| /* |
| * ACS - Automatic Channel Selection module |
| * Copyright (c) 2011, Atheros Communications |
| * Copyright (c) 2013, Qualcomm Atheros, Inc. |
| * |
| * This software may be distributed under the terms of the BSD license. |
| * See README for more details. |
| */ |
| |
| #include "utils/includes.h" |
| #include <math.h> |
| |
| #include "utils/common.h" |
| #include "utils/list.h" |
| #include "common/ieee802_11_defs.h" |
| #include "common/hw_features_common.h" |
| #include "common/wpa_ctrl.h" |
| #include "drivers/driver.h" |
| #include "hostapd.h" |
| #include "ap_drv_ops.h" |
| #include "ap_config.h" |
| #include "hw_features.h" |
| #include "acs.h" |
| |
| /* |
| * Automatic Channel Selection |
| * =========================== |
| * |
| * More info at |
| * ------------ |
| * http://wireless.kernel.org/en/users/Documentation/acs |
| * |
| * How to use |
| * ---------- |
| * - make sure you have CONFIG_ACS=y in hostapd's .config |
| * - use channel=0 or channel=acs to enable ACS |
| * |
| * How does it work |
| * ---------------- |
| * 1. passive scans are used to collect survey data |
| * (it is assumed that scan trigger collection of survey data in driver) |
| * 2. interference factor is calculated for each channel |
| * 3. ideal channel is picked depending on channel width by using adjacent |
| * channel interference factors |
| * |
| * Known limitations |
| * ----------------- |
| * - Current implementation depends heavily on the amount of time willing to |
| * spend gathering survey data during hostapd startup. Short traffic bursts |
| * may be missed and a suboptimal channel may be picked. |
| * - Ideal channel may end up overlapping a channel with 40 MHz intolerant BSS |
| * |
| * Todo / Ideas |
| * ------------ |
| * - implement other interference computation methods |
| * - BSS/RSSI based |
| * - spectral scan based |
| * (should be possibly to hook this up with current ACS scans) |
| * - add wpa_supplicant support (for P2P) |
| * - collect a histogram of interference over time allowing more educated |
| * guess about an ideal channel (perhaps CSA could be used to migrate AP to a |
| * new "better" channel while running) |
| * - include neighboring BSS scan to avoid conflicts with 40 MHz intolerant BSSs |
| * when choosing the ideal channel |
| * |
| * Survey interference factor implementation details |
| * ------------------------------------------------- |
| * Generic interference_factor in struct hostapd_channel_data is used. |
| * |
| * The survey interference factor is defined as the ratio of the |
| * observed busy time over the time we spent on the channel, |
| * this value is then amplified by the observed noise floor on |
| * the channel in comparison to the lowest noise floor observed |
| * on the entire band. |
| * |
| * This corresponds to: |
| * --- |
| * (busy time - tx time) / (active time - tx time) * 2^(chan_nf + band_min_nf) |
| * --- |
| * |
| * The coefficient of 2 reflects the way power in "far-field" |
| * radiation decreases as the square of distance from the antenna [1]. |
| * What this does is it decreases the observed busy time ratio if the |
| * noise observed was low but increases it if the noise was high, |
| * proportionally to the way "far field" radiation changes over |
| * distance. |
| * |
| * If channel busy time is not available the fallback is to use channel RX time. |
| * |
| * Since noise floor is in dBm it is necessary to convert it into Watts so that |
| * combined channel interference (e.g., HT40, which uses two channels) can be |
| * calculated easily. |
| * --- |
| * (busy time - tx time) / (active time - tx time) * |
| * 2^(10^(chan_nf/10) + 10^(band_min_nf/10)) |
| * --- |
| * |
| * However to account for cases where busy/rx time is 0 (channel load is then |
| * 0%) channel noise floor signal power is combined into the equation so a |
| * channel with lower noise floor is preferred. The equation becomes: |
| * --- |
| * 10^(chan_nf/5) + (busy time - tx time) / (active time - tx time) * |
| * 2^(10^(chan_nf/10) + 10^(band_min_nf/10)) |
| * --- |
| * |
| * All this "interference factor" is purely subjective and only time |
| * will tell how usable this is. By using the minimum noise floor we |
| * remove any possible issues due to card calibration. The computation |
| * of the interference factor then is dependent on what the card itself |
| * picks up as the minimum noise, not an actual real possible card |
| * noise value. |
| * |
| * Total interference computation details |
| * -------------------------------------- |
| * The above channel interference factor is calculated with no respect to |
| * target operational bandwidth. |
| * |
| * To find an ideal channel the above data is combined by taking into account |
| * the target operational bandwidth and selected band. E.g., on 2.4 GHz channels |
| * overlap with 20 MHz bandwidth, but there is no overlap for 20 MHz bandwidth |
| * on 5 GHz. |
| * |
| * Each valid and possible channel spec (i.e., channel + width) is taken and its |
| * interference factor is computed by summing up interferences of each channel |
| * it overlaps. The one with least total interference is picked up. |
| * |
| * Note: This implies base channel interference factor must be non-negative |
| * allowing easy summing up. |
