blob: dcadfbe5604cb4d95b738282a11600ffc78cd3f9 [file] [log] [blame]
/*
* IEEE 802.11 Common routines
* Copyright (c) 2002-2019, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "defs.h"
#include "wpa_common.h"
#include "drivers/driver.h"
#include "qca-vendor.h"
#include "ieee802_11_defs.h"
#include "ieee802_11_common.h"
static int ieee802_11_parse_vendor_specific(const u8 *pos, size_t elen,
struct ieee802_11_elems *elems,
int show_errors)
{
unsigned int oui;
/* first 3 bytes in vendor specific information element are the IEEE
* OUI of the vendor. The following byte is used a vendor specific
* sub-type. */
if (elen < 4) {
if (show_errors) {
wpa_printf(MSG_MSGDUMP, "short vendor specific "
"information element ignored (len=%lu)",
(unsigned long) elen);
}
return -1;
}
oui = WPA_GET_BE24(pos);
switch (oui) {
case OUI_MICROSOFT:
/* Microsoft/Wi-Fi information elements are further typed and
* subtyped */
switch (pos[3]) {
case 1:
/* Microsoft OUI (00:50:F2) with OUI Type 1:
* real WPA information element */
elems->wpa_ie = pos;
elems->wpa_ie_len = elen;
break;
case WMM_OUI_TYPE:
/* WMM information element */
if (elen < 5) {
wpa_printf(MSG_MSGDUMP, "short WMM "
"information element ignored "
"(len=%lu)",
(unsigned long) elen);
return -1;
}
switch (pos[4]) {
case WMM_OUI_SUBTYPE_INFORMATION_ELEMENT:
case WMM_OUI_SUBTYPE_PARAMETER_ELEMENT:
/*
* Share same pointer since only one of these
* is used and they start with same data.
* Length field can be used to distinguish the
* IEs.
*/
elems->wmm = pos;
elems->wmm_len = elen;
break;
case WMM_OUI_SUBTYPE_TSPEC_ELEMENT:
elems->wmm_tspec = pos;
elems->wmm_tspec_len = elen;
break;
default:
wpa_printf(MSG_EXCESSIVE, "unknown WMM "
"information element ignored "
"(subtype=%d len=%lu)",
pos[4], (unsigned long) elen);
return -1;
}
break;
case 4:
/* Wi-Fi Protected Setup (WPS) IE */
elems->wps_ie = pos;
elems->wps_ie_len = elen;
break;
default:
wpa_printf(MSG_EXCESSIVE, "Unknown Microsoft "
"information element ignored "
"(type=%d len=%lu)",
pos[3], (unsigned long) elen);
return -1;
}
break;
case OUI_WFA:
switch (pos[3]) {
case P2P_OUI_TYPE:
/* Wi-Fi Alliance - P2P IE */
elems->p2p = pos;
elems->p2p_len = elen;
break;
case WFD_OUI_TYPE:
/* Wi-Fi Alliance - WFD IE */
elems->wfd = pos;
elems->wfd_len = elen;
break;
case HS20_INDICATION_OUI_TYPE:
/* Hotspot 2.0 */
elems->hs20 = pos;
elems->hs20_len = elen;
break;
case HS20_OSEN_OUI_TYPE:
/* Hotspot 2.0 OSEN */
elems->osen = pos;
elems->osen_len = elen;
break;
case MBO_OUI_TYPE:
/* MBO-OCE */
elems->mbo = pos;
elems->mbo_len = elen;
break;
case HS20_ROAMING_CONS_SEL_OUI_TYPE:
/* Hotspot 2.0 Roaming Consortium Selection */
elems->roaming_cons_sel = pos;
elems->roaming_cons_sel_len = elen;
break;
case MULTI_AP_OUI_TYPE:
elems->multi_ap = pos;
elems->multi_ap_len = elen;
break;
case OWE_OUI_TYPE:
/* OWE Transition Mode element */
break;
case DPP_CC_OUI_TYPE:
/* DPP Configurator Connectivity element */
break;
case SAE_PK_OUI_TYPE:
elems->sae_pk = pos + 4;
elems->sae_pk_len = elen - 4;
break;
default:
wpa_printf(MSG_MSGDUMP, "Unknown WFA "
"information element ignored "
"(type=%d len=%lu)",
pos[3], (unsigned long) elen);
return -1;
}
break;
case OUI_BROADCOM:
switch (pos[3]) {
case VENDOR_HT_CAPAB_OUI_TYPE:
elems->vendor_ht_cap = pos;
elems->vendor_ht_cap_len = elen;
break;
case VENDOR_VHT_TYPE:
if (elen > 4 &&
(pos[4] == VENDOR_VHT_SUBTYPE ||
pos[4] == VENDOR_VHT_SUBTYPE2)) {
elems->vendor_vht = pos;
elems->vendor_vht_len = elen;
} else
return -1;
break;
default:
wpa_printf(MSG_EXCESSIVE, "Unknown Broadcom "
"information element ignored "
"(type=%d len=%lu)",
pos[3], (unsigned long) elen);
return -1;
}
break;
case OUI_QCA:
switch (pos[3]) {
case QCA_VENDOR_ELEM_P2P_PREF_CHAN_LIST:
elems->pref_freq_list = pos;
elems->pref_freq_list_len = elen;
break;
default:
wpa_printf(MSG_EXCESSIVE,
"Unknown QCA information element ignored (type=%d len=%lu)",
pos[3], (unsigned long) elen);
return -1;
}
break;
default:
wpa_printf(MSG_EXCESSIVE, "unknown vendor specific "
"information element ignored (vendor OUI "
"%02x:%02x:%02x len=%lu)",
pos[0], pos[1], pos[2], (unsigned long) elen);
return -1;
}
return 0;
}
static int ieee802_11_parse_mle(const u8 *pos, size_t elen, size_t **total_len,
struct ieee802_11_elems *elems,
int show_errors)
{
u8 mle_type = pos[0] & MULTI_LINK_CONTROL_TYPE_MASK;
switch (mle_type) {
case MULTI_LINK_CONTROL_TYPE_BASIC:
elems->basic_mle = pos;
elems->basic_mle_len = elen;
*total_len = &elems->basic_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_PROBE_REQ:
elems->probe_req_mle = pos;
elems->probe_req_mle_len = elen;
*total_len = &elems->probe_req_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_RECONF:
elems->reconf_mle = pos;
elems->reconf_mle_len = elen;
*total_len = &elems->reconf_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_TDLS:
elems->tdls_mle = pos;
elems->tdls_mle_len = elen;
*total_len = &elems->tdls_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_PRIOR_ACCESS:
elems->prior_access_mle = pos;
elems->prior_access_mle_len = elen;
*total_len = &elems->prior_access_mle_len;
break;
default:
if (show_errors) {
wpa_printf(MSG_MSGDUMP,
"Unknown Multi-Link element type %u",
mle_type);
}
return -1;
}
return 0;
}
static size_t ieee802_11_fragments_length(struct ieee802_11_elems *elems,
const u8 *start, size_t len)
{
const struct element *elem;
size_t frags_len = 0;
for_each_element(elem, start, len) {
if (elem->id != WLAN_EID_FRAGMENT)
break;
frags_len += elem->datalen + 2;
elems->num_frag_elems++;
}
return frags_len;
}
static int ieee802_11_parse_extension(const u8 *pos, size_t elen,
struct ieee802_11_elems *elems,
const u8 *start, size_t len,
int show_errors)
{
u8 ext_id;
size_t *total_len = NULL;
if (elen < 1) {
if (show_errors) {
wpa_printf(MSG_MSGDUMP,
"short information element (Ext)");
}
return -1;
}
ext_id = *pos++;
elen--;
switch (ext_id) {
case WLAN_EID_EXT_ASSOC_DELAY_INFO:
if (elen != 1)
break;
elems->assoc_delay_info = pos;
break;
case WLAN_EID_EXT_FILS_REQ_PARAMS:
if (elen < 3)
break;
elems->fils_req_params = pos;
elems->fils_req_params_len = elen;
break;
case WLAN_EID_EXT_FILS_KEY_CONFIRM:
elems->fils_key_confirm = pos;
elems->fils_key_confirm_len = elen;
break;
case WLAN_EID_EXT_FILS_SESSION:
if (elen != FILS_SESSION_LEN)
break;
elems->fils_session = pos;
break;
case WLAN_EID_EXT_FILS_HLP_CONTAINER:
if (elen < 2 * ETH_ALEN)
break;
elems->fils_hlp = pos;
elems->fils_hlp_len = elen;
total_len = &elems->fils_hlp_len;
break;
case WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN:
if (elen < 1)
break;
elems->fils_ip_addr_assign = pos;
elems->fils_ip_addr_assign_len = elen;
break;
case WLAN_EID_EXT_KEY_DELIVERY:
if (elen < WPA_KEY_RSC_LEN)
break;
elems->key_delivery = pos;
elems->key_delivery_len = elen;
break;
case WLAN_EID_EXT_WRAPPED_DATA:
elems->wrapped_data = pos;
elems->wrapped_data_len = elen;
total_len = &elems->wrapped_data_len;
break;
case WLAN_EID_EXT_FILS_PUBLIC_KEY:
if (elen < 1)
break;
elems->fils_pk = pos;
elems->fils_pk_len = elen;
break;
case WLAN_EID_EXT_FILS_NONCE:
if (elen != FILS_NONCE_LEN)
break;
elems->fils_nonce = pos;
break;
case WLAN_EID_EXT_OWE_DH_PARAM:
if (elen < 2)
break;
elems->owe_dh = pos;
elems->owe_dh_len = elen;
break;
case WLAN_EID_EXT_PASSWORD_IDENTIFIER:
elems->password_id = pos;
elems->password_id_len = elen;
break;
case WLAN_EID_EXT_HE_CAPABILITIES:
if (elen < HE_CAPABILITIES_IE_MIN_LEN)
break;
elems->he_capabilities = pos;
elems->he_capabilities_len = elen;
break;
case WLAN_EID_EXT_HE_OPERATION:
if (elen < HE_OPERATION_IE_MIN_LEN)
break;
elems->he_operation = pos;
elems->he_operation_len = elen;
break;
case WLAN_EID_EXT_OCV_OCI:
elems->oci = pos;
elems->oci_len = elen;
break;
case WLAN_EID_EXT_SHORT_SSID_LIST:
elems->short_ssid_list = pos;
elems->short_ssid_list_len = elen;
break;
case WLAN_EID_EXT_HE_6GHZ_BAND_CAP:
if (elen < sizeof(struct ieee80211_he_6ghz_band_cap))
break;
elems->he_6ghz_band_cap = pos;
break;
case WLAN_EID_EXT_PASN_PARAMS:
elems->pasn_params = pos;
elems->pasn_params_len = elen;
break;
case WLAN_EID_EXT_EHT_CAPABILITIES:
if (elen < EHT_CAPABILITIES_IE_MIN_LEN)
break;
elems->eht_capabilities = pos;
elems->eht_capabilities_len = elen;
break;
case WLAN_EID_EXT_EHT_OPERATION:
if (elen < EHT_OPERATION_IE_MIN_LEN)
break;
elems->eht_operation = pos;
elems->eht_operation_len = elen;
break;
case WLAN_EID_EXT_MULTI_LINK:
if (elen < 2)
break;
if (ieee802_11_parse_mle(pos, elen, &total_len, elems,
show_errors))
return -1;
break;
case WLAN_EID_EXT_KNOWN_BSSID:
elems->mbssid_known_bss = pos;
elems->mbssid_known_bss_len = elen;
break;
default:
if (show_errors) {
wpa_printf(MSG_MSGDUMP,
"IEEE 802.11 element parsing ignored unknown element extension (ext_id=%u elen=%u)",
ext_id, (unsigned int) elen);
}
return -1;
}
if (elen == 254 && total_len)
*total_len += ieee802_11_fragments_length(
elems, pos + elen, (start + len) - (pos + elen));
return 0;
}
static ParseRes __ieee802_11_parse_elems(const u8 *start, size_t len,
struct ieee802_11_elems *elems,
int show_errors)
{
const struct element *elem;
int unknown = 0;
if (!start)
return ParseOK;
for_each_element(elem, start, len) {
u8 id = elem->id, elen = elem->datalen;
const u8 *pos = elem->data;
if (id == WLAN_EID_FRAGMENT && elems->num_frag_elems > 0) {
elems->num_frag_elems--;
continue;
}
elems->num_frag_elems = 0;
switch (id) {
case WLAN_EID_SSID:
if (elen > SSID_MAX_LEN) {
wpa_printf(MSG_DEBUG,
"Ignored too long SSID element (elen=%u)",
elen);
break;
}
if (elems->ssid) {
wpa_printf(MSG_MSGDUMP,
"Ignored duplicated SSID element");
break;
}
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_DS_PARAMS:
if (elen < 1)
break;
elems->ds_params = pos;
break;
case WLAN_EID_CF_PARAMS:
case WLAN_EID_TIM:
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_ERP_INFO:
if (elen < 1)
break;
elems->erp_info = pos;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_VENDOR_SPECIFIC:
if (ieee802_11_parse_vendor_specific(pos, elen,
elems,
show_errors))
unknown++;
break;
case WLAN_EID_RSN:
elems->rsn_ie = pos;
elems->rsn_ie_len = elen;
break;
case WLAN_EID_RSNX:
elems->rsnxe = pos;
elems->rsnxe_len = elen;
break;
case WLAN_EID_PWR_CAPABILITY:
if (elen < 2)
break;
elems->power_capab = pos;
elems->power_capab_len = elen;
break;
case WLAN_EID_SUPPORTED_CHANNELS:
elems->supp_channels = pos;
elems->supp_channels_len = elen;
break;
case WLAN_EID_MOBILITY_DOMAIN:
if (elen < sizeof(struct rsn_mdie))
break;
elems->mdie = pos;
elems->mdie_len = elen;
break;
case WLAN_EID_FAST_BSS_TRANSITION:
if (elen < sizeof(struct rsn_ftie))
break;
elems->ftie = pos;
elems->ftie_len = elen;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
if (elen != 5)
break;
elems->timeout_int = pos;
break;
case WLAN_EID_HT_CAP:
if (elen < sizeof(struct ieee80211_ht_capabilities))
break;
elems->ht_capabilities = pos;
break;
case WLAN_EID_HT_OPERATION:
if (elen < sizeof(struct ieee80211_ht_operation))
break;
elems->ht_operation = pos;
break;
case WLAN_EID_MESH_CONFIG:
elems->mesh_config = pos;
elems->mesh_config_len = elen;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = pos;
elems->mesh_id_len = elen;
break;
case WLAN_EID_PEER_MGMT:
elems->peer_mgmt = pos;
elems->peer_mgmt_len = elen;
break;
case WLAN_EID_VHT_CAP:
if (elen < sizeof(struct ieee80211_vht_capabilities))
break;
elems->vht_capabilities = pos;
break;
case WLAN_EID_VHT_OPERATION:
if (elen < sizeof(struct ieee80211_vht_operation))
break;
elems->vht_operation = pos;
break;
case WLAN_EID_OPERATING_MODE_NOTIFICATION:
if (elen != 1)
break;
elems->opmode_notif = pos;
break;
case WLAN_EID_LINK_ID:
if (elen < 18)
break;
elems->link_id = pos;
break;
case WLAN_EID_INTERWORKING:
elems->interworking = pos;
elems->interworking_len = elen;
break;
case WLAN_EID_QOS_MAP_SET:
if (elen < 16)
break;
elems->qos_map_set = pos;
elems->qos_map_set_len = elen;
break;
case WLAN_EID_EXT_CAPAB:
elems->ext_capab = pos;
elems->ext_capab_len = elen;
break;
case WLAN_EID_BSS_MAX_IDLE_PERIOD:
if (elen < 3)
break;
elems->bss_max_idle_period = pos;
break;
case WLAN_EID_SSID_LIST:
elems->ssid_list = pos;
elems->ssid_list_len = elen;
break;
case WLAN_EID_AMPE:
elems->ampe = pos;
elems->ampe_len = elen;
break;
case WLAN_EID_MIC:
elems->mic = pos;
elems->mic_len = elen;
/* after mic everything is encrypted, so stop. */
goto done;
case WLAN_EID_MULTI_BAND:
if (elems->mb_ies.nof_ies >= MAX_NOF_MB_IES_SUPPORTED) {
wpa_printf(MSG_MSGDUMP,
"IEEE 802.11 element parse ignored MB IE (id=%d elen=%d)",
id, elen);
break;
}
elems->mb_ies.ies[elems->mb_ies.nof_ies].ie = pos;
elems->mb_ies.ies[elems->mb_ies.nof_ies].ie_len = elen;
elems->mb_ies.nof_ies++;
break;
case WLAN_EID_SUPPORTED_OPERATING_CLASSES:
elems->supp_op_classes = pos;
elems->supp_op_classes_len = elen;
break;
case WLAN_EID_RRM_ENABLED_CAPABILITIES:
elems->rrm_enabled = pos;
elems->rrm_enabled_len = elen;
break;
case WLAN_EID_CAG_NUMBER:
elems->cag_number = pos;
elems->cag_number_len = elen;
break;
case WLAN_EID_AP_CSN:
if (elen < 1)
break;
elems->ap_csn = pos;
break;
case WLAN_EID_FILS_INDICATION:
if (elen < 2)
break;
elems->fils_indic = pos;
elems->fils_indic_len = elen;
break;
case WLAN_EID_DILS:
if (elen < 2)
break;
elems->dils = pos;
elems->dils_len = elen;
break;
case WLAN_EID_S1G_CAPABILITIES:
if (elen < 15)
break;
elems->s1g_capab = pos;
break;
case WLAN_EID_FRAGMENT:
wpa_printf(MSG_MSGDUMP,
"Fragment without a valid last element - skip");
break;
case WLAN_EID_EXTENSION:
if (ieee802_11_parse_extension(pos, elen, elems, start,
len, show_errors))
unknown++;
break;
default:
unknown++;
if (!show_errors)
break;
wpa_printf(MSG_MSGDUMP, "IEEE 802.11 element parse "
"ignored unknown element (id=%d elen=%d)",
id, elen);
break;
}
}
if (!for_each_element_completed(elem, start, len)) {
if (show_errors) {
wpa_printf(MSG_DEBUG,
"IEEE 802.11 element parse failed @%d",
(int) (start + len - (const u8 *) elem));
wpa_hexdump(MSG_MSGDUMP, "IEs", start, len);
}
return ParseFailed;
}
done:
return unknown ? ParseUnknown : ParseOK;
}
/**
* ieee802_11_parse_elems - Parse information elements in management frames
* @start: Pointer to the start of IEs
* @len: Length of IE buffer in octets
* @elems: Data structure for parsed elements
* @show_errors: Whether to show parsing errors in debug log
* Returns: Parsing result
*/
ParseRes ieee802_11_parse_elems(const u8 *start, size_t len,
struct ieee802_11_elems *elems,
int show_errors)
{
os_memset(elems, 0, sizeof(*elems));
return __ieee802_11_parse_elems(start, len, elems, show_errors);
}
/**
* ieee802_11_elems_clear_ids - Clear the data for the given element IDs
* @ids: Array of element IDs for which data should be cleared.
* @num: The number of entries in the array
*/
void ieee802_11_elems_clear_ids(struct ieee802_11_elems *elems,
const u8 *ids, size_t num)
{
size_t i;
for (i = 0; i < num; i++) {
switch (ids[i]) {
case WLAN_EID_SSID:
elems->ssid = NULL;
elems->ssid_len = 0;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = NULL;
elems->supp_rates_len = 0;
break;
case WLAN_EID_DS_PARAMS:
elems->ds_params = NULL;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = NULL;
elems->challenge_len = 0;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = NULL;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = NULL;
elems->ext_supp_rates_len = 0;
break;
case WLAN_EID_RSN:
elems->rsn_ie = NULL;
elems->rsn_ie_len = 0;
break;
case WLAN_EID_RSNX:
elems->rsnxe = NULL;
elems->rsnxe_len = 0;
break;
case WLAN_EID_PWR_CAPABILITY:
elems->power_capab = NULL;
elems->power_capab_len = 0;
break;
case WLAN_EID_SUPPORTED_CHANNELS:
elems->supp_channels = NULL;
elems->supp_channels_len = 0;
break;
case WLAN_EID_MOBILITY_DOMAIN:
elems->mdie = NULL;
elems->mdie_len = 0;
break;
case WLAN_EID_FAST_BSS_TRANSITION:
elems->ftie = NULL;
elems->ftie_len = 0;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
elems->timeout_int = NULL;
break;
case WLAN_EID_HT_CAP:
elems->ht_capabilities = NULL;
break;
case WLAN_EID_HT_OPERATION:
elems->ht_operation = NULL;
break;
case WLAN_EID_MESH_CONFIG:
elems->mesh_config = NULL;
elems->mesh_config_len = 0;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = NULL;
elems->mesh_id_len = 0;
break;
case WLAN_EID_PEER_MGMT:
elems->peer_mgmt = NULL;
elems->peer_mgmt_len = 0;
break;
case WLAN_EID_VHT_CAP:
elems->vht_capabilities = NULL;
break;
case WLAN_EID_VHT_OPERATION:
elems->vht_operation = NULL;
break;
case WLAN_EID_OPERATING_MODE_NOTIFICATION:
elems->opmode_notif = NULL;
break;
case WLAN_EID_LINK_ID:
elems->link_id = NULL;
break;
case WLAN_EID_INTERWORKING:
elems->interworking = NULL;
elems->interworking_len = 0;
break;
case WLAN_EID_QOS_MAP_SET:
elems->qos_map_set = NULL;
elems->qos_map_set_len = 0;
break;
case WLAN_EID_EXT_CAPAB:
elems->ext_capab = NULL;
elems->ext_capab_len = 0;
break;
case WLAN_EID_BSS_MAX_IDLE_PERIOD:
elems->bss_max_idle_period = NULL;
break;
case WLAN_EID_SSID_LIST:
elems->ssid_list = NULL;
elems->ssid_list_len = 0;
break;
case WLAN_EID_AMPE:
elems->ampe = NULL;
elems->ampe_len = 0;
break;
case WLAN_EID_MIC:
elems->mic = NULL;
elems->mic_len = 0;
break;
case WLAN_EID_MULTI_BAND:
os_memset(&elems->mb_ies, 0, sizeof(elems->mb_ies));
elems->mb_ies.nof_ies = 0;
break;
case WLAN_EID_SUPPORTED_OPERATING_CLASSES:
elems->supp_op_classes = NULL;
elems->supp_op_classes_len = 0;
break;
case WLAN_EID_RRM_ENABLED_CAPABILITIES:
elems->rrm_enabled = NULL;
elems->rrm_enabled_len = 0;
break;
case WLAN_EID_CAG_NUMBER:
elems->cag_number = NULL;
elems->cag_number_len = 0;
break;
case WLAN_EID_AP_CSN:
elems->ap_csn = NULL;
break;
case WLAN_EID_FILS_INDICATION:
elems->fils_indic = NULL;
elems->fils_indic_len = 0;
break;
case WLAN_EID_DILS:
elems->dils = NULL;
elems->dils_len = 0;
break;
case WLAN_EID_S1G_CAPABILITIES:
elems->s1g_capab = NULL;
break;
}
}
}
/**
* ieee802_11_elems_clear_ext_ids - Clear the data for the given element
* extension IDs
* @ids: Array of element extension IDs for which data should be cleared.
* @num: The number of entries in the array
*/
void ieee802_11_elems_clear_ext_ids(struct ieee802_11_elems *elems,
const u8 *ids, size_t num)
{
size_t i;
for (i = 0; i < num; i++) {
switch (ids[i]) {
case WLAN_EID_EXT_ASSOC_DELAY_INFO:
elems->assoc_delay_info = NULL;
break;
case WLAN_EID_EXT_FILS_REQ_PARAMS:
elems->fils_req_params = NULL;
elems->fils_req_params_len = 0;
break;
case WLAN_EID_EXT_FILS_KEY_CONFIRM:
elems->fils_key_confirm = NULL;
elems->fils_key_confirm_len = 0;
break;
case WLAN_EID_EXT_FILS_SESSION:
elems->fils_session = NULL;
break;
case WLAN_EID_EXT_FILS_HLP_CONTAINER:
elems->fils_hlp = NULL;
elems->fils_hlp_len = 0;
break;
case WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN:
elems->fils_ip_addr_assign = NULL;
elems->fils_ip_addr_assign_len = 0;
break;
case WLAN_EID_EXT_KEY_DELIVERY:
elems->key_delivery = NULL;
elems->key_delivery_len = 0;
break;
case WLAN_EID_EXT_WRAPPED_DATA:
elems->wrapped_data = NULL;
elems->wrapped_data_len = 0;
break;
case WLAN_EID_EXT_FILS_PUBLIC_KEY:
elems->fils_pk = NULL;
elems->fils_pk_len = 0;
break;
case WLAN_EID_EXT_FILS_NONCE:
elems->fils_nonce = NULL;
break;
case WLAN_EID_EXT_OWE_DH_PARAM:
elems->owe_dh = NULL;
elems->owe_dh_len = 0;
break;
case WLAN_EID_EXT_PASSWORD_IDENTIFIER:
elems->password_id = NULL;
elems->password_id_len = 0;
break;
case WLAN_EID_EXT_HE_CAPABILITIES:
elems->he_capabilities = NULL;
elems->he_capabilities_len = 0;
break;
case WLAN_EID_EXT_HE_OPERATION:
elems->he_operation = NULL;
elems->he_operation_len = 0;
break;
case WLAN_EID_EXT_OCV_OCI:
elems->oci = NULL;
elems->oci_len = 0;
break;
case WLAN_EID_EXT_SHORT_SSID_LIST:
elems->short_ssid_list = NULL;
elems->short_ssid_list_len = 0;
break;
case WLAN_EID_EXT_HE_6GHZ_BAND_CAP:
elems->he_6ghz_band_cap = NULL;
break;
case WLAN_EID_EXT_PASN_PARAMS:
elems->pasn_params = NULL;
elems->pasn_params_len = 0;
break;
case WLAN_EID_EXT_MULTI_LINK:
elems->basic_mle = NULL;
elems->probe_req_mle = NULL;
elems->reconf_mle = NULL;
elems->tdls_mle = NULL;
elems->prior_access_mle = NULL;
elems->basic_mle_len = 0;
elems->probe_req_mle_len = 0;
elems->reconf_mle_len = 0;
elems->tdls_mle_len = 0;
elems->prior_access_mle_len = 0;
break;
case WLAN_EID_EXT_EHT_CAPABILITIES:
elems->eht_capabilities = NULL;
elems->eht_capabilities_len = 0;
break;
case WLAN_EID_EXT_EHT_OPERATION:
elems->eht_operation = NULL;
elems->eht_operation_len = 0;
break;
}
}
}
ParseRes ieee802_11_parse_link_assoc_req(const u8 *start, size_t len,
struct ieee802_11_elems *elems,
struct wpabuf *mlbuf,
u8 link_id, bool show_errors)
{
const struct ieee80211_eht_ml *ml;
const u8 *pos;
ParseRes res = ParseFailed;
pos = wpabuf_head(mlbuf);
len = wpabuf_len(mlbuf);
/* Must have control and common info length */
if (len < sizeof(*ml) + 1 || len < sizeof(*ml) + pos[sizeof(*ml)])
goto out;
ml = (const struct ieee80211_eht_ml *) pos;
/* As we are interested with the Per-STA profile, ignore other types */
if ((le_to_host16(ml->ml_control) & MULTI_LINK_CONTROL_TYPE_MASK) !=
MULTI_LINK_CONTROL_TYPE_BASIC)
goto out;
/* Skip the common info */
len -= sizeof(*ml) + pos[sizeof(*ml)];
pos += sizeof(*ml) + pos[sizeof(*ml)];
while (len > 2) {
size_t sub_elem_len = *(pos + 1);
size_t sta_info_len;
u16 link_info_control;
const u8 *non_inherit;
wpa_printf(MSG_DEBUG,
"MLD: sub element: len=%zu, sub_elem_len=%zu",
len, sub_elem_len);
if (2 + sub_elem_len > len) {
if (show_errors)
wpa_printf(MSG_DEBUG,
"MLD: error: len=%zu, sub_elem_len=%zu",
len, sub_elem_len);
goto out;
}
if (*pos != 0) {
pos += 2 + sub_elem_len;
len -= 2 + sub_elem_len;
continue;
}
if (sub_elem_len < 3) {
if (show_errors)
wpa_printf(MSG_DEBUG,
"MLD: error: sub_elem_len=%zu < 5",
sub_elem_len);
goto out;
}
link_info_control = WPA_GET_LE16(pos + 2);
if ((link_info_control & BASIC_MLE_STA_CTRL_LINK_ID_MASK) !=
link_id) {
pos += 2 + sub_elem_len;
len -= 2 + sub_elem_len;
continue;
}
sta_info_len = *(pos + 4);
if (sub_elem_len < sta_info_len + 3 || sta_info_len < 1) {
if (show_errors)
wpa_printf(MSG_DEBUG,
"MLD: error: sub_elem_len=%zu, sta_info_len=%zu",
sub_elem_len, sta_info_len);
goto out;
}
pos += sta_info_len + 4;
sub_elem_len -= sta_info_len + 2;
if (sub_elem_len < 2) {
if (show_errors)
wpa_printf(MSG_DEBUG,
"MLD: missing capability info");
goto out;
}
pos += 2;
sub_elem_len -= 2;
/* Handle non-inheritance */
non_inherit = get_ie_ext(pos, sub_elem_len,
WLAN_EID_EXT_NON_INHERITANCE);
if (non_inherit && non_inherit[1] > 1) {
u8 non_inherit_len = non_inherit[1] - 1;
/*
* Do not include the Non-Inheritance element when
* parsing below. It should be the last element in the
* subelement.
