burstId = %" PRId32, __FUNCTION__,
queuedResult->mResultExtras.requestId,
queuedResult->mResultExtras.frameNumber,
queuedResult->mResultExtras.burstId);
mResultSignal.signal();
}
void Camera3Device::sendPartialCaptureResult(const camera_metadata_t * partialResult,
const CaptureResultExtras &resultExtras, uint32_t frameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mOutputLock);
CaptureResult captureResult;
captureResult.mResultExtras = resultExtras;
captureResult.mMetadata = partialResult;
// Fix up result metadata for monochrome camera.
status_t res = fixupMonochromeTags(mDeviceInfo, captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
insertResultLocked(&captureResult, frameNumber);
}
void Camera3Device::sendCaptureResult(CameraMetadata &pendingMetadata,
CaptureResultExtras &resultExtras,
CameraMetadata &collectedPartialResult,
uint32_t frameNumber,
bool reprocess, bool zslStillCapture,
const std::vector<PhysicalCaptureResultInfo>& physicalMetadatas) {
ATRACE_CALL();
if (pendingMetadata.isEmpty())
return;
Mutex::Autolock l(mOutputLock);
// TODO: need to track errors for tighter bounds on expected frame number
if (reprocess) {
if (frameNumber < mNextReprocessResultFrameNumber) {
SET_ERR("Out-of-order reprocess capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, mNextReprocessResultFrameNumber);
return;
}
mNextReprocessResultFrameNumber = frameNumber + 1;
} else if (zslStillCapture) {
if (frameNumber < mNextZslStillResultFrameNumber) {
SET_ERR("Out-of-order ZSL still capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, mNextZslStillResultFrameNumber);
return;
}
mNextZslStillResultFrameNumber = frameNumber + 1;
} else {
if (frameNumber < mNextResultFrameNumber) {
SET_ERR("Out-of-order capture result metadata submitted! "
"(got frame number %d, expecting %d)",
frameNumber, mNextResultFrameNumber);
return;
}
mNextResultFrameNumber = frameNumber + 1;
}
CaptureResult captureResult;
captureResult.mResultExtras = resultExtras;
captureResult.mMetadata = pendingMetadata;
captureResult.mPhysicalMetadatas = physicalMetadatas;
// Append any previous partials to form a complete result
if (mUsePartialResult && !collectedPartialResult.isEmpty()) {
captureResult.mMetadata.append(collectedPartialResult);
}
captureResult.mMetadata.sort();
// Check that there's a timestamp in the result metadata
camera_metadata_entry timestamp = captureResult.mMetadata.find(ANDROID_SENSOR_TIMESTAMP);
if (timestamp.count == 0) {
SET_ERR("No timestamp provided by HAL for frame %d!",
frameNumber);
return;
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
camera_metadata_entry timestamp =
physicalMetadata.mPhysicalCameraMetadata.find(ANDROID_SENSOR_TIMESTAMP);
if (timestamp.count == 0) {
SET_ERR("No timestamp provided by HAL for physical camera %s frame %d!",
String8(physicalMetadata.mPhysicalCameraId).c_str(), frameNumber);
return;
}
}
// Fix up some result metadata to account for HAL-level distortion correction
status_t res =
mDistortionMappers[mId.c_str()].correctCaptureResult(&captureResult.mMetadata);
if (res != OK) {
SET_ERR("Unable to correct capture result metadata for frame %d: %s (%d)",
frameNumber, strerror(res), res);
return;
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
String8 cameraId8(physicalMetadata.mPhysicalCameraId);
if (mDistortionMappers.find(cameraId8.c_str()) == mDistortionMappers.end()) {
continue;
}
res = mDistortionMappers[cameraId8.c_str()].correctCaptureResult(
&physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Unable to correct physical capture result metadata for frame %d: %s (%d)",
frameNumber, strerror(res), res);
return;
}
}
// Fix up result metadata for monochrome camera.
res = fixupMonochromeTags(mDeviceInfo, captureResult.mMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
for (auto& physicalMetadata : captureResult.mPhysicalMetadatas) {
String8 cameraId8(physicalMetadata.mPhysicalCameraId);
res = fixupMonochromeTags(mPhysicalDeviceInfoMap.at(cameraId8.c_str()),
physicalMetadata.mPhysicalCameraMetadata);
if (res != OK) {
SET_ERR("Failed to override result metadata: %s (%d)", strerror(-res), res);
return;
}
}
std::unordered_map<std::string, CameraMetadata> monitoredPhysicalMetadata;
for (auto& m : physicalMetadatas) {
monitoredPhysicalMetadata.emplace(String8(m.mPhysicalCameraId).string(),
CameraMetadata(m.mPhysicalCameraMetadata));
}
mTagMonitor.monitorMetadata(TagMonitor::RESULT,
frameNumber, timestamp.data.i64[0], captureResult.mMetadata,
monitoredPhysicalMetadata);
insertResultLocked(&captureResult, frameNumber);
}
/**
* Camera HAL device callback methods
*/
void Camera3Device::processCaptureResult(const camera3_capture_result *result) {
ATRACE_CALL();
status_t res;
uint32_t frameNumber = result->frame_number;
if (result->result == NULL && result->num_output_buffers == 0 &&
result->input_buffer == NULL) {
SET_ERR("No result data provided by HAL for frame %d",
frameNumber);
return;
}
if (!mUsePartialResult &&
result->result != NULL &&
result->partial_result != 1) {
SET_ERR("Result is malformed for frame %d: partial_result %u must be 1"
" if partial result is not supported",
frameNumber, result->partial_result);
return;
}
bool isPartialResult = false;
CameraMetadata collectedPartialResult;
bool hasInputBufferInRequest = false;
// Get shutter timestamp and resultExtras from list of in-flight requests,
// where it was added by the shutter notification for this frame. If the
// shutter timestamp isn't received yet, append the output buffers to the
// in-flight request and they will be returned when the shutter timestamp
// arrives. Update the in-flight status and remove the in-flight entry if
// all result data and shutter timestamp have been received.
nsecs_t shutterTimestamp = 0;
{
Mutex::Autolock l(mInFlightLock);
ssize_t idx = mInFlightMap.indexOfKey(frameNumber);
if (idx == NAME_NOT_FOUND) {
SET_ERR("Unknown frame number for capture result: %d",
frameNumber);
return;
}
InFlightRequest &request = mInFlightMap.editValueAt(idx);
ALOGVV("%s: got InFlightRequest requestId = %" PRId32
", frameNumber = %" PRId64 ", burstId = %" PRId32
", partialResultCount = %d, hasCallback = %d",
__FUNCTION__, request.resultExtras.requestId,
request.resultExtras.frameNumber, request.resultExtras.burstId,
result->partial_result, request.hasCallback);
// Always update the partial count to the latest one if it's not 0
// (buffers only). When framework aggregates adjacent partial results
// into one, the latest partial count will be used.
if (result->partial_result != 0)
request.resultExtras.partialResultCount = result->partial_result;
// Check if this result carries only partial metadata
if (mUsePartialResult && result->result != NULL) {
if (result->partial_result > mNumPartialResults || result->partial_result < 1) {
SET_ERR("Result is malformed for frame %d: partial_result %u must be in"
" the range of [1, %d] when metadata is included in the result",
frameNumber, result->partial_result, mNumPartialResults);
return;
}
isPartialResult = (result->partial_result < mNumPartialResults);
if (isPartialResult && result->num_physcam_metadata) {
SET_ERR("Result is malformed for frame %d: partial_result not allowed for"
" physical camera result", frameNumber);
return;
}
if (isPartialResult) {
request.collectedPartialResult.append(result->result);
}
if (isPartialResult && request.hasCallback) {
// Send partial capture result
sendPartialCaptureResult(result->result, request.resultExtras,
frameNumber);
}
}
shutterTimestamp = request.shutterTimestamp;
hasInputBufferInRequest = request.hasInputBuffer;
// Did we get the (final) result metadata for this capture?
if (result->result != NULL && !isPartialResult) {
if (request.physicalCameraIds.size() != result->num_physcam_metadata) {
SET_ERR("Expected physical Camera metadata count %d not equal to actual count %d",
request.physicalCameraIds.size(), result->num_physcam_metadata);
return;
}
if (request.haveResultMetadata) {
SET_ERR("Called multiple times with metadata for frame %d",
frameNumber);
return;
}
for (uint32_t i = 0; i < result->num_physcam_metadata; i++) {
String8 physicalId(result->physcam_ids[i]);
std::set<String8>::iterator cameraIdIter =
request.physicalCameraIds.find(physicalId);
if (cameraIdIter != request.physicalCameraIds.end()) {
request.physicalCameraIds.erase(cameraIdIter);
} else {
SET_ERR("Total result for frame %d has already returned for camera %s",
frameNumber, physicalId.c_str());
return;
}
}
if (mUsePartialResult &&
!request.collectedPartialResult.isEmpty()) {
collectedPartialResult.acquire(
request.collectedPartialResult);
}
request.haveResultMetadata = true;
}
uint32_t numBuffersReturned = result->num_output_buffers;
if (result->input_buffer != NULL) {
if (hasInputBufferInRequest) {
numBuffersReturned += 1;
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request",
__FUNCTION__);
}
}
request.numBuffersLeft -= numBuffersReturned;
if (request.numBuffersLeft < 0) {
SET_ERR("Too many buffers returned for frame %d",
frameNumber);
return;
}
camera_metadata_ro_entry_t entry;
res = find_camera_metadata_ro_entry(result->result,
ANDROID_SENSOR_TIMESTAMP, &entry);
if (res == OK && entry.count == 1) {
request.sensorTimestamp = entry.data.i64[0];
}
// If shutter event isn't received yet, append the output buffers to
// the in-flight request. Otherwise, return the output buffers to
// streams.
if (shutterTimestamp == 0) {
request.pendingOutputBuffers.appendArray(result->output_buffers,
result->num_output_buffers);
} else {
bool timestampIncreasing = !(request.zslCapture || request.hasInputBuffer);
returnOutputBuffers(result->output_buffers,
result->num_output_buffers, shutterTimestamp, timestampIncreasing,
request.outputSurfaces, request.resultExtras);
}
if (result->result != NULL && !isPartialResult) {
for (uint32_t i = 0; i < result->num_physcam_metadata; i++) {
CameraMetadata physicalMetadata;
physicalMetadata.append(result->physcam_metadata[i]);
request.physicalMetadatas.push_back({String16(result->physcam_ids[i]),
physicalMetadata});
}
if (shutterTimestamp == 0) {
request.pendingMetadata = result->result;
request.collectedPartialResult = collectedPartialResult;
} else if (request.hasCallback) {
CameraMetadata metadata;
metadata = result->result;
sendCaptureResult(metadata, request.resultExtras,
collectedPartialResult, frameNumber,
hasInputBufferInRequest, request.zslCapture && request.stillCapture,
request.physicalMetadatas);
}
}
removeInFlightRequestIfReadyLocked(idx);
} // scope for mInFlightLock
if (result->input_buffer != NULL) {
if (hasInputBufferInRequest) {
Camera3Stream *stream =
Camera3Stream::cast(result->input_buffer->stream);
res = stream->returnInputBuffer(*(result->input_buffer));
// Note: stream may be deallocated at this point, if this buffer was the
// last reference to it.
if (res != OK) {
ALOGE("%s: RequestThread: Can't return input buffer for frame %d to"
" its stream:%s (%d)", __FUNCTION__,
frameNumber, strerror(-res), res);
}
} else {
ALOGW("%s: Input buffer should be NULL if there is no input"
" buffer sent in the request, skipping input buffer return.",
__FUNCTION__);
}
}
}
void Camera3Device::notify(const camera3_notify_msg *msg) {
ATRACE_CALL();
sp<NotificationListener> listener;
{
Mutex::Autolock l(mOutputLock);
listener = mListener.promote();
}
if (msg == NULL) {
SET_ERR("HAL sent NULL notify message!");
return;
}
switch (msg->type) {
case CAMERA3_MSG_ERROR: {
notifyError(msg->message.error, listener);
break;
}
case CAMERA3_MSG_SHUTTER: {
notifyShutter(msg->message.shutter, listener);
break;
}
default:
SET_ERR("Unknown notify message from HAL: %d",
msg->type);
}
}
void Camera3Device::notifyError(const camera3_error_msg_t &msg,
sp<NotificationListener> listener) {
ATRACE_CALL();
// Map camera HAL error codes to ICameraDeviceCallback error codes
// Index into this with the HAL error code
static const int32_t halErrorMap[CAMERA3_MSG_NUM_ERRORS] = {
// 0 = Unused error code
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR,
// 1 = CAMERA3_MSG_ERROR_DEVICE
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE,
// 2 = CAMERA3_MSG_ERROR_REQUEST
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
// 3 = CAMERA3_MSG_ERROR_RESULT
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT,
// 4 = CAMERA3_MSG_ERROR_BUFFER
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER
};
int32_t errorCode =
((msg.error_code >= 0) &&
(msg.error_code < CAMERA3_MSG_NUM_ERRORS)) ?
halErrorMap[msg.error_code] :
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_INVALID_ERROR;
int streamId = 0;
String16 physicalCameraId;
if (msg.error_stream != NULL) {
Camera3Stream *stream =
Camera3Stream::cast(msg.error_stream);
streamId = stream->getId();
physicalCameraId = String16(stream->physicalCameraId());
}
ALOGV("Camera %s: %s: HAL error, frame %d, stream %d: %d",
mId.string(), __FUNCTION__, msg.frame_number,
streamId, msg.error_code);
CaptureResultExtras resultExtras;
switch (errorCode) {
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_DEVICE:
// SET_ERR calls notifyError
SET_ERR("Camera HAL reported serious device error");
break;
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST:
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT:
case hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_BUFFER:
{
Mutex::Autolock l(mInFlightLock);
ssize_t idx = mInFlightMap.indexOfKey(msg.frame_number);
if (idx >= 0) {
InFlightRequest &r = mInFlightMap.editValueAt(idx);
r.requestStatus = msg.error_code;
resultExtras = r.resultExtras;
bool logicalDeviceResultError = false;
if (hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_RESULT ==
errorCode) {
if (physicalCameraId.size() > 0) {
String8 cameraId(physicalCameraId);
auto iter = r.physicalCameraIds.find(cameraId);
if (iter == r.physicalCameraIds.end()) {
ALOGE("%s: Reported result failure for physical camera device: %s "
" which is not part of the respective request!",
__FUNCTION__, cameraId.string());
break;
}
r.physicalCameraIds.erase(iter);
resultExtras.errorPhysicalCameraId = physicalCameraId;
} else {
logicalDeviceResultError = true;
}
}
if (logicalDeviceResultError
|| hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST ==
errorCode) {
r.skipResultMetadata = true;
}
if (logicalDeviceResultError) {
// In case of missing result check whether the buffers
// returned. If they returned, then remove inflight
// request.