| * |
| * Example ACS analysis printout |
| * ----------------------------- |
| * |
| * ACS: Trying survey-based ACS |
| * ACS: Survey analysis for channel 1 (2412 MHz) |
| * ACS: 1: min_nf=-113 interference_factor=0.0802469 nf=-113 time=162 busy=0 rx=13 |
| * ACS: 2: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12 |
| * ACS: 3: min_nf=-113 interference_factor=0.0679012 nf=-113 time=162 busy=0 rx=11 |
| * ACS: 4: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5 |
| * ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4 |
| * ACS: * interference factor average: 0.0557166 |
| * ACS: Survey analysis for channel 2 (2417 MHz) |
| * ACS: 1: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3 |
| * ACS: 2: min_nf=-113 interference_factor=0.0246914 nf=-113 time=162 busy=0 rx=4 |
| * ACS: 3: min_nf=-113 interference_factor=0.037037 nf=-113 time=162 busy=0 rx=6 |
| * ACS: 4: min_nf=-113 interference_factor=0.149068 nf=-113 time=161 busy=0 rx=24 |
| * ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4 |
| * ACS: * interference factor average: 0.050832 |
| * ACS: Survey analysis for channel 3 (2422 MHz) |
| * ACS: 1: min_nf=-113 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0 |
| * ACS: 2: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3 |
| * ACS: 3: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3 |
| * ACS: 4: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3 |
| * ACS: 5: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3 |
| * ACS: * interference factor average: 0.0148838 |
| * ACS: Survey analysis for channel 4 (2427 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 |
| * ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9 |
| * ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0 |
| * ACS: 4: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3 |
| * ACS: 5: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 |
| * ACS: * interference factor average: 0.0160801 |
| * ACS: Survey analysis for channel 5 (2432 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=0.409938 nf=-113 time=161 busy=0 rx=66 |
| * ACS: 2: min_nf=-114 interference_factor=0.0432099 nf=-113 time=162 busy=0 rx=7 |
| * ACS: 3: min_nf=-114 interference_factor=0.0124224 nf=-113 time=161 busy=0 rx=2 |
| * ACS: 4: min_nf=-114 interference_factor=0.677019 nf=-113 time=161 busy=0 rx=109 |
| * ACS: 5: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3 |
| * ACS: * interference factor average: 0.232244 |
| * ACS: Survey analysis for channel 6 (2437 MHz) |
| * ACS: 1: min_nf=-113 interference_factor=0.552795 nf=-113 time=161 busy=0 rx=89 |
| * ACS: 2: min_nf=-113 interference_factor=0.0807453 nf=-112 time=161 busy=0 rx=13 |
| * ACS: 3: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5 |
| * ACS: 4: min_nf=-113 interference_factor=0.434783 nf=-112 time=161 busy=0 rx=70 |
| * ACS: 5: min_nf=-113 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10 |
| * ACS: * interference factor average: 0.232298 |
| * ACS: Survey analysis for channel 7 (2442 MHz) |
| * ACS: 1: min_nf=-113 interference_factor=0.440994 nf=-112 time=161 busy=0 rx=71 |
| * ACS: 2: min_nf=-113 interference_factor=0.385093 nf=-113 time=161 busy=0 rx=62 |
| * ACS: 3: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6 |
| * ACS: 4: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6 |
| * ACS: 5: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12 |
| * ACS: * interference factor average: 0.195031 |
| * ACS: Survey analysis for channel 8 (2447 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=0.0496894 nf=-112 time=161 busy=0 rx=8 |
| * ACS: 2: min_nf=-114 interference_factor=0.0496894 nf=-114 time=161 busy=0 rx=8 |
| * ACS: 3: min_nf=-114 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6 |
| * ACS: 4: min_nf=-114 interference_factor=0.12963 nf=-113 time=162 busy=0 rx=21 |
| * ACS: 5: min_nf=-114 interference_factor=0.166667 nf=-114 time=162 busy=0 rx=27 |
| * ACS: * interference factor average: 0.0865885 |
| * ACS: Survey analysis for channel 9 (2452 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=0.0124224 nf=-114 time=161 busy=0 rx=2 |
| * ACS: 2: min_nf=-114 interference_factor=0.0310559 nf=-114 time=161 busy=0 rx=5 |
| * ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0 |
| * ACS: 4: min_nf=-114 interference_factor=0.00617284 nf=-114 time=162 busy=0 rx=1 |
| * ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 |
| * ACS: * interference factor average: 0.00993022 |
| * ACS: Survey analysis for channel 10 (2457 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 |
| * ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 |
| * ACS: 3: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 |
| * ACS: 4: min_nf=-114 interference_factor=0.0493827 nf=-114 time=162 busy=0 rx=8 |
| * ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 |
| * ACS: * interference factor average: 0.0136033 |
| * ACS: Survey analysis for channel 11 (2462 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0 |
| * ACS: 2: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0 |
| * ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0 |
| * ACS: 4: min_nf=-114 interference_factor=0.0432099 nf=-114 time=162 busy=0 rx=7 |
| * ACS: 5: min_nf=-114 interference_factor=0.0925926 nf=-114 time=162 busy=0 rx=15 |