*/
if (3U + non_inherit_len > sub_elem_len)
goto out;
sub_elem_len -= 3 + non_inherit_len;
/* Skip the ID, length and extension ID */
non_inherit += 3;
if (non_inherit_len < 1UL + non_inherit[0]) {
if (show_errors)
wpa_printf(MSG_DEBUG,
"MLD: Invalid inheritance");
goto out;
}
ieee802_11_elems_clear_ids(elems, &non_inherit[1],
non_inherit[0]);
non_inherit_len -= 1 + non_inherit[0];
non_inherit += 1 + non_inherit[0];
if (non_inherit_len < 1UL + non_inherit[0]) {
if (show_errors)
wpa_printf(MSG_DEBUG,
"MLD: Invalid inheritance");
goto out;
}
ieee802_11_elems_clear_ext_ids(elems, &non_inherit[1],
non_inherit[0]);
}
wpa_printf(MSG_DEBUG, "MLD: link: sub_elem_len=%zu",
sub_elem_len);
if (sub_elem_len)
res = __ieee802_11_parse_elems(pos, sub_elem_len,
elems, show_errors);
else
res = ParseOK;
break;
}
out:
return res;
}
int ieee802_11_ie_count(const u8 *ies, size_t ies_len)
{
const struct element *elem;
int count = 0;
if (ies == NULL)
return 0;
for_each_element(elem, ies, ies_len)
count++;
return count;
}
struct wpabuf * ieee802_11_vendor_ie_concat(const u8 *ies, size_t ies_len,
u32 oui_type)
{
struct wpabuf *buf;
const struct element *elem, *found = NULL;
for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, ies_len) {
if (elem->datalen >= 4 &&
WPA_GET_BE32(elem->data) == oui_type) {
found = elem;
break;
}
}
if (!found)
return NULL; /* No specified vendor IE found */
buf = wpabuf_alloc(ies_len);
if (buf == NULL)
return NULL;
/*
* There may be multiple vendor IEs in the message, so need to
* concatenate their data fields.
*/
for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, ies_len) {
if (elem->datalen >= 4 && WPA_GET_BE32(elem->data) == oui_type)
wpabuf_put_data(buf, elem->data + 4, elem->datalen - 4);
}
return buf;
}
const u8 * get_hdr_bssid(const struct ieee80211_hdr *hdr, size_t len)
{
u16 fc, type, stype;
/*
* PS-Poll frames are 16 bytes. All other frames are
* 24 bytes or longer.
*/
if (len < 16)
return NULL;
fc = le_to_host16(hdr->frame_control);
type = WLAN_FC_GET_TYPE(fc);
stype = WLAN_FC_GET_STYPE(fc);
switch (type) {
case WLAN_FC_TYPE_DATA:
if (len < 24)
return NULL;
switch (fc & (WLAN_FC_FROMDS | WLAN_FC_TODS)) {
case WLAN_FC_FROMDS | WLAN_FC_TODS:
case WLAN_FC_TODS:
return hdr->addr1;
case WLAN_FC_FROMDS:
return hdr->addr2;
default:
return NULL;
}
case WLAN_FC_TYPE_CTRL:
if (stype != WLAN_FC_STYPE_PSPOLL)
return NULL;
return hdr->addr1;
case WLAN_FC_TYPE_MGMT:
if (len < 24)
return NULL;
return hdr->addr3;
default:
return NULL;
}
}
int hostapd_config_wmm_ac(struct hostapd_wmm_ac_params wmm_ac_params[],
const char *name, const char *val)
{
int num, v;
const char *pos;
struct hostapd_wmm_ac_params *ac;
/* skip 'wme_ac_' or 'wmm_ac_' prefix */
pos = name + 7;
if (os_strncmp(pos, "be_", 3) == 0) {
num = 0;
pos += 3;
} else if (os_strncmp(pos, "bk_", 3) == 0) {
num = 1;
pos += 3;
} else if (os_strncmp(pos, "vi_", 3) == 0) {
num = 2;
pos += 3;
} else if (os_strncmp(pos, "vo_", 3) == 0) {
num = 3;
pos += 3;
} else {
wpa_printf(MSG_ERROR, "Unknown WMM name '%s'", pos);
return -1;
}
ac = &wmm_ac_params[num];
if (os_strcmp(pos, "aifs") == 0) {
v = atoi(val);
if (v < 1 || v > 255) {
wpa_printf(MSG_ERROR, "Invalid AIFS value %d", v);
return -1;
}
ac->aifs = v;
} else if (os_strcmp(pos, "cwmin") == 0) {
v = atoi(val);
if (v < 0 || v > 15) {
wpa_printf(MSG_ERROR, "Invalid cwMin value %d", v);
return -1;
}
ac->cwmin = v;
} else if (os_strcmp(pos, "cwmax") == 0) {
v = atoi(val);
if (v < 0 || v > 15) {
wpa_printf(MSG_ERROR, "Invalid cwMax value %d", v);
return -1;
}
ac->cwmax = v;
} else if (os_strcmp(pos, "txop_limit") == 0) {
v = atoi(val);
if (v < 0 || v > 0xffff) {
wpa_printf(MSG_ERROR, "Invalid txop value %d", v);
return -1;
}
ac->txop_limit = v;
} else if (os_strcmp(pos, "acm") == 0) {
v = atoi(val);
if (v < 0 || v > 1) {
wpa_printf(MSG_ERROR, "Invalid acm value %d", v);
return -1;
}
ac->admission_control_mandatory = v;
} else {
wpa_printf(MSG_ERROR, "Unknown wmm_ac_ field '%s'", pos);
return -1;
}
return 0;
}
/* convert floats with one decimal place to value*10 int, i.e.,
* "1.5" will return 15
*/
static int hostapd_config_read_int10(const char *value)
{
int i, d;
char *pos;
i = atoi(value);
pos = os_strchr(value, '.');
d = 0;
if (pos) {
pos++;
if (*pos >= '0' && *pos <= '9')
d = *pos - '0';
}
return i * 10 + d;
}
static int valid_cw(int cw)
{
return (cw == 1 || cw == 3 || cw == 7 || cw == 15 || cw == 31 ||
cw == 63 || cw == 127 || cw == 255 || cw == 511 || cw == 1023 ||
cw == 2047 || cw == 4095 || cw == 8191 || cw == 16383 ||
cw == 32767);
}
int hostapd_config_tx_queue(struct hostapd_tx_queue_params tx_queue[],
const char *name, const char *val)
{
int num;
const char *pos;
struct hostapd_tx_queue_params *queue;
/* skip 'tx_queue_' prefix */
pos = name + 9;
if (os_strncmp(pos, "data", 4) == 0 &&
pos[4] >= '0' && pos[4] <= '9' && pos[5] == '_') {
num = pos[4] - '0';
pos += 6;
} else if (os_strncmp(pos, "after_beacon_", 13) == 0 ||
os_strncmp(pos, "beacon_", 7) == 0) {
wpa_printf(MSG_INFO, "DEPRECATED: '%s' not used", name);
return 0;
} else {
wpa_printf(MSG_ERROR, "Unknown tx_queue name '%s'", pos);
return -1;
}
if (num >= NUM_TX_QUEUES) {
/* for backwards compatibility, do not trigger failure */
wpa_printf(MSG_INFO, "DEPRECATED: '%s' not used", name);
return 0;
}
queue = &tx_queue[num];
if (os_strcmp(pos, "aifs") == 0) {
queue->aifs = atoi(val);
if (queue->aifs < 0 || queue->aifs > 255) {
wpa_printf(MSG_ERROR, "Invalid AIFS value %d",
queue->aifs);
return -1;
}
} else if (os_strcmp(pos, "cwmin") == 0) {
queue->cwmin = atoi(val);
if (!valid_cw(queue->cwmin)) {
wpa_printf(MSG_ERROR, "Invalid cwMin value %d",
queue->cwmin);
return -1;
}
} else if (os_strcmp(pos, "cwmax") == 0) {
queue->cwmax = atoi(val);
if (!valid_cw(queue->cwmax)) {
wpa_printf(MSG_ERROR, "Invalid cwMax value %d",
queue->cwmax);
return -1;
}
} else if (os_strcmp(pos, "burst") == 0) {
queue->burst = hostapd_config_read_int10(val);
} else {
wpa_printf(MSG_ERROR, "Unknown queue field '%s'", pos);
return -1;
}
return 0;
}
enum hostapd_hw_mode ieee80211_freq_to_chan(int freq, u8 *channel)
{
u8 op_class;
return ieee80211_freq_to_channel_ext(freq, 0, CONF_OPER_CHWIDTH_USE_HT,
&op_class, channel);
}
/**
* ieee80211_freq_to_channel_ext - Convert frequency into channel info
* for HT40, VHT, and HE. DFS channels are not covered.
* @freq: Frequency (MHz) to convert
* @sec_channel: 0 = non-HT40, 1 = sec. channel above, -1 = sec. channel below
* @chanwidth: VHT/EDMG/etc. channel width
* @op_class: Buffer for returning operating class
* @channel: Buffer for returning channel number
* Returns: hw_mode on success, NUM_HOSTAPD_MODES on failure
*/
enum hostapd_hw_mode
ieee80211_freq_to_channel_ext(unsigned int freq, int sec_channel,
enum oper_chan_width chanwidth,
u8 *op_class, u8 *channel)
{
u8 vht_opclass;
/* TODO: more operating classes */
if (sec_channel > 1 || sec_channel < -1)
return NUM_HOSTAPD_MODES;
if (freq >= 2412 && freq <= 2472) {
if ((freq - 2407) % 5)
return NUM_HOSTAPD_MODES;
if (chanwidth)
return NUM_HOSTAPD_MODES;
/* 2.407 GHz, channels 1..13 */
if (sec_channel == 1)
*op_class = 83;
else if (sec_channel == -1)
*op_class = 84;
else
*op_class = 81;
*channel = (freq - 2407) / 5;
return HOSTAPD_MODE_IEEE80211G;
}
if (freq == 2484) {
if (sec_channel || chanwidth)
return NUM_HOSTAPD_MODES;
*op_class = 82; /* channel 14 */
*channel = 14;
return HOSTAPD_MODE_IEEE80211B;
}
if (freq >= 4900 && freq < 5000) {
if ((freq - 4000) % 5)
return NUM_HOSTAPD_MODES;
*channel = (freq - 4000) / 5;
*op_class = 0; /* TODO */
return HOSTAPD_MODE_IEEE80211A;
}
switch (chanwidth) {
case CONF_OPER_CHWIDTH_80MHZ:
vht_opclass = 128;
break;
case CONF_OPER_CHWIDTH_160MHZ:
vht_opclass = 129;
break;
case CONF_OPER_CHWIDTH_80P80MHZ:
vht_opclass = 130;
break;
default:
vht_opclass = 0;
break;
}
/* 5 GHz, channels 36..48 */
if (freq >= 5180 && freq <= 5240) {
if ((freq - 5000) % 5)
return NUM_HOSTAPD_MODES;
if (vht_opclass)
*op_class = vht_opclass;
else if (sec_channel == 1)
*op_class = 116;
else if (sec_channel == -1)
*op_class = 117;
else
*op_class = 115;
*channel = (freq - 5000) / 5;
return HOSTAPD_MODE_IEEE80211A;
}
/* 5 GHz, channels 52..64 */
if (freq >= 5260 && freq <= 5320) {
if ((freq - 5000) % 5)
return NUM_HOSTAPD_MODES;
if (vht_opclass)
*op_class = vht_opclass;
else if (sec_channel == 1)
*op_class = 119;
else if (sec_channel == -1)
*op_class = 120;
else
*op_class = 118;
*channel = (freq - 5000) / 5;
return HOSTAPD_MODE_IEEE80211A;
}
/* 5 GHz, channels 149..177 */
if (freq >= 5745 && freq <= 5885) {
if ((freq - 5000) % 5)
return NUM_HOSTAPD_MODES;
if (vht_opclass)
*op_class = vht_opclass;
else if (sec_channel == 1)
*op_class = 126;
else if (sec_channel == -1)
*op_class = 127;
else if (freq <= 5805)
*op_class = 124;
else
*op_class = 125;
*channel = (freq - 5000) / 5;
return HOSTAPD_MODE_IEEE80211A;
}
/* 5 GHz, channels 100..144 */
if (freq >= 5500 && freq <= 5720) {
if ((freq - 5000) % 5)
return NUM_HOSTAPD_MODES;
if (vht_opclass)
*op_class = vht_opclass;
else if (sec_channel == 1)
*op_class = 122;
else if (sec_channel == -1)
*op_class = 123;
else
*op_class = 121;
*channel = (freq - 5000) / 5;
return HOSTAPD_MODE_IEEE80211A;
}
if (freq >= 5000 && freq < 5900) {
if ((freq - 5000) % 5)
return NUM_HOSTAPD_MODES;
*channel = (freq - 5000) / 5;
*op_class = 0; /* TODO */
return HOSTAPD_MODE_IEEE80211A;
}
if (freq > 5950 && freq <= 7115) {
if ((freq - 5950) % 5)
return NUM_HOSTAPD_MODES;
switch (chanwidth) {
case CONF_OPER_CHWIDTH_80MHZ:
*op_class = 133;
break;
case CONF_OPER_CHWIDTH_160MHZ:
*op_class = 134;
break;
case CONF_OPER_CHWIDTH_80P80MHZ:
*op_class = 135;
break;
case CONF_OPER_CHWIDTH_320MHZ:
*op_class = 137;
break;
default:
if (sec_channel)
*op_class = 132;
else
*op_class = 131;
break;
}
*channel = (freq - 5950) / 5;
return HOSTAPD_MODE_IEEE80211A;
}
if (freq == 5935) {
*op_class = 136;
*channel = (freq - 5925) / 5;
return HOSTAPD_MODE_IEEE80211A;
}
/* 56.16 GHz, channel 1..6 */
if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
if (sec_channel)
return NUM_HOSTAPD_MODES;
switch (chanwidth) {
case CONF_OPER_CHWIDTH_USE_HT:
case CONF_OPER_CHWIDTH_2160MHZ:
*channel = (freq - 56160) / 2160;
*op_class = 180;
break;
case CONF_OPER_CHWIDTH_4320MHZ:
/* EDMG channels 9 - 13 */
if (freq > 56160 + 2160 * 5)
return NUM_HOSTAPD_MODES;
*channel = (freq - 56160) / 2160 + 8;
*op_class = 181;
break;
case CONF_OPER_CHWIDTH_6480MHZ:
/* EDMG channels 17 - 20 */
if (freq > 56160 + 2160 * 4)
return NUM_HOSTAPD_MODES;
*channel = (freq - 56160) / 2160 + 16;
