| /* |
| * Shared Dragonfly functionality |
| * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi> |
| * Copyright (c) 2019, The Linux Foundation |
| * |
| * This software may be distributed under the terms of the BSD license. |
| * See README for more details. |
| */ |
| |
| #include "utils/includes.h" |
| |
| #include "utils/common.h" |
| #include "utils/const_time.h" |
| #include "crypto/crypto.h" |
| #include "dragonfly.h" |
| |
| |
| int dragonfly_suitable_group(int group, int ecc_only) |
| { |
| /* Enforce REVmd rules on which SAE groups are suitable for production |
| * purposes: FFC groups whose prime is >= 3072 bits and ECC groups |
| * defined over a prime field whose prime is >= 256 bits. Furthermore, |
| * ECC groups defined over a characteristic 2 finite field and ECC |
| * groups with a co-factor greater than 1 are not suitable. Disable |
| * groups that use Brainpool curves as well for now since they leak more |
| * timing information due to the prime not being close to a power of |
| * two. */ |
| return group == 19 || group == 20 || group == 21 || |
| (!ecc_only && |
| (group == 15 || group == 16 || group == 17 || group == 18)); |
| } |
| |
| |
| unsigned int dragonfly_min_pwe_loop_iter(int group) |
| { |
| if (group == 22 || group == 23 || group == 24) { |
| /* FFC groups for which pwd-value is likely to be >= p |
| * frequently */ |
| return 40; |
| } |
| |
| if (group == 1 || group == 2 || group == 5 || group == 14 || |
| group == 15 || group == 16 || group == 17 || group == 18) { |
| /* FFC groups that have prime that is close to a power of two */ |
| return 1; |
| } |
| |
| /* Default to 40 (this covers most ECC groups) */ |
| return 40; |
| } |
| |
| |
| int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime, |
| struct crypto_bignum **qr, |
| struct crypto_bignum **qnr) |
| { |
| *qr = *qnr = NULL; |
| |
| while (!(*qr) || !(*qnr)) { |
| struct crypto_bignum *tmp; |
| int res; |
| |
| tmp = crypto_bignum_init(); |
| if (!tmp || crypto_bignum_rand(tmp, prime) < 0) { |
| crypto_bignum_deinit(tmp, 0); |
| break; |
| } |
| |
| res = crypto_bignum_legendre(tmp, prime); |
| if (res == 1 && !(*qr)) |
| *qr = tmp; |
| else if (res == -1 && !(*qnr)) |
| *qnr = tmp; |
| else |
| crypto_bignum_deinit(tmp, 0); |
| } |
| |
| if (*qr && *qnr) |
| return 0; |
| crypto_bignum_deinit(*qr, 0); |
| crypto_bignum_deinit(*qnr, 0); |
| *qr = *qnr = NULL; |
| return -1; |
| } |
| |
| |
| static struct crypto_bignum * |
| dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime) |
| { |
| struct crypto_bignum *tmp, *pm1, *one; |
| |
| tmp = crypto_bignum_init(); |
| pm1 = crypto_bignum_init(); |
| one = crypto_bignum_init_set((const u8 *) "\x01", 1); |
| if (!tmp || !pm1 || !one || |
| crypto_bignum_sub(prime, one, pm1) < 0 || |
| crypto_bignum_rand(tmp, pm1) < 0 || |
| crypto_bignum_add(tmp, one, tmp) < 0) { |
| crypto_bignum_deinit(tmp, 0); |
| tmp = NULL; |
| } |
| |
| crypto_bignum_deinit(pm1, 0); |
| crypto_bignum_deinit(one, 0); |
| return tmp; |
| } |
| |
| |
| int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec, |
| const u8 *qr, const u8 *qnr, |
| const struct crypto_bignum *val) |
| { |
| struct crypto_bignum *r, *num, *qr_or_qnr = NULL; |
| int check, res = -1; |
| u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN]; |
| const struct crypto_bignum *prime; |
| size_t prime_len; |
| unsigned int mask; |
| |
| prime = crypto_ec_get_prime(ec); |
| prime_len = crypto_ec_prime_len(ec); |
| |
| /* |
| * Use a blinding technique to mask val while determining whether it is |
| * a quadratic residue modulo p to avoid leaking timing information |
| * while determining the Legendre symbol. |
| * |