| * ACS: * interference factor average: 0.0271605 |
| * ACS: Survey analysis for channel 12 (2467 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10 |
| * ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 |
| * ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0 |
| * ACS: 4: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0 |
| * ACS: 5: min_nf=-114 interference_factor=0.00617284 nf=-113 time=162 busy=0 rx=1 |
| * ACS: * interference factor average: 0.0148992 |
| * ACS: Survey analysis for channel 13 (2472 MHz) |
| * ACS: 1: min_nf=-114 interference_factor=0.0745342 nf=-114 time=161 busy=0 rx=12 |
| * ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9 |
| * ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 |
| * ACS: 4: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 |
| * ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 |
| * ACS: * interference factor average: 0.0260179 |
| * ACS: Survey analysis for selected bandwidth 20MHz |
| * ACS: * channel 1: total interference = 0.121432 |
| * ACS: * channel 2: total interference = 0.137512 |
| * ACS: * channel 3: total interference = 0.369757 |
| * ACS: * channel 4: total interference = 0.546338 |
| * ACS: * channel 5: total interference = 0.690538 |
| * ACS: * channel 6: total interference = 0.762242 |
| * ACS: * channel 7: total interference = 0.756092 |
| * ACS: * channel 8: total interference = 0.537451 |
| * ACS: * channel 9: total interference = 0.332313 |
| * ACS: * channel 10: total interference = 0.152182 |
| * ACS: * channel 11: total interference = 0.0916111 |
| * ACS: * channel 12: total interference = 0.0816809 |
| * ACS: * channel 13: total interference = 0.0680776 |
| * ACS: Ideal channel is 13 (2472 MHz) with total interference factor of 0.0680776 |
| * |
| * [1] http://en.wikipedia.org/wiki/Near_and_far_field |
| */ |
| |
| enum bw_type { |
| ACS_BW40, |
| ACS_BW80, |
| ACS_BW160, |
| }; |
| |
| struct bw_item { |
| int first; |
| int last; |
| int center_chan; |
| }; |
| |
| static const struct bw_item bw_40[] = { |
| { 5180, 5200, 38 }, { 5220, 5240, 46 }, { 5260, 5280, 54 }, |
| { 5300, 5320, 62 }, { 5500, 5520, 102 }, { 5540, 5560, 110 }, |
| { 5580, 5600, 118 }, { 5620, 5640, 126 }, { 5660, 5680, 134 }, |
| { 5700, 5720, 142 }, { 5745, 5765, 151 }, { 5785, 5805, 159 }, |
| { 5825, 5845, 167 }, { 5865, 5885, 175 }, |
| { 5955, 5975, 3 }, { 5995, 6015, 11 }, { 6035, 6055, 19 }, |
| { 6075, 6095, 27 }, { 6115, 6135, 35 }, { 6155, 6175, 43 }, |
| { 6195, 6215, 51 }, { 6235, 6255, 59 }, { 6275, 6295, 67 }, |
| { 6315, 6335, 75 }, { 6355, 6375, 83 }, { 6395, 6415, 91 }, |
| { 6435, 6455, 99 }, { 6475, 6495, 107 }, { 6515, 6535, 115 }, |
| { 6555, 6575, 123 }, { 6595, 6615, 131 }, { 6635, 6655, 139 }, |
| { 6675, 6695, 147 }, { 6715, 6735, 155 }, { 6755, 6775, 163 }, |
| { 6795, 6815, 171 }, { 6835, 6855, 179 }, { 6875, 6895, 187 }, |
| { 6915, 6935, 195 }, { 6955, 6975, 203 }, { 6995, 7015, 211 }, |
| { 7035, 7055, 219 }, { 7075, 7095, 227}, { -1, -1, -1 } |
| }; |
| static const struct bw_item bw_80[] = { |
| { 5180, 5240, 42 }, { 5260, 5320, 58 }, { 5500, 5560, 106 }, |
| { 5580, 5640, 122 }, { 5660, 5720, 138 }, { 5745, 5805, 155 }, |
| { 5825, 5885, 171}, |
| { 5955, 6015, 7 }, { 6035, 6095, 23 }, { 6115, 6175, 39 }, |
| { 6195, 6255, 55 }, { 6275, 6335, 71 }, { 6355, 6415, 87 }, |
| { 6435, 6495, 103 }, { 6515, 6575, 119 }, { 6595, 6655, 135 }, |
| { 6675, 6735, 151 }, { 6755, 6815, 167 }, { 6835, 6895, 183 }, |
| { 6915, 6975, 199 }, { 6995, 7055, 215 }, { -1, -1, -1 } |
| }; |
| static const struct bw_item bw_160[] = { |
| { 5180, 5320, 50 }, { 5500, 5640, 114 }, { 5745, 5885, 163 }, |
| { 5955, 6095, 15 }, { 6115, 6255, 47 }, { 6275, 6415, 79 }, |
| { 6435, 6575, 111 }, { 6595, 6735, 143 }, |
| { 6755, 6895, 175 }, { 6915, 7055, 207 }, { -1, -1, -1 } |
| }; |
| static const struct bw_item *bw_desc[] = { |
| [ACS_BW40] = bw_40, |
| [ACS_BW80] = bw_80, |
| [ACS_BW160] = bw_160, |
| }; |
| |
| |
| static int acs_request_scan(struct hostapd_iface *iface); |
| static int acs_survey_is_sufficient(struct freq_survey *survey); |
| |
| |
| static void acs_clean_chan_surveys(struct hostapd_channel_data *chan) |
| { |
| struct freq_survey *survey, *tmp; |
| |
| if (dl_list_empty(&chan->survey_list)) |
| return; |
| |
| dl_list_for_each_safe(survey, tmp, &chan->survey_list, |
| struct freq_survey, list) { |
| dl_list_del(&survey->list); |
| os_free(survey); |
| } |
| } |
| |
| |
| static void acs_cleanup_mode(struct hostapd_hw_modes *mode) |
| { |
| int i; |
| struct hostapd_channel_data *chan; |
| |
| for (i = 0; i < mode->num_channels; i++) { |
| chan = &mode->channels[i]; |
| |
| if (chan->flag & HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED) |
| acs_clean_chan_surveys(chan); |
| |
| dl_list_init(&chan->survey_list); |
| chan->flag |= HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED; |
| chan->min_nf = 0; |
| chan->punct_bitmap = 0; |
| } |
| } |
| |
| |
| void acs_cleanup(struct hostapd_iface *iface) |
| { |
| int i; |
| |
| for (i = 0; i < iface->num_hw_features; i++) |
| acs_cleanup_mode(&iface->hw_features[i]); |
| |
| iface->chans_surveyed = 0; |
| iface->acs_num_completed_scans = 0; |
| } |
| |
| |
| static void acs_fail(struct hostapd_iface *iface) |
| { |
