| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "IsochronousClockModel" |
| //#define LOG_NDEBUG 0 |
| #include <log/log.h> |
| |
| #define __STDC_FORMAT_MACROS |
| #include <inttypes.h> |
| #include <stdint.h> |
| #include <algorithm> |
| |
| #include "utility/AudioClock.h" |
| #include "utility/AAudioUtilities.h" |
| #include "IsochronousClockModel.h" |
| |
| using namespace aaudio; |
| |
| using namespace android::audio_utils; |
| |
| #ifndef ICM_LOG_DRIFT |
| #define ICM_LOG_DRIFT 0 |
| #endif // ICM_LOG_DRIFT |
| |
| // To enable the timestamp histogram, enter this before opening the stream: |
| // adb root |
| // adb shell setprop aaudio.log_mask 1 |
| // A histogram of the lateness of the timestamps will be cleared when the stream is started. |
| // It will be updated when the model is stable and receives a timestamp, |
| // and dumped to the log when the stream is stopped. |
| |
| IsochronousClockModel::IsochronousClockModel() |
| : mMarkerFramePosition(0) |
| , mMarkerNanoTime(0) |
| , mSampleRate(48000) |
| , mFramesPerBurst(48) |
| , mMaxMeasuredLatenessNanos(0) |
| , mLatenessForDriftNanos(kInitialLatenessForDriftNanos) |
| , mState(STATE_STOPPED) |
| { |
| if ((AAudioProperty_getLogMask() & AAUDIO_LOG_CLOCK_MODEL_HISTOGRAM) != 0) { |
| mHistogramMicros = std::make_unique<Histogram>(kHistogramBinCount, |
| kHistogramBinWidthMicros); |
| } |
| } |
| |
| IsochronousClockModel::~IsochronousClockModel() { |
| } |
| |
| void IsochronousClockModel::setPositionAndTime(int64_t framePosition, int64_t nanoTime) { |
| ALOGV("setPositionAndTime, %lld, %lld", (long long) framePosition, (long long) nanoTime); |
| mMarkerFramePosition = framePosition; |
| mMarkerNanoTime = nanoTime; |
| } |
| |
| void IsochronousClockModel::start(int64_t nanoTime) { |
| ALOGV("start(nanos = %lld)\n", (long long) nanoTime); |
| mMarkerNanoTime = nanoTime; |
| mState = STATE_STARTING; |
| if (mHistogramMicros) { |
| mHistogramMicros->clear(); |
| } |
| } |
| |
| void IsochronousClockModel::stop(int64_t nanoTime) { |
| ALOGD("stop(nanos = %lld) max lateness = %d micros\n", |
| (long long) nanoTime, |
| (int) (mMaxMeasuredLatenessNanos / 1000)); |
| setPositionAndTime(convertTimeToPosition(nanoTime), nanoTime); |
| // TODO should we set position? |
| mState = STATE_STOPPED; |
| if (mHistogramMicros) { |
| dumpHistogram(); |
| } |
| } |
| |
| bool IsochronousClockModel::isStarting() const { |
| return mState == STATE_STARTING; |
| } |
| |
| bool IsochronousClockModel::isRunning() const { |
| return mState == STATE_RUNNING; |
| } |
| |
| void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) { |
| mTimestampCount++; |
| // Log position and time in CSV format so we can import it easily into spreadsheets. |
| //ALOGD("%s() CSV, %d, %lld, %lld", __func__, |
| //mTimestampCount, (long long)framePosition, (long long)nanoTime); |
| int64_t framesDelta = framePosition - mMarkerFramePosition; |
| int64_t nanosDelta = nanoTime - mMarkerNanoTime; |
| if (nanosDelta < 1000) { |
| return; |
| } |
| |
| // ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu", |
| // (long long)mMarkerFramePosition, |
| // (long long)mMarkerNanoTime); |
| |
| int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta); |
| // ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu", |
| // (long long)expectedNanosDelta, |
| // (long long)nanosDelta); |
| |
| // ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate); |
| // ALOGD("processTimestamp() - mState = %d", mState); |
| int64_t latenessNanos = nanosDelta - expectedNanosDelta; |
| switch (mState) { |
| case STATE_STOPPED: |
| break; |
| case STATE_STARTING: |
| setPositionAndTime(framePosition, nanoTime); |
| mState = STATE_SYNCING; |
| break; |
| case STATE_SYNCING: |
| // This will handle a burst of rapid transfer at the beginning. |
| if (latenessNanos < 0) { |
| setPositionAndTime(framePosition, nanoTime); |
| } else { |
| // ALOGD("processTimestamp() - advance to STATE_RUNNING"); |
| mState = STATE_RUNNING; |
| } |
| break; |
| case STATE_RUNNING: |
| if (mHistogramMicros) { |
| mHistogramMicros->add(latenessNanos / AAUDIO_NANOS_PER_MICROSECOND); |
| } |
| // Modify estimated position based on lateness. |
| // This affects the "early" side of the window, which controls output glitches. |
| if (latenessNanos < 0) { |
| // Earlier than expected timestamp. |
| // This data is probably more accurate, so use it. |
| // Or we may be drifting due to a fast HW clock. |
| setPositionAndTime(framePosition, nanoTime); |
| #if ICM_LOG_DRIFT |
| int earlyDeltaMicros = (int) ((expectedNanosDelta - nanosDelta)/ 1000); |
| ALOGD("%s() - STATE_RUNNING - #%d, %4d micros EARLY", |
| __func__, mTimestampCount, earlyDeltaMicros); |
| #endif |
| } else if (latenessNanos > mLatenessForDriftNanos) { |
| // When we are on the late side, it may be because of preemption in the kernel, |
| // or timing jitter caused by resampling in the DSP, |
| // or we may be drifting due to a slow HW clock. |