// TODO: should we call this for ERROR_CAMERA_REQUEST as well?
// otherwise we are depending on HAL to send the buffers back after
// calling notifyError. Not sure if that's in the spec.
removeInFlightRequestIfReadyLocked(idx);
}
} else {
resultExtras.frameNumber = msg.frame_number;
ALOGE("Camera %s: %s: cannot find in-flight request on "
"frame %" PRId64 " error", mId.string(), __FUNCTION__,
resultExtras.frameNumber);
}
}
resultExtras.errorStreamId = streamId;
if (listener != NULL) {
listener->notifyError(errorCode, resultExtras);
} else {
ALOGE("Camera %s: %s: no listener available", mId.string(), __FUNCTION__);
}
break;
default:
// SET_ERR calls notifyError
SET_ERR("Unknown error message from HAL: %d", msg.error_code);
break;
}
}
void Camera3Device::notifyShutter(const camera3_shutter_msg_t &msg,
sp<NotificationListener> listener) {
ATRACE_CALL();
ssize_t idx;
// Set timestamp for the request in the in-flight tracking
// and get the request ID to send upstream
{
Mutex::Autolock l(mInFlightLock);
idx = mInFlightMap.indexOfKey(msg.frame_number);
if (idx >= 0) {
InFlightRequest &r = mInFlightMap.editValueAt(idx);
// Verify ordering of shutter notifications
{
Mutex::Autolock l(mOutputLock);
// TODO: need to track errors for tighter bounds on expected frame number.
if (r.hasInputBuffer) {
if (msg.frame_number < mNextReprocessShutterFrameNumber) {
SET_ERR("Reprocess shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
mNextReprocessShutterFrameNumber, msg.frame_number);
return;
}
mNextReprocessShutterFrameNumber = msg.frame_number + 1;
} else if (r.zslCapture && r.stillCapture) {
if (msg.frame_number < mNextZslStillShutterFrameNumber) {
SET_ERR("ZSL still capture shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
mNextZslStillShutterFrameNumber, msg.frame_number);
return;
}
mNextZslStillShutterFrameNumber = msg.frame_number + 1;
} else {
if (msg.frame_number < mNextShutterFrameNumber) {
SET_ERR("Shutter notification out-of-order. Expected "
"notification for frame %d, got frame %d",
mNextShutterFrameNumber, msg.frame_number);
return;
}
mNextShutterFrameNumber = msg.frame_number + 1;
}
}
r.shutterTimestamp = msg.timestamp;
if (r.hasCallback) {
ALOGVV("Camera %s: %s: Shutter fired for frame %d (id %d) at %" PRId64,
mId.string(), __FUNCTION__,
msg.frame_number, r.resultExtras.requestId, msg.timestamp);
// Call listener, if any
if (listener != NULL) {
listener->notifyShutter(r.resultExtras, msg.timestamp);
}
// send pending result and buffers
sendCaptureResult(r.pendingMetadata, r.resultExtras,
r.collectedPartialResult, msg.frame_number,
r.hasInputBuffer, r.zslCapture && r.stillCapture,
r.physicalMetadatas);
}
bool timestampIncreasing = !(r.zslCapture || r.hasInputBuffer);
returnOutputBuffers(r.pendingOutputBuffers.array(),
r.pendingOutputBuffers.size(), r.shutterTimestamp, timestampIncreasing,
r.outputSurfaces, r.resultExtras);
r.pendingOutputBuffers.clear();
removeInFlightRequestIfReadyLocked(idx);
}
}
if (idx < 0) {
SET_ERR("Shutter notification for non-existent frame number %d",
msg.frame_number);
}
}
CameraMetadata Camera3Device::getLatestRequestLocked() {
ALOGV("%s", __FUNCTION__);
CameraMetadata retVal;
if (mRequestThread != NULL) {
retVal = mRequestThread->getLatestRequest();
}
return retVal;
}
void Camera3Device::monitorMetadata(TagMonitor::eventSource source,
int64_t frameNumber, nsecs_t timestamp, const CameraMetadata& metadata,
const std::unordered_map<std::string, CameraMetadata>& physicalMetadata) {
mTagMonitor.monitorMetadata(source, frameNumber, timestamp, metadata,
physicalMetadata);
}
/**
* HalInterface inner class methods
*/
Camera3Device::HalInterface::HalInterface(
sp<ICameraDeviceSession> &session,
std::shared_ptr<RequestMetadataQueue> queue,
bool useHalBufManager) :
mHidlSession(session),
mRequestMetadataQueue(queue),
mUseHalBufManager(useHalBufManager),
mIsReconfigurationQuerySupported(true) {
// Check with hardware service manager if we can downcast these interfaces
// Somewhat expensive, so cache the results at startup
auto castResult_3_5 = device::V3_5::ICameraDeviceSession::castFrom(mHidlSession);
if (castResult_3_5.isOk()) {
mHidlSession_3_5 = castResult_3_5;
}
auto castResult_3_4 = device::V3_4::ICameraDeviceSession::castFrom(mHidlSession);
if (castResult_3_4.isOk()) {
mHidlSession_3_4 = castResult_3_4;
}
auto castResult_3_3 = device::V3_3::ICameraDeviceSession::castFrom(mHidlSession);
if (castResult_3_3.isOk()) {
mHidlSession_3_3 = castResult_3_3;
}
}
Camera3Device::HalInterface::HalInterface() : mUseHalBufManager(false) {}
Camera3Device::HalInterface::HalInterface(const HalInterface& other) :
mHidlSession(other.mHidlSession),
mRequestMetadataQueue(other.mRequestMetadataQueue),
mUseHalBufManager(other.mUseHalBufManager) {}
bool Camera3Device::HalInterface::valid() {
return (mHidlSession != nullptr);
}
void Camera3Device::HalInterface::clear() {
mHidlSession_3_5.clear();
mHidlSession_3_4.clear();
mHidlSession_3_3.clear();
mHidlSession.clear();
}
status_t Camera3Device::HalInterface::constructDefaultRequestSettings(
camera3_request_template_t templateId,
/*out*/ camera_metadata_t **requestTemplate) {
ATRACE_NAME("CameraHal::constructDefaultRequestSettings");
if (!valid()) return INVALID_OPERATION;
status_t res = OK;
common::V1_0::Status status;
auto requestCallback = [&status, &requestTemplate]
(common::V1_0::Status s, const device::V3_2::CameraMetadata& request) {
status = s;
if (status == common::V1_0::Status::OK) {
const camera_metadata *r =
reinterpret_cast<const camera_metadata_t*>(request.data());
size_t expectedSize = request.size();
int ret = validate_camera_metadata_structure(r, &expectedSize);
if (ret == OK || ret == CAMERA_METADATA_VALIDATION_SHIFTED) {
*requestTemplate = clone_camera_metadata(r);
if (*requestTemplate == nullptr) {
ALOGE("%s: Unable to clone camera metadata received from HAL",
__FUNCTION__);
status = common::V1_0::Status::INTERNAL_ERROR;
}
} else {
ALOGE("%s: Malformed camera metadata received from HAL", __FUNCTION__);
status = common::V1_0::Status::INTERNAL_ERROR;
}
}
};
hardware::Return<void> err;
RequestTemplate id;
switch (templateId) {
case CAMERA3_TEMPLATE_PREVIEW:
id = RequestTemplate::PREVIEW;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
id = RequestTemplate::STILL_CAPTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
id = RequestTemplate::VIDEO_RECORD;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
id = RequestTemplate::VIDEO_SNAPSHOT;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
id = RequestTemplate::ZERO_SHUTTER_LAG;
break;
case CAMERA3_TEMPLATE_MANUAL:
id = RequestTemplate::MANUAL;
break;
default:
// Unknown template ID, or this HAL is too old to support it
return BAD_VALUE;
}
err = mHidlSession->constructDefaultRequestSettings(id, requestCallback);
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
res = DEAD_OBJECT;
} else {
res = CameraProviderManager::mapToStatusT(status);
}
return res;
}
bool Camera3Device::HalInterface::isReconfigurationRequired(CameraMetadata& oldSessionParams,
CameraMetadata& newSessionParams) {
// We do reconfiguration by default;
bool ret = true;
if ((mHidlSession_3_5 != nullptr) && mIsReconfigurationQuerySupported) {
android::hardware::hidl_vec<uint8_t> oldParams, newParams;
camera_metadata_t* oldSessioMeta = const_cast<camera_metadata_t*>(
oldSessionParams.getAndLock());
camera_metadata_t* newSessioMeta = const_cast<camera_metadata_t*>(
newSessionParams.getAndLock());
oldParams.setToExternal(reinterpret_cast<uint8_t*>(oldSessioMeta),
get_camera_metadata_size(oldSessioMeta));
newParams.setToExternal(reinterpret_cast<uint8_t*>(newSessioMeta),
get_camera_metadata_size(newSessioMeta));
hardware::camera::common::V1_0::Status callStatus;
bool required;
auto hidlCb = [&callStatus, &required] (hardware::camera::common::V1_0::Status s,
bool requiredFlag) {
callStatus = s;
required = requiredFlag;
};
auto err = mHidlSession_3_5->isReconfigurationRequired(oldParams, newParams, hidlCb);
oldSessionParams.unlock(oldSessioMeta);
newSessionParams.unlock(newSessioMeta);
if (err.isOk()) {
switch (callStatus) {
case hardware::camera::common::V1_0::Status::OK:
ret = required;
break;
case hardware::camera::common::V1_0::Status::METHOD_NOT_SUPPORTED:
mIsReconfigurationQuerySupported = false;
ret = true;
break;
default:
ALOGV("%s: Reconfiguration query failed: %d", __FUNCTION__, callStatus);
ret = true;
}
} else {
ALOGE("%s: Unexpected binder error: %s", __FUNCTION__, err.description().c_str());
ret = true;
}
}
return ret;
}
status_t Camera3Device::HalInterface::configureStreams(const camera_metadata_t *sessionParams,
camera3_stream_configuration *config, const std::vector<uint32_t>& bufferSizes) {
ATRACE_NAME("CameraHal::configureStreams");
if (!valid()) return INVALID_OPERATION;
status_t res = OK;
// Convert stream config to HIDL
std::set<int> activeStreams;
device::V3_2::StreamConfiguration requestedConfiguration3_2;
device::V3_4::StreamConfiguration requestedConfiguration3_4;
requestedConfiguration3_2.streams.resize(config->num_streams);
requestedConfiguration3_4.streams.resize(config->num_streams);
for (size_t i = 0; i < config->num_streams; i++) {
device::V3_2::Stream &dst3_2 = requestedConfiguration3_2.streams[i];
device::V3_4::Stream &dst3_4 = requestedConfiguration3_4.streams[i];
camera3_stream_t *src = config->streams[i];
Camera3Stream* cam3stream = Camera3Stream::cast(src);
cam3stream->setBufferFreedListener(this);
int streamId = cam3stream->getId();
StreamType streamType;
switch (src->stream_type) {
case CAMERA3_STREAM_OUTPUT:
streamType = StreamType::OUTPUT;
break;
case CAMERA3_STREAM_INPUT:
streamType = StreamType::INPUT;
break;
default:
ALOGE("%s: Stream %d: Unsupported stream type %d",
__FUNCTION__, streamId, config->streams[i]->stream_type);
return BAD_VALUE;
}
dst3_2.id = streamId;
dst3_2.streamType = streamType;
dst3_2.width = src->width;
dst3_2.height = src->height;
dst3_2.usage = mapToConsumerUsage(cam3stream->getUsage());
dst3_2.rotation = mapToStreamRotation((camera3_stream_rotation_t) src->rotation);
// For HidlSession version 3.5 or newer, the format and dataSpace sent
// to HAL are original, not the overriden ones.
if (mHidlSession_3_5 != nullptr) {
dst3_2.format = mapToPixelFormat(cam3stream->isFormatOverridden() ?
cam3stream->getOriginalFormat() : src->format);
dst3_2.dataSpace = mapToHidlDataspace(cam3stream->isDataSpaceOverridden() ?