| wpa_printf(MSG_ERROR, "ACS: Failed to start"); |
| acs_cleanup(iface); |
| hostapd_disable_iface(iface); |
| } |
| |
| |
| static long double |
| acs_survey_interference_factor(struct freq_survey *survey, s8 min_nf) |
| { |
| long double factor, busy, total; |
| |
| if (survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) |
| busy = survey->channel_time_busy; |
| else if (survey->filled & SURVEY_HAS_CHAN_TIME_RX) |
| busy = survey->channel_time_rx; |
| else { |
| wpa_printf(MSG_ERROR, "ACS: Survey data missing"); |
| return 0; |
| } |
| |
| total = survey->channel_time; |
| |
| if (survey->filled & SURVEY_HAS_CHAN_TIME_TX) { |
| busy -= survey->channel_time_tx; |
| total -= survey->channel_time_tx; |
| } |
| |
| /* TODO: figure out the best multiplier for noise floor base */ |
| factor = pow(10, survey->nf / 5.0L) + |
| (total ? (busy / total) : 0) * |
| pow(2, pow(10, (long double) survey->nf / 10.0L) - |
| pow(10, (long double) min_nf / 10.0L)); |
| |
| return factor; |
| } |
| |
| |
| static void |
| acs_survey_chan_interference_factor(struct hostapd_iface *iface, |
| struct hostapd_channel_data *chan) |
| { |
| struct freq_survey *survey; |
| unsigned int i = 0; |
| long double int_factor = 0; |
| unsigned count = 0; |
| |
| if (dl_list_empty(&chan->survey_list) || |
| (chan->flag & HOSTAPD_CHAN_DISABLED)) |
| return; |
| |
| chan->interference_factor = 0; |
| |
| dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list) |
| { |
| i++; |
| |
| if (!acs_survey_is_sufficient(survey)) { |
| wpa_printf(MSG_DEBUG, "ACS: %d: insufficient data", i); |
| continue; |
| } |
| |
| count++; |
| int_factor = acs_survey_interference_factor(survey, |
| iface->lowest_nf); |
| chan->interference_factor += int_factor; |
| wpa_printf(MSG_DEBUG, "ACS: %d: min_nf=%d interference_factor=%Lg nf=%d time=%lu busy=%lu rx=%lu", |
| i, chan->min_nf, int_factor, |
| survey->nf, (unsigned long) survey->channel_time, |
| (unsigned long) survey->channel_time_busy, |
| (unsigned long) survey->channel_time_rx); |
| } |
| |
| if (count) |
| chan->interference_factor /= count; |
| } |
| |
| |
| static bool acs_usable_bw_chan(const struct hostapd_channel_data *chan, |
| enum bw_type bw) |
| { |
| unsigned int i = 0; |
| |
| while (bw_desc[bw][i].first != -1) { |
| if (chan->freq == bw_desc[bw][i].first) |
| return true; |
| i++; |
| } |
| |
| return false; |
| } |
| |
| |
| static int acs_get_bw_center_chan(int freq, enum bw_type bw) |
| { |
| unsigned int i = 0; |
| |
| while (bw_desc[bw][i].first != -1) { |
| if (freq >= bw_desc[bw][i].first && |
| freq <= bw_desc[bw][i].last) |
| return bw_desc[bw][i].center_chan; |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int acs_survey_is_sufficient(struct freq_survey *survey) |
| { |
| if (!(survey->filled & SURVEY_HAS_NF)) { |
| wpa_printf(MSG_INFO, |
| "ACS: Survey for freq %d is missing noise floor", |
| survey->freq); |
| return 0; |
| } |
| |
| if (!(survey->filled & SURVEY_HAS_CHAN_TIME)) { |
| wpa_printf(MSG_INFO, |
| "ACS: Survey for freq %d is missing channel time", |
| survey->freq); |
| return 0; |
| } |
| |
| if (!(survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) && |
| !(survey->filled & SURVEY_HAS_CHAN_TIME_RX)) { |
| wpa_printf(MSG_INFO, |
| "ACS: Survey for freq %d is missing RX and busy time (at least one is required)", |
| survey->freq); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| static int acs_survey_list_is_sufficient(struct hostapd_channel_data *chan) |
| { |
| struct freq_survey *survey; |
| int ret = -1; |
| |
| dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list) |
| { |
| if (acs_survey_is_sufficient(survey)) { |
| ret = 1; |
| break; |
| } |
| ret = 0; |
| } |
| |
| if (ret == -1) |
| ret = 1; /* no survey list entries */ |
| |
| if (!ret) { |
| wpa_printf(MSG_INFO, |
| "ACS: Channel %d has insufficient survey data", |
| chan->chan); |
| } |
| |
| return ret; |
| } |
| |
| |
| static int acs_surveys_are_sufficient_mode(struct hostapd_hw_modes *mode) |
| { |
| int i; |
| struct hostapd_channel_data *chan; |
| |
| for (i = 0; i < mode->num_channels; i++) { |
| chan = &mode->channels[i]; |
| if (!(chan->flag & HOSTAPD_CHAN_DISABLED) && |
| acs_survey_list_is_sufficient(chan)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int acs_surveys_are_sufficient(struct hostapd_iface *iface) |
| { |
| int i; |
| struct hostapd_hw_modes *mode; |
| |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode) && |
| acs_surveys_are_sufficient_mode(mode)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int acs_usable_chan(struct hostapd_channel_data *chan) |
| { |
| return !dl_list_empty(&chan->survey_list) && |
| !(chan->flag & HOSTAPD_CHAN_DISABLED) && |
| acs_survey_list_is_sufficient(chan); |
| } |
| |
| |
| static int is_in_chanlist(struct hostapd_iface *iface, |
| struct hostapd_channel_data *chan) |
| { |
| if (!iface->conf->acs_ch_list.num) |
| return 1; |
| |
| return freq_range_list_includes(&iface->conf->acs_ch_list, chan->chan); |
| } |
| |
| |
| static int is_in_freqlist(struct hostapd_iface *iface, |
| struct hostapd_channel_data *chan) |
| { |
| if (!iface->conf->acs_freq_list.num) |
| return 1; |
| |
| return freq_range_list_includes(&iface->conf->acs_freq_list, |
| chan->freq); |
| } |
| |
| |
| static void acs_survey_mode_interference_factor( |