*op_class = 182;
break;
case CONF_OPER_CHWIDTH_8640MHZ:
/* EDMG channels 25 - 27 */
if (freq > 56160 + 2160 * 3)
return NUM_HOSTAPD_MODES;
*channel = (freq - 56160) / 2160 + 24;
*op_class = 183;
break;
default:
return NUM_HOSTAPD_MODES;
}
return HOSTAPD_MODE_IEEE80211AD;
}
return NUM_HOSTAPD_MODES;
}
int ieee80211_chaninfo_to_channel(unsigned int freq, enum chan_width chanwidth,
int sec_channel, u8 *op_class, u8 *channel)
{
int cw = CHAN_WIDTH_UNKNOWN;
switch (chanwidth) {
case CHAN_WIDTH_UNKNOWN:
case CHAN_WIDTH_20_NOHT:
case CHAN_WIDTH_20:
case CHAN_WIDTH_40:
cw = CONF_OPER_CHWIDTH_USE_HT;
break;
case CHAN_WIDTH_80:
cw = CONF_OPER_CHWIDTH_80MHZ;
break;
case CHAN_WIDTH_80P80:
cw = CONF_OPER_CHWIDTH_80P80MHZ;
break;
case CHAN_WIDTH_160:
cw = CONF_OPER_CHWIDTH_160MHZ;
break;
case CHAN_WIDTH_2160:
cw = CONF_OPER_CHWIDTH_2160MHZ;
break;
case CHAN_WIDTH_4320:
cw = CONF_OPER_CHWIDTH_4320MHZ;
break;
case CHAN_WIDTH_6480:
cw = CONF_OPER_CHWIDTH_6480MHZ;
break;
case CHAN_WIDTH_8640:
cw = CONF_OPER_CHWIDTH_8640MHZ;
break;
case CHAN_WIDTH_320:
cw = CONF_OPER_CHWIDTH_320MHZ;
break;
}
if (ieee80211_freq_to_channel_ext(freq, sec_channel, cw, op_class,
channel) == NUM_HOSTAPD_MODES) {
wpa_printf(MSG_WARNING,
"Cannot determine operating class and channel (freq=%u chanwidth=%d sec_channel=%d)",
freq, chanwidth, sec_channel);
return -1;
}
return 0;
}
static const char *const us_op_class_cc[] = {
"US", "CA", NULL
};
static const char *const eu_op_class_cc[] = {
"AL", "AM", "AT", "AZ", "BA", "BE", "BG", "BY", "CH", "CY", "CZ", "DE",
"DK", "EE", "EL", "ES", "FI", "FR", "GE", "HR", "HU", "IE", "IS", "IT",
"LI", "LT", "LU", "LV", "MD", "ME", "MK", "MT", "NL", "NO", "PL", "PT",
"RO", "RS", "RU", "SE", "SI", "SK", "TR", "UA", "UK", NULL
};
static const char *const jp_op_class_cc[] = {
"JP", NULL
};
static const char *const cn_op_class_cc[] = {
"CN", NULL
};
static int country_match(const char *const cc[], const char *const country)
{
int i;
if (country == NULL)
return 0;
for (i = 0; cc[i]; i++) {
if (cc[i][0] == country[0] && cc[i][1] == country[1])
return 1;
}
return 0;
}
static int ieee80211_chan_to_freq_us(u8 op_class, u8 chan)
{
switch (op_class) {
case 12: /* channels 1..11 */
case 32: /* channels 1..7; 40 MHz */
case 33: /* channels 5..11; 40 MHz */
if (chan < 1 || chan > 11)
return -1;
return 2407 + 5 * chan;
case 1: /* channels 36,40,44,48 */
case 2: /* channels 52,56,60,64; dfs */
case 22: /* channels 36,44; 40 MHz */
case 23: /* channels 52,60; 40 MHz */
case 27: /* channels 40,48; 40 MHz */
case 28: /* channels 56,64; 40 MHz */
if (chan < 36 || chan > 64)
return -1;
return 5000 + 5 * chan;
case 4: /* channels 100-144 */
case 24: /* channels 100-140; 40 MHz */
if (chan < 100 || chan > 144)
return -1;
return 5000 + 5 * chan;
case 3: /* channels 149,153,157,161 */
case 25: /* channels 149,157; 40 MHz */
case 26: /* channels 149,157; 40 MHz */
case 30: /* channels 153,161; 40 MHz */
case 31: /* channels 153,161; 40 MHz */
if (chan < 149 || chan > 161)
return -1;
return 5000 + 5 * chan;
case 5: /* channels 149,153,157,161,165 */
if (chan < 149 || chan > 165)
return -1;
return 5000 + 5 * chan;
case 34: /* 60 GHz band, channels 1..8 */
if (chan < 1 || chan > 8)
return -1;
return 56160 + 2160 * chan;
case 37: /* 60 GHz band, EDMG CB2, channels 9..15 */
if (chan < 9 || chan > 15)
return -1;
return 56160 + 2160 * (chan - 8);
case 38: /* 60 GHz band, EDMG CB3, channels 17..22 */
if (chan < 17 || chan > 22)
return -1;
return 56160 + 2160 * (chan - 16);
case 39: /* 60 GHz band, EDMG CB4, channels 25..29 */
if (chan < 25 || chan > 29)
return -1;
return 56160 + 2160 * (chan - 24);
default:
return -1;
}
}
static int ieee80211_chan_to_freq_eu(u8 op_class, u8 chan)
{
switch (op_class) {
case 4: /* channels 1..13 */
case 11: /* channels 1..9; 40 MHz */
case 12: /* channels 5..13; 40 MHz */
if (chan < 1 || chan > 13)
return -1;
return 2407 + 5 * chan;
case 1: /* channels 36,40,44,48 */
case 2: /* channels 52,56,60,64; dfs */
case 5: /* channels 36,44; 40 MHz */
case 6: /* channels 52,60; 40 MHz */
case 8: /* channels 40,48; 40 MHz */
case 9: /* channels 56,64; 40 MHz */
if (chan < 36 || chan > 64)
return -1;
return 5000 + 5 * chan;
case 3: /* channels 100-140 */
case 7: /* channels 100-132; 40 MHz */
case 10: /* channels 104-136; 40 MHz */
case 16: /* channels 100-140 */
if (chan < 100 || chan > 140)
return -1;
return 5000 + 5 * chan;
case 17: /* channels 149,153,157,161,165,169 */
if (chan < 149 || chan > 169)
return -1;
return 5000 + 5 * chan;
case 18: /* 60 GHz band, channels 1..6 */
if (chan < 1 || chan > 6)
return -1;
return 56160 + 2160 * chan;
case 21: /* 60 GHz band, EDMG CB2, channels 9..11 */
if (chan < 9 || chan > 11)
return -1;
return 56160 + 2160 * (chan - 8);
case 22: /* 60 GHz band, EDMG CB3, channels 17..18 */
if (chan < 17 || chan > 18)
return -1;
return 56160 + 2160 * (chan - 16);
case 23: /* 60 GHz band, EDMG CB4, channels 25 */
if (chan != 25)
return -1;
return 56160 + 2160 * (chan - 24);
default:
return -1;
}
}
static int ieee80211_chan_to_freq_jp(u8 op_class, u8 chan)
{
/* Table E-3 in IEEE Std 802.11-2020 - Operating classes in Japan */
switch (op_class) {
case 30: /* channels 1..13 */
case 56: /* channels 1..9; 40 MHz */
case 57: /* channels 5..13; 40 MHz */
if (chan < 1 || chan > 13)
return -1;
return 2407 + 5 * chan;
case 31: /* channel 14 */
if (chan != 14)
return -1;
return 2414 + 5 * chan;
case 1: /* channels 34,38,42,46(old) or 36,40,44,48 */
case 32: /* channels 52,56,60,64 */
case 33: /* channels 52,56,60,64 */
case 36: /* channels 36,44; 40 MHz */
case 37: /* channels 52,60; 40 MHz */
case 38: /* channels 52,60; 40 MHz */
case 41: /* channels 40,48; 40 MHz */
case 42: /* channels 56,64; 40 MHz */
case 43: /* channels 56,64; 40 MHz */
if (chan < 34 || chan > 64)
return -1;
return 5000 + 5 * chan;
case 34: /* channels 100-144 */
case 35: /* reserved */
case 39: /* channels 100-140; 40 MHz */
case 40: /* reserved */
case 44: /* channels 104-144; 40 MHz */
case 45: /* reserved */
case 58: /* channels 100-144 */
if (chan < 100 || chan > 144)
return -1;
return 5000 + 5 * chan;
case 59: /* 60 GHz band, channels 1..6 */
if (chan < 1 || chan > 6)
return -1;
return 56160 + 2160 * chan;
case 62: /* 60 GHz band, EDMG CB2, channels 9..11 */
if (chan < 9 || chan > 11)
return -1;
return 56160 + 2160 * (chan - 8);
case 63: /* 60 GHz band, EDMG CB3, channels 17..18 */
if (chan < 17 || chan > 18)
return -1;
return 56160 + 2160 * (chan - 16);
case 64: /* 60 GHz band, EDMG CB4, channel 25 */
if (chan != 25)
return -1;
return 56160 + 2160 * (chan - 24);
default:
return -1;
}
}
static int ieee80211_chan_to_freq_cn(u8 op_class, u8 chan)
{
switch (op_class) {
case 7: /* channels 1..13 */
case 8: /* channels 1..9; 40 MHz */
case 9: /* channels 5..13; 40 MHz */
if (chan < 1 || chan > 13)
return -1;
return 2407 + 5 * chan;
case 1: /* channels 36,40,44,48 */
case 2: /* channels 52,56,60,64; dfs */
case 4: /* channels 36,44; 40 MHz */
case 5: /* channels 52,60; 40 MHz */
if (chan < 36 || chan > 64)
return -1;
return 5000 + 5 * chan;
case 3: /* channels 149,153,157,161,165 */
case 6: /* channels 149,157; 40 MHz */
if (chan < 149 || chan > 165)
return -1;
return 5000 + 5 * chan;
default:
return -1;
}
}
static int ieee80211_chan_to_freq_global(u8 op_class, u8 chan)
{
/* Table E-4 in IEEE Std 802.11-2020 - Global operating classes */
switch (op_class) {
case 81:
/* channels 1..13 */
if (chan < 1 || chan > 13)
return -1;
return 2407 + 5 * chan;
case 82:
/* channel 14 */
if (chan != 14)
return -1;
return 2414 + 5 * chan;
case 83: /* channels 1..9; 40 MHz */
case 84: /* channels 5..13; 40 MHz */
if (chan < 1 || chan > 13)
return -1;
return 2407 + 5 * chan;
case 115: /* channels 36,40,44,48; indoor only */
case 116: /* channels 36,44; 40 MHz; indoor only */
case 117: /* channels 40,48; 40 MHz; indoor only */
case 118: /* channels 52,56,60,64; dfs */
case 119: /* channels 52,60; 40 MHz; dfs */
case 120: /* channels 56,64; 40 MHz; dfs */
if (chan < 36 || chan > 64)
return -1;
return 5000 + 5 * chan;
case 121: /* channels 100-144 */
case 122: /* channels 100-140; 40 MHz */
case 123: /* channels 104-144; 40 MHz */
if (chan < 100 || chan > 144)
return -1;
return 5000 + 5 * chan;
case 124: /* channels 149,153,157,161 */
if (chan < 149 || chan > 161)
return -1;
return 5000 + 5 * chan;
case 125: /* channels 149,153,157,161,165,169,173,177 */
case 126: /* channels 149,157,165,173; 40 MHz */
case 127: /* channels 153,161,169,177; 40 MHz */
if (chan < 149 || chan > 177)
return -1;
return 5000 + 5 * chan;
case 128: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */
case 130: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */
if (chan < 36 || chan > 177)
return -1;
return 5000 + 5 * chan;
case 129: /* center freqs 50, 114, 163; 160 MHz */
if (chan < 36 || chan > 177)
return -1;
return 5000 + 5 * chan;
case 131: /* UHB channels, 20 MHz: 1, 5, 9.. */
case 132: /* UHB channels, 40 MHz: 3, 11, 19.. */
case 133: /* UHB channels, 80 MHz: 7, 23, 39.. */
case 134: /* UHB channels, 160 MHz: 15, 47, 79.. */
case 135: /* UHB channels, 80+80 MHz: 7, 23, 39.. */
case 137: /* UHB channels, 320 MHz: 31, 63, 95, 127, 159, 191 */
if (chan < 1 || chan > 233)
return -1;
return 5950 + chan * 5;
case 136: /* UHB channels, 20 MHz: 2 */
if (chan == 2)
return 5935;
return -1;
case 180: /* 60 GHz band, channels 1..8 */
if (chan < 1 || chan > 8)
return -1;
return 56160 + 2160 * chan;
case 181: /* 60 GHz band, EDMG CB2, channels 9..15 */
if (chan < 9 || chan > 15)
return -1;
return 56160 + 2160 * (chan - 8);
case 182: /* 60 GHz band, EDMG CB3, channels 17..22 */
if (chan < 17 || chan > 22)
return -1;
return 56160 + 2160 * (chan - 16);
case 183: /* 60 GHz band, EDMG CB4, channel 25..29 */
if (chan < 25 || chan > 29)
return -1;
return 56160 + 2160 * (chan - 24);
default:
return -1;
}
}
/**
* ieee80211_chan_to_freq - Convert channel info to frequency
* @country: Country code, if known; otherwise, global operating class is used
* @op_class: Operating class
* @chan: Channel number
* Returns: Frequency in MHz or -1 if the specified channel is unknown
*/
int ieee80211_chan_to_freq(const char *country, u8 op_class, u8 chan)
{
int freq;
if (country_match(us_op_class_cc, country)) {
freq = ieee80211_chan_to_freq_us(op_class, chan);
if (freq > 0)
return freq;
}
if (country_match(eu_op_class_cc, country)) {
freq = ieee80211_chan_to_freq_eu(op_class, chan);
if (freq > 0)
return freq;
}
if (country_match(jp_op_class_cc, country)) {
freq = ieee80211_chan_to_freq_jp(op_class, chan);
