| /* |
| * Wrapper functions for libnettle and libgmp |
| * Copyright (c) 2017, Jouni Malinen <j@w1.fi> |
| * |
| * This software may be distributed under the terms of the BSD license. |
| * See README for more details. |
| */ |
| |
| #include "includes.h" |
| #include <nettle/nettle-meta.h> |
| #include <nettle/des.h> |
| #undef des_encrypt |
| #include <nettle/hmac.h> |
| #include <nettle/aes.h> |
| #undef aes_encrypt |
| #undef aes_decrypt |
| #include <nettle/arcfour.h> |
| #include <nettle/bignum.h> |
| |
| #include "common.h" |
| #include "md5.h" |
| #include "sha1.h" |
| #include "sha256.h" |
| #include "sha384.h" |
| #include "sha512.h" |
| #include "crypto.h" |
| |
| |
| int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) |
| { |
| struct des_ctx ctx; |
| u8 pkey[8], next, tmp; |
| int i; |
| |
| /* Add parity bits to the key */ |
| next = 0; |
| for (i = 0; i < 7; i++) { |
| tmp = key[i]; |
| pkey[i] = (tmp >> i) | next | 1; |
| next = tmp << (7 - i); |
| } |
| pkey[i] = next | 1; |
| |
| nettle_des_set_key(&ctx, pkey); |
| nettle_des_encrypt(&ctx, DES_BLOCK_SIZE, cypher, clear); |
| os_memset(&ctx, 0, sizeof(ctx)); |
| return 0; |
| } |
| |
| |
| static int nettle_digest_vector(const struct nettle_hash *alg, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| void *ctx; |
| size_t i; |
| |
| if (TEST_FAIL()) |
| return -1; |
| |
| ctx = os_malloc(alg->context_size); |
| if (!ctx) |
| return -1; |
| alg->init(ctx); |
| for (i = 0; i < num_elem; i++) |
| alg->update(ctx, len[i], addr[i]); |
| alg->digest(ctx, alg->digest_size, mac); |
| bin_clear_free(ctx, alg->context_size); |
| return 0; |
| } |
| |
| |
| int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return nettle_digest_vector(&nettle_md4, num_elem, addr, len, mac); |
| } |
| |
| |
| int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return nettle_digest_vector(&nettle_md5, num_elem, addr, len, mac); |
| } |
| |
| |
| int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return nettle_digest_vector(&nettle_sha1, num_elem, addr, len, mac); |
| } |
| |
| |
| int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return nettle_digest_vector(&nettle_sha256, num_elem, addr, len, mac); |
| } |
| |
| |
| int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return nettle_digest_vector(&nettle_sha384, num_elem, addr, len, mac); |
| } |
| |
| |
| int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return nettle_digest_vector(&nettle_sha512, num_elem, addr, len, mac); |
| } |
| |
| |
| int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| struct hmac_md5_ctx ctx; |
| size_t i; |
| |
| if (TEST_FAIL()) |
| return -1; |
| |
| hmac_md5_set_key(&ctx, key_len, key); |
| for (i = 0; i < num_elem; i++) |
| hmac_md5_update(&ctx, len[i], addr[i]); |
| hmac_md5_digest(&ctx, MD5_DIGEST_SIZE, mac); |
| os_memset(&ctx, 0, sizeof(ctx)); |
| return 0; |
| } |
| |
| |
| int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, |
| u8 *mac) |
| { |
| return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| |
| int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| struct hmac_sha1_ctx ctx; |
| size_t i; |
| |
| if (TEST_FAIL()) |
| return -1; |
| |
| hmac_sha1_set_key(&ctx, key_len, key); |
| for (i = 0; i < num_elem; i++) |
| hmac_sha1_update(&ctx, len[i], addr[i]); |
| hmac_sha1_digest(&ctx, SHA1_DIGEST_SIZE, mac); |
| os_memset(&ctx, 0, sizeof(ctx)); |
| return 0; |
| } |
| |
| |
| int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, |
| u8 *mac) |
| { |