| struct hostapd_iface *iface, struct hostapd_hw_modes *mode) |
| { |
| int i; |
| struct hostapd_channel_data *chan; |
| |
| for (i = 0; i < mode->num_channels; i++) { |
| chan = &mode->channels[i]; |
| |
| if (!acs_usable_chan(chan)) |
| continue; |
| |
| if ((chan->flag & HOSTAPD_CHAN_RADAR) && |
| iface->conf->acs_exclude_dfs) |
| continue; |
| |
| if (!is_in_chanlist(iface, chan)) |
| continue; |
| |
| if (!is_in_freqlist(iface, chan)) |
| continue; |
| |
| if (chan->max_tx_power < iface->conf->min_tx_power) |
| continue; |
| |
| if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) && |
| iface->conf->country[2] == 0x4f) |
| continue; |
| |
| wpa_printf(MSG_DEBUG, "ACS: Survey analysis for channel %d (%d MHz)", |
| chan->chan, chan->freq); |
| |
| acs_survey_chan_interference_factor(iface, chan); |
| |
| wpa_printf(MSG_DEBUG, "ACS: * interference factor average: %Lg", |
| chan->interference_factor); |
| } |
| } |
| |
| |
| static void acs_survey_all_chans_interference_factor( |
| struct hostapd_iface *iface) |
| { |
| int i; |
| struct hostapd_hw_modes *mode; |
| |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode)) |
| acs_survey_mode_interference_factor(iface, mode); |
| } |
| } |
| |
| |
| static struct hostapd_channel_data * |
| acs_find_chan_mode(struct hostapd_hw_modes *mode, int freq) |
| { |
| struct hostapd_channel_data *chan; |
| int i; |
| |
| for (i = 0; i < mode->num_channels; i++) { |
| chan = &mode->channels[i]; |
| |
| if (chan->flag & HOSTAPD_CHAN_DISABLED) |
| continue; |
| |
| if (chan->freq == freq) |
| return chan; |
| } |
| |
| return NULL; |
| } |
| |
| |
| static enum hostapd_hw_mode |
| acs_find_mode(struct hostapd_iface *iface, int freq) |
| { |
| int i; |
| struct hostapd_hw_modes *mode; |
| struct hostapd_channel_data *chan; |
| |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode)) { |
| chan = acs_find_chan_mode(mode, freq); |
| if (chan) |
| return mode->mode; |
| } |
| } |
| |
| return HOSTAPD_MODE_IEEE80211ANY; |
| } |
| |
| |
| static struct hostapd_channel_data * |
| acs_find_chan(struct hostapd_iface *iface, int freq) |
| { |
| int i; |
| struct hostapd_hw_modes *mode; |
| struct hostapd_channel_data *chan; |
| |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode)) { |
| chan = acs_find_chan_mode(mode, freq); |
| if (chan) |
| return chan; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| static int is_24ghz_mode(enum hostapd_hw_mode mode) |
| { |
| return mode == HOSTAPD_MODE_IEEE80211B || |
| mode == HOSTAPD_MODE_IEEE80211G; |
| } |
| |
| |
| static int is_common_24ghz_chan(int chan) |
| { |
| return chan == 1 || chan == 6 || chan == 11; |
| } |
| |
| |
| #ifndef ACS_ADJ_WEIGHT |
| #define ACS_ADJ_WEIGHT 0.85 |
| #endif /* ACS_ADJ_WEIGHT */ |
| |
| #ifndef ACS_NEXT_ADJ_WEIGHT |
| #define ACS_NEXT_ADJ_WEIGHT 0.55 |
| #endif /* ACS_NEXT_ADJ_WEIGHT */ |
| |
| #ifndef ACS_24GHZ_PREFER_1_6_11 |
| /* |
| * Select commonly used channels 1, 6, 11 by default even if a neighboring |
| * channel has a smaller interference factor as long as it is not better by more |
| * than this multiplier. |
| */ |
| #define ACS_24GHZ_PREFER_1_6_11 0.8 |
| #endif /* ACS_24GHZ_PREFER_1_6_11 */ |
| |
| |
| #ifdef CONFIG_IEEE80211BE |
| static void acs_update_puncturing_bitmap(struct hostapd_iface *iface, |
| struct hostapd_hw_modes *mode, u32 bw, |
| int n_chans, |
| struct hostapd_channel_data *chan, |
| long double factor, |
| int index_primary) |
| { |
| struct hostapd_config *conf = iface->conf; |
| struct hostapd_channel_data *adj_chan = NULL, *first_chan = chan; |
| int i; |
| long double threshold; |
| |
| /* |
| * If threshold is 0 or user configured puncturing pattern is |
| * available then don't add additional puncturing. |
| */ |
| if (!conf->punct_acs_threshold || conf->punct_bitmap) |
| return; |
| |
| if (is_24ghz_mode(mode->mode) || bw < 80) |
| return; |
| |
| threshold = factor * conf->punct_acs_threshold / 100; |
| for (i = 0; i < n_chans; i++) { |
| int adj_freq; |
| |
| if (i == index_primary) |
| continue; /* Cannot puncture primary channel */ |
| |
| if (i > index_primary) |
| adj_freq = chan->freq + (i - index_primary) * 20; |
| else |
| adj_freq = chan->freq - (index_primary - i) * 20; |
| |
| adj_chan = acs_find_chan(iface, adj_freq); |
| if (!adj_chan) { |
| chan->punct_bitmap = 0; |
| return; |
| } |
| |
| if (i == 0) |
| first_chan = adj_chan; |
| |
| if (adj_chan->interference_factor > threshold) |
| chan->punct_bitmap |= BIT(i); |
| } |
| |
| if (!is_punct_bitmap_valid(bw, (chan->freq - first_chan->freq) / 20, |
| chan->punct_bitmap)) |
| chan->punct_bitmap = 0; |
| } |
| #endif /* CONFIG_IEEE80211BE */ |
| |
| |
| static void |
| acs_find_ideal_chan_mode(struct hostapd_iface *iface, |
| struct hostapd_hw_modes *mode, |
| int n_chans, u32 bw, |
| struct hostapd_channel_data **rand_chan, |
| struct hostapd_channel_data **ideal_chan, |
| long double *ideal_factor) |
| { |
| struct hostapd_channel_data *chan, *adj_chan = NULL, *best; |
| long double factor; |
| int i, j; |
| unsigned int k; |
| |
| for (i = 0; i < mode->num_channels; i++) { |
| double total_weight; |
| struct acs_bias *bias, tmp_bias; |
| bool update_best = true; |
| |
| best = chan = &mode->channels[i]; |
| |
| /* Since in the current ACS implementation the first channel is |
