blob: 1181c7d58e0ee60a0ca5f9ecc063048a5ce72bbb [file] [log] [blame]
/*
* ACS - Automatic Channel Selection module
* Copyright (c) 2011, Atheros Communications
* Copyright (c) 2013, Qualcomm Atheros, Inc.
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "utils/includes.h"
#include <math.h>
#include "utils/common.h"
#include "utils/list.h"
#include "common/ieee802_11_defs.h"
#include "common/hw_features_common.h"
#include "common/wpa_ctrl.h"
#include "drivers/driver.h"
#include "hostapd.h"
#include "ap_drv_ops.h"
#include "ap_config.h"
#include "hw_features.h"
#include "acs.h"
/*
* Automatic Channel Selection
* ===========================
*
* More info at
* ------------
* http://wireless.kernel.org/en/users/Documentation/acs
*
* How to use
* ----------
* - make sure you have CONFIG_ACS=y in hostapd's .config
* - use channel=0 or channel=acs to enable ACS
*
* How does it work
* ----------------
* 1. passive scans are used to collect survey data
* (it is assumed that scan trigger collection of survey data in driver)
* 2. interference factor is calculated for each channel
* 3. ideal channel is picked depending on channel width by using adjacent
* channel interference factors
*
* Known limitations
* -----------------
* - Current implementation depends heavily on the amount of time willing to
* spend gathering survey data during hostapd startup. Short traffic bursts
* may be missed and a suboptimal channel may be picked.
* - Ideal channel may end up overlapping a channel with 40 MHz intolerant BSS
*
* Todo / Ideas
* ------------
* - implement other interference computation methods
* - BSS/RSSI based
* - spectral scan based
* (should be possibly to hook this up with current ACS scans)
* - add wpa_supplicant support (for P2P)
* - collect a histogram of interference over time allowing more educated
* guess about an ideal channel (perhaps CSA could be used to migrate AP to a
* new "better" channel while running)
* - include neighboring BSS scan to avoid conflicts with 40 MHz intolerant BSSs
* when choosing the ideal channel
*
* Survey interference factor implementation details
* -------------------------------------------------
* Generic interference_factor in struct hostapd_channel_data is used.
*
* The survey interference factor is defined as the ratio of the
* observed busy time over the time we spent on the channel,
* this value is then amplified by the observed noise floor on
* the channel in comparison to the lowest noise floor observed
* on the entire band.
*
* This corresponds to:
* ---
* (busy time - tx time) / (active time - tx time) * 2^(chan_nf + band_min_nf)
* ---
*
* The coefficient of 2 reflects the way power in "far-field"
* radiation decreases as the square of distance from the antenna [1].
* What this does is it decreases the observed busy time ratio if the
* noise observed was low but increases it if the noise was high,
* proportionally to the way "far field" radiation changes over
* distance.
*
* If channel busy time is not available the fallback is to use channel RX time.
*
* Since noise floor is in dBm it is necessary to convert it into Watts so that
* combined channel interference (e.g., HT40, which uses two channels) can be
* calculated easily.
* ---
* (busy time - tx time) / (active time - tx time) *
* 2^(10^(chan_nf/10) + 10^(band_min_nf/10))
* ---
*
* However to account for cases where busy/rx time is 0 (channel load is then
* 0%) channel noise floor signal power is combined into the equation so a
* channel with lower noise floor is preferred. The equation becomes:
* ---
* 10^(chan_nf/5) + (busy time - tx time) / (active time - tx time) *
* 2^(10^(chan_nf/10) + 10^(band_min_nf/10))
* ---
*
* All this "interference factor" is purely subjective and only time
* will tell how usable this is. By using the minimum noise floor we
* remove any possible issues due to card calibration. The computation
* of the interference factor then is dependent on what the card itself
* picks up as the minimum noise, not an actual real possible card
* noise value.
*
* Total interference computation details
* --------------------------------------
* The above channel interference factor is calculated with no respect to
* target operational bandwidth.
*
* To find an ideal channel the above data is combined by taking into account
* the target operational bandwidth and selected band. E.g., on 2.4 GHz channels
* overlap with 20 MHz bandwidth, but there is no overlap for 20 MHz bandwidth
* on 5 GHz.