| * v = val |
| * r = a random number between 1 and p-1, inclusive |
| * num = (v * r * r) modulo p |
| */ |
| r = dragonfly_get_rand_1_to_p_1(prime); |
| if (!r) |
| return -1; |
| |
| num = crypto_bignum_init(); |
| if (!num || |
| crypto_bignum_mulmod(val, r, prime, num) < 0 || |
| crypto_bignum_mulmod(num, r, prime, num) < 0) |
| goto fail; |
| |
| /* |
| * Need to minimize differences in handling different cases, so try to |
| * avoid branches and timing differences. |
| * |
| * If r is odd: |
| * num = (num * qr) module p |
| * LGR(num, p) = 1 ==> quadratic residue |
| * else: |
| * num = (num * qnr) module p |
| * LGR(num, p) = -1 ==> quadratic residue |
| * |
| * mask is set to !odd(r) |
| */ |
| mask = const_time_is_zero(crypto_bignum_is_odd(r)); |
| const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin); |
| qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len); |
| if (!qr_or_qnr || |
| crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0) |
| goto fail; |
| /* branchless version of check = odd(r) ? 1 : -1, */ |
| check = const_time_select_int(mask, -1, 1); |
| |
| /* Determine the Legendre symbol on the masked value */ |
| res = crypto_bignum_legendre(num, prime); |
| if (res == -2) { |
| res = -1; |
| goto fail; |
| } |
| /* branchless version of res = res == check |
| * (res is -1, 0, or 1; check is -1 or 1) */ |
| mask = const_time_eq(res, check); |
| res = const_time_select_int(mask, 1, 0); |
| fail: |
| crypto_bignum_deinit(num, 1); |
| crypto_bignum_deinit(r, 1); |
| crypto_bignum_deinit(qr_or_qnr, 1); |
| return res; |
| } |
| |
| |
| static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val, |
| const struct crypto_bignum *order) |
| { |
| return crypto_bignum_rand(val, order) == 0 && |
| !crypto_bignum_is_zero(val) && |
| !crypto_bignum_is_one(val); |
| } |
| |
| |
| int dragonfly_generate_scalar(const struct crypto_bignum *order, |
| struct crypto_bignum *_rand, |
| struct crypto_bignum *_mask, |
| struct crypto_bignum *scalar) |
| { |
| int count; |
| |
| /* Select two random values rand,mask such that 1 < rand,mask < r and |
| * rand + mask mod r > 1. */ |
| for (count = 0; count < 100; count++) { |
| if (dragonfly_get_rand_2_to_r_1(_rand, order) && |
| dragonfly_get_rand_2_to_r_1(_mask, order) && |
| crypto_bignum_add(_rand, _mask, scalar) == 0 && |
| crypto_bignum_mod(scalar, order, scalar) == 0 && |
| !crypto_bignum_is_zero(scalar) && |
| !crypto_bignum_is_one(scalar)) |
| return 0; |
| } |
| |
| /* This should not be reachable in practice if the random number |
| * generation is working. */ |
| wpa_printf(MSG_INFO, |
| "dragonfly: Unable to get randomness for own scalar"); |
| return -1; |
| } |
| |
| |
| /* res = sqrt(val) */ |
| int dragonfly_sqrt(struct crypto_ec *ec, const struct crypto_bignum *val, |
| struct crypto_bignum *res) |
| { |
| const struct crypto_bignum *prime; |
| struct crypto_bignum *tmp, *one; |
| int ret = 0; |
| u8 prime_bin[DRAGONFLY_MAX_ECC_PRIME_LEN]; |
| size_t prime_len; |
| |
| /* For prime p such that p = 3 mod 4, sqrt(w) = w^((p+1)/4) mod p */ |
| |
| prime = crypto_ec_get_prime(ec); |
| prime_len = crypto_ec_prime_len(ec); |
| tmp = crypto_bignum_init(); |
| one = crypto_bignum_init_uint(1); |
| |
| if (crypto_bignum_to_bin(prime, prime_bin, sizeof(prime_bin), |
| prime_len) < 0 || |
| (prime_bin[prime_len - 1] & 0x03) != 3 || |
| !tmp || !one || |
| /* tmp = (p+1)/4 */ |
| crypto_bignum_add(prime, one, tmp) < 0 || |
| crypto_bignum_rshift(tmp, 2, tmp) < 0 || |
| /* res = sqrt(val) */ |
| crypto_bignum_exptmod(val, tmp, prime, res) < 0) |
| ret = -1; |
| |
| crypto_bignum_deinit(tmp, 0); |
| crypto_bignum_deinit(one, 0); |
| return ret; |
| } |