| * always a primary channel, skip channels not available as |
| * primary until more sophisticated channel selection is |
| * implemented. |
| * |
| * If this implementation is changed to allow any channel in |
| * the bandwidth to be the primary one, the last parameter to |
| * acs_update_puncturing_bitmap() should be changed to the index |
| * of the primary channel |
| */ |
| if (!chan_pri_allowed(chan)) |
| continue; |
| |
| if ((chan->flag & HOSTAPD_CHAN_RADAR) && |
| iface->conf->acs_exclude_dfs) |
| continue; |
| |
| if (!is_in_chanlist(iface, chan)) |
| continue; |
| |
| if (!is_in_freqlist(iface, chan)) |
| continue; |
| |
| if (chan->max_tx_power < iface->conf->min_tx_power) |
| continue; |
| |
| if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) && |
| iface->conf->country[2] == 0x4f) |
| continue; |
| |
| if (!chan_bw_allowed(chan, bw, 1, 1)) { |
| wpa_printf(MSG_DEBUG, |
| "ACS: Channel %d: BW %u is not supported", |
| chan->chan, bw); |
| continue; |
| } |
| |
| /* HT40 on 5 GHz has a limited set of primary channels as per |
| * 11n Annex J */ |
| if (mode->mode == HOSTAPD_MODE_IEEE80211A && |
| ((iface->conf->ieee80211n && |
| iface->conf->secondary_channel) || |
| is_6ghz_freq(chan->freq)) && |
| !acs_usable_bw_chan(chan, ACS_BW40)) { |
| wpa_printf(MSG_DEBUG, |
| "ACS: Channel %d: not allowed as primary channel for 40 MHz bandwidth", |
| chan->chan); |
| continue; |
| } |
| |
| if (mode->mode == HOSTAPD_MODE_IEEE80211A && |
| (iface->conf->ieee80211ac || iface->conf->ieee80211ax)) { |
| if (hostapd_get_oper_chwidth(iface->conf) == |
| CONF_OPER_CHWIDTH_80MHZ && |
| !acs_usable_bw_chan(chan, ACS_BW80)) { |
| wpa_printf(MSG_DEBUG, |
| "ACS: Channel %d: not allowed as primary channel for 80 MHz bandwidth", |
| chan->chan); |
| continue; |
| } |
| |
| if (hostapd_get_oper_chwidth(iface->conf) == |
| CONF_OPER_CHWIDTH_160MHZ && |
| !acs_usable_bw_chan(chan, ACS_BW160)) { |
| wpa_printf(MSG_DEBUG, |
| "ACS: Channel %d: not allowed as primary channel for 160 MHz bandwidth", |
| chan->chan); |
| continue; |
| } |
| } |
| |
| factor = 0; |
| if (acs_usable_chan(chan)) |
| factor = chan->interference_factor; |
| total_weight = 1; |
| |
| for (j = 1; j < n_chans; j++) { |
| adj_chan = acs_find_chan(iface, chan->freq + (j * 20)); |
| if (!adj_chan) |
| break; |
| |
| if (!chan_bw_allowed(adj_chan, bw, 1, 0)) { |
| wpa_printf(MSG_DEBUG, |
| "ACS: PRI Channel %d: secondary channel %d BW %u is not supported", |
| chan->chan, adj_chan->chan, bw); |
| break; |
| } |
| |
| if (acs_usable_chan(adj_chan)) { |
| factor += adj_chan->interference_factor; |
| total_weight += 1; |
| } else { |
| update_best = false; |
| } |
| |
| /* find the best channel in this segment */ |
| if (update_best && |
| adj_chan->interference_factor < |
| best->interference_factor) |
| best = adj_chan; |
| } |
| |
| if (j != n_chans) { |
| wpa_printf(MSG_DEBUG, "ACS: Channel %d: not enough bandwidth", |
| chan->chan); |
| continue; |
| } |
| |
| /* If the AP is in the 5 GHz or 6 GHz band, lets prefer a less |
| * crowded primary channel if one was found in the segment */ |
| if (iface->current_mode->mode == HOSTAPD_MODE_IEEE80211A && |
| chan != best) { |
| wpa_printf(MSG_DEBUG, |
| "ACS: promoting channel %d over %d (less interference %Lg/%Lg)", |
| best->chan, chan->chan, |
| chan->interference_factor, |
| best->interference_factor); |
| chan = best; |
| } |
| |
| /* 2.4 GHz has overlapping 20 MHz channels. Include adjacent |
| * channel interference factor. */ |
| if (is_24ghz_mode(mode->mode)) { |
| for (j = 0; j < n_chans; j++) { |
| adj_chan = acs_find_chan(iface, chan->freq + |
| (j * 20) - 5); |
| if (adj_chan && acs_usable_chan(adj_chan)) { |
| factor += ACS_ADJ_WEIGHT * |
| adj_chan->interference_factor; |
| total_weight += ACS_ADJ_WEIGHT; |
| } |
| |
| adj_chan = acs_find_chan(iface, chan->freq + |
| (j * 20) - 10); |
| if (adj_chan && acs_usable_chan(adj_chan)) { |
| factor += ACS_NEXT_ADJ_WEIGHT * |
| adj_chan->interference_factor; |
| total_weight += ACS_NEXT_ADJ_WEIGHT; |
| } |
| |
| adj_chan = acs_find_chan(iface, chan->freq + |
| (j * 20) + 5); |
| if (adj_chan && acs_usable_chan(adj_chan)) { |
| factor += ACS_ADJ_WEIGHT * |
| adj_chan->interference_factor; |
| total_weight += ACS_ADJ_WEIGHT; |
| } |
| |
| adj_chan = acs_find_chan(iface, chan->freq + |
| (j * 20) + 10); |
| if (adj_chan && acs_usable_chan(adj_chan)) { |
| factor += ACS_NEXT_ADJ_WEIGHT * |
| adj_chan->interference_factor; |
| total_weight += ACS_NEXT_ADJ_WEIGHT; |
| } |
| } |
| } |
| |
| factor /= total_weight; |
| |
| bias = NULL; |
| if (iface->conf->acs_chan_bias) { |
| for (k = 0; k < iface->conf->num_acs_chan_bias; k++) { |
| bias = &iface->conf->acs_chan_bias[k]; |
| if (bias->channel == chan->chan) |
| break; |
| bias = NULL; |
| } |
| } else if (is_24ghz_mode(mode->mode) && |
| is_common_24ghz_chan(chan->chan)) { |
| tmp_bias.channel = chan->chan; |
| tmp_bias.bias = ACS_24GHZ_PREFER_1_6_11; |
| bias = &tmp_bias; |
| } |
| |
| if (bias) { |
| factor *= bias->bias; |
| wpa_printf(MSG_DEBUG, |
| "ACS: * channel %d: total interference = %Lg (%f bias)", |
| chan->chan, factor, bias->bias); |
| } else { |
| wpa_printf(MSG_DEBUG, |
| "ACS: * channel %d: total interference = %Lg", |
| chan->chan, factor); |
| } |
| |