cam3stream->getOriginalDataSpace() : src->data_space);
} else {
dst3_2.format = mapToPixelFormat(src->format);
dst3_2.dataSpace = mapToHidlDataspace(src->data_space);
}
dst3_4.v3_2 = dst3_2;
dst3_4.bufferSize = bufferSizes[i];
if (src->physical_camera_id != nullptr) {
dst3_4.physicalCameraId = src->physical_camera_id;
}
activeStreams.insert(streamId);
// Create Buffer ID map if necessary
if (mBufferIdMaps.count(streamId) == 0) {
mBufferIdMaps.emplace(streamId, BufferIdMap{});
}
}
// remove BufferIdMap for deleted streams
for(auto it = mBufferIdMaps.begin(); it != mBufferIdMaps.end();) {
int streamId = it->first;
bool active = activeStreams.count(streamId) > 0;
if (!active) {
it = mBufferIdMaps.erase(it);
} else {
++it;
}
}
StreamConfigurationMode operationMode;
res = mapToStreamConfigurationMode(
(camera3_stream_configuration_mode_t) config->operation_mode,
/*out*/ &operationMode);
if (res != OK) {
return res;
}
requestedConfiguration3_2.operationMode = operationMode;
requestedConfiguration3_4.operationMode = operationMode;
requestedConfiguration3_4.sessionParams.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(sessionParams)),
get_camera_metadata_size(sessionParams));
// Invoke configureStreams
device::V3_3::HalStreamConfiguration finalConfiguration;
device::V3_4::HalStreamConfiguration finalConfiguration3_4;
common::V1_0::Status status;
auto configStream34Cb = [&status, &finalConfiguration3_4]
(common::V1_0::Status s, const device::V3_4::HalStreamConfiguration& halConfiguration) {
finalConfiguration3_4 = halConfiguration;
status = s;
};
auto postprocConfigStream34 = [&finalConfiguration, &finalConfiguration3_4]
(hardware::Return<void>& err) -> status_t {
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
return DEAD_OBJECT;
}
finalConfiguration.streams.resize(finalConfiguration3_4.streams.size());
for (size_t i = 0; i < finalConfiguration3_4.streams.size(); i++) {
finalConfiguration.streams[i] = finalConfiguration3_4.streams[i].v3_3;
}
return OK;
};
// See which version of HAL we have
if (mHidlSession_3_5 != nullptr) {
ALOGV("%s: v3.5 device found", __FUNCTION__);
device::V3_5::StreamConfiguration requestedConfiguration3_5;
requestedConfiguration3_5.v3_4 = requestedConfiguration3_4;
requestedConfiguration3_5.streamConfigCounter = mNextStreamConfigCounter++;
auto err = mHidlSession_3_5->configureStreams_3_5(
requestedConfiguration3_5, configStream34Cb);
res = postprocConfigStream34(err);
if (res != OK) {
return res;
}
} else if (mHidlSession_3_4 != nullptr) {
// We do; use v3.4 for the call
ALOGV("%s: v3.4 device found", __FUNCTION__);
auto err = mHidlSession_3_4->configureStreams_3_4(
requestedConfiguration3_4, configStream34Cb);
res = postprocConfigStream34(err);
if (res != OK) {
return res;
}
} else if (mHidlSession_3_3 != nullptr) {
// We do; use v3.3 for the call
ALOGV("%s: v3.3 device found", __FUNCTION__);
auto err = mHidlSession_3_3->configureStreams_3_3(requestedConfiguration3_2,
[&status, &finalConfiguration]
(common::V1_0::Status s, const device::V3_3::HalStreamConfiguration& halConfiguration) {
finalConfiguration = halConfiguration;
status = s;
});
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
return DEAD_OBJECT;
}
} else {
// We don't; use v3.2 call and construct a v3.3 HalStreamConfiguration
ALOGV("%s: v3.2 device found", __FUNCTION__);
HalStreamConfiguration finalConfiguration_3_2;
auto err = mHidlSession->configureStreams(requestedConfiguration3_2,
[&status, &finalConfiguration_3_2]
(common::V1_0::Status s, const HalStreamConfiguration& halConfiguration) {
finalConfiguration_3_2 = halConfiguration;
status = s;
});
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
return DEAD_OBJECT;
}
finalConfiguration.streams.resize(finalConfiguration_3_2.streams.size());
for (size_t i = 0; i < finalConfiguration_3_2.streams.size(); i++) {
finalConfiguration.streams[i].v3_2 = finalConfiguration_3_2.streams[i];
finalConfiguration.streams[i].overrideDataSpace =
requestedConfiguration3_2.streams[i].dataSpace;
}
}
if (status != common::V1_0::Status::OK ) {
return CameraProviderManager::mapToStatusT(status);
}
// And convert output stream configuration from HIDL
for (size_t i = 0; i < config->num_streams; i++) {
camera3_stream_t *dst = config->streams[i];
int streamId = Camera3Stream::cast(dst)->getId();
// Start scan at i, with the assumption that the stream order matches
size_t realIdx = i;
bool found = false;
size_t halStreamCount = finalConfiguration.streams.size();
for (size_t idx = 0; idx < halStreamCount; idx++) {
if (finalConfiguration.streams[realIdx].v3_2.id == streamId) {
found = true;
break;
}
realIdx = (realIdx >= halStreamCount - 1) ? 0 : realIdx + 1;
}
if (!found) {
ALOGE("%s: Stream %d not found in stream configuration response from HAL",
__FUNCTION__, streamId);
return INVALID_OPERATION;
}
device::V3_3::HalStream &src = finalConfiguration.streams[realIdx];
Camera3Stream* dstStream = Camera3Stream::cast(dst);
int overrideFormat = mapToFrameworkFormat(src.v3_2.overrideFormat);
android_dataspace overrideDataSpace = mapToFrameworkDataspace(src.overrideDataSpace);
if (dstStream->getOriginalFormat() != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
dstStream->setFormatOverride(false);
dstStream->setDataSpaceOverride(false);
if (dst->format != overrideFormat) {
ALOGE("%s: Stream %d: Format override not allowed for format 0x%x", __FUNCTION__,
streamId, dst->format);
}
if (dst->data_space != overrideDataSpace) {
ALOGE("%s: Stream %d: DataSpace override not allowed for format 0x%x", __FUNCTION__,
streamId, dst->format);
}
} else {
bool needFormatOverride =
requestedConfiguration3_2.streams[i].format != src.v3_2.overrideFormat;
bool needDataspaceOverride =
requestedConfiguration3_2.streams[i].dataSpace != src.overrideDataSpace;
// Override allowed with IMPLEMENTATION_DEFINED
dstStream->setFormatOverride(needFormatOverride);
dstStream->setDataSpaceOverride(needDataspaceOverride);
dst->format = overrideFormat;
dst->data_space = overrideDataSpace;
}
if (dst->stream_type == CAMERA3_STREAM_INPUT) {
if (src.v3_2.producerUsage != 0) {
ALOGE("%s: Stream %d: INPUT streams must have 0 for producer usage",
__FUNCTION__, streamId);
return INVALID_OPERATION;
}
dstStream->setUsage(
mapConsumerToFrameworkUsage(src.v3_2.consumerUsage));
} else {
// OUTPUT
if (src.v3_2.consumerUsage != 0) {
ALOGE("%s: Stream %d: OUTPUT streams must have 0 for consumer usage",
__FUNCTION__, streamId);
return INVALID_OPERATION;
}
dstStream->setUsage(
mapProducerToFrameworkUsage(src.v3_2.producerUsage));
}
dst->max_buffers = src.v3_2.maxBuffers;
}
return res;
}
status_t Camera3Device::HalInterface::wrapAsHidlRequest(camera3_capture_request_t* request,
/*out*/device::V3_2::CaptureRequest* captureRequest,
/*out*/std::vector<native_handle_t*>* handlesCreated,
/*out*/std::vector<std::pair<int32_t, int32_t>>* inflightBuffers) {
ATRACE_CALL();
if (captureRequest == nullptr || handlesCreated == nullptr || inflightBuffers == nullptr) {
ALOGE("%s: captureRequest (%p), handlesCreated (%p), and inflightBuffers(%p) "
"must not be null", __FUNCTION__, captureRequest, handlesCreated, inflightBuffers);
return BAD_VALUE;
}
captureRequest->frameNumber = request->frame_number;
captureRequest->fmqSettingsSize = 0;
{
std::lock_guard<std::mutex> lock(mInflightLock);
if (request->input_buffer != nullptr) {
int32_t streamId = Camera3Stream::cast(request->input_buffer->stream)->getId();
buffer_handle_t buf = *(request->input_buffer->buffer);
auto pair = getBufferId(buf, streamId);
bool isNewBuffer = pair.first;
uint64_t bufferId = pair.second;
captureRequest->inputBuffer.streamId = streamId;
captureRequest->inputBuffer.bufferId = bufferId;
captureRequest->inputBuffer.buffer = (isNewBuffer) ? buf : nullptr;
captureRequest->inputBuffer.status = BufferStatus::OK;
native_handle_t *acquireFence = nullptr;
if (request->input_buffer->acquire_fence != -1) {
acquireFence = native_handle_create(1,0);
acquireFence->data[0] = request->input_buffer->acquire_fence;
handlesCreated->push_back(acquireFence);
}
captureRequest->inputBuffer.acquireFence = acquireFence;
captureRequest->inputBuffer.releaseFence = nullptr;
pushInflightBufferLocked(captureRequest->frameNumber, streamId,
request->input_buffer->buffer);
inflightBuffers->push_back(std::make_pair(captureRequest->frameNumber, streamId));
} else {
captureRequest->inputBuffer.streamId = -1;
captureRequest->inputBuffer.bufferId = BUFFER_ID_NO_BUFFER;
}
captureRequest->outputBuffers.resize(request->num_output_buffers);
for (size_t i = 0; i < request->num_output_buffers; i++) {
const camera3_stream_buffer_t *src = request->output_buffers + i;
StreamBuffer &dst = captureRequest->outputBuffers[i];
int32_t streamId = Camera3Stream::cast(src->stream)->getId();
if (src->buffer != nullptr) {
buffer_handle_t buf = *(src->buffer);
auto pair = getBufferId(buf, streamId);
bool isNewBuffer = pair.first;
dst.bufferId = pair.second;
dst.buffer = isNewBuffer ? buf : nullptr;
native_handle_t *acquireFence = nullptr;
if (src->acquire_fence != -1) {
acquireFence = native_handle_create(1,0);
acquireFence->data[0] = src->acquire_fence;
handlesCreated->push_back(acquireFence);
}
dst.acquireFence = acquireFence;
} else if (mUseHalBufManager) {
// HAL buffer management path
dst.bufferId = BUFFER_ID_NO_BUFFER;
dst.buffer = nullptr;
dst.acquireFence = nullptr;
} else {
ALOGE("%s: cannot send a null buffer in capture request!", __FUNCTION__);
return BAD_VALUE;
}
dst.streamId = streamId;
dst.status = BufferStatus::OK;
dst.releaseFence = nullptr;
// Output buffers are empty when using HAL buffer manager
if (!mUseHalBufManager) {
pushInflightBufferLocked(captureRequest->frameNumber, streamId, src->buffer);
inflightBuffers->push_back(std::make_pair(captureRequest->frameNumber, streamId));
}
}
}
return OK;
}
void Camera3Device::HalInterface::cleanupNativeHandles(
std::vector<native_handle_t*> *handles, bool closeFd) {
if (handles == nullptr) {
return;
}
if (closeFd) {
for (auto& handle : *handles) {
native_handle_close(handle);
}
}
for (auto& handle : *handles) {
native_handle_delete(handle);
}
handles->clear();
return;
}
status_t Camera3Device::HalInterface::processBatchCaptureRequests(
std::vector<camera3_capture_request_t*>& requests,/*out*/uint32_t* numRequestProcessed) {
ATRACE_NAME("CameraHal::processBatchCaptureRequests");
if (!valid()) return INVALID_OPERATION;
sp<device::V3_4::ICameraDeviceSession> hidlSession_3_4;
auto castResult_3_4 = device::V3_4::ICameraDeviceSession::castFrom(mHidlSession);
if (castResult_3_4.isOk()) {
hidlSession_3_4 = castResult_3_4;
}
hardware::hidl_vec<device::V3_2::CaptureRequest> captureRequests;
hardware::hidl_vec<device::V3_4::CaptureRequest> captureRequests_3_4;
size_t batchSize = requests.size();
if (hidlSession_3_4 != nullptr) {
captureRequests_3_4.resize(batchSize);
} else {
captureRequests.resize(batchSize);
}
std::vector<native_handle_t*> handlesCreated;
std::vector<std::pair<int32_t, int32_t>> inflightBuffers;
status_t res = OK;
for (size_t i = 0; i < batchSize; i++) {
if (hidlSession_3_4 != nullptr) {
res = wrapAsHidlRequest(requests[i], /*out*/&captureRequests_3_4[i].v3_2,
/*out*/&handlesCreated, /*out*/&inflightBuffers);
} else {
res = wrapAsHidlRequest(requests[i], /*out*/&captureRequests[i],
/*out*/&handlesCreated, /*out*/&inflightBuffers);
}
if (res != OK) {
popInflightBuffers(inflightBuffers);
cleanupNativeHandles(&handlesCreated);
return res;
}
}
std::vector<device::V3_2::BufferCache> cachesToRemove;
{
std::lock_guard<std::mutex> lock(mBufferIdMapLock);
for (auto& pair : mFreedBuffers) {
// The stream might have been removed since onBufferFreed
if (mBufferIdMaps.find(pair.first) != mBufferIdMaps.end()) {
cachesToRemove.push_back({pair.first, pair.second});
}
}
mFreedBuffers.clear();
}
common::V1_0::Status status = common::V1_0::Status::INTERNAL_ERROR;
*numRequestProcessed = 0;
// Write metadata to FMQ.