*
* Each valid and possible channel spec (i.e., channel + width) is taken and its
* interference factor is computed by summing up interferences of each channel
* it overlaps. The one with least total interference is picked up.
*
* Note: This implies base channel interference factor must be non-negative
* allowing easy summing up.
*
* Example ACS analysis printout
* -----------------------------
*
* ACS: Trying survey-based ACS
* ACS: Survey analysis for channel 1 (2412 MHz)
* ACS: 1: min_nf=-113 interference_factor=0.0802469 nf=-113 time=162 busy=0 rx=13
* ACS: 2: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12
* ACS: 3: min_nf=-113 interference_factor=0.0679012 nf=-113 time=162 busy=0 rx=11
* ACS: 4: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5
* ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4
* ACS: * interference factor average: 0.0557166
* ACS: Survey analysis for channel 2 (2417 MHz)
* ACS: 1: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3
* ACS: 2: min_nf=-113 interference_factor=0.0246914 nf=-113 time=162 busy=0 rx=4
* ACS: 3: min_nf=-113 interference_factor=0.037037 nf=-113 time=162 busy=0 rx=6
* ACS: 4: min_nf=-113 interference_factor=0.149068 nf=-113 time=161 busy=0 rx=24
* ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4
* ACS: * interference factor average: 0.050832
* ACS: Survey analysis for channel 3 (2422 MHz)
* ACS: 1: min_nf=-113 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
* ACS: 2: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3
* ACS: 3: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
* ACS: 4: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
* ACS: 5: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3
* ACS: * interference factor average: 0.0148838
* ACS: Survey analysis for channel 4 (2427 MHz)
* ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
* ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9
* ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
* ACS: 4: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3
* ACS: 5: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
* ACS: * interference factor average: 0.0160801
* ACS: Survey analysis for channel 5 (2432 MHz)
* ACS: 1: min_nf=-114 interference_factor=0.409938 nf=-113 time=161 busy=0 rx=66
* ACS: 2: min_nf=-114 interference_factor=0.0432099 nf=-113 time=162 busy=0 rx=7
* ACS: 3: min_nf=-114 interference_factor=0.0124224 nf=-113 time=161 busy=0 rx=2
* ACS: 4: min_nf=-114 interference_factor=0.677019 nf=-113 time=161 busy=0 rx=109
* ACS: 5: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3
* ACS: * interference factor average: 0.232244
* ACS: Survey analysis for channel 6 (2437 MHz)
* ACS: 1: min_nf=-113 interference_factor=0.552795 nf=-113 time=161 busy=0 rx=89
* ACS: 2: min_nf=-113 interference_factor=0.0807453 nf=-112 time=161 busy=0 rx=13
* ACS: 3: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5
* ACS: 4: min_nf=-113 interference_factor=0.434783 nf=-112 time=161 busy=0 rx=70
* ACS: 5: min_nf=-113 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10
* ACS: * interference factor average: 0.232298
* ACS: Survey analysis for channel 7 (2442 MHz)
* ACS: 1: min_nf=-113 interference_factor=0.440994 nf=-112 time=161 busy=0 rx=71
* ACS: 2: min_nf=-113 interference_factor=0.385093 nf=-113 time=161 busy=0 rx=62
* ACS: 3: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
* ACS: 4: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
* ACS: 5: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12
* ACS: * interference factor average: 0.195031
* ACS: Survey analysis for channel 8 (2447 MHz)
* ACS: 1: min_nf=-114 interference_factor=0.0496894 nf=-112 time=161 busy=0 rx=8
* ACS: 2: min_nf=-114 interference_factor=0.0496894 nf=-114 time=161 busy=0 rx=8
* ACS: 3: min_nf=-114 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6
* ACS: 4: min_nf=-114 interference_factor=0.12963 nf=-113 time=162 busy=0 rx=21
* ACS: 5: min_nf=-114 interference_factor=0.166667 nf=-114 time=162 busy=0 rx=27