| // We add slight drift value just in case there is actual long term drift |
| // forward caused by a slower clock. |
| // If the clock is faster than the model will get pushed earlier |
| // by the code in the earlier branch. |
| // The two opposing forces should allow the model to track the real clock |
| // over a long time. |
| int64_t driftingTime = mMarkerNanoTime + expectedNanosDelta + kDriftNanos; |
| setPositionAndTime(framePosition, driftingTime); |
| #if ICM_LOG_DRIFT |
| ALOGD("%s() - STATE_RUNNING - #%d, DRIFT, lateness = %d micros", |
| __func__, |
| mTimestampCount, |
| (int) (latenessNanos / 1000)); |
| #endif |
| } |
| |
| // Modify mMaxMeasuredLatenessNanos. |
| // This affects the "late" side of the window, which controls input glitches. |
| if (latenessNanos > mMaxMeasuredLatenessNanos) { // increase |
| #if ICM_LOG_DRIFT |
| ALOGD("%s() - STATE_RUNNING - #%d, newmax %d - oldmax %d = %4d micros LATE", |
| __func__, |
| mTimestampCount, |
| (int) (latenessNanos / 1000), |
| mMaxMeasuredLatenessNanos / 1000, |
| (int) ((latenessNanos - mMaxMeasuredLatenessNanos) / 1000) |
| ); |
| #endif |
| mMaxMeasuredLatenessNanos = (int32_t) latenessNanos; |
| // Calculate upper region that will trigger a drift forwards. |
| mLatenessForDriftNanos = mMaxMeasuredLatenessNanos - (mMaxMeasuredLatenessNanos >> 4); |
| } else { // decrease |
| // If these is an outlier in lateness then mMaxMeasuredLatenessNanos can go high |
| // and stay there. So we slowly reduce mMaxMeasuredLatenessNanos for better |
| // long term stability. The two opposing forces will keep mMaxMeasuredLatenessNanos |
| // within a reasonable range. |
| mMaxMeasuredLatenessNanos -= kDriftNanos; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void IsochronousClockModel::setSampleRate(int32_t sampleRate) { |
| mSampleRate = sampleRate; |
| update(); |
| } |
| |
| void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) { |
| mFramesPerBurst = framesPerBurst; |
| update(); |
| } |
| |
| // Update expected lateness based on sampleRate and framesPerBurst |
| void IsochronousClockModel::update() { |
| mBurstPeriodNanos = convertDeltaPositionToTime(mFramesPerBurst); // uses mSampleRate |
| } |
| |
| int64_t IsochronousClockModel::convertDeltaPositionToTime(int64_t framesDelta) const { |
| return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate; |
| } |
| |
| int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const { |
| return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND; |
| } |
| |
| int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const { |
| if (mState == STATE_STOPPED) { |
| return mMarkerNanoTime; |
| } |
| int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst; |
| int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex; |
| int64_t framesDelta = nextBurstPosition - mMarkerFramePosition; |
| int64_t nanosDelta = convertDeltaPositionToTime(framesDelta); |
| int64_t time = mMarkerNanoTime + nanosDelta; |
| // ALOGD("convertPositionToTime: pos = %llu --> time = %llu", |
| // (unsigned long long)framePosition, |
| // (unsigned long long)time); |
| return time; |
| } |
| |
| int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const { |
| if (mState == STATE_STOPPED) { |
| return mMarkerFramePosition; |
| } |
| int64_t nanosDelta = nanoTime - mMarkerNanoTime; |
| int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta); |
| int64_t nextBurstPosition = mMarkerFramePosition + framesDelta; |
| int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst; |
| int64_t position = nextBurstIndex * mFramesPerBurst; |
| // ALOGD("convertTimeToPosition: time = %llu --> pos = %llu", |
| // (unsigned long long)nanoTime, |
| // (unsigned long long)position); |
| // ALOGD("convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d", |
| // (long long) framesDelta, mFramesPerBurst); |
| return position; |
| } |
| |
| int32_t IsochronousClockModel::getLateTimeOffsetNanos() const { |
| return mMaxMeasuredLatenessNanos + kExtraLatenessNanos; |
| } |
| |
| int64_t IsochronousClockModel::convertPositionToLatestTime(int64_t framePosition) const { |
| return convertPositionToTime(framePosition) + getLateTimeOffsetNanos(); |
| } |
| |
| int64_t IsochronousClockModel::convertLatestTimeToPosition(int64_t nanoTime) const { |
| return convertTimeToPosition(nanoTime - getLateTimeOffsetNanos()); |
| } |
| |
| void IsochronousClockModel::dump() const { |
| ALOGD("mMarkerFramePosition = %" PRIu64, mMarkerFramePosition); |
| ALOGD("mMarkerNanoTime = %" PRIu64, mMarkerNanoTime); |
| ALOGD("mSampleRate = %6d", mSampleRate); |
| ALOGD("mFramesPerBurst = %6d", mFramesPerBurst); |
| ALOGD("mMaxMeasuredLatenessNanos = %6d", mMaxMeasuredLatenessNanos); |
| ALOGD("mState = %6d", mState); |
| } |
| |
| void IsochronousClockModel::dumpHistogram() const { |
| if (!mHistogramMicros) return; |
| std::istringstream istr(mHistogramMicros->dump()); |
| std::string line; |
| while (std::getline(istr, line)) { |
| ALOGD("lateness, %s", line.c_str()); |
| } |
| } |