for (size_t i = 0; i < batchSize; i++) {
camera3_capture_request_t* request = requests[i];
device::V3_2::CaptureRequest* captureRequest;
if (hidlSession_3_4 != nullptr) {
captureRequest = &captureRequests_3_4[i].v3_2;
} else {
captureRequest = &captureRequests[i];
}
if (request->settings != nullptr) {
size_t settingsSize = get_camera_metadata_size(request->settings);
if (mRequestMetadataQueue != nullptr && mRequestMetadataQueue->write(
reinterpret_cast<const uint8_t*>(request->settings), settingsSize)) {
captureRequest->settings.resize(0);
captureRequest->fmqSettingsSize = settingsSize;
} else {
if (mRequestMetadataQueue != nullptr) {
ALOGW("%s: couldn't utilize fmq, fallback to hwbinder", __FUNCTION__);
}
captureRequest->settings.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(request->settings)),
get_camera_metadata_size(request->settings));
captureRequest->fmqSettingsSize = 0u;
}
} else {
// A null request settings maps to a size-0 CameraMetadata
captureRequest->settings.resize(0);
captureRequest->fmqSettingsSize = 0u;
}
if (hidlSession_3_4 != nullptr) {
captureRequests_3_4[i].physicalCameraSettings.resize(request->num_physcam_settings);
for (size_t j = 0; j < request->num_physcam_settings; j++) {
if (request->physcam_settings != nullptr) {
size_t settingsSize = get_camera_metadata_size(request->physcam_settings[j]);
if (mRequestMetadataQueue != nullptr && mRequestMetadataQueue->write(
reinterpret_cast<const uint8_t*>(request->physcam_settings[j]),
settingsSize)) {
captureRequests_3_4[i].physicalCameraSettings[j].settings.resize(0);
captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize =
settingsSize;
} else {
if (mRequestMetadataQueue != nullptr) {
ALOGW("%s: couldn't utilize fmq, fallback to hwbinder", __FUNCTION__);
}
captureRequests_3_4[i].physicalCameraSettings[j].settings.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(
request->physcam_settings[j])),
get_camera_metadata_size(request->physcam_settings[j]));
captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = 0u;
}
} else {
captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = 0u;
captureRequests_3_4[i].physicalCameraSettings[j].settings.resize(0);
}
captureRequests_3_4[i].physicalCameraSettings[j].physicalCameraId =
request->physcam_id[j];
}
}
}
hardware::details::return_status err;
auto resultCallback =
[&status, &numRequestProcessed] (auto s, uint32_t n) {
status = s;
*numRequestProcessed = n;
};
if (hidlSession_3_4 != nullptr) {
err = hidlSession_3_4->processCaptureRequest_3_4(captureRequests_3_4, cachesToRemove,
resultCallback);
} else {
err = mHidlSession->processCaptureRequest(captureRequests, cachesToRemove,
resultCallback);
}
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
status = common::V1_0::Status::CAMERA_DISCONNECTED;
}
if (status == common::V1_0::Status::OK && *numRequestProcessed != batchSize) {
ALOGE("%s: processCaptureRequest returns OK but processed %d/%zu requests",
__FUNCTION__, *numRequestProcessed, batchSize);
status = common::V1_0::Status::INTERNAL_ERROR;
}
res = CameraProviderManager::mapToStatusT(status);
if (res == OK) {
if (mHidlSession->isRemote()) {
// Only close acquire fence FDs when the HIDL transaction succeeds (so the FDs have been
// sent to camera HAL processes)
cleanupNativeHandles(&handlesCreated, /*closeFd*/true);
} else {
// In passthrough mode the FDs are now owned by HAL
cleanupNativeHandles(&handlesCreated);
}
} else {
popInflightBuffers(inflightBuffers);
cleanupNativeHandles(&handlesCreated);
}
return res;
}
status_t Camera3Device::HalInterface::flush() {
ATRACE_NAME("CameraHal::flush");
if (!valid()) return INVALID_OPERATION;
status_t res = OK;
auto err = mHidlSession->flush();
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
res = DEAD_OBJECT;
} else {
res = CameraProviderManager::mapToStatusT(err);
}
return res;
}
status_t Camera3Device::HalInterface::dump(int /*fd*/) {
ATRACE_NAME("CameraHal::dump");
if (!valid()) return INVALID_OPERATION;
// Handled by CameraProviderManager::dump
return OK;
}
status_t Camera3Device::HalInterface::close() {
ATRACE_NAME("CameraHal::close()");
if (!valid()) return INVALID_OPERATION;
status_t res = OK;
auto err = mHidlSession->close();
// Interface will be dead shortly anyway, so don't log errors
if (!err.isOk()) {
res = DEAD_OBJECT;
}
return res;
}
void Camera3Device::HalInterface::signalPipelineDrain(const std::vector<int>& streamIds) {
ATRACE_NAME("CameraHal::signalPipelineDrain");
if (!valid() || mHidlSession_3_5 == nullptr) {
ALOGE("%s called on invalid camera!", __FUNCTION__);
return;
}
auto err = mHidlSession_3_5->signalStreamFlush(streamIds, mNextStreamConfigCounter - 1);
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
return;
}
}
void Camera3Device::HalInterface::getInflightBufferKeys(
std::vector<std::pair<int32_t, int32_t>>* out) {
std::lock_guard<std::mutex> lock(mInflightLock);
out->clear();
out->reserve(mInflightBufferMap.size());
for (auto& pair : mInflightBufferMap) {
uint64_t key = pair.first;
int32_t streamId = key & 0xFFFFFFFF;
int32_t frameNumber = (key >> 32) & 0xFFFFFFFF;
out->push_back(std::make_pair(frameNumber, streamId));
}
return;
}
void Camera3Device::HalInterface::getInflightRequestBufferKeys(
std::vector<uint64_t>* out) {
std::lock_guard<std::mutex> lock(mRequestedBuffersLock);
out->clear();
out->reserve(mRequestedBuffers.size());
for (auto& pair : mRequestedBuffers) {
out->push_back(pair.first);
}
return;
}
status_t Camera3Device::HalInterface::pushInflightBufferLocked(
int32_t frameNumber, int32_t streamId, buffer_handle_t *buffer) {
uint64_t key = static_cast<uint64_t>(frameNumber) << 32 | static_cast<uint64_t>(streamId);
mInflightBufferMap[key] = buffer;
return OK;
}
status_t Camera3Device::HalInterface::popInflightBuffer(
int32_t frameNumber, int32_t streamId,
/*out*/ buffer_handle_t **buffer) {
std::lock_guard<std::mutex> lock(mInflightLock);
uint64_t key = static_cast<uint64_t>(frameNumber) << 32 | static_cast<uint64_t>(streamId);
auto it = mInflightBufferMap.find(key);
if (it == mInflightBufferMap.end()) return NAME_NOT_FOUND;
if (buffer != nullptr) {
*buffer = it->second;
}
mInflightBufferMap.erase(it);
return OK;
}
void Camera3Device::HalInterface::popInflightBuffers(
const std::vector<std::pair<int32_t, int32_t>>& buffers) {
for (const auto& pair : buffers) {
int32_t frameNumber = pair.first;
int32_t streamId = pair.second;
popInflightBuffer(frameNumber, streamId, nullptr);
}
}
status_t Camera3Device::HalInterface::pushInflightRequestBuffer(
uint64_t bufferId, buffer_handle_t* buf, int32_t streamId) {
std::lock_guard<std::mutex> lock(mRequestedBuffersLock);
auto pair = mRequestedBuffers.insert({bufferId, {streamId, buf}});
if (!pair.second) {
ALOGE("%s: bufId %" PRIu64 " is already inflight!",
__FUNCTION__, bufferId);
return BAD_VALUE;
}
return OK;
}
// Find and pop a buffer_handle_t based on bufferId
status_t Camera3Device::HalInterface::popInflightRequestBuffer(
uint64_t bufferId,
/*out*/ buffer_handle_t** buffer,
/*optional out*/ int32_t* streamId) {
if (buffer == nullptr) {
ALOGE("%s: buffer (%p) must not be null", __FUNCTION__, buffer);
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mRequestedBuffersLock);
auto it = mRequestedBuffers.find(bufferId);
if (it == mRequestedBuffers.end()) {
ALOGE("%s: bufId %" PRIu64 " is not inflight!",
__FUNCTION__, bufferId);
return BAD_VALUE;
}
*buffer = it->second.second;
if (streamId != nullptr) {
*streamId = it->second.first;
}
mRequestedBuffers.erase(it);
return OK;
}
std::pair<bool, uint64_t> Camera3Device::HalInterface::getBufferId(
const buffer_handle_t& buf, int streamId) {
std::lock_guard<std::mutex> lock(mBufferIdMapLock);
BufferIdMap& bIdMap = mBufferIdMaps.at(streamId);
auto it = bIdMap.find(buf);
if (it == bIdMap.end()) {
bIdMap[buf] = mNextBufferId++;
ALOGV("stream %d now have %zu buffer caches, buf %p",
streamId, bIdMap.size(), buf);
return std::make_pair(true, mNextBufferId - 1);
} else {
return std::make_pair(false, it->second);
}
}
void Camera3Device::HalInterface::onBufferFreed(
int streamId, const native_handle_t* handle) {
std::lock_guard<std::mutex> lock(mBufferIdMapLock);
uint64_t bufferId = BUFFER_ID_NO_BUFFER;
auto mapIt = mBufferIdMaps.find(streamId);
if (mapIt == mBufferIdMaps.end()) {
// streamId might be from a deleted stream here
ALOGI("%s: stream %d has been removed",
__FUNCTION__, streamId);
return;
}
BufferIdMap& bIdMap = mapIt->second;
auto it = bIdMap.find(handle);
if (it == bIdMap.end()) {
ALOGW("%s: cannot find buffer %p in stream %d",
__FUNCTION__, handle, streamId);
return;
} else {
bufferId = it->second;
bIdMap.erase(it);
ALOGV("%s: stream %d now have %zu buffer caches after removing buf %p",
__FUNCTION__, streamId, bIdMap.size(), handle);
}
mFreedBuffers.push_back(std::make_pair(streamId, bufferId));
}
void Camera3Device::HalInterface::onStreamReConfigured(int streamId) {
std::lock_guard<std::mutex> lock(mBufferIdMapLock);
auto mapIt = mBufferIdMaps.find(streamId);
if (mapIt == mBufferIdMaps.end()) {
ALOGE("%s: streamId %d not found!", __FUNCTION__, streamId);
return;
}
BufferIdMap& bIdMap = mapIt->second;
for (const auto& it : bIdMap) {
uint64_t bufferId = it.second;
mFreedBuffers.push_back(std::make_pair(streamId, bufferId));
}
bIdMap.clear();
}
/**
* RequestThread inner class methods
*/
Camera3Device::RequestThread::RequestThread(wp<Camera3Device> parent,
sp<StatusTracker> statusTracker,
sp<HalInterface> interface, const Vector<int32_t>& sessionParamKeys,
bool useHalBufManager) :
Thread(/*canCallJava*/false),
mParent(parent),
mStatusTracker(statusTracker),
mInterface(interface),
mListener(nullptr),
mId(getId(parent)),
mReconfigured(false),
mDoPause(false),
mPaused(true),
mNotifyPipelineDrain(false),
mFrameNumber(0),
mLatestRequestId(NAME_NOT_FOUND),
mCurrentAfTriggerId(0),
mCurrentPreCaptureTriggerId(0),
mRepeatingLastFrameNumber(
hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES),
mPrepareVideoStream(false),
mConstrainedMode(false),
mRequestLatency(kRequestLatencyBinSize),
mSessionParamKeys(sessionParamKeys),
mLatestSessionParams(sessionParamKeys.size()),
mUseHalBufManager(useHalBufManager) {
mStatusId = statusTracker->addComponent();
}
Camera3Device::RequestThread::~RequestThread() {}
void Camera3Device::RequestThread::setNotificationListener(
wp<NotificationListener> listener) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
mListener = listener;
}
void Camera3Device::RequestThread::configurationComplete(bool isConstrainedHighSpeed,
const CameraMetadata& sessionParams) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
mReconfigured = true;
mLatestSessionParams = sessionParams;
// Prepare video stream for high speed recording.
mPrepareVideoStream = isConstrainedHighSpeed;
mConstrainedMode = isConstrainedHighSpeed;
}
status_t Camera3Device::RequestThread::queueRequestList(
List<sp<CaptureRequest> > &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
for (List<sp<CaptureRequest> >::iterator it = requests.begin(); it != requests.end();
++it) {
mRequestQueue.push_back(*it);
}
if (lastFrameNumber != NULL) {
*lastFrameNumber = mFrameNumber + mRequestQueue.size() - 1;
ALOGV("%s: requestId %d, mFrameNumber %" PRId32 ", lastFrameNumber %" PRId64 ".",
__FUNCTION__, (*(requests.begin()))->mResultExtras.requestId, mFrameNumber,
*lastFrameNumber);
}
unpauseForNewRequests();
return OK;
}
status_t Camera3Device::RequestThread::queueTrigger(
RequestTrigger trigger[],
size_t count) {
ATRACE_CALL();
Mutex::Autolock l(mTriggerMutex);
status_t ret;
for (size_t i = 0; i < count; ++i) {
ret = queueTriggerLocked(trigger[i]);
if (ret != OK) {
return ret;
}
}
return OK;
}
const String8& Camera3Device::RequestThread::getId(const wp<Camera3Device> &device) {
static String8 deadId("<DeadDevice>");
sp<Camera3Device> d = device.promote();
if (d != nullptr) return d->mId;
return deadId;
}
status_t Camera3Device::RequestThread::queueTriggerLocked(
RequestTrigger trigger) {
uint32_t tag = trigger.metadataTag;
ssize_t index = mTriggerMap.indexOfKey(tag);
switch (trigger.getTagType()) {
case TYPE_BYTE:
// fall-through
case TYPE_INT32:
break;
default:
ALOGE("%s: Type not supported: 0x%x", __FUNCTION__,
trigger.getTagType());
return INVALID_OPERATION;
}
/**
* Collect only the latest trigger, since we only have 1 field
* in the request settings per trigger tag, and can't send more than 1
* trigger per request.