if (freq > 0)
return freq;
}
if (country_match(cn_op_class_cc, country)) {
freq = ieee80211_chan_to_freq_cn(op_class, chan);
if (freq > 0)
return freq;
}
return ieee80211_chan_to_freq_global(op_class, chan);
}
int ieee80211_is_dfs(int freq, const struct hostapd_hw_modes *modes,
u16 num_modes)
{
int i, j;
if (!modes || !num_modes)
return (freq >= 5260 && freq <= 5320) ||
(freq >= 5500 && freq <= 5720);
for (i = 0; i < num_modes; i++) {
for (j = 0; j < modes[i].num_channels; j++) {
if (modes[i].channels[j].freq == freq &&
(modes[i].channels[j].flag & HOSTAPD_CHAN_RADAR))
return 1;
}
}
return 0;
}
/*
* 802.11-2020: Table E-4 - Global operating classes
* DFS_50_100_Behavior: 118, 119, 120, 121, 122, 123
*/
int is_dfs_global_op_class(u8 op_class)
{
return (op_class >= 118) && (op_class <= 123);
}
static int is_11b(u8 rate)
{
return rate == 0x02 || rate == 0x04 || rate == 0x0b || rate == 0x16
|| rate == 0x82 || rate == 0x84 || rate == 0x8b || rate == 0x96;
}
int supp_rates_11b_only(struct ieee802_11_elems *elems)
{
int num_11b = 0, num_others = 0;
int i;
if (elems->supp_rates == NULL && elems->ext_supp_rates == NULL)
return 0;
for (i = 0; elems->supp_rates && i < elems->supp_rates_len; i++) {
if (is_11b(elems->supp_rates[i]))
num_11b++;
else
num_others++;
}
for (i = 0; elems->ext_supp_rates && i < elems->ext_supp_rates_len;
i++) {
if (is_11b(elems->ext_supp_rates[i]))
num_11b++;
else
num_others++;
}
return num_11b > 0 && num_others == 0;
}
const char * fc2str(u16 fc)
{
u16 stype = WLAN_FC_GET_STYPE(fc);
#define C2S(x) case x: return #x;
switch (WLAN_FC_GET_TYPE(fc)) {
case WLAN_FC_TYPE_MGMT:
switch (stype) {
C2S(WLAN_FC_STYPE_ASSOC_REQ)
C2S(WLAN_FC_STYPE_ASSOC_RESP)
C2S(WLAN_FC_STYPE_REASSOC_REQ)
C2S(WLAN_FC_STYPE_REASSOC_RESP)
C2S(WLAN_FC_STYPE_PROBE_REQ)
C2S(WLAN_FC_STYPE_PROBE_RESP)
C2S(WLAN_FC_STYPE_BEACON)
C2S(WLAN_FC_STYPE_ATIM)
C2S(WLAN_FC_STYPE_DISASSOC)
C2S(WLAN_FC_STYPE_AUTH)
C2S(WLAN_FC_STYPE_DEAUTH)
C2S(WLAN_FC_STYPE_ACTION)
}
break;
case WLAN_FC_TYPE_CTRL:
switch (stype) {
C2S(WLAN_FC_STYPE_PSPOLL)
C2S(WLAN_FC_STYPE_RTS)
C2S(WLAN_FC_STYPE_CTS)
C2S(WLAN_FC_STYPE_ACK)
C2S(WLAN_FC_STYPE_CFEND)
C2S(WLAN_FC_STYPE_CFENDACK)
}
break;
case WLAN_FC_TYPE_DATA:
switch (stype) {
C2S(WLAN_FC_STYPE_DATA)
C2S(WLAN_FC_STYPE_DATA_CFACK)
C2S(WLAN_FC_STYPE_DATA_CFPOLL)
C2S(WLAN_FC_STYPE_DATA_CFACKPOLL)
C2S(WLAN_FC_STYPE_NULLFUNC)
C2S(WLAN_FC_STYPE_CFACK)
C2S(WLAN_FC_STYPE_CFPOLL)
C2S(WLAN_FC_STYPE_CFACKPOLL)
C2S(WLAN_FC_STYPE_QOS_DATA)
C2S(WLAN_FC_STYPE_QOS_DATA_CFACK)
C2S(WLAN_FC_STYPE_QOS_DATA_CFPOLL)
C2S(WLAN_FC_STYPE_QOS_DATA_CFACKPOLL)
C2S(WLAN_FC_STYPE_QOS_NULL)
C2S(WLAN_FC_STYPE_QOS_CFPOLL)
C2S(WLAN_FC_STYPE_QOS_CFACKPOLL)
}
break;
}
return "WLAN_FC_TYPE_UNKNOWN";
#undef C2S
}
const char * reason2str(u16 reason)
{
#define R2S(r) case WLAN_REASON_ ## r: return #r;
switch (reason) {
R2S(UNSPECIFIED)
R2S(PREV_AUTH_NOT_VALID)
R2S(DEAUTH_LEAVING)
R2S(DISASSOC_DUE_TO_INACTIVITY)
R2S(DISASSOC_AP_BUSY)
R2S(CLASS2_FRAME_FROM_NONAUTH_STA)
R2S(CLASS3_FRAME_FROM_NONASSOC_STA)
R2S(DISASSOC_STA_HAS_LEFT)
R2S(STA_REQ_ASSOC_WITHOUT_AUTH)
R2S(PWR_CAPABILITY_NOT_VALID)
R2S(SUPPORTED_CHANNEL_NOT_VALID)
R2S(BSS_TRANSITION_DISASSOC)
R2S(INVALID_IE)
R2S(MICHAEL_MIC_FAILURE)
R2S(4WAY_HANDSHAKE_TIMEOUT)
R2S(GROUP_KEY_UPDATE_TIMEOUT)
R2S(IE_IN_4WAY_DIFFERS)
R2S(GROUP_CIPHER_NOT_VALID)
R2S(PAIRWISE_CIPHER_NOT_VALID)
R2S(AKMP_NOT_VALID)
R2S(UNSUPPORTED_RSN_IE_VERSION)
R2S(INVALID_RSN_IE_CAPAB)
R2S(IEEE_802_1X_AUTH_FAILED)
R2S(CIPHER_SUITE_REJECTED)
R2S(TDLS_TEARDOWN_UNREACHABLE)
R2S(TDLS_TEARDOWN_UNSPECIFIED)
R2S(SSP_REQUESTED_DISASSOC)
R2S(NO_SSP_ROAMING_AGREEMENT)
R2S(BAD_CIPHER_OR_AKM)
R2S(NOT_AUTHORIZED_THIS_LOCATION)
R2S(SERVICE_CHANGE_PRECLUDES_TS)
R2S(UNSPECIFIED_QOS_REASON)
R2S(NOT_ENOUGH_BANDWIDTH)
R2S(DISASSOC_LOW_ACK)
R2S(EXCEEDED_TXOP)
R2S(STA_LEAVING)
R2S(END_TS_BA_DLS)
R2S(UNKNOWN_TS_BA)
R2S(TIMEOUT)
R2S(PEERKEY_MISMATCH)
R2S(AUTHORIZED_ACCESS_LIMIT_REACHED)
R2S(EXTERNAL_SERVICE_REQUIREMENTS)
R2S(INVALID_FT_ACTION_FRAME_COUNT)
R2S(INVALID_PMKID)
R2S(INVALID_MDE)
R2S(INVALID_FTE)
R2S(MESH_PEERING_CANCELLED)
R2S(MESH_MAX_PEERS)
R2S(MESH_CONFIG_POLICY_VIOLATION)
R2S(MESH_CLOSE_RCVD)
R2S(MESH_MAX_RETRIES)
R2S(MESH_CONFIRM_TIMEOUT)
R2S(MESH_INVALID_GTK)
R2S(MESH_INCONSISTENT_PARAMS)
R2S(MESH_INVALID_SECURITY_CAP)
R2S(MESH_PATH_ERROR_NO_PROXY_INFO)
R2S(MESH_PATH_ERROR_NO_FORWARDING_INFO)
R2S(MESH_PATH_ERROR_DEST_UNREACHABLE)
R2S(MAC_ADDRESS_ALREADY_EXISTS_IN_MBSS)
R2S(MESH_CHANNEL_SWITCH_REGULATORY_REQ)
R2S(MESH_CHANNEL_SWITCH_UNSPECIFIED)
}
return "UNKNOWN";
#undef R2S
}
const char * status2str(u16 status)
{
#define S2S(s) case WLAN_STATUS_ ## s: return #s;
switch (status) {
S2S(SUCCESS)
S2S(UNSPECIFIED_FAILURE)
S2S(TDLS_WAKEUP_ALTERNATE)
S2S(TDLS_WAKEUP_REJECT)
S2S(SECURITY_DISABLED)
S2S(UNACCEPTABLE_LIFETIME)
S2S(NOT_IN_SAME_BSS)
S2S(CAPS_UNSUPPORTED)
S2S(REASSOC_NO_ASSOC)
S2S(ASSOC_DENIED_UNSPEC)
S2S(NOT_SUPPORTED_AUTH_ALG)
S2S(UNKNOWN_AUTH_TRANSACTION)
S2S(CHALLENGE_FAIL)
S2S(AUTH_TIMEOUT)
S2S(AP_UNABLE_TO_HANDLE_NEW_STA)
S2S(ASSOC_DENIED_RATES)
S2S(ASSOC_DENIED_NOSHORT)
S2S(SPEC_MGMT_REQUIRED)
S2S(PWR_CAPABILITY_NOT_VALID)
S2S(SUPPORTED_CHANNEL_NOT_VALID)
S2S(ASSOC_DENIED_NO_SHORT_SLOT_TIME)
S2S(ASSOC_DENIED_NO_HT)
S2S(R0KH_UNREACHABLE)
S2S(ASSOC_DENIED_NO_PCO)
S2S(ASSOC_REJECTED_TEMPORARILY)
S2S(ROBUST_MGMT_FRAME_POLICY_VIOLATION)
S2S(UNSPECIFIED_QOS_FAILURE)
S2S(DENIED_INSUFFICIENT_BANDWIDTH)
S2S(DENIED_POOR_CHANNEL_CONDITIONS)
S2S(DENIED_QOS_NOT_SUPPORTED)
S2S(REQUEST_DECLINED)
S2S(INVALID_PARAMETERS)
S2S(REJECTED_WITH_SUGGESTED_CHANGES)
S2S(INVALID_IE)
S2S(GROUP_CIPHER_NOT_VALID)
S2S(PAIRWISE_CIPHER_NOT_VALID)
S2S(AKMP_NOT_VALID)
S2S(UNSUPPORTED_RSN_IE_VERSION)
S2S(INVALID_RSN_IE_CAPAB)
S2S(CIPHER_REJECTED_PER_POLICY)
S2S(TS_NOT_CREATED)
S2S(DIRECT_LINK_NOT_ALLOWED)
S2S(DEST_STA_NOT_PRESENT)
S2S(DEST_STA_NOT_QOS_STA)
S2S(ASSOC_DENIED_LISTEN_INT_TOO_LARGE)
S2S(INVALID_FT_ACTION_FRAME_COUNT)
S2S(INVALID_PMKID)
S2S(INVALID_MDIE)
S2S(INVALID_FTIE)
S2S(REQUESTED_TCLAS_NOT_SUPPORTED)
S2S(INSUFFICIENT_TCLAS_PROCESSING_RESOURCES)
S2S(TRY_ANOTHER_BSS)
S2S(GAS_ADV_PROTO_NOT_SUPPORTED)
S2S(NO_OUTSTANDING_GAS_REQ)
S2S(GAS_RESP_NOT_RECEIVED)
S2S(STA_TIMED_OUT_WAITING_FOR_GAS_RESP)
S2S(GAS_RESP_LARGER_THAN_LIMIT)
S2S(REQ_REFUSED_HOME)
S2S(ADV_SRV_UNREACHABLE)
S2S(REQ_REFUSED_SSPN)
S2S(REQ_REFUSED_UNAUTH_ACCESS)
S2S(INVALID_RSNIE)
S2S(U_APSD_COEX_NOT_SUPPORTED)
S2S(U_APSD_COEX_MODE_NOT_SUPPORTED)
S2S(BAD_INTERVAL_WITH_U_APSD_COEX)
S2S(ANTI_CLOGGING_TOKEN_REQ)
S2S(FINITE_CYCLIC_GROUP_NOT_SUPPORTED)
S2S(CANNOT_FIND_ALT_TBTT)
S2S(TRANSMISSION_FAILURE)
S2S(REQ_TCLAS_NOT_SUPPORTED)
S2S(TCLAS_RESOURCES_EXCHAUSTED)
S2S(REJECTED_WITH_SUGGESTED_BSS_TRANSITION)
S2S(REJECT_WITH_SCHEDULE)
S2S(REJECT_NO_WAKEUP_SPECIFIED)
S2S(SUCCESS_POWER_SAVE_MODE)
S2S(PENDING_ADMITTING_FST_SESSION)
S2S(PERFORMING_FST_NOW)
S2S(PENDING_GAP_IN_BA_WINDOW)
S2S(REJECT_U_PID_SETTING)
S2S(REFUSED_EXTERNAL_REASON)
S2S(REFUSED_AP_OUT_OF_MEMORY)
S2S(REJECTED_EMERGENCY_SERVICE_NOT_SUPPORTED)
S2S(QUERY_RESP_OUTSTANDING)
S2S(REJECT_DSE_BAND)
S2S(TCLAS_PROCESSING_TERMINATED)
S2S(TS_SCHEDULE_CONFLICT)
S2S(DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL)
S2S(MCCAOP_RESERVATION_CONFLICT)
S2S(MAF_LIMIT_EXCEEDED)
S2S(MCCA_TRACK_LIMIT_EXCEEDED)
S2S(DENIED_DUE_TO_SPECTRUM_MANAGEMENT)
S2S(ASSOC_DENIED_NO_VHT)
S2S(ENABLEMENT_DENIED)
S2S(RESTRICTION_FROM_AUTHORIZED_GDB)
S2S(AUTHORIZATION_DEENABLED)
S2S(FILS_AUTHENTICATION_FAILURE)
S2S(UNKNOWN_AUTHENTICATION_SERVER)
S2S(UNKNOWN_PASSWORD_IDENTIFIER)
S2S(DENIED_HE_NOT_SUPPORTED)
S2S(SAE_HASH_TO_ELEMENT)
S2S(SAE_PK)
S2S(INVALID_PUBLIC_KEY)
S2S(PASN_BASE_AKMP_FAILED)
S2S(OCI_MISMATCH)
}
return "UNKNOWN";
#undef S2S
}
int mb_ies_info_by_ies(struct mb_ies_info *info, const u8 *ies_buf,
size_t ies_len)
{
const struct element *elem;
os_memset(info, 0, sizeof(*info));
if (!ies_buf)
return 0;
for_each_element_id(elem, WLAN_EID_MULTI_BAND, ies_buf, ies_len) {
if (info->nof_ies >= MAX_NOF_MB_IES_SUPPORTED)
return 0;
wpa_printf(MSG_DEBUG, "MB IE of %u bytes found",
elem->datalen + 2);
info->ies[info->nof_ies].ie = elem->data;
info->ies[info->nof_ies].ie_len = elem->datalen;
info->nof_ies++;
}
if (!for_each_element_completed(elem, ies_buf, ies_len)) {
wpa_hexdump(MSG_DEBUG, "Truncated IEs", ies_buf, ies_len);
return -1;
}
return 0;
}
struct wpabuf * mb_ies_by_info(struct mb_ies_info *info)
{
struct wpabuf *mb_ies = NULL;
WPA_ASSERT(info != NULL);
if (info->nof_ies) {
u8 i;
size_t mb_ies_size = 0;
for (i = 0; i < info->nof_ies; i++)
mb_ies_size += 2 + info->ies[i].ie_len;
mb_ies = wpabuf_alloc(mb_ies_size);
if (mb_ies) {
for (i = 0; i < info->nof_ies; i++) {
wpabuf_put_u8(mb_ies, WLAN_EID_MULTI_BAND);
wpabuf_put_u8(mb_ies, info->ies[i].ie_len);
wpabuf_put_data(mb_ies,
info->ies[i].ie,
info->ies[i].ie_len);
}
}
}
return mb_ies;
}
const struct oper_class_map global_op_class[] = {
{ HOSTAPD_MODE_IEEE80211G, 81, 1, 13, 1, BW20, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211G, 82, 14, 14, 1, BW20, NO_P2P_SUPP },
/* Do not enable HT40 on 2.4 GHz for P2P use for now */
{ HOSTAPD_MODE_IEEE80211G, 83, 1, 9, 1, BW40PLUS, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211G, 84, 5, 13, 1, BW40MINUS, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 115, 36, 48, 4, BW20, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 116, 36, 44, 8, BW40PLUS, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 117, 40, 48, 8, BW40MINUS, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 118, 52, 64, 4, BW20, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 119, 52, 60, 8, BW40PLUS, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 120, 56, 64, 8, BW40MINUS, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 121, 100, 144, 4, BW20, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 122, 100, 140, 8, BW40PLUS, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 123, 104, 144, 8, BW40MINUS, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 124, 149, 161, 4, BW20, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 125, 149, 177, 4, BW20, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 126, 149, 173, 8, BW40PLUS, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 127, 153, 177, 8, BW40MINUS, P2P_SUPP },
/*
* IEEE Std 802.11ax-2021, Table E-4 actually talks about channel center
* frequency index for operation classes 128, 129, 130, 132, 133, 134,
* and 135, but currently use the lowest 20 MHz channel for simplicity
* (these center frequencies are not actual channels, which makes
* wpas_p2p_verify_channel() fail).