| return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| |
| #ifdef CONFIG_SHA256 |
| |
| int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| struct hmac_sha256_ctx ctx; |
| size_t i; |
| |
| if (TEST_FAIL()) |
| return -1; |
| |
| hmac_sha256_set_key(&ctx, key_len, key); |
| for (i = 0; i < num_elem; i++) |
| hmac_sha256_update(&ctx, len[i], addr[i]); |
| hmac_sha256_digest(&ctx, SHA256_DIGEST_SIZE, mac); |
| os_memset(&ctx, 0, sizeof(ctx)); |
| return 0; |
| } |
| |
| |
| int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, |
| size_t data_len, u8 *mac) |
| { |
| return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| #endif /* CONFIG_SHA256 */ |
| |
| |
| #ifdef CONFIG_SHA384 |
| |
| int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| struct hmac_sha384_ctx ctx; |
| size_t i; |
| |
| if (TEST_FAIL()) |
| return -1; |
| |
| hmac_sha384_set_key(&ctx, key_len, key); |
| for (i = 0; i < num_elem; i++) |
| hmac_sha384_update(&ctx, len[i], addr[i]); |
| hmac_sha384_digest(&ctx, SHA384_DIGEST_SIZE, mac); |
| os_memset(&ctx, 0, sizeof(ctx)); |
| return 0; |
| } |
| |
| |
| int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, |
| size_t data_len, u8 *mac) |
| { |
| return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| #endif /* CONFIG_SHA384 */ |
| |
| |
| #ifdef CONFIG_SHA512 |
| |
| int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| struct hmac_sha512_ctx ctx; |
| size_t i; |
| |
| if (TEST_FAIL()) |
| return -1; |
| |
| hmac_sha512_set_key(&ctx, key_len, key); |
| for (i = 0; i < num_elem; i++) |
| hmac_sha512_update(&ctx, len[i], addr[i]); |
| hmac_sha512_digest(&ctx, SHA512_DIGEST_SIZE, mac); |
| os_memset(&ctx, 0, sizeof(ctx)); |
| return 0; |
| } |
| |
| |
| int hmac_sha512(const u8 *key, size_t key_len, const u8 *data, |
| size_t data_len, u8 *mac) |
| { |
| return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| #endif /* CONFIG_SHA512 */ |
| |
| |
| void * aes_encrypt_init(const u8 *key, size_t len) |
| { |
| struct aes_ctx *ctx; |
| |
| if (TEST_FAIL()) |
| return NULL; |
| ctx = os_malloc(sizeof(*ctx)); |
| if (!ctx) |
| return NULL; |
| |
| nettle_aes_set_encrypt_key(ctx, len, key); |
| |
| return ctx; |
| } |
| |
| |
| int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) |
| { |
| struct aes_ctx *actx = ctx; |
| nettle_aes_encrypt(actx, AES_BLOCK_SIZE, crypt, plain); |
| return 0; |
| } |
| |
| |
| void aes_encrypt_deinit(void *ctx) |
| { |
| struct aes_ctx *actx = ctx; |
| bin_clear_free(actx, sizeof(*actx)); |
| } |
| |
| |
| void * aes_decrypt_init(const u8 *key, size_t len) |
| { |
| struct aes_ctx *ctx; |
| |
| if (TEST_FAIL()) |
| return NULL; |
| ctx = os_malloc(sizeof(*ctx)); |
| if (!ctx) |
| return NULL; |
| |
| nettle_aes_set_decrypt_key(ctx, len, key); |
| |
| return ctx; |
| } |
| |
| |
| int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) |
| { |
| struct aes_ctx *actx = ctx; |
| nettle_aes_decrypt(actx, AES_BLOCK_SIZE, plain, crypt); |
| return 0; |
| } |
| |
| |
| void aes_decrypt_deinit(void *ctx) |
| { |
| struct aes_ctx *actx = ctx; |
| bin_clear_free(actx, sizeof(*actx)); |
| } |
| |
| |
| int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, |
| u8 *pubkey) |
| { |
| size_t pubkey_len, pad; |
| |
| if (os_get_random(privkey, prime_len) < 0) |
| return -1; |
| if (os_memcmp(privkey, prime, prime_len) > 0) { |
| /* Make sure private value is smaller than prime */ |
| privkey[0] = 0; |
| } |
| |
| pubkey_len = prime_len; |
| if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len, |