*/
if (index != NAME_NOT_FOUND) {
mTriggerMap.editValueAt(index) = trigger;
} else {
mTriggerMap.add(tag, trigger);
}
return OK;
}
status_t Camera3Device::RequestThread::setRepeatingRequests(
const RequestList &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mRepeatingRequests.clear();
mRepeatingRequests.insert(mRepeatingRequests.begin(),
requests.begin(), requests.end());
unpauseForNewRequests();
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
bool Camera3Device::RequestThread::isRepeatingRequestLocked(const sp<CaptureRequest>& requestIn) {
if (mRepeatingRequests.empty()) {
return false;
}
int32_t requestId = requestIn->mResultExtras.requestId;
const RequestList &repeatRequests = mRepeatingRequests;
// All repeating requests are guaranteed to have same id so only check first quest
const sp<CaptureRequest> firstRequest = *repeatRequests.begin();
return (firstRequest->mResultExtras.requestId == requestId);
}
status_t Camera3Device::RequestThread::clearRepeatingRequests(/*out*/int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
return clearRepeatingRequestsLocked(lastFrameNumber);
}
status_t Camera3Device::RequestThread::clearRepeatingRequestsLocked(/*out*/int64_t *lastFrameNumber) {
mRepeatingRequests.clear();
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
status_t Camera3Device::RequestThread::clear(
/*out*/int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
ALOGV("RequestThread::%s:", __FUNCTION__);
mRepeatingRequests.clear();
// Send errors for all requests pending in the request queue, including
// pending repeating requests
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
for (RequestList::iterator it = mRequestQueue.begin();
it != mRequestQueue.end(); ++it) {
// Abort the input buffers for reprocess requests.
if ((*it)->mInputStream != NULL) {
camera3_stream_buffer_t inputBuffer;
status_t res = (*it)->mInputStream->getInputBuffer(&inputBuffer,
/*respectHalLimit*/ false);
if (res != OK) {
ALOGW("%s: %d: couldn't get input buffer while clearing the request "
"list: %s (%d)", __FUNCTION__, __LINE__, strerror(-res), res);
} else {
inputBuffer.status = CAMERA3_BUFFER_STATUS_ERROR;
res = (*it)->mInputStream->returnInputBuffer(inputBuffer);
if (res != OK) {
ALOGE("%s: %d: couldn't return input buffer while clearing the request "
"list: %s (%d)", __FUNCTION__, __LINE__, strerror(-res), res);
}
}
}
// Set the frame number this request would have had, if it
// had been submitted; this frame number will not be reused.
// The requestId and burstId fields were set when the request was
// submitted originally (in convertMetadataListToRequestListLocked)
(*it)->mResultExtras.frameNumber = mFrameNumber++;
listener->notifyError(hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
(*it)->mResultExtras);
}
}
mRequestQueue.clear();
Mutex::Autolock al(mTriggerMutex);
mTriggerMap.clear();
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
status_t Camera3Device::RequestThread::flush() {
ATRACE_CALL();
Mutex::Autolock l(mFlushLock);
return mInterface->flush();
}
void Camera3Device::RequestThread::setPaused(bool paused) {
ATRACE_CALL();
Mutex::Autolock l(mPauseLock);
mDoPause = paused;
mDoPauseSignal.signal();
}
status_t Camera3Device::RequestThread::waitUntilRequestProcessed(
int32_t requestId, nsecs_t timeout) {
ATRACE_CALL();
Mutex::Autolock l(mLatestRequestMutex);
status_t res;
while (mLatestRequestId != requestId) {
nsecs_t startTime = systemTime();
res = mLatestRequestSignal.waitRelative(mLatestRequestMutex, timeout);
if (res != OK) return res;
timeout -= (systemTime() - startTime);
}
return OK;
}
void Camera3Device::RequestThread::requestExit() {
// Call parent to set up shutdown
Thread::requestExit();
// The exit from any possible waits
mDoPauseSignal.signal();
mRequestSignal.signal();
mRequestLatency.log("ProcessCaptureRequest latency histogram");
mRequestLatency.reset();
}
void Camera3Device::RequestThread::checkAndStopRepeatingRequest() {
ATRACE_CALL();
bool surfaceAbandoned = false;
int64_t lastFrameNumber = 0;
sp<NotificationListener> listener;
{
Mutex::Autolock l(mRequestLock);
// Check all streams needed by repeating requests are still valid. Otherwise, stop
// repeating requests.
for (const auto& request : mRepeatingRequests) {
for (const auto& s : request->mOutputStreams) {
if (s->isAbandoned()) {
surfaceAbandoned = true;
clearRepeatingRequestsLocked(&lastFrameNumber);
break;
}
}
if (surfaceAbandoned) {
break;
}
}
listener = mListener.promote();
}
if (listener != NULL && surfaceAbandoned) {
listener->notifyRepeatingRequestError(lastFrameNumber);
}
}
bool Camera3Device::RequestThread::sendRequestsBatch() {
ATRACE_CALL();
status_t res;
size_t batchSize = mNextRequests.size();
std::vector<camera3_capture_request_t*> requests(batchSize);
uint32_t numRequestProcessed = 0;
for (size_t i = 0; i < batchSize; i++) {
requests[i] = &mNextRequests.editItemAt(i).halRequest;
ATRACE_ASYNC_BEGIN("frame capture", mNextRequests[i].halRequest.frame_number);
}
res = mInterface->processBatchCaptureRequests(requests, &numRequestProcessed);
bool triggerRemoveFailed = false;
NextRequest& triggerFailedRequest = mNextRequests.editItemAt(0);
for (size_t i = 0; i < numRequestProcessed; i++) {
NextRequest& nextRequest = mNextRequests.editItemAt(i);
nextRequest.submitted = true;
updateNextRequest(nextRequest);
if (!triggerRemoveFailed) {
// Remove any previously queued triggers (after unlock)
status_t removeTriggerRes = removeTriggers(mPrevRequest);
if (removeTriggerRes != OK) {
triggerRemoveFailed = true;
triggerFailedRequest = nextRequest;
}
}
}
if (triggerRemoveFailed) {
SET_ERR("RequestThread: Unable to remove triggers "
"(capture request %d, HAL device: %s (%d)",
triggerFailedRequest.halRequest.frame_number, strerror(-res), res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
if (res != OK) {
// Should only get a failure here for malformed requests or device-level
// errors, so consider all errors fatal. Bad metadata failures should
// come through notify.
SET_ERR("RequestThread: Unable to submit capture request %d to HAL device: %s (%d)",
mNextRequests[numRequestProcessed].halRequest.frame_number,
strerror(-res), res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
return true;
}
nsecs_t Camera3Device::RequestThread::calculateMaxExpectedDuration(const camera_metadata_t *request) {
nsecs_t maxExpectedDuration = kDefaultExpectedDuration;
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(request,
ANDROID_CONTROL_AE_MODE,
&e);
if (e.count == 0) return maxExpectedDuration;
switch (e.data.u8[0]) {
case ANDROID_CONTROL_AE_MODE_OFF:
find_camera_metadata_ro_entry(request,
ANDROID_SENSOR_EXPOSURE_TIME,
&e);
if (e.count > 0) {
maxExpectedDuration = e.data.i64[0];
}
find_camera_metadata_ro_entry(request,
ANDROID_SENSOR_FRAME_DURATION,
&e);
if (e.count > 0) {
maxExpectedDuration = std::max(e.data.i64[0], maxExpectedDuration);
}
break;
default:
find_camera_metadata_ro_entry(request,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
&e);
if (e.count > 1) {
maxExpectedDuration = 1e9 / e.data.u8[0];
}
break;
}
return maxExpectedDuration;
}
bool Camera3Device::RequestThread::skipHFRTargetFPSUpdate(int32_t tag,
const camera_metadata_ro_entry_t& newEntry, const camera_metadata_entry_t& currentEntry) {
if (mConstrainedMode && (ANDROID_CONTROL_AE_TARGET_FPS_RANGE == tag) &&
(newEntry.count == currentEntry.count) && (currentEntry.count == 2) &&
(currentEntry.data.i32[1] == newEntry.data.i32[1])) {
return true;
}
return false;
}
void Camera3Device::RequestThread::updateNextRequest(NextRequest& nextRequest) {
// Update the latest request sent to HAL
if (nextRequest.halRequest.settings != NULL) { // Don't update if they were unchanged
Mutex::Autolock al(mLatestRequestMutex);
camera_metadata_t* cloned = clone_camera_metadata(nextRequest.halRequest.settings);
mLatestRequest.acquire(cloned);
mLatestPhysicalRequest.clear();
for (uint32_t i = 0; i < nextRequest.halRequest.num_physcam_settings; i++) {
cloned = clone_camera_metadata(nextRequest.halRequest.physcam_settings[i]);
mLatestPhysicalRequest.emplace(nextRequest.halRequest.physcam_id[i],
CameraMetadata(cloned));
}
sp<Camera3Device> parent = mParent.promote();
if (parent != NULL) {
parent->monitorMetadata(TagMonitor::REQUEST,
nextRequest.halRequest.frame_number,
0, mLatestRequest, mLatestPhysicalRequest);
}
}
if (nextRequest.halRequest.settings != NULL) {
nextRequest.captureRequest->mSettingsList.begin()->metadata.unlock(
nextRequest.halRequest.settings);
}
cleanupPhysicalSettings(nextRequest.captureRequest, &nextRequest.halRequest);
}
bool Camera3Device::RequestThread::updateSessionParameters(const CameraMetadata& settings) {
ATRACE_CALL();
bool updatesDetected = false;
CameraMetadata updatedParams(mLatestSessionParams);
for (auto tag : mSessionParamKeys) {
camera_metadata_ro_entry entry = settings.find(tag);
camera_metadata_entry lastEntry = updatedParams.find(tag);
if (entry.count > 0) {
bool isDifferent = false;
if (lastEntry.count > 0) {
// Have a last value, compare to see if changed
if (lastEntry.type == entry.type &&
lastEntry.count == entry.count) {
// Same type and count, compare values
size_t bytesPerValue = camera_metadata_type_size[lastEntry.type];
size_t entryBytes = bytesPerValue * lastEntry.count;
int cmp = memcmp(entry.data.u8, lastEntry.data.u8, entryBytes);
if (cmp != 0) {
isDifferent = true;
}
} else {
// Count or type has changed
isDifferent = true;
}
} else {
// No last entry, so always consider to be different
isDifferent = true;
}
if (isDifferent) {
ALOGV("%s: Session parameter tag id %d changed", __FUNCTION__, tag);
if (!skipHFRTargetFPSUpdate(tag, entry, lastEntry)) {
updatesDetected = true;
}
updatedParams.update(entry);
}
} else if (lastEntry.count > 0) {
// Value has been removed
ALOGV("%s: Session parameter tag id %d removed", __FUNCTION__, tag);
updatedParams.erase(tag);
updatesDetected = true;
}
}
bool reconfigureRequired;
if (updatesDetected) {
reconfigureRequired = mInterface->isReconfigurationRequired(mLatestSessionParams,
updatedParams);
mLatestSessionParams = updatedParams;
} else {
reconfigureRequired = false;
}
return reconfigureRequired;
}
bool Camera3Device::RequestThread::threadLoop() {
ATRACE_CALL();
status_t res;
// Handle paused state.
if (waitIfPaused()) {
return true;
}
// Wait for the next batch of requests.
waitForNextRequestBatch();
if (mNextRequests.size() == 0) {
return true;
}
// Get the latest request ID, if any
int latestRequestId;
camera_metadata_entry_t requestIdEntry = mNextRequests[mNextRequests.size() - 1].
captureRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_ID);
if (requestIdEntry.count > 0) {
latestRequestId = requestIdEntry.data.i32[0];
} else {
ALOGW("%s: Did not have android.request.id set in the request.", __FUNCTION__);
latestRequestId = NAME_NOT_FOUND;
}
// 'mNextRequests' will at this point contain either a set of HFR batched requests
// or a single request from streaming or burst. In either case the first element
// should contain the latest camera settings that we need to check for any session
// parameter updates.
if (updateSessionParameters(mNextRequests[0].captureRequest->mSettingsList.begin()->metadata)) {
res = OK;
//Input stream buffers are already acquired at this point so an input stream
//will not be able to move to idle state unless we force it.
if (mNextRequests[0].captureRequest->mInputStream != nullptr) {
res = mNextRequests[0].captureRequest->mInputStream->forceToIdle();
if (res != OK) {
ALOGE("%s: Failed to force idle input stream: %d", __FUNCTION__, res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
}
if (res == OK) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->pauseStateNotify(true);
}
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
if (parent != nullptr) {
mReconfigured |= parent->reconfigureCamera(mLatestSessionParams);
}
statusTracker->markComponentActive(mStatusId);
setPaused(false);
}
if (mNextRequests[0].captureRequest->mInputStream != nullptr) {
mNextRequests[0].captureRequest->mInputStream->restoreConfiguredState();
if (res != OK) {
ALOGE("%s: Failed to restore configured input stream: %d", __FUNCTION__, res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
}
}
}
// Prepare a batch of HAL requests and output buffers.
res = prepareHalRequests();
if (res == TIMED_OUT) {
// Not a fatal error if getting output buffers time out.
cleanUpFailedRequests(/*sendRequestError*/ true);
// Check if any stream is abandoned.
checkAndStopRepeatingRequest();
return true;
} else if (res != OK) {
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
// Inform waitUntilRequestProcessed thread of a new request ID
{
Mutex::Autolock al(mLatestRequestMutex);
mLatestRequestId = latestRequestId;
mLatestRequestSignal.signal();
}
// Submit a batch of requests to HAL.