* Specially for the operation class 136, it is also defined to use the
* channel center frequency index value, but it happens to be a 20 MHz
* channel and the channel number in the channel set would match the
* value in for the frequency center.
*/
{ HOSTAPD_MODE_IEEE80211A, 128, 36, 177, 4, BW80, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 129, 36, 177, 4, BW160, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 131, 1, 233, 4, BW20, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 132, 1, 233, 8, BW40, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 133, 1, 233, 16, BW80, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 134, 1, 233, 32, BW160, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 135, 1, 233, 16, BW80P80, NO_P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211A, 136, 2, 2, 4, BW20, NO_P2P_SUPP },
/*
* IEEE Std 802.11ad-2012 and P802.ay/D5.0 60 GHz operating classes.
* Class 180 has the legacy channels 1-6. Classes 181-183 include
* channels which implement channel bonding features.
*/
{ HOSTAPD_MODE_IEEE80211AD, 180, 1, 6, 1, BW2160, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211AD, 181, 9, 13, 1, BW4320, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211AD, 182, 17, 20, 1, BW6480, P2P_SUPP },
{ HOSTAPD_MODE_IEEE80211AD, 183, 25, 27, 1, BW8640, P2P_SUPP },
/* Keep the operating class 130 as the last entry as a workaround for
* the OneHundredAndThirty Delimiter value used in the Supported
* Operating Classes element to indicate the end of the Operating
* Classes field. */
{ HOSTAPD_MODE_IEEE80211A, 130, 36, 177, 4, BW80P80, P2P_SUPP },
{ -1, 0, 0, 0, 0, BW20, NO_P2P_SUPP }
};
static enum phy_type ieee80211_phy_type_by_freq(int freq)
{
enum hostapd_hw_mode hw_mode;
u8 channel;
hw_mode = ieee80211_freq_to_chan(freq, &channel);
switch (hw_mode) {
case HOSTAPD_MODE_IEEE80211A:
return PHY_TYPE_OFDM;
case HOSTAPD_MODE_IEEE80211B:
return PHY_TYPE_HRDSSS;
case HOSTAPD_MODE_IEEE80211G:
return PHY_TYPE_ERP;
case HOSTAPD_MODE_IEEE80211AD:
return PHY_TYPE_DMG;
default:
return PHY_TYPE_UNSPECIFIED;
};
}
/* ieee80211_get_phy_type - Derive the phy type by freq and bandwidth */
enum phy_type ieee80211_get_phy_type(int freq, int ht, int vht)
{
if (vht)
return PHY_TYPE_VHT;
if (ht)
return PHY_TYPE_HT;
return ieee80211_phy_type_by_freq(freq);
}
size_t global_op_class_size = ARRAY_SIZE(global_op_class);
/**
* get_ie - Fetch a specified information element from IEs buffer
* @ies: Information elements buffer
* @len: Information elements buffer length
* @eid: Information element identifier (WLAN_EID_*)
* Returns: Pointer to the information element (id field) or %NULL if not found
*
* This function returns the first matching information element in the IEs
* buffer or %NULL in case the element is not found.
*/
const u8 * get_ie(const u8 *ies, size_t len, u8 eid)
{
const struct element *elem;
if (!ies)
return NULL;
for_each_element_id(elem, eid, ies, len)
return &elem->id;
return NULL;
}
/**
* get_ie_ext - Fetch a specified extended information element from IEs buffer
* @ies: Information elements buffer
* @len: Information elements buffer length
* @ext: Information element extension identifier (WLAN_EID_EXT_*)
* Returns: Pointer to the information element (id field) or %NULL if not found
*
* This function returns the first matching information element in the IEs
* buffer or %NULL in case the element is not found.
*/
const u8 * get_ie_ext(const u8 *ies, size_t len, u8 ext)
{
const struct element *elem;
if (!ies)
return NULL;
for_each_element_extid(elem, ext, ies, len)
return &elem->id;
return NULL;
}
const u8 * get_vendor_ie(const u8 *ies, size_t len, u32 vendor_type)
{
const struct element *elem;
for_each_element_id(elem, WLAN_EID_VENDOR_SPECIFIC, ies, len) {
if (elem->datalen >= 4 &&
vendor_type == WPA_GET_BE32(elem->data))
return &elem->id;
}
return NULL;
}
size_t mbo_add_ie(u8 *buf, size_t len, const u8 *attr, size_t attr_len)
{
/*
* MBO IE requires 6 bytes without the attributes: EID (1), length (1),
* OUI (3), OUI type (1).
*/
if (len < 6 + attr_len) {
wpa_printf(MSG_DEBUG,
"MBO: Not enough room in buffer for MBO IE: buf len = %zu, attr_len = %zu",
len, attr_len);
return 0;
}
*buf++ = WLAN_EID_VENDOR_SPECIFIC;
*buf++ = attr_len + 4;
WPA_PUT_BE24(buf, OUI_WFA);
buf += 3;
*buf++ = MBO_OUI_TYPE;
os_memcpy(buf, attr, attr_len);
return 6 + attr_len;
}
size_t add_multi_ap_ie(u8 *buf, size_t len, u8 value)
{
u8 *pos = buf;
if (len < 9)
return 0;
*pos++ = WLAN_EID_VENDOR_SPECIFIC;
*pos++ = 7; /* len */
WPA_PUT_BE24(pos, OUI_WFA);
pos += 3;
*pos++ = MULTI_AP_OUI_TYPE;
*pos++ = MULTI_AP_SUB_ELEM_TYPE;
*pos++ = 1; /* len */
*pos++ = value;
return pos - buf;
}
static const struct country_op_class us_op_class[] = {
{ 1, 115 },
{ 2, 118 },
{ 3, 124 },
{ 4, 121 },
{ 5, 125 },
{ 12, 81 },
{ 22, 116 },
{ 23, 119 },
{ 24, 122 },
{ 25, 126 },
{ 26, 126 },
{ 27, 117 },
{ 28, 120 },
{ 29, 123 },
{ 30, 127 },
{ 31, 127 },
{ 32, 83 },
{ 33, 84 },
{ 34, 180 },
};
static const struct country_op_class eu_op_class[] = {
{ 1, 115 },
{ 2, 118 },
{ 3, 121 },
{ 4, 81 },
{ 5, 116 },
{ 6, 119 },
{ 7, 122 },
{ 8, 117 },
{ 9, 120 },
{ 10, 123 },
{ 11, 83 },
{ 12, 84 },
{ 17, 125 },
{ 18, 180 },
};
static const struct country_op_class jp_op_class[] = {
{ 1, 115 },
{ 30, 81 },
{ 31, 82 },
{ 32, 118 },
{ 33, 118 },
{ 34, 121 },
{ 35, 121 },
{ 36, 116 },
{ 37, 119 },
{ 38, 119 },
{ 39, 122 },
{ 40, 122 },
{ 41, 117 },
{ 42, 120 },
{ 43, 120 },
{ 44, 123 },
{ 45, 123 },
{ 56, 83 },
{ 57, 84 },
{ 58, 121 },
{ 59, 180 },
};
static const struct country_op_class cn_op_class[] = {
{ 1, 115 },
{ 2, 118 },
{ 3, 125 },
{ 4, 116 },
{ 5, 119 },
{ 6, 126 },
{ 7, 81 },
{ 8, 83 },
{ 9, 84 },
};
static u8
global_op_class_from_country_array(u8 op_class, size_t array_size,
const struct country_op_class *country_array)
{
size_t i;
for (i = 0; i < array_size; i++) {
if (country_array[i].country_op_class == op_class)
return country_array[i].global_op_class;
}
return 0;
}
u8 country_to_global_op_class(const char *country, u8 op_class)
{
const struct country_op_class *country_array;
size_t size;
u8 g_op_class;
if (country_match(us_op_class_cc, country)) {
country_array = us_op_class;
size = ARRAY_SIZE(us_op_class);
} else if (country_match(eu_op_class_cc, country)) {
country_array = eu_op_class;
size = ARRAY_SIZE(eu_op_class);
} else if (country_match(jp_op_class_cc, country)) {
country_array = jp_op_class;
size = ARRAY_SIZE(jp_op_class);
} else if (country_match(cn_op_class_cc, country)) {
country_array = cn_op_class;
size = ARRAY_SIZE(cn_op_class);
} else {
/*
* Countries that do not match any of the above countries use
* global operating classes
*/
return op_class;
}
g_op_class = global_op_class_from_country_array(op_class, size,
country_array);
/*
* If the given operating class did not match any of the country's
* operating classes, assume that global operating class is used.
*/
return g_op_class ? g_op_class : op_class;
}
const struct oper_class_map * get_oper_class(const char *country, u8 op_class)
{
const struct oper_class_map *op;
if (country)
op_class = country_to_global_op_class(country, op_class);
op = &global_op_class[0];
while (op->op_class && op->op_class != op_class)
op++;
if (!op->op_class)
return NULL;
return op;
}
int oper_class_bw_to_int(const struct oper_class_map *map)
{
switch (map->bw) {
case BW20:
return 20;
case BW40:
case BW40PLUS:
case BW40MINUS:
return 40;
case BW80:
return 80;
case BW80P80:
case BW160:
return 160;
case BW2160:
return 2160;
default:
return 0;
}
}
int center_idx_to_bw_6ghz(u8 idx)
{
/* Channel: 2 */
if (idx == 2)
return 0; /* 20 MHz */
/* channels: 1, 5, 9, 13... */
if ((idx & 0x3) == 0x1)
return 0; /* 20 MHz */
/* channels 3, 11, 19... */
if ((idx & 0x7) == 0x3)
return 1; /* 40 MHz */
/* channels 7, 23, 39.. */
if ((idx & 0xf) == 0x7)
return 2; /* 80 MHz */
/* channels 15, 47, 79...*/
if ((idx & 0x1f) == 0xf)
return 3; /* 160 MHz */
/* channels 31, 63, 95, 127, 159, 191 */
if ((idx & 0x1f) == 0x1f && idx < 192)
return 4; /* 320 MHz */
return -1;
}
bool is_6ghz_freq(int freq)
{
if (freq < 5935 || freq > 7115)
return false;
if (freq == 5935)
return true;
if (center_idx_to_bw_6ghz((freq - 5950) / 5) < 0)
return false;
return true;
}
bool is_6ghz_op_class(u8 op_class)
{
return op_class >= 131 && op_class <= 137;
}
bool is_6ghz_psc_frequency(int freq)
{
int i;
if (!is_6ghz_freq(freq) || freq == 5935)
return false;
if ((((freq - 5950) / 5) & 0x3) != 0x1)
return false;
i = (freq - 5950 + 55) % 80;
if (i == 0)
i = (freq - 5950 + 55) / 80;
if (i >= 1 && i <= 15)
return true;
return false;
}
/**
* get_6ghz_sec_channel - Get the relative position of the secondary channel
* to the primary channel in 6 GHz
* @channel: Primary channel to be checked for (in global op class 131)
* Returns: 1 = secondary channel above, -1 = secondary channel below
*/
int get_6ghz_sec_channel(int channel)
{
/*
* In the 6 GHz band, primary channels are numbered as 1, 5, 9, 13.., so
* the 40 MHz channels are formed with the channel pairs as (1,5),
* (9,13), (17,21)..
* The secondary channel for a given primary channel is below the
* primary channel for the channels 5, 13, 21.. and it is above the
* primary channel for the channels 1, 9, 17..