| if (acs_usable_chan(chan) && |
| (!*ideal_chan || factor < *ideal_factor)) { |
| /* Reset puncturing bitmap for the previous ideal |
| * channel */ |
| if (*ideal_chan) |
| (*ideal_chan)->punct_bitmap = 0; |
| |
| *ideal_factor = factor; |
| *ideal_chan = chan; |
| |
| #ifdef CONFIG_IEEE80211BE |
| if (iface->conf->ieee80211be) |
| acs_update_puncturing_bitmap(iface, mode, bw, |
| n_chans, chan, |
| factor, 0); |
| #endif /* CONFIG_IEEE80211BE */ |
| } |
| |
| /* This channel would at least be usable */ |
| if (!(*rand_chan)) |
| *rand_chan = chan; |
| } |
| } |
| |
| |
| /* |
| * At this point it's assumed chan->interference_factor has been computed. |
| * This function should be reusable regardless of interference computation |
| * option (survey, BSS, spectral, ...). chan->interference factor must be |
| * summable (i.e., must be always greater than zero). |
| */ |
| static struct hostapd_channel_data * |
| acs_find_ideal_chan(struct hostapd_iface *iface) |
| { |
| struct hostapd_channel_data *ideal_chan = NULL, |
| *rand_chan = NULL; |
| long double ideal_factor = 0; |
| int i; |
| int n_chans = 1; |
| u32 bw; |
| struct hostapd_hw_modes *mode; |
| |
| if (is_6ghz_op_class(iface->conf->op_class)) { |
| bw = op_class_to_bandwidth(iface->conf->op_class); |
| n_chans = bw / 20; |
| goto bw_selected; |
| } |
| |
| /* TODO: HT40- support */ |
| |
| if (iface->conf->ieee80211n && |
| iface->conf->secondary_channel == -1) { |
| wpa_printf(MSG_ERROR, "ACS: HT40- is not supported yet. Please try HT40+"); |
| return NULL; |
| } |
| |
| if (iface->conf->ieee80211n && |
| iface->conf->secondary_channel) |
| n_chans = 2; |
| |
| if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) { |
| switch (hostapd_get_oper_chwidth(iface->conf)) { |
| case CONF_OPER_CHWIDTH_80MHZ: |
| n_chans = 4; |
| break; |
| case CONF_OPER_CHWIDTH_160MHZ: |
| n_chans = 8; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| bw = num_chan_to_bw(n_chans); |
| |
| bw_selected: |
| /* TODO: VHT/HE80+80. Update acs_adjust_center_freq() too. */ |
| |
| wpa_printf(MSG_DEBUG, |
| "ACS: Survey analysis for selected bandwidth %d MHz", bw); |
| |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode)) |
| acs_find_ideal_chan_mode(iface, mode, n_chans, bw, |
| &rand_chan, &ideal_chan, |
| &ideal_factor); |
| } |
| |
| if (ideal_chan) { |
| wpa_printf(MSG_DEBUG, "ACS: Ideal channel is %d (%d MHz) with total interference factor of %Lg", |
| ideal_chan->chan, ideal_chan->freq, ideal_factor); |
| |
| #ifdef CONFIG_IEEE80211BE |
| if (iface->conf->punct_acs_threshold) |
| wpa_printf(MSG_DEBUG, "ACS: RU puncturing bitmap 0x%x", |
| ideal_chan->punct_bitmap); |
| #endif /* CONFIG_IEEE80211BE */ |
| |
| return ideal_chan; |
| } |
| |
| return rand_chan; |
| } |
| |
| |
| static void acs_adjust_secondary(struct hostapd_iface *iface) |
| { |
| unsigned int i; |
| |
| /* When working with bandwidth over 20 MHz on the 5 GHz or 6 GHz band, |
| * ACS can return a secondary channel which is not the first channel of |
| * the segment and we need to adjust. */ |
| if (!iface->conf->secondary_channel || |
| acs_find_mode(iface, iface->freq) != HOSTAPD_MODE_IEEE80211A) |
| return; |
| |
| wpa_printf(MSG_DEBUG, "ACS: Adjusting HT/VHT/HE secondary frequency"); |
| |
| for (i = 0; bw_desc[ACS_BW40][i].first != -1; i++) { |
| if (iface->freq == bw_desc[ACS_BW40][i].first) |
| iface->conf->secondary_channel = 1; |
| else if (iface->freq == bw_desc[ACS_BW40][i].last) |
| iface->conf->secondary_channel = -1; |
| } |
| } |
| |
| |
| static void acs_adjust_center_freq(struct hostapd_iface *iface) |
| { |
| int center; |
| |
| wpa_printf(MSG_DEBUG, "ACS: Adjusting VHT center frequency"); |
| |
| switch (hostapd_get_oper_chwidth(iface->conf)) { |
| case CONF_OPER_CHWIDTH_USE_HT: |
| if (iface->conf->secondary_channel && |
| iface->freq >= 2400 && iface->freq < 2500) |
| center = iface->conf->channel + |
| 2 * iface->conf->secondary_channel; |
| else if (iface->conf->secondary_channel) |
| center = acs_get_bw_center_chan(iface->freq, ACS_BW40); |
| else |
| center = iface->conf->channel; |
| break; |
| case CONF_OPER_CHWIDTH_80MHZ: |
| center = acs_get_bw_center_chan(iface->freq, ACS_BW80); |
| break; |
| case CONF_OPER_CHWIDTH_160MHZ: |
| center = acs_get_bw_center_chan(iface->freq, ACS_BW160); |
| break; |
| default: |
| /* TODO: How can this be calculated? Adjust |
| * acs_find_ideal_chan() */ |
| wpa_printf(MSG_INFO, |
| "ACS: Only VHT20/40/80/160 is supported now"); |
| return; |
| } |
| |
| hostapd_set_oper_centr_freq_seg0_idx(iface->conf, center); |
| } |
| |
| |
| static int acs_study_survey_based(struct hostapd_iface *iface) |
| { |
| wpa_printf(MSG_DEBUG, "ACS: Trying survey-based ACS"); |
| |
| if (!iface->chans_surveyed) { |
| wpa_printf(MSG_ERROR, "ACS: Unable to collect survey data"); |
| return -1; |
| } |
| |
| if (!acs_surveys_are_sufficient(iface)) { |
| wpa_printf(MSG_ERROR, "ACS: Surveys have insufficient data"); |
| return -1; |
| } |
| |
| acs_survey_all_chans_interference_factor(iface); |
| return 0; |
| } |
| |
| |
| static int acs_study_options(struct hostapd_iface *iface) |
| { |
| if (acs_study_survey_based(iface) == 0) |
| return 0; |
| |
| /* TODO: If no surveys are available/sufficient this is a good |
| * place to fallback to BSS-based ACS */ |