// Use flush lock only when submitting multilple requests in a batch.
// TODO: The problem with flush lock is flush() will be blocked by process_capture_request()
// which may take a long time to finish so synchronizing flush() and
// process_capture_request() defeats the purpose of cancelling requests ASAP with flush().
// For now, only synchronize for high speed recording and we should figure something out for
// removing the synchronization.
bool useFlushLock = mNextRequests.size() > 1;
if (useFlushLock) {
mFlushLock.lock();
}
ALOGVV("%s: %d: submitting %zu requests in a batch.", __FUNCTION__, __LINE__,
mNextRequests.size());
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onSubmittingRequest();
}
bool submitRequestSuccess = false;
nsecs_t tRequestStart = systemTime(SYSTEM_TIME_MONOTONIC);
submitRequestSuccess = sendRequestsBatch();
nsecs_t tRequestEnd = systemTime(SYSTEM_TIME_MONOTONIC);
mRequestLatency.add(tRequestStart, tRequestEnd);
if (useFlushLock) {
mFlushLock.unlock();
}
// Unset as current request
{
Mutex::Autolock l(mRequestLock);
mNextRequests.clear();
}
return submitRequestSuccess;
}
status_t Camera3Device::RequestThread::prepareHalRequests() {
ATRACE_CALL();
bool batchedRequest = mNextRequests[0].captureRequest->mBatchSize > 1;
for (size_t i = 0; i < mNextRequests.size(); i++) {
auto& nextRequest = mNextRequests.editItemAt(i);
sp<CaptureRequest> captureRequest = nextRequest.captureRequest;
camera3_capture_request_t* halRequest = &nextRequest.halRequest;
Vector<camera3_stream_buffer_t>* outputBuffers = &nextRequest.outputBuffers;
// Prepare a request to HAL
halRequest->frame_number = captureRequest->mResultExtras.frameNumber;
// Insert any queued triggers (before metadata is locked)
status_t res = insertTriggers(captureRequest);
if (res < 0) {
SET_ERR("RequestThread: Unable to insert triggers "
"(capture request %d, HAL device: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
int triggerCount = res;
bool triggersMixedIn = (triggerCount > 0 || mPrevTriggers > 0);
mPrevTriggers = triggerCount;
// If the request is the same as last, or we had triggers last time
bool newRequest = (mPrevRequest != captureRequest || triggersMixedIn) &&
// Request settings are all the same within one batch, so only treat the first
// request in a batch as new
!(batchedRequest && i > 0);
if (newRequest) {
/**
* HAL workaround:
* Insert a dummy trigger ID if a trigger is set but no trigger ID is
*/
res = addDummyTriggerIds(captureRequest);
if (res != OK) {
SET_ERR("RequestThread: Unable to insert dummy trigger IDs "
"(capture request %d, HAL device: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
{
// Correct metadata regions for distortion correction if enabled
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
List<PhysicalCameraSettings>::iterator it;
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
if (parent->mDistortionMappers.find(it->cameraId) ==
parent->mDistortionMappers.end()) {
continue;
}
res = parent->mDistortionMappers[it->cameraId].correctCaptureRequest(
&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for lens distortion for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
}
}
}
/**
* The request should be presorted so accesses in HAL
* are O(logn). Sidenote, sorting a sorted metadata is nop.
*/
captureRequest->mSettingsList.begin()->metadata.sort();
halRequest->settings = captureRequest->mSettingsList.begin()->metadata.getAndLock();
mPrevRequest = captureRequest;
ALOGVV("%s: Request settings are NEW", __FUNCTION__);
IF_ALOGV() {
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(
halRequest->settings,
ANDROID_CONTROL_AF_TRIGGER,
&e
);
if (e.count > 0) {
ALOGV("%s: Request (frame num %d) had AF trigger 0x%x",
__FUNCTION__,
halRequest->frame_number,
e.data.u8[0]);
}
}
} else {
// leave request.settings NULL to indicate 'reuse latest given'
ALOGVV("%s: Request settings are REUSED",
__FUNCTION__);
}
if (captureRequest->mSettingsList.size() > 1) {
halRequest->num_physcam_settings = captureRequest->mSettingsList.size() - 1;
halRequest->physcam_id = new const char* [halRequest->num_physcam_settings];
if (newRequest) {
halRequest->physcam_settings =
new const camera_metadata* [halRequest->num_physcam_settings];
} else {
halRequest->physcam_settings = nullptr;
}
auto it = ++captureRequest->mSettingsList.begin();
size_t i = 0;
for (; it != captureRequest->mSettingsList.end(); it++, i++) {
halRequest->physcam_id[i] = it->cameraId.c_str();
if (newRequest) {
it->metadata.sort();
halRequest->physcam_settings[i] = it->metadata.getAndLock();
}
}
}
uint32_t totalNumBuffers = 0;
// Fill in buffers
if (captureRequest->mInputStream != NULL) {
halRequest->input_buffer = &captureRequest->mInputBuffer;
totalNumBuffers += 1;
} else {
halRequest->input_buffer = NULL;
}
outputBuffers->insertAt(camera3_stream_buffer_t(), 0,
captureRequest->mOutputStreams.size());
halRequest->output_buffers = outputBuffers->array();
std::set<String8> requestedPhysicalCameras;
sp<Camera3Device> parent = mParent.promote();
if (parent == NULL) {
// Should not happen, and nowhere to send errors to, so just log it
CLOGE("RequestThread: Parent is gone");
return INVALID_OPERATION;
}
nsecs_t waitDuration = kBaseGetBufferWait + parent->getExpectedInFlightDuration();
SurfaceMap uniqueSurfaceIdMap;
for (size_t j = 0; j < captureRequest->mOutputStreams.size(); j++) {
sp<Camera3OutputStreamInterface> outputStream =
captureRequest->mOutputStreams.editItemAt(j);
int streamId = outputStream->getId();
// Prepare video buffers for high speed recording on the first video request.
if (mPrepareVideoStream && outputStream->isVideoStream()) {
// Only try to prepare video stream on the first video request.
mPrepareVideoStream = false;
res = outputStream->startPrepare(Camera3StreamInterface::ALLOCATE_PIPELINE_MAX,
false /*blockRequest*/);
while (res == NOT_ENOUGH_DATA) {
res = outputStream->prepareNextBuffer();
}
if (res != OK) {
ALOGW("%s: Preparing video buffers for high speed failed: %s (%d)",
__FUNCTION__, strerror(-res), res);
outputStream->cancelPrepare();
}
}
std::vector<size_t> uniqueSurfaceIds;
res = outputStream->getUniqueSurfaceIds(
captureRequest->mOutputSurfaces[streamId],
&uniqueSurfaceIds);
// INVALID_OPERATION is normal output for streams not supporting surfaceIds
if (res != OK && res != INVALID_OPERATION) {
ALOGE("%s: failed to query stream %d unique surface IDs",
__FUNCTION__, streamId);
return res;
}
if (res == OK) {
uniqueSurfaceIdMap.insert({streamId, std::move(uniqueSurfaceIds)});
}
if (mUseHalBufManager) {
if (outputStream->isAbandoned()) {
ALOGV("%s: stream %d is abandoned, skipping request", __FUNCTION__, streamId);
return TIMED_OUT;
}
// HAL will request buffer through requestStreamBuffer API
camera3_stream_buffer_t& buffer = outputBuffers->editItemAt(j);
buffer.stream = outputStream->asHalStream();
buffer.buffer = nullptr;
buffer.status = CAMERA3_BUFFER_STATUS_OK;
buffer.acquire_fence = -1;
buffer.release_fence = -1;
} else {
res = outputStream->getBuffer(&outputBuffers->editItemAt(j),
waitDuration,
captureRequest->mOutputSurfaces[streamId]);
if (res != OK) {
// Can't get output buffer from gralloc queue - this could be due to
// abandoned queue or other consumer misbehavior, so not a fatal
// error
ALOGV("RequestThread: Can't get output buffer, skipping request:"
" %s (%d)", strerror(-res), res);
return TIMED_OUT;
}
}
{
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
const String8& streamCameraId = outputStream->getPhysicalCameraId();
for (const auto& settings : captureRequest->mSettingsList) {
if ((streamCameraId.isEmpty() &&
parent->getId() == settings.cameraId.c_str()) ||
streamCameraId == settings.cameraId.c_str()) {
outputStream->fireBufferRequestForFrameNumber(
captureRequest->mResultExtras.frameNumber,
settings.metadata);
}
}
}
}
String8 physicalCameraId = outputStream->getPhysicalCameraId();
if (!physicalCameraId.isEmpty()) {
// Physical stream isn't supported for input request.
if (halRequest->input_buffer) {
CLOGE("Physical stream is not supported for input request");
return INVALID_OPERATION;
}
requestedPhysicalCameras.insert(physicalCameraId);
}
halRequest->num_output_buffers++;
}
totalNumBuffers += halRequest->num_output_buffers;
// Log request in the in-flight queue
// If this request list is for constrained high speed recording (not
// preview), and the current request is not the last one in the batch,
// do not send callback to the app.
bool hasCallback = true;
if (batchedRequest && i != mNextRequests.size()-1) {
hasCallback = false;
}
bool isStillCapture = false;
bool isZslCapture = false;
if (!mNextRequests[0].captureRequest->mSettingsList.begin()->metadata.isEmpty()) {
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(halRequest->settings, ANDROID_CONTROL_CAPTURE_INTENT, &e);
if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE)) {
isStillCapture = true;
ATRACE_ASYNC_BEGIN("still capture", mNextRequests[i].halRequest.frame_number);
}
find_camera_metadata_ro_entry(halRequest->settings, ANDROID_CONTROL_ENABLE_ZSL, &e);
if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_ENABLE_ZSL_TRUE)) {
isZslCapture = true;
}
}
res = parent->registerInFlight(halRequest->frame_number,
totalNumBuffers, captureRequest->mResultExtras,
/*hasInput*/halRequest->input_buffer != NULL,
hasCallback,
calculateMaxExpectedDuration(halRequest->settings),
requestedPhysicalCameras, isStillCapture, isZslCapture,
(mUseHalBufManager) ? uniqueSurfaceIdMap :
SurfaceMap{});
ALOGVV("%s: registered in flight requestId = %" PRId32 ", frameNumber = %" PRId64
", burstId = %" PRId32 ".",
__FUNCTION__,
captureRequest->mResultExtras.requestId, captureRequest->mResultExtras.frameNumber,
captureRequest->mResultExtras.burstId);
if (res != OK) {
SET_ERR("RequestThread: Unable to register new in-flight request:"
" %s (%d)", strerror(-res), res);
return INVALID_OPERATION;
}
}
return OK;
}
CameraMetadata Camera3Device::RequestThread::getLatestRequest() const {
ATRACE_CALL();
Mutex::Autolock al(mLatestRequestMutex);
ALOGV("RequestThread::%s", __FUNCTION__);
return mLatestRequest;
}
bool Camera3Device::RequestThread::isStreamPending(
sp<Camera3StreamInterface>& stream) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
for (const auto& nextRequest : mNextRequests) {
if (!nextRequest.submitted) {
for (const auto& s : nextRequest.captureRequest->mOutputStreams) {
if (stream == s) return true;
}
if (stream == nextRequest.captureRequest->mInputStream) return true;
}
}
for (const auto& request : mRequestQueue) {
for (const auto& s : request->mOutputStreams) {
if (stream == s) return true;
}
if (stream == request->mInputStream) return true;
}
for (const auto& request : mRepeatingRequests) {
for (const auto& s : request->mOutputStreams) {
if (stream == s) return true;
}
if (stream == request->mInputStream) return true;
}
return false;
}
bool Camera3Device::RequestThread::isOutputSurfacePending(int streamId, size_t surfaceId) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
for (const auto& nextRequest : mNextRequests) {
for (const auto& s : nextRequest.captureRequest->mOutputSurfaces) {
if (s.first == streamId) {
const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId);
if (it != s.second.end()) {
return true;
}
}
}
}
for (const auto& request : mRequestQueue) {
for (const auto& s : request->mOutputSurfaces) {
if (s.first == streamId) {
const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId);
if (it != s.second.end()) {
return true;
}
}
}
}
for (const auto& request : mRepeatingRequests) {
for (const auto& s : request->mOutputSurfaces) {
if (s.first == streamId) {
const auto &it = std::find(s.second.begin(), s.second.end(), surfaceId);
if (it != s.second.end()) {
return true;
}
}
}
}
return false;
}
void Camera3Device::RequestThread::signalPipelineDrain(const std::vector<int>& streamIds) {
if (!mUseHalBufManager) {
ALOGE("%s called for camera device not supporting HAL buffer management", __FUNCTION__);
return;
}
Mutex::Autolock pl(mPauseLock);
if (mPaused) {
mInterface->signalPipelineDrain(streamIds);
return;
}
// If request thread is still busy, wait until paused then notify HAL
mNotifyPipelineDrain = true;
mStreamIdsToBeDrained = streamIds;
}
nsecs_t Camera3Device::getExpectedInFlightDuration() {
ATRACE_CALL();
Mutex::Autolock al(mInFlightLock);
return mExpectedInflightDuration > kMinInflightDuration ?