*/
if (((channel - 1) / 4) % 2)
return -1;
return 1;
}
int ieee802_11_parse_candidate_list(const char *pos, u8 *nei_rep,
size_t nei_rep_len)
{
u8 *nei_pos = nei_rep;
const char *end;
/*
* BSS Transition Candidate List Entries - Neighbor Report elements
* neighbor=<BSSID>,<BSSID Information>,<Operating Class>,
* <Channel Number>,<PHY Type>[,<hexdump of Optional Subelements>]
*/
while (pos) {
u8 *nei_start;
long int val;
char *endptr, *tmp;
pos = os_strstr(pos, " neighbor=");
if (!pos)
break;
if (nei_pos + 15 > nei_rep + nei_rep_len) {
wpa_printf(MSG_DEBUG,
"Not enough room for additional neighbor");
return -1;
}
pos += 10;
nei_start = nei_pos;
*nei_pos++ = WLAN_EID_NEIGHBOR_REPORT;
nei_pos++; /* length to be filled in */
if (hwaddr_aton(pos, nei_pos)) {
wpa_printf(MSG_DEBUG, "Invalid BSSID");
return -1;
}
nei_pos += ETH_ALEN;
pos += 17;
if (*pos != ',') {
wpa_printf(MSG_DEBUG, "Missing BSSID Information");
return -1;
}
pos++;
val = strtol(pos, &endptr, 0);
WPA_PUT_LE32(nei_pos, val);
nei_pos += 4;
if (*endptr != ',') {
wpa_printf(MSG_DEBUG, "Missing Operating Class");
return -1;
}
pos = endptr + 1;
*nei_pos++ = atoi(pos); /* Operating Class */
pos = os_strchr(pos, ',');
if (pos == NULL) {
wpa_printf(MSG_DEBUG, "Missing Channel Number");
return -1;
}
pos++;
*nei_pos++ = atoi(pos); /* Channel Number */
pos = os_strchr(pos, ',');
if (pos == NULL) {
wpa_printf(MSG_DEBUG, "Missing PHY Type");
return -1;
}
pos++;
*nei_pos++ = atoi(pos); /* PHY Type */
end = os_strchr(pos, ' ');
tmp = os_strchr(pos, ',');
if (tmp && (!end || tmp < end)) {
/* Optional Subelements (hexdump) */
size_t len;
pos = tmp + 1;
end = os_strchr(pos, ' ');
if (end)
len = end - pos;
else
len = os_strlen(pos);
if (nei_pos + len / 2 > nei_rep + nei_rep_len) {
wpa_printf(MSG_DEBUG,
"Not enough room for neighbor subelements");
return -1;
}
if (len & 0x01 ||
hexstr2bin(pos, nei_pos, len / 2) < 0) {
wpa_printf(MSG_DEBUG,
"Invalid neighbor subelement info");
return -1;
}
nei_pos += len / 2;
pos = end;
}
nei_start[1] = nei_pos - nei_start - 2;
}
return nei_pos - nei_rep;
}
int ieee802_11_ext_capab(const u8 *ie, unsigned int capab)
{
if (!ie || ie[1] <= capab / 8)
return 0;
return !!(ie[2 + capab / 8] & BIT(capab % 8));
}
bool ieee802_11_rsnx_capab_len(const u8 *rsnxe, size_t rsnxe_len,
unsigned int capab)
{
const u8 *end;
size_t flen, i;
u32 capabs = 0;
if (!rsnxe || rsnxe_len == 0)
return false;
end = rsnxe + rsnxe_len;
flen = (rsnxe[0] & 0x0f) + 1;
if (rsnxe + flen > end)
return false;
if (flen > 4)
flen = 4;
for (i = 0; i < flen; i++)
capabs |= rsnxe[i] << (8 * i);
return capabs & BIT(capab);
}
bool ieee802_11_rsnx_capab(const u8 *rsnxe, unsigned int capab)
{
return ieee802_11_rsnx_capab_len(rsnxe ? rsnxe + 2 : NULL,
rsnxe ? rsnxe[1] : 0, capab);
}
void hostapd_encode_edmg_chan(int edmg_enable, u8 edmg_channel,
int primary_channel,
struct ieee80211_edmg_config *edmg)
{
if (!edmg_enable) {
edmg->channels = 0;
edmg->bw_config = 0;
return;
}
/* Only EDMG CB1 and EDMG CB2 contiguous channels supported for now */
switch (edmg_channel) {
case EDMG_CHANNEL_9:
edmg->channels = EDMG_CHANNEL_9_SUBCHANNELS;
edmg->bw_config = EDMG_BW_CONFIG_5;
return;
case EDMG_CHANNEL_10:
edmg->channels = EDMG_CHANNEL_10_SUBCHANNELS;
edmg->bw_config = EDMG_BW_CONFIG_5;
return;
case EDMG_CHANNEL_11:
edmg->channels = EDMG_CHANNEL_11_SUBCHANNELS;
edmg->bw_config = EDMG_BW_CONFIG_5;
return;
case EDMG_CHANNEL_12:
edmg->channels = EDMG_CHANNEL_12_SUBCHANNELS;
edmg->bw_config = EDMG_BW_CONFIG_5;
return;
case EDMG_CHANNEL_13:
edmg->channels = EDMG_CHANNEL_13_SUBCHANNELS;
edmg->bw_config = EDMG_BW_CONFIG_5;
return;
default:
if (primary_channel > 0 && primary_channel < 7) {
edmg->channels = BIT(primary_channel - 1);
edmg->bw_config = EDMG_BW_CONFIG_4;
} else {
edmg->channels = 0;
edmg->bw_config = 0;
}
break;
}
}
/* Check if the requested EDMG configuration is a subset of the allowed
* EDMG configuration. */
int ieee802_edmg_is_allowed(struct ieee80211_edmg_config allowed,
struct ieee80211_edmg_config requested)
{
/*
* The validation check if the requested EDMG configuration
* is a subset of the allowed EDMG configuration:
* 1. Check that the requested channels are part (set) of the allowed
* channels.
* 2. P802.11ay defines the values of bw_config between 4 and 15.
* (bw config % 4) will give us 4 groups inside bw_config definition,
* inside each group we can check the subset just by comparing the
* bw_config value.
* Between this 4 groups, there is no subset relation - as a result of
* the P802.11ay definition.
* bw_config defined by IEEE P802.11ay/D4.0, 9.4.2.251, Table 13.
*/
if (((requested.channels & allowed.channels) != requested.channels) ||
((requested.bw_config % 4) > (allowed.bw_config % 4)) ||
requested.bw_config > allowed.bw_config)
return 0;
return 1;
}
int op_class_to_bandwidth(u8 op_class)
{
switch (op_class) {
case 81:
case 82:
return 20;
case 83: /* channels 1..9; 40 MHz */
case 84: /* channels 5..13; 40 MHz */
return 40;
case 115: /* channels 36,40,44,48; indoor only */
return 20;
case 116: /* channels 36,44; 40 MHz; indoor only */
case 117: /* channels 40,48; 40 MHz; indoor only */
return 40;
case 118: /* channels 52,56,60,64; dfs */
return 20;
case 119: /* channels 52,60; 40 MHz; dfs */
case 120: /* channels 56,64; 40 MHz; dfs */
return 40;
case 121: /* channels 100-144 */
return 20;
case 122: /* channels 100-140; 40 MHz */
case 123: /* channels 104-144; 40 MHz */
return 40;
case 124: /* channels 149,153,157,161 */
case 125: /* channels 149,153,157,161,165,169,173,177 */
return 20;
case 126: /* channels 149,157,161,165,169,173; 40 MHz */
case 127: /* channels 153..177; 40 MHz */
return 40;
case 128: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */
return 80;
case 129: /* center freqs 50, 114, 163; 160 MHz */
return 160;
case 130: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80+80 MHz */
return 80;
case 131: /* UHB channels, 20 MHz: 1, 5, 9.. */
return 20;
case 132: /* UHB channels, 40 MHz: 3, 11, 19.. */
return 40;
case 133: /* UHB channels, 80 MHz: 7, 23, 39.. */
return 80;
case 134: /* UHB channels, 160 MHz: 15, 47, 79.. */
case 135: /* UHB channels, 80+80 MHz: 7, 23, 39.. */
return 160;
case 136: /* UHB channels, 20 MHz: 2 */
return 20;
case 137: /* UHB channels, 320 MHz: 31, 63, 95, 127, 159, 191 */
return 320;
case 180: /* 60 GHz band, channels 1..8 */
return 2160;
case 181: /* 60 GHz band, EDMG CB2, channels 9..15 */
return 4320;
case 182: /* 60 GHz band, EDMG CB3, channels 17..22 */
return 6480;
case 183: /* 60 GHz band, EDMG CB4, channel 25..29 */
return 8640;
default:
return 20;
}
}
enum oper_chan_width op_class_to_ch_width(u8 op_class)
{
switch (op_class) {
case 81:
case 82:
return CONF_OPER_CHWIDTH_USE_HT;
case 83: /* channels 1..9; 40 MHz */
case 84: /* channels 5..13; 40 MHz */
return CONF_OPER_CHWIDTH_USE_HT;
case 115: /* channels 36,40,44,48; indoor only */
return CONF_OPER_CHWIDTH_USE_HT;
case 116: /* channels 36,44; 40 MHz; indoor only */
case 117: /* channels 40,48; 40 MHz; indoor only */
return CONF_OPER_CHWIDTH_USE_HT;
case 118: /* channels 52,56,60,64; dfs */
return CONF_OPER_CHWIDTH_USE_HT;
case 119: /* channels 52,60; 40 MHz; dfs */
case 120: /* channels 56,64; 40 MHz; dfs */
return CONF_OPER_CHWIDTH_USE_HT;
case 121: /* channels 100-144 */
return CONF_OPER_CHWIDTH_USE_HT;
case 122: /* channels 100-140; 40 MHz */
case 123: /* channels 104-144; 40 MHz */
return CONF_OPER_CHWIDTH_USE_HT;
case 124: /* channels 149,153,157,161 */
case 125: /* channels 149,153,157,161,165,169,171 */
return CONF_OPER_CHWIDTH_USE_HT;
case 126: /* channels 149,157,165, 173; 40 MHz */
case 127: /* channels 153,161,169,177; 40 MHz */
return CONF_OPER_CHWIDTH_USE_HT;
case 128: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80 MHz */
return CONF_OPER_CHWIDTH_80MHZ;
case 129: /* center freqs 50, 114, 163; 160 MHz */
return CONF_OPER_CHWIDTH_160MHZ;
case 130: /* center freqs 42, 58, 106, 122, 138, 155, 171; 80+80 MHz */
return CONF_OPER_CHWIDTH_80P80MHZ;
case 131: /* UHB channels, 20 MHz: 1, 5, 9.. */
return CONF_OPER_CHWIDTH_USE_HT;
case 132: /* UHB channels, 40 MHz: 3, 11, 19.. */
return CONF_OPER_CHWIDTH_USE_HT;
case 133: /* UHB channels, 80 MHz: 7, 23, 39.. */
return CONF_OPER_CHWIDTH_80MHZ;
case 134: /* UHB channels, 160 MHz: 15, 47, 79.. */
return CONF_OPER_CHWIDTH_160MHZ;
case 135: /* UHB channels, 80+80 MHz: 7, 23, 39.. */
return CONF_OPER_CHWIDTH_80P80MHZ;
case 136: /* UHB channels, 20 MHz: 2 */
return CONF_OPER_CHWIDTH_USE_HT;
case 137: /* UHB channels, 320 MHz: 31, 63, 95, 127, 159, 191 */
return CONF_OPER_CHWIDTH_320MHZ;
case 180: /* 60 GHz band, channels 1..8 */
return CONF_OPER_CHWIDTH_2160MHZ;
case 181: /* 60 GHz band, EDMG CB2, channels 9..15 */
return CONF_OPER_CHWIDTH_4320MHZ;
case 182: /* 60 GHz band, EDMG CB3, channels 17..22 */
return CONF_OPER_CHWIDTH_6480MHZ;
case 183: /* 60 GHz band, EDMG CB4, channel 25..29 */
return CONF_OPER_CHWIDTH_8640MHZ;
default:
return CONF_OPER_CHWIDTH_USE_HT;
}
}
struct wpabuf * ieee802_11_defrag_data(const u8 *data, size_t len,
bool ext_elem)
{
struct wpabuf *buf;
const u8 *pos, *end = data + len;
size_t min_defrag_len = ext_elem ? 255 : 256;
if (!data || !len)
return NULL;
if (len < min_defrag_len)
return wpabuf_alloc_copy(data, len);
buf = wpabuf_alloc_copy(data, min_defrag_len - 1);
if (!buf)
return NULL;
pos = &data[min_defrag_len - 1];
len -= min_defrag_len - 1;
while (len > 2 && pos[0] == WLAN_EID_FRAGMENT && pos[1]) {
int ret;
size_t elen = 2 + pos[1];
if (elen > (size_t) (end - pos) || elen > len)
break;
ret = wpabuf_resize(&buf, pos[1]);
if (ret < 0) {
wpabuf_free(buf);
return NULL;
}
/* Copy only the fragment data (without the EID and length) */
wpabuf_put_data(buf, &pos[2], pos[1]);
pos += elen;
len -= elen;
}
return buf;
}
struct wpabuf * ieee802_11_defrag(struct ieee802_11_elems *elems,
u8 eid, u8 eid_ext)
{
const u8 *data;
size_t len;
/*
* TODO: Defragmentation mechanism can be supported for all IEs. For now
* handle only those that are used (or use ieee802_11_defrag_data()).