| |
| return -1; |
| } |
| |
| |
| static void acs_study(struct hostapd_iface *iface) |
| { |
| struct hostapd_channel_data *ideal_chan; |
| int err; |
| |
| err = acs_study_options(iface); |
| if (err < 0) { |
| wpa_printf(MSG_ERROR, "ACS: All study options have failed"); |
| goto fail; |
| } |
| |
| ideal_chan = acs_find_ideal_chan(iface); |
| if (!ideal_chan) { |
| wpa_printf(MSG_ERROR, "ACS: Failed to compute ideal channel"); |
| err = -1; |
| goto fail; |
| } |
| |
| iface->conf->channel = ideal_chan->chan; |
| iface->freq = ideal_chan->freq; |
| #ifdef CONFIG_IEEE80211BE |
| iface->conf->punct_bitmap = ideal_chan->punct_bitmap; |
| #endif /* CONFIG_IEEE80211BE */ |
| |
| if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) { |
| acs_adjust_secondary(iface); |
| acs_adjust_center_freq(iface); |
| } |
| |
| err = hostapd_select_hw_mode(iface); |
| if (err) { |
| wpa_printf(MSG_ERROR, |
| "ACS: Could not (err: %d) select hw_mode for freq=%d channel=%d", |
| err, iface->freq, iface->conf->channel); |
| err = -1; |
| goto fail; |
| } |
| |
| err = 0; |
| fail: |
| /* |
| * hostapd_setup_interface_complete() will return -1 on failure, |
| * 0 on success and 0 is HOSTAPD_CHAN_VALID :) |
| */ |
| if (hostapd_acs_completed(iface, err) == HOSTAPD_CHAN_VALID) { |
| acs_cleanup(iface); |
| return; |
| } |
| |
| /* This can possibly happen if channel parameters (secondary |
| * channel, center frequencies) are misconfigured */ |
| wpa_printf(MSG_ERROR, "ACS: Possibly channel configuration is invalid, please report this along with your config file."); |
| acs_fail(iface); |
| } |
| |
| |
| static void acs_scan_complete(struct hostapd_iface *iface) |
| { |
| int err; |
| |
| iface->scan_cb = NULL; |
| |
| wpa_printf(MSG_DEBUG, "ACS: Using survey based algorithm (acs_num_scans=%d)", |
| iface->conf->acs_num_scans); |
| |
| err = hostapd_drv_get_survey(iface->bss[0], 0); |
| if (err) { |
| wpa_printf(MSG_ERROR, "ACS: Failed to get survey data"); |
| goto fail; |
| } |
| |
| if (++iface->acs_num_completed_scans < iface->conf->acs_num_scans) { |
| err = acs_request_scan(iface); |
| if (err) { |
| wpa_printf(MSG_ERROR, "ACS: Failed to request scan"); |
| goto fail; |
| } |
| |
| return; |
| } |
| |
| acs_study(iface); |
| return; |
| fail: |
| hostapd_acs_completed(iface, 1); |
| acs_fail(iface); |
| } |
| |
| |
| static int * acs_request_scan_add_freqs(struct hostapd_iface *iface, |
| struct hostapd_hw_modes *mode, |
| int *freq) |
| { |
| struct hostapd_channel_data *chan; |
| int i; |
| |
| for (i = 0; i < mode->num_channels; i++) { |
| chan = &mode->channels[i]; |
| if ((chan->flag & HOSTAPD_CHAN_DISABLED) || |
| ((chan->flag & HOSTAPD_CHAN_RADAR) && |
| iface->conf->acs_exclude_dfs)) |
| continue; |
| |
| if (!is_in_chanlist(iface, chan)) |
| continue; |
| |
| if (!is_in_freqlist(iface, chan)) |
| continue; |
| |
| if (chan->max_tx_power < iface->conf->min_tx_power) |
| continue; |
| |
| if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) && |
| iface->conf->country[2] == 0x4f) |
| continue; |
| |
| *freq++ = chan->freq; |
| } |
| |
| return freq; |
| } |
| |
| |
| static int acs_request_scan(struct hostapd_iface *iface) |
| { |
| struct wpa_driver_scan_params params; |
| int i, *freq; |
| int num_channels; |
| struct hostapd_hw_modes *mode; |
| |
| os_memset(¶ms, 0, sizeof(params)); |
| |
| num_channels = 0; |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode)) |
| num_channels += mode->num_channels; |
| } |
| |
| params.freqs = os_calloc(num_channels + 1, sizeof(params.freqs[0])); |
| if (params.freqs == NULL) |
| return -1; |
| |
| freq = params.freqs; |
| |
| for (i = 0; i < iface->num_hw_features; i++) { |
| mode = &iface->hw_features[i]; |
| if (!hostapd_hw_skip_mode(iface, mode)) |
| freq = acs_request_scan_add_freqs(iface, mode, freq); |
| } |
| |
| *freq = 0; |
| |
| if (params.freqs == freq) { |
| wpa_printf(MSG_ERROR, "ACS: No available channels found"); |
| os_free(params.freqs); |
| return -1; |
| } |
| |
| iface->scan_cb = acs_scan_complete; |
| |
| wpa_printf(MSG_DEBUG, "ACS: Scanning %d / %d", |
| iface->acs_num_completed_scans + 1, |
| iface->conf->acs_num_scans); |
| |
| if (hostapd_driver_scan(iface->bss[0], ¶ms) < 0) { |
| wpa_printf(MSG_ERROR, "ACS: Failed to request initial scan"); |
| acs_cleanup(iface); |
| os_free(params.freqs); |
| return -1; |
| } |
| |
| os_free(params.freqs); |
| return 0; |
| } |
| |
| |
| enum hostapd_chan_status acs_init(struct hostapd_iface *iface) |
| { |
| int err; |
| |
| wpa_printf(MSG_INFO, "ACS: Automatic channel selection started, this may take a bit"); |
| |
| if (iface->drv_flags & WPA_DRIVER_FLAGS_ACS_OFFLOAD) { |
| wpa_printf(MSG_INFO, "ACS: Offloading to driver"); |
| |
| err = hostapd_drv_do_acs(iface->bss[0]); |
| if (err) { |
| if (err == 1) |
| return HOSTAPD_CHAN_INVALID_NO_IR; |
| return HOSTAPD_CHAN_INVALID; |
| } |
| |
| return HOSTAPD_CHAN_ACS; |
| } |
| |
| if (!iface->current_mode && |
| iface->conf->hw_mode != HOSTAPD_MODE_IEEE80211ANY) |
| return HOSTAPD_CHAN_INVALID; |
| |
| acs_cleanup(iface); |
| |
| if (acs_request_scan(iface) < 0) |
| return HOSTAPD_CHAN_INVALID; |
| |
| hostapd_set_state(iface, HAPD_IFACE_ACS); |
| wpa_msg(iface->bss[0]->msg_ctx, MSG_INFO, ACS_EVENT_STARTED); |
| |
| return HOSTAPD_CHAN_ACS; |
| } |