mExpectedInflightDuration : kMinInflightDuration;
}
void Camera3Device::RequestThread::cleanupPhysicalSettings(sp<CaptureRequest> request,
camera3_capture_request_t *halRequest) {
if ((request == nullptr) || (halRequest == nullptr)) {
ALOGE("%s: Invalid request!", __FUNCTION__);
return;
}
if (halRequest->num_physcam_settings > 0) {
if (halRequest->physcam_id != nullptr) {
delete [] halRequest->physcam_id;
halRequest->physcam_id = nullptr;
}
if (halRequest->physcam_settings != nullptr) {
auto it = ++(request->mSettingsList.begin());
size_t i = 0;
for (; it != request->mSettingsList.end(); it++, i++) {
it->metadata.unlock(halRequest->physcam_settings[i]);
}
delete [] halRequest->physcam_settings;
halRequest->physcam_settings = nullptr;
}
}
}
void Camera3Device::RequestThread::cleanUpFailedRequests(bool sendRequestError) {
if (mNextRequests.empty()) {
return;
}
for (auto& nextRequest : mNextRequests) {
// Skip the ones that have been submitted successfully.
if (nextRequest.submitted) {
continue;
}
sp<CaptureRequest> captureRequest = nextRequest.captureRequest;
camera3_capture_request_t* halRequest = &nextRequest.halRequest;
Vector<camera3_stream_buffer_t>* outputBuffers = &nextRequest.outputBuffers;
if (halRequest->settings != NULL) {
captureRequest->mSettingsList.begin()->metadata.unlock(halRequest->settings);
}
cleanupPhysicalSettings(captureRequest, halRequest);
if (captureRequest->mInputStream != NULL) {
captureRequest->mInputBuffer.status = CAMERA3_BUFFER_STATUS_ERROR;
captureRequest->mInputStream->returnInputBuffer(captureRequest->mInputBuffer);
}
// No output buffer can be returned when using HAL buffer manager
if (!mUseHalBufManager) {
for (size_t i = 0; i < halRequest->num_output_buffers; i++) {
//Buffers that failed processing could still have
//valid acquire fence.
int acquireFence = (*outputBuffers)[i].acquire_fence;
if (0 <= acquireFence) {
close(acquireFence);
outputBuffers->editItemAt(i).acquire_fence = -1;
}
outputBuffers->editItemAt(i).status = CAMERA3_BUFFER_STATUS_ERROR;
captureRequest->mOutputStreams.editItemAt(i)->returnBuffer((*outputBuffers)[i], 0,
/*timestampIncreasing*/true, std::vector<size_t> (),
captureRequest->mResultExtras.frameNumber);
}
}
if (sendRequestError) {
Mutex::Autolock l(mRequestLock);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
captureRequest->mResultExtras);
}
}
// Remove yet-to-be submitted inflight request from inflightMap
{
sp<Camera3Device> parent = mParent.promote();
if (parent != NULL) {
Mutex::Autolock l(parent->mInFlightLock);
ssize_t idx = parent->mInFlightMap.indexOfKey(captureRequest->mResultExtras.frameNumber);
if (idx >= 0) {
ALOGV("%s: Remove inflight request from queue: frameNumber %" PRId64,
__FUNCTION__, captureRequest->mResultExtras.frameNumber);
parent->removeInFlightMapEntryLocked(idx);
}
}
}
}
Mutex::Autolock l(mRequestLock);
mNextRequests.clear();
}
void Camera3Device::RequestThread::waitForNextRequestBatch() {
ATRACE_CALL();
// Optimized a bit for the simple steady-state case (single repeating
// request), to avoid putting that request in the queue temporarily.
Mutex::Autolock l(mRequestLock);
assert(mNextRequests.empty());
NextRequest nextRequest;
nextRequest.captureRequest = waitForNextRequestLocked();
if (nextRequest.captureRequest == nullptr) {
return;
}
nextRequest.halRequest = camera3_capture_request_t();
nextRequest.submitted = false;
mNextRequests.add(nextRequest);
// Wait for additional requests
const size_t batchSize = nextRequest.captureRequest->mBatchSize;
for (size_t i = 1; i < batchSize; i++) {
NextRequest additionalRequest;
additionalRequest.captureRequest = waitForNextRequestLocked();
if (additionalRequest.captureRequest == nullptr) {
break;
}
additionalRequest.halRequest = camera3_capture_request_t();
additionalRequest.submitted = false;
mNextRequests.add(additionalRequest);
}
if (mNextRequests.size() < batchSize) {
ALOGE("RequestThread: only get %zu out of %zu requests. Skipping requests.",
mNextRequests.size(), batchSize);
cleanUpFailedRequests(/*sendRequestError*/true);
}
return;
}
sp<Camera3Device::CaptureRequest>
Camera3Device::RequestThread::waitForNextRequestLocked() {
status_t res;
sp<CaptureRequest> nextRequest;
while (mRequestQueue.empty()) {
if (!mRepeatingRequests.empty()) {
// Always atomically enqueue all requests in a repeating request
// list. Guarantees a complete in-sequence set of captures to
// application.
const RequestList &requests = mRepeatingRequests;
RequestList::const_iterator firstRequest =
requests.begin();
nextRequest = *firstRequest;
mRequestQueue.insert(mRequestQueue.end(),
++firstRequest,
requests.end());
// No need to wait any longer
mRepeatingLastFrameNumber = mFrameNumber + requests.size() - 1;
break;
}
res = mRequestSignal.waitRelative(mRequestLock, kRequestTimeout);
if ((mRequestQueue.empty() && mRepeatingRequests.empty()) ||
exitPending()) {
Mutex::Autolock pl(mPauseLock);
if (mPaused == false) {
ALOGV("%s: RequestThread: Going idle", __FUNCTION__);
mPaused = true;
if (mNotifyPipelineDrain) {
mInterface->signalPipelineDrain(mStreamIdsToBeDrained);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
// Let the tracker know
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onRequestThreadPaused();
}
}
// Stop waiting for now and let thread management happen
return NULL;
}
}
if (nextRequest == NULL) {
// Don't have a repeating request already in hand, so queue
// must have an entry now.
RequestList::iterator firstRequest =
mRequestQueue.begin();
nextRequest = *firstRequest;
mRequestQueue.erase(firstRequest);
if (mRequestQueue.empty() && !nextRequest->mRepeating) {
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyRequestQueueEmpty();
}
}
}
// In case we've been unpaused by setPaused clearing mDoPause, need to
// update internal pause state (capture/setRepeatingRequest unpause
// directly).
Mutex::Autolock pl(mPauseLock);
if (mPaused) {
ALOGV("%s: RequestThread: Unpaused", __FUNCTION__);
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentActive(mStatusId);
}
}
mPaused = false;
// Check if we've reconfigured since last time, and reset the preview
// request if so. Can't use 'NULL request == repeat' across configure calls.
if (mReconfigured) {
mPrevRequest.clear();
mReconfigured = false;
}
if (nextRequest != NULL) {
nextRequest->mResultExtras.frameNumber = mFrameNumber++;
nextRequest->mResultExtras.afTriggerId = mCurrentAfTriggerId;
nextRequest->mResultExtras.precaptureTriggerId = mCurrentPreCaptureTriggerId;
// Since RequestThread::clear() removes buffers from the input stream,
// get the right buffer here before unlocking mRequestLock
if (nextRequest->mInputStream != NULL) {
res = nextRequest->mInputStream->getInputBuffer(&nextRequest->mInputBuffer);
if (res != OK) {
// Can't get input buffer from gralloc queue - this could be due to
// disconnected queue or other producer misbehavior, so not a fatal
// error
ALOGE("%s: Can't get input buffer, skipping request:"
" %s (%d)", __FUNCTION__, strerror(-res), res);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
nextRequest->mResultExtras);
}
return NULL;
}
}
}
return nextRequest;
}
bool Camera3Device::RequestThread::waitIfPaused() {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mPauseLock);
while (mDoPause) {
if (mPaused == false) {
mPaused = true;
ALOGV("%s: RequestThread: Paused", __FUNCTION__);
if (mNotifyPipelineDrain) {
mInterface->signalPipelineDrain(mStreamIdsToBeDrained);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
// Let the tracker know
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onRequestThreadPaused();
}
}
res = mDoPauseSignal.waitRelative(mPauseLock, kRequestTimeout);
if (res == TIMED_OUT || exitPending()) {
return true;
}
}
// We don't set mPaused to false here, because waitForNextRequest needs
// to further manage the paused state in case of starvation.
return false;
}
void Camera3Device::RequestThread::unpauseForNewRequests() {
ATRACE_CALL();
// With work to do, mark thread as unpaused.
// If paused by request (setPaused), don't resume, to avoid
// extra signaling/waiting overhead to waitUntilPaused
mRequestSignal.signal();
Mutex::Autolock p(mPauseLock);
if (!mDoPause) {
ALOGV("%s: RequestThread: Going active", __FUNCTION__);
if (mPaused) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentActive(mStatusId);
}
}
mPaused = false;
}
}
void Camera3Device::RequestThread::setErrorState(const char *fmt, ...) {
sp<Camera3Device> parent = mParent.promote();
if (parent != NULL) {
va_list args;
va_start(args, fmt);
parent->setErrorStateV(fmt, args);
va_end(args);
}
}
status_t Camera3Device::RequestThread::insertTriggers(
const sp<CaptureRequest> &request) {
ATRACE_CALL();
Mutex::Autolock al(mTriggerMutex);
sp<Camera3Device> parent = mParent.promote();
if (parent == NULL) {
CLOGE("RequestThread: Parent is gone");
return DEAD_OBJECT;
}
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
size_t count = mTriggerMap.size();
for (size_t i = 0; i < count; ++i) {
RequestTrigger trigger = mTriggerMap.valueAt(i);
uint32_t tag = trigger.metadataTag;
if (tag == ANDROID_CONTROL_AF_TRIGGER_ID || tag == ANDROID_CONTROL_AE_PRECAPTURE_ID) {
bool isAeTrigger = (trigger.metadataTag == ANDROID_CONTROL_AE_PRECAPTURE_ID);
uint32_t triggerId = static_cast<uint32_t>(trigger.entryValue);
if (isAeTrigger) {
request->mResultExtras.precaptureTriggerId = triggerId;
mCurrentPreCaptureTriggerId = triggerId;
} else {
request->mResultExtras.afTriggerId = triggerId;
mCurrentAfTriggerId = triggerId;
}
continue;
}
camera_metadata_entry entry = metadata.find(tag);
if (entry.count > 0) {
/**
* Already has an entry for this trigger in the request.
* Rewrite it with our requested trigger value.
*/
RequestTrigger oldTrigger = trigger;
oldTrigger.entryValue = entry.data.u8[0];
mTriggerReplacedMap.add(tag, oldTrigger);
} else {
/**
* More typical, no trigger entry, so we just add it
*/
mTriggerRemovedMap.add(tag, trigger);
}
status_t res;
switch (trigger.getTagType()) {
case TYPE_BYTE: {
uint8_t entryValue = static_cast<uint8_t>(trigger.entryValue);
res = metadata.update(tag,
&entryValue,
/*count*/1);
break;
}
case TYPE_INT32:
res = metadata.update(tag,
&trigger.entryValue,
/*count*/1);
break;
default:
ALOGE("%s: Type not supported: 0x%x",
__FUNCTION__,
trigger.getTagType());
return INVALID_OPERATION;
}
if (res != OK) {
ALOGE("%s: Failed to update request metadata with trigger tag %s"
", value %d", __FUNCTION__, trigger.getTagName(),
trigger.entryValue);
return res;
}
ALOGV("%s: Mixed in trigger %s, value %d", __FUNCTION__,
trigger.getTagName(),
trigger.entryValue);
}
mTriggerMap.clear();
return count;
}
status_t Camera3Device::RequestThread::removeTriggers(
const sp<CaptureRequest> &request) {
ATRACE_CALL();
Mutex::Autolock al(mTriggerMutex);
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
/**
* Replace all old entries with their old values.
*/
for (size_t i = 0; i < mTriggerReplacedMap.size(); ++i) {
RequestTrigger trigger = mTriggerReplacedMap.valueAt(i);
status_t res;
uint32_t tag = trigger.metadataTag;
switch (trigger.getTagType()) {
case TYPE_BYTE: {
uint8_t entryValue = static_cast<uint8_t>(trigger.entryValue);
res = metadata.update(tag,
&entryValue,
/*count*/1);
break;
}
case TYPE_INT32:
res = metadata.update(tag,
&trigger.entryValue,
/*count*/1);
break;
default:
ALOGE("%s: Type not supported: 0x%x",
__FUNCTION__,
trigger.getTagType());
return INVALID_OPERATION;
}
if (res != OK) {
ALOGE("%s: Failed to restore request metadata with trigger tag %s"
", trigger value %d", __FUNCTION__,
trigger.getTagName(), trigger.entryValue);
return res;
}
}
mTriggerReplacedMap.clear();
/**
* Remove all new entries.