*/
switch (eid) {
case WLAN_EID_EXTENSION:
switch (eid_ext) {
case WLAN_EID_EXT_FILS_HLP_CONTAINER:
data = elems->fils_hlp;
len = elems->fils_hlp_len;
break;
case WLAN_EID_EXT_WRAPPED_DATA:
data = elems->wrapped_data;
len = elems->wrapped_data_len;
break;
default:
wpa_printf(MSG_DEBUG,
"Defragmentation not supported. eid_ext=%u",
eid_ext);
return NULL;
}
break;
default:
wpa_printf(MSG_DEBUG,
"Defragmentation not supported. eid=%u", eid);
return NULL;
}
return ieee802_11_defrag_data(data, len, true);
}
/* Parse HT capabilities to get maximum number of supported spatial streams */
static int parse_ht_mcs_set_for_max_nss(
struct ieee80211_ht_capabilities *htcaps,
u8 parse_for_rx)
{
int max_nss_rx = 1;
if (htcaps == NULL)
return max_nss_rx;
int i;
for (i = 4; i >= 1; i--) {
if (htcaps->supported_mcs_set[i - 1] > 0) {
max_nss_rx = i;
break;
}
}
if (parse_for_rx)
return max_nss_rx;
u8 supported_tx_mcs_set = htcaps->supported_mcs_set[12];
u8 tx_mcs_set_defined = supported_tx_mcs_set & 0x1;
u8 tx_rx_mcs_set_not_equal = (supported_tx_mcs_set >> 1) & 0x1;
if (tx_mcs_set_defined && tx_rx_mcs_set_not_equal) {
int max_nss_tx_field_value = (supported_tx_mcs_set >> 2) & 0x3;
// The maximum number of Tx streams is 1 more than the field value.
return max_nss_tx_field_value + 1;
}
return max_nss_rx;
}
/* Parse MCS map to get maximum number of supported spatial streams */
static int parse_mcs_map_for_max_nss (u16 mcs_map, int max_streams_allowed)
{
int max_nss = 1;
int i;
for (i = max_streams_allowed; i >= 1; i--) {
int stream_map = (mcs_map >> ((i - 1) * 2)) & 0x3;
// 3 means unsupported
if (stream_map != 3) {
max_nss = i;
break;
}
}
return max_nss;
}
/* Parse capabilities IEs to get maximum number of supported spatial streams */
int get_max_nss_capability(struct ieee802_11_elems *elems, int parse_for_rx)
{
int max_nss = 1;
struct ieee80211_ht_capabilities *htcaps =
(struct ieee80211_ht_capabilities *) elems->ht_capabilities;
struct ieee80211_vht_capabilities *vhtcaps =
(struct ieee80211_vht_capabilities *) elems->vht_capabilities;
struct ieee80211_he_capabilities *hecaps =
(struct ieee80211_he_capabilities *) elems->he_capabilities;
if (htcaps) {
int max_nss_ht = parse_ht_mcs_set_for_max_nss(htcaps, parse_for_rx);
if (max_nss_ht > max_nss)
max_nss = max_nss_ht;
}
le16 mcs_map;
if (vhtcaps) {
mcs_map = (parse_for_rx) ? vhtcaps->vht_supported_mcs_set.rx_map :
vhtcaps->vht_supported_mcs_set.tx_map;
int max_nss_vht = parse_mcs_map_for_max_nss(
le_to_host16(mcs_map), VHT_RX_NSS_MAX_STREAMS);
if (max_nss_vht > max_nss)
max_nss = max_nss_vht;
}
if (hecaps) {
mcs_map = (parse_for_rx) ? hecaps->he_basic_supported_mcs_set.rx_map :
hecaps->he_basic_supported_mcs_set.tx_map;
int max_nss_he = parse_mcs_map_for_max_nss(
le_to_host16(mcs_map), HE_NSS_MAX_STREAMS);
if (max_nss_he > max_nss)
max_nss = max_nss_he;
}
return max_nss;
}
/* Parse VHT/HE capabilities IEs to get supported channel width */
struct supported_chan_width get_supported_channel_width(
struct ieee802_11_elems *elems)
{
struct supported_chan_width supported_width;
supported_width.is_160_supported = 0;
supported_width.is_80p80_supported = 0;
supported_width.is_320_supported = 0;
if (elems == NULL)
return supported_width;
struct ieee80211_vht_capabilities *vhtcaps =
(struct ieee80211_vht_capabilities *) elems->vht_capabilities;
struct ieee80211_he_capabilities *hecaps =
(struct ieee80211_he_capabilities *) elems->he_capabilities;
struct ieee80211_eht_capabilities *ehtcaps =
(struct ieee80211_eht_capabilities *) elems->eht_capabilities;
if (vhtcaps) {
le32 vht_capabilities_info =
le_to_host32(vhtcaps->vht_capabilities_info);
if (vht_capabilities_info & VHT_CAP_SUPP_CHAN_WIDTH_160MHZ)
supported_width.is_160_supported = 1;
if (vht_capabilities_info & VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ)
supported_width.is_80p80_supported = 1;
}
if (hecaps) {
u8 channel_width_set =
hecaps->he_phy_capab_info[HE_PHYCAP_CHANNEL_WIDTH_SET_IDX];
if (channel_width_set & HE_PHYCAP_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
supported_width.is_160_supported = 1;
if (channel_width_set & HE_PHYCAP_CHANNEL_WIDTH_SET_80PLUS80MHZ_IN_5G)
supported_width.is_80p80_supported = 1;
}
if (ehtcaps) {
if (ehtcaps->phy_cap[EHT_PHYCAP_320MHZ_IN_6GHZ_SUPPORT_IDX] &
EHT_PHYCAP_320MHZ_IN_6GHZ_SUPPORT_MASK)
supported_width.is_320_supported = 1;
}
wpa_printf(MSG_DEBUG,
" IE indicates 320 supported: %u, 160 supported: %u, 80+80 supported: %u",
supported_width.is_320_supported,
supported_width.is_160_supported,
supported_width.is_80p80_supported);
return supported_width;
}
/*
* Parse VHT operation info fields to get operation channel width
* note that VHT operation info fields could come from VHT operation IE
* or from HE operation IE
*/
static enum chan_width get_vht_operation_channel_width(
struct ieee80211_vht_operation_info *vht_oper_info)
{
enum chan_width channel_width = CHAN_WIDTH_UNKNOWN;
u8 seg0, seg1;
switch (vht_oper_info->vht_op_info_chwidth) {
case 1:
seg0 = vht_oper_info->vht_op_info_chan_center_freq_seg0_idx;
seg1 = vht_oper_info->vht_op_info_chan_center_freq_seg1_idx;
if (seg1 && abs(seg1 - seg0) == 8)
channel_width = CHAN_WIDTH_160;
else if (seg1)
channel_width = CHAN_WIDTH_80P80;
else
channel_width = CHAN_WIDTH_80;
break;
case 2:
channel_width = CHAN_WIDTH_160;
break;
case 3:
channel_width = CHAN_WIDTH_80P80;
break;
default:
break;
}
wpa_printf(MSG_DEBUG, " VHT operation CBW: %u", channel_width);
return channel_width;
}
/* Parse 6GHz operation info fields to get operation channel width */
static enum chan_width get_6ghz_operation_channel_width(
struct ieee80211_6ghz_operation_info * six_ghz_oper_info)
{
enum chan_width channel_width = CHAN_WIDTH_UNKNOWN;
u8 seg0, seg1;
switch (six_ghz_oper_info->control & SIX_GHZ_CONTROL_CHANNEL_WIDTH_MASK) {
case 0:
channel_width = CHAN_WIDTH_20;
break;
case 1:
channel_width = CHAN_WIDTH_40;
break;
case 2:
channel_width = CHAN_WIDTH_80;
break;
case 3:
seg0 = six_ghz_oper_info->chan_center_freq_seg0_idx;
seg1 = six_ghz_oper_info->chan_center_freq_seg1_idx;
if (abs(seg1 - seg0) == 8)
channel_width = CHAN_WIDTH_160;
else
channel_width = CHAN_WIDTH_80P80;
break;
default:
break;
}
wpa_printf(MSG_DEBUG, " 6GHz operation CBW: %u", channel_width);
return channel_width;
}
/* Parse HE operation IE to get HE operation channel width */
static enum chan_width get_he_operation_channel_width(
struct ieee80211_he_operation *he_oper,
int he_oper_len)
{
enum chan_width channel_width = CHAN_WIDTH_UNKNOWN;
u8 is_6ghz_info_present =
(he_oper->he_oper_params & HE_OPERATION_6GHZ_OPER_INFO) ? 1 : 0;
u8 is_vht_info_present =
(he_oper->he_oper_params & HE_OPERATION_VHT_OPER_INFO) ? 1 : 0;
u8 is_cohosted_bss_present =
(he_oper->he_oper_params & HE_OPERATION_COHOSTED_BSS) ? 1 : 0;
int expected_len = HE_OPERATION_IE_MIN_LEN
+ (is_6ghz_info_present ? HE_OPERATION_6GHZ_OPER_INFO_LEN : 0)
+ (is_vht_info_present ? HE_OPERATION_VHT_OPER_INFO_LEN : 0)
+ (is_cohosted_bss_present
? HE_OPERATION_COHOSTED_BSSID_INDICATOR_LEN : 0);
if (he_oper_len < expected_len)
return channel_width;
const u8 *he_oper_u8 = (const u8 *) he_oper;
if (is_6ghz_info_present) {
struct ieee80211_6ghz_operation_info *six_ghz_oper_info =
(struct ieee80211_6ghz_operation_info *)
(he_oper_u8 + HE_OPERATION_IE_MIN_LEN
+ (is_vht_info_present ? HE_OPERATION_VHT_OPER_INFO_LEN : 0)
+ (is_cohosted_bss_present
? HE_OPERATION_COHOSTED_BSSID_INDICATOR_LEN : 0));
channel_width = get_6ghz_operation_channel_width(six_ghz_oper_info);
}
if (channel_width == CHAN_WIDTH_UNKNOWN && is_vht_info_present) {
struct ieee80211_vht_operation_info *vht_oper_info =
(struct ieee80211_vht_operation_info *)
(he_oper_u8 + HE_OPERATION_IE_MIN_LEN);
channel_width = get_vht_operation_channel_width(vht_oper_info);
}
wpa_printf(MSG_DEBUG, " HE operation CBW: %u", channel_width);
return channel_width;
}
/* Parse EHT operation IE to get EHT operation channel width */
static enum chan_width get_eht_operation_channel_width(
struct ieee80211_eht_operation *eht_oper,
int eht_oper_len)
{
enum chan_width channel_width = CHAN_WIDTH_UNKNOWN;
if (!(eht_oper->oper_params & EHT_OPER_INFO_PRESENT) ||
eht_oper_len < (EHT_OPERATION_IE_MIN_LEN + EHT_OPER_INFO_MIN_LEN))
return channel_width;
switch (eht_oper->oper_info.control & EHT_OPER_CHANNEL_WIDTH_MASK) {
case EHT_OPER_CHANNEL_WIDTH_20MHZ:
channel_width = CHAN_WIDTH_20;
break;
case EHT_OPER_CHANNEL_WIDTH_40MHZ:
channel_width = CHAN_WIDTH_40;
break;
case EHT_OPER_CHANNEL_WIDTH_80MHZ:
channel_width = CHAN_WIDTH_80;
break;
case EHT_OPER_CHANNEL_WIDTH_160MHZ:
channel_width = CHAN_WIDTH_160;
break;
case EHT_OPER_CHANNEL_WIDTH_320MHZ:
channel_width = CHAN_WIDTH_320;
break;
default:
break;
}
wpa_printf(MSG_DEBUG, " EHT operation CBW: %u", channel_width);
return channel_width;
}
/* Parse HT/VHT/HE operation IEs to get operation channel width */
enum chan_width get_operation_channel_width(struct ieee802_11_elems *elems)
{
enum chan_width channel_width = CHAN_WIDTH_UNKNOWN;
if (elems == NULL)
return channel_width;
struct ieee80211_ht_operation *ht_oper =
(struct ieee80211_ht_operation *) elems->ht_operation;
struct ieee80211_vht_operation_info *vht_oper_info =
(struct ieee80211_vht_operation_info *) elems->vht_operation;
struct ieee80211_he_operation *he_oper =
(struct ieee80211_he_operation *) elems->he_operation;
struct ieee80211_eht_operation *eht_oper =
(struct ieee80211_eht_operation *) elems->eht_operation;
if (eht_oper)
channel_width = get_eht_operation_channel_width(
eht_oper, elems->eht_operation_len);
if (channel_width == CHAN_WIDTH_UNKNOWN && he_oper)
channel_width = get_he_operation_channel_width(
he_oper, elems->he_operation_len);
if (channel_width == CHAN_WIDTH_UNKNOWN && vht_oper_info)
channel_width = get_vht_operation_channel_width(vht_oper_info);
if (channel_width == CHAN_WIDTH_UNKNOWN && ht_oper) {
u8 sec_chan_offset =
ht_oper->ht_param & HT_INFO_HT_PARAM_SECONDARY_CHNL_OFF_MASK;
channel_width = (sec_chan_offset == 0) ? CHAN_WIDTH_20 : CHAN_WIDTH_40;
}
wpa_printf(MSG_DEBUG, " overall operation CBW: %u", channel_width);
return channel_width;
}
/*
* Get STA operation channel width from AP's operation channel width and
* STA's supported channel width
*/
enum chan_width get_sta_operation_chan_width(
enum chan_width ap_operation_chan_width,
struct supported_chan_width sta_supported_chan_width)
{
if (ap_operation_chan_width == CHAN_WIDTH_320 &&
sta_supported_chan_width.is_320_supported)
return CHAN_WIDTH_320;
if (ap_operation_chan_width == CHAN_WIDTH_160 ||
ap_operation_chan_width == CHAN_WIDTH_320)
return (sta_supported_chan_width.is_160_supported)
? CHAN_WIDTH_160 : CHAN_WIDTH_80;
if (ap_operation_chan_width == CHAN_WIDTH_80P80)
return (sta_supported_chan_width.is_80p80_supported)
? CHAN_WIDTH_80P80 : CHAN_WIDTH_80;
return ap_operation_chan_width;
}
const u8 * get_ml_ie(const u8 *ies, size_t len, u8 type)
{
const struct element *elem;
if (!ies)
return NULL;
for_each_element_extid(elem, WLAN_EID_EXT_MULTI_LINK, ies, len) {
if (elem->datalen >= 2 &&
(elem->data[1] & MULTI_LINK_CONTROL_TYPE_MASK) == type)
return &elem->id;
}
return NULL;
}
const u8 * get_basic_mle_mld_addr(const u8 *buf, size_t len)
{
const size_t mld_addr_pos =
2 /* Control field */ +
1 /* Common Info Length field */;
const size_t fixed_len = mld_addr_pos +
ETH_ALEN /* MLD MAC Address field */;
if (len < fixed_len)
return NULL;
if ((buf[0] & MULTI_LINK_CONTROL_TYPE_MASK) !=
MULTI_LINK_CONTROL_TYPE_BASIC)
return NULL;
return &buf[mld_addr_pos];
}
struct wpabuf * ieee802_11_defrag_mle(struct ieee802_11_elems *elems, u8 type)
{
const u8 *data;
size_t len;
switch (type) {
case MULTI_LINK_CONTROL_TYPE_BASIC:
data = elems->basic_mle;
len = elems->basic_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_PROBE_REQ:
data = elems->probe_req_mle;
len = elems->probe_req_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_RECONF:
data = elems->reconf_mle;
len = elems->reconf_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_TDLS:
data = elems->tdls_mle;
len = elems->tdls_mle_len;
break;
case MULTI_LINK_CONTROL_TYPE_PRIOR_ACCESS:
data = elems->prior_access_mle;
len = elems->prior_access_mle_len;
break;
default:
wpa_printf(MSG_DEBUG,
"Defragmentation not supported for Multi-Link element type=%u",
type);
return NULL;
}
return ieee802_11_defrag_data(data, len, true);
}