| pubkey, &pubkey_len) < 0) |
| return -1; |
| if (pubkey_len < prime_len) { |
| pad = prime_len - pubkey_len; |
| os_memmove(pubkey + pad, pubkey, pubkey_len); |
| os_memset(pubkey, 0, pad); |
| } |
| |
| return 0; |
| } |
| |
| |
| int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, |
| const u8 *order, size_t order_len, |
| const u8 *privkey, size_t privkey_len, |
| const u8 *pubkey, size_t pubkey_len, |
| u8 *secret, size_t *len) |
| { |
| mpz_t pub; |
| int res = -1; |
| |
| if (pubkey_len > prime_len || |
| (pubkey_len == prime_len && |
| os_memcmp(pubkey, prime, prime_len) >= 0)) |
| return -1; |
| |
| mpz_init(pub); |
| mpz_import(pub, pubkey_len, 1, 1, 1, 0, pubkey); |
| if (mpz_cmp_d(pub, 1) <= 0) |
| goto fail; |
| |
| if (order) { |
| mpz_t p, q, tmp; |
| int failed; |
| |
| /* verify: pubkey^q == 1 mod p */ |
| mpz_inits(p, q, tmp, NULL); |
| mpz_import(p, prime_len, 1, 1, 1, 0, prime); |
| mpz_import(q, order_len, 1, 1, 1, 0, order); |
| mpz_powm(tmp, pub, q, p); |
| failed = mpz_cmp_d(tmp, 1) != 0; |
| mpz_clears(p, q, tmp, NULL); |
| if (failed) |
| goto fail; |
| } |
| |
| res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len, |
| prime, prime_len, secret, len); |
| fail: |
| mpz_clear(pub); |
| return res; |
| } |
| |
| |
| int crypto_mod_exp(const u8 *base, size_t base_len, |
| const u8 *power, size_t power_len, |
| const u8 *modulus, size_t modulus_len, |
| u8 *result, size_t *result_len) |
| { |
| mpz_t bn_base, bn_exp, bn_modulus, bn_result; |
| int ret = -1; |
| size_t len; |
| |
| mpz_inits(bn_base, bn_exp, bn_modulus, bn_result, NULL); |
| mpz_import(bn_base, base_len, 1, 1, 1, 0, base); |
| mpz_import(bn_exp, power_len, 1, 1, 1, 0, power); |
| mpz_import(bn_modulus, modulus_len, 1, 1, 1, 0, modulus); |
| |
| mpz_powm(bn_result, bn_base, bn_exp, bn_modulus); |
| len = mpz_sizeinbase(bn_result, 2); |
| len = (len + 7) / 8; |
| if (*result_len < len) |
| goto error; |
| mpz_export(result, result_len, 1, 1, 1, 0, bn_result); |
| ret = 0; |
| |
| error: |
| mpz_clears(bn_base, bn_exp, bn_modulus, bn_result, NULL); |
| return ret; |
| } |
| |
| |
| struct crypto_cipher { |
| enum crypto_cipher_alg alg; |
| union { |
| struct arcfour_ctx arcfour_ctx; |
| } u; |
| }; |
| |
| |
| struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, |
| const u8 *iv, const u8 *key, |
| size_t key_len) |
| { |
| struct crypto_cipher *ctx; |
| |
| ctx = os_zalloc(sizeof(*ctx)); |
| if (!ctx) |
| return NULL; |
| |
| ctx->alg = alg; |
| |
| switch (alg) { |
| case CRYPTO_CIPHER_ALG_RC4: |
| nettle_arcfour_set_key(&ctx->u.arcfour_ctx, key_len, key); |
| break; |
| default: |
| os_free(ctx); |
| return NULL; |
| } |
| |
| return ctx; |
| } |
| |
| |
| int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, |
| u8 *crypt, size_t len) |
| { |
| switch (ctx->alg) { |
| case CRYPTO_CIPHER_ALG_RC4: |
| nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, crypt, plain); |
| break; |
| default: |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| |
| int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, |
| u8 *plain, size_t len) |
| { |
| switch (ctx->alg) { |
| case CRYPTO_CIPHER_ALG_RC4: |
| nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, plain, crypt); |
| break; |
| default: |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| |
| void crypto_cipher_deinit(struct crypto_cipher *ctx) |
| { |
| bin_clear_free(ctx, sizeof(*ctx)); |
| } |
| |
| |
| void crypto_unload(void) |
| { |
| } |