*/
for (size_t i = 0; i < mTriggerRemovedMap.size(); ++i) {
RequestTrigger trigger = mTriggerRemovedMap.valueAt(i);
status_t res = metadata.erase(trigger.metadataTag);
if (res != OK) {
ALOGE("%s: Failed to erase metadata with trigger tag %s"
", trigger value %d", __FUNCTION__,
trigger.getTagName(), trigger.entryValue);
return res;
}
}
mTriggerRemovedMap.clear();
return OK;
}
status_t Camera3Device::RequestThread::addDummyTriggerIds(
const sp<CaptureRequest> &request) {
// Trigger ID 0 had special meaning in the HAL2 spec, so avoid it here
static const int32_t dummyTriggerId = 1;
status_t res;
CameraMetadata &metadata = request->mSettingsList.begin()->metadata;
// If AF trigger is active, insert a dummy AF trigger ID if none already
// exists
camera_metadata_entry afTrigger = metadata.find(ANDROID_CONTROL_AF_TRIGGER);
camera_metadata_entry afId = metadata.find(ANDROID_CONTROL_AF_TRIGGER_ID);
if (afTrigger.count > 0 &&
afTrigger.data.u8[0] != ANDROID_CONTROL_AF_TRIGGER_IDLE &&
afId.count == 0) {
res = metadata.update(ANDROID_CONTROL_AF_TRIGGER_ID, &dummyTriggerId, 1);
if (res != OK) return res;
}
// If AE precapture trigger is active, insert a dummy precapture trigger ID
// if none already exists
camera_metadata_entry pcTrigger =
metadata.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER);
camera_metadata_entry pcId = metadata.find(ANDROID_CONTROL_AE_PRECAPTURE_ID);
if (pcTrigger.count > 0 &&
pcTrigger.data.u8[0] != ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE &&
pcId.count == 0) {
res = metadata.update(ANDROID_CONTROL_AE_PRECAPTURE_ID,
&dummyTriggerId, 1);
if (res != OK) return res;
}
return OK;
}
/**
* PreparerThread inner class methods
*/
Camera3Device::PreparerThread::PreparerThread() :
Thread(/*canCallJava*/false), mListener(nullptr),
mActive(false), mCancelNow(false), mCurrentMaxCount(0), mCurrentPrepareComplete(false) {
}
Camera3Device::PreparerThread::~PreparerThread() {
Thread::requestExitAndWait();
if (mCurrentStream != nullptr) {
mCurrentStream->cancelPrepare();
ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId());
mCurrentStream.clear();
}
clear();
}
status_t Camera3Device::PreparerThread::prepare(int maxCount, sp<Camera3StreamInterface>& stream) {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mLock);
sp<NotificationListener> listener = mListener.promote();
res = stream->startPrepare(maxCount, true /*blockRequest*/);
if (res == OK) {
// No preparation needed, fire listener right off
ALOGV("%s: Stream %d already prepared", __FUNCTION__, stream->getId());
if (listener != NULL) {
listener->notifyPrepared(stream->getId());
}
return OK;
} else if (res != NOT_ENOUGH_DATA) {
return res;
}
// Need to prepare, start up thread if necessary
if (!mActive) {
// mRunning will change to false before the thread fully shuts down, so wait to be sure it
// isn't running
Thread::requestExitAndWait();
res = Thread::run("C3PrepThread", PRIORITY_BACKGROUND);
if (res != OK) {
ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__, res, strerror(-res));
if (listener != NULL) {
listener->notifyPrepared(stream->getId());
}
return res;
}
mCancelNow = false;
mActive = true;
ALOGV("%s: Preparer stream started", __FUNCTION__);
}
// queue up the work
mPendingStreams.emplace(maxCount, stream);
ALOGV("%s: Stream %d queued for preparing", __FUNCTION__, stream->getId());
return OK;
}
void Camera3Device::PreparerThread::pause() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
std::unordered_map<int, sp<camera3::Camera3StreamInterface> > pendingStreams;
pendingStreams.insert(mPendingStreams.begin(), mPendingStreams.end());
sp<camera3::Camera3StreamInterface> currentStream = mCurrentStream;
int currentMaxCount = mCurrentMaxCount;
mPendingStreams.clear();
mCancelNow = true;
while (mActive) {
auto res = mThreadActiveSignal.waitRelative(mLock, kActiveTimeout);
if (res == TIMED_OUT) {
ALOGE("%s: Timed out waiting on prepare thread!", __FUNCTION__);
return;
} else if (res != OK) {
ALOGE("%s: Encountered an error: %d waiting on prepare thread!", __FUNCTION__, res);
return;
}
}
//Check whether the prepare thread was able to complete the current
//stream. In case work is still pending emplace it along with the rest
//of the streams in the pending list.
if (currentStream != nullptr) {
if (!mCurrentPrepareComplete) {
pendingStreams.emplace(currentMaxCount, currentStream);
}
}
mPendingStreams.insert(pendingStreams.begin(), pendingStreams.end());
for (const auto& it : mPendingStreams) {
it.second->cancelPrepare();
}
}
status_t Camera3Device::PreparerThread::resume() {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mLock);
sp<NotificationListener> listener = mListener.promote();
if (mActive) {
ALOGE("%s: Trying to resume an already active prepare thread!", __FUNCTION__);
return NO_INIT;
}
auto it = mPendingStreams.begin();
for (; it != mPendingStreams.end();) {
res = it->second->startPrepare(it->first, true /*blockRequest*/);
if (res == OK) {
if (listener != NULL) {
listener->notifyPrepared(it->second->getId());
}
it = mPendingStreams.erase(it);
} else if (res != NOT_ENOUGH_DATA) {
ALOGE("%s: Unable to start preparer stream: %d (%s)", __FUNCTION__,
res, strerror(-res));
it = mPendingStreams.erase(it);
} else {
it++;
}
}
if (mPendingStreams.empty()) {
return OK;
}
res = Thread::run("C3PrepThread", PRIORITY_BACKGROUND);
if (res != OK) {
ALOGE("%s: Unable to start preparer stream: %d (%s)",
__FUNCTION__, res, strerror(-res));
return res;
}
mCancelNow = false;
mActive = true;
ALOGV("%s: Preparer stream started", __FUNCTION__);
return OK;
}
status_t Camera3Device::PreparerThread::clear() {
ATRACE_CALL();
Mutex::Autolock l(mLock);
for (const auto& it : mPendingStreams) {
it.second->cancelPrepare();
}
mPendingStreams.clear();
mCancelNow = true;
return OK;
}
void Camera3Device::PreparerThread::setNotificationListener(wp<NotificationListener> listener) {
ATRACE_CALL();
Mutex::Autolock l(mLock);
mListener = listener;
}
bool Camera3Device::PreparerThread::threadLoop() {
status_t res;
{
Mutex::Autolock l(mLock);
if (mCurrentStream == nullptr) {
// End thread if done with work
if (mPendingStreams.empty()) {
ALOGV("%s: Preparer stream out of work", __FUNCTION__);
// threadLoop _must not_ re-acquire mLock after it sets mActive to false; would
// cause deadlock with prepare()'s requestExitAndWait triggered by !mActive.
mActive = false;
mThreadActiveSignal.signal();
return false;
}
// Get next stream to prepare
auto it = mPendingStreams.begin();
mCurrentStream = it->second;
mCurrentMaxCount = it->first;
mCurrentPrepareComplete = false;
mPendingStreams.erase(it);
ATRACE_ASYNC_BEGIN("stream prepare", mCurrentStream->getId());
ALOGV("%s: Preparing stream %d", __FUNCTION__, mCurrentStream->getId());
} else if (mCancelNow) {
mCurrentStream->cancelPrepare();
ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId());
ALOGV("%s: Cancelling stream %d prepare", __FUNCTION__, mCurrentStream->getId());
mCurrentStream.clear();
mCancelNow = false;
return true;
}
}
res = mCurrentStream->prepareNextBuffer();
if (res == NOT_ENOUGH_DATA) return true;
if (res != OK) {
// Something bad happened; try to recover by cancelling prepare and
// signalling listener anyway
ALOGE("%s: Stream %d returned error %d (%s) during prepare", __FUNCTION__,
mCurrentStream->getId(), res, strerror(-res));
mCurrentStream->cancelPrepare();
}
// This stream has finished, notify listener
Mutex::Autolock l(mLock);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
ALOGV("%s: Stream %d prepare done, signaling listener", __FUNCTION__,
mCurrentStream->getId());
listener->notifyPrepared(mCurrentStream->getId());
}
ATRACE_ASYNC_END("stream prepare", mCurrentStream->getId());
mCurrentStream.clear();
mCurrentPrepareComplete = true;
return true;
}
status_t Camera3Device::RequestBufferStateMachine::initialize(
sp<camera3::StatusTracker> statusTracker) {
if (statusTracker == nullptr) {
ALOGE("%s: statusTracker is null", __FUNCTION__);
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mLock);
mStatusTracker = statusTracker;
mRequestBufferStatusId = statusTracker->addComponent();
return OK;
}
bool Camera3Device::RequestBufferStateMachine::startRequestBuffer() {
std::lock_guard<std::mutex> lock(mLock);
if (mStatus == RB_STATUS_READY || mStatus == RB_STATUS_PENDING_STOP) {
mRequestBufferOngoing = true;
notifyTrackerLocked(/*active*/true);
return true;
}
return false;
}
void Camera3Device::RequestBufferStateMachine::endRequestBuffer() {
std::lock_guard<std::mutex> lock(mLock);
if (!mRequestBufferOngoing) {
ALOGE("%s called without a successful startRequestBuffer call first!", __FUNCTION__);
return;
}
mRequestBufferOngoing = false;
if (mStatus == RB_STATUS_PENDING_STOP) {
checkSwitchToStopLocked();
}
notifyTrackerLocked(/*active*/false);
}
void Camera3Device::RequestBufferStateMachine::onStreamsConfigured() {
std::lock_guard<std::mutex> lock(mLock);
mStatus = RB_STATUS_READY;
return;
}
void Camera3Device::RequestBufferStateMachine::onSubmittingRequest() {
std::lock_guard<std::mutex> lock(mLock);
mRequestThreadPaused = false;
// inflight map register actually happens in prepareHalRequest now, but it is close enough
// approximation.
mInflightMapEmpty = false;
if (mStatus == RB_STATUS_STOPPED) {
mStatus = RB_STATUS_READY;
}
return;
}
void Camera3Device::RequestBufferStateMachine::onRequestThreadPaused() {
std::lock_guard<std::mutex> lock(mLock);
mRequestThreadPaused = true;
if (mStatus == RB_STATUS_PENDING_STOP) {
checkSwitchToStopLocked();
}
return;
}
void Camera3Device::RequestBufferStateMachine::onInflightMapEmpty() {
std::lock_guard<std::mutex> lock(mLock);
mInflightMapEmpty = true;
if (mStatus == RB_STATUS_PENDING_STOP) {
checkSwitchToStopLocked();
}
return;
}
void Camera3Device::RequestBufferStateMachine::onWaitUntilIdle() {
std::lock_guard<std::mutex> lock(mLock);
if (!checkSwitchToStopLocked()) {
mStatus = RB_STATUS_PENDING_STOP;
}
return;
}
void Camera3Device::RequestBufferStateMachine::notifyTrackerLocked(bool active) {
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != nullptr) {
if (active) {
statusTracker->markComponentActive(mRequestBufferStatusId);
} else {
statusTracker->markComponentIdle(mRequestBufferStatusId, Fence::NO_FENCE);
}
}
}
bool Camera3Device::RequestBufferStateMachine::checkSwitchToStopLocked() {
if (mInflightMapEmpty && mRequestThreadPaused && !mRequestBufferOngoing) {
mStatus = RB_STATUS_STOPPED;
return true;
}
return false;
}
status_t Camera3Device::fixupMonochromeTags(const CameraMetadata& deviceInfo,
CameraMetadata& resultMetadata) {
status_t res = OK;
if (!mNeedFixupMonochromeTags) {
return res;
}
// Remove tags that are not applicable to monochrome camera.
int32_t tagsToRemove[] = {
ANDROID_SENSOR_GREEN_SPLIT,
ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
ANDROID_COLOR_CORRECTION_MODE,
ANDROID_COLOR_CORRECTION_TRANSFORM,
ANDROID_COLOR_CORRECTION_GAINS,
};
for (auto tag : tagsToRemove) {
res = resultMetadata.erase(tag);
if (res != OK) {
ALOGE("%s: Failed to remove tag %d for monochrome camera", __FUNCTION__, tag);
return res;
}
}
// ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL
camera_metadata_entry blEntry = resultMetadata.find(ANDROID_SENSOR_DYNAMIC_BLACK_LEVEL);
for (size_t i = 1; i < blEntry.count; i++) {
blEntry.data.f[i] = blEntry.data.f[0];
}
// ANDROID_SENSOR_NOISE_PROFILE
camera_metadata_entry npEntry = resultMetadata.find(ANDROID_SENSOR_NOISE_PROFILE);
if (npEntry.count > 0 && npEntry.count % 2 == 0) {
double np[] = {npEntry.data.d[0], npEntry.data.d[1]};
res = resultMetadata.update(ANDROID_SENSOR_NOISE_PROFILE, np, 2);
if (res != OK) {
ALOGE("%s: Failed to update SENSOR_NOISE_PROFILE: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
// ANDROID_STATISTICS_LENS_SHADING_MAP
camera_metadata_ro_entry lsSizeEntry = deviceInfo.find(ANDROID_LENS_INFO_SHADING_MAP_SIZE);
camera_metadata_entry lsEntry = resultMetadata.find(ANDROID_STATISTICS_LENS_SHADING_MAP);
if (lsSizeEntry.count == 2 && lsEntry.count > 0
&& (int32_t)lsEntry.count == 4 * lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]) {
for (int32_t i = 0; i < lsSizeEntry.data.i32[0] * lsSizeEntry.data.i32[1]; i++) {
lsEntry.data.f[4*i+1] = lsEntry.data.f[4*i];
lsEntry.data.f[4*i+2] = lsEntry.data.f[4*i];
lsEntry.data.f[4*i+3] = lsEntry.data.f[4*i];
}
}
// ANDROID_TONEMAP_CURVE_BLUE
// ANDROID_TONEMAP_CURVE_GREEN
// ANDROID_TONEMAP_CURVE_RED
camera_metadata_entry tcbEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_BLUE);
camera_metadata_entry tcgEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_GREEN);
camera_metadata_entry tcrEntry = resultMetadata.find(ANDROID_TONEMAP_CURVE_RED);
if (tcbEntry.count > 0
&& tcbEntry.count == tcgEntry.count
&& tcbEntry.count == tcrEntry.count) {
for (size_t i = 0; i < tcbEntry.count; i++) {
tcbEntry.data.f[i] = tcrEntry.data.f[i];
tcgEntry.data.f[i] = tcrEntry.data.f[i];
}
}
return res;
}
}; // namespace android