* ACS: * interference factor average: 0.0865885
* ACS: Survey analysis for channel 9 (2452 MHz)
* ACS: 1: min_nf=-114 interference_factor=0.0124224 nf=-114 time=161 busy=0 rx=2
* ACS: 2: min_nf=-114 interference_factor=0.0310559 nf=-114 time=161 busy=0 rx=5
* ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
* ACS: 4: min_nf=-114 interference_factor=0.00617284 nf=-114 time=162 busy=0 rx=1
* ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
* ACS: * interference factor average: 0.00993022
* ACS: Survey analysis for channel 10 (2457 MHz)
* ACS: 1: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
* ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
* ACS: 3: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
* ACS: 4: min_nf=-114 interference_factor=0.0493827 nf=-114 time=162 busy=0 rx=8
* ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
* ACS: * interference factor average: 0.0136033
* ACS: Survey analysis for channel 11 (2462 MHz)
* ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0
* ACS: 2: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0
* ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0
* ACS: 4: min_nf=-114 interference_factor=0.0432099 nf=-114 time=162 busy=0 rx=7
* ACS: 5: min_nf=-114 interference_factor=0.0925926 nf=-114 time=162 busy=0 rx=15
* ACS: * interference factor average: 0.0271605
* ACS: Survey analysis for channel 12 (2467 MHz)
* ACS: 1: min_nf=-114 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10
* ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1
* ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
* ACS: 4: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0
* ACS: 5: min_nf=-114 interference_factor=0.00617284 nf=-113 time=162 busy=0 rx=1
* ACS: * interference factor average: 0.0148992
* ACS: Survey analysis for channel 13 (2472 MHz)
* ACS: 1: min_nf=-114 interference_factor=0.0745342 nf=-114 time=161 busy=0 rx=12
* ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9
* ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
* ACS: 4: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
* ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0
* ACS: * interference factor average: 0.0260179
* ACS: Survey analysis for selected bandwidth 20MHz
* ACS: * channel 1: total interference = 0.121432
* ACS: * channel 2: total interference = 0.137512
* ACS: * channel 3: total interference = 0.369757
* ACS: * channel 4: total interference = 0.546338
* ACS: * channel 5: total interference = 0.690538
* ACS: * channel 6: total interference = 0.762242
* ACS: * channel 7: total interference = 0.756092
* ACS: * channel 8: total interference = 0.537451
* ACS: * channel 9: total interference = 0.332313
* ACS: * channel 10: total interference = 0.152182
* ACS: * channel 11: total interference = 0.0916111
* ACS: * channel 12: total interference = 0.0816809
* ACS: * channel 13: total interference = 0.0680776
* ACS: Ideal channel is 13 (2472 MHz) with total interference factor of 0.0680776
*
* [1] http://en.wikipedia.org/wiki/Near_and_far_field
*/
enum bw_type {
ACS_BW40,
ACS_BW80,
ACS_BW160,
};
struct bw_item {
int first;
int last;
int center_chan;
};
static const struct bw_item bw_40[] = {
{ 5180, 5200, 38 }, { 5220, 5240, 46 }, { 5260, 5280, 54 },
{ 5300, 5320, 62 }, { 5500, 5520, 102 }, { 5540, 5560, 110 },
{ 5580, 5600, 110 }, { 5620, 5640, 126}, { 5660, 5680, 134 },
{ 5700, 5720, 142 }, { 5745, 5765, 151 }, { 5785, 5805, 159 },
{ 5825, 5845, 167 }, { 5865, 5885, 175 },
{ 5955, 5975, 3 }, { 5995, 6015, 11 }, { 6035, 6055, 19 },
{ 6075, 6095, 27 }, { 6115, 6135, 35 }, { 6155, 6175, 43 },
{ 6195, 6215, 51 }, { 6235, 6255, 59 }, { 6275, 6295, 67 },
{ 6315, 6335, 75 }, { 6355, 6375, 83 }, { 6395, 6415, 91 },
{ 6435, 6455, 99 }, { 6475, 6495, 107 }, { 6515, 6535, 115 },
{ 6555, 6575, 123 }, { 6595, 6615, 131 }, { 6635, 6655, 139 },
{ 6675, 6695, 147 }, { 6715, 6735, 155 }, { 6755, 6775, 163 },
{ 6795, 6815, 171 }, { 6835, 6855, 179 }, { 6875, 6895, 187 },
{ 6915, 6935, 195 }, { 6955, 6975, 203 }, { 6995, 7015, 211 },
{ 7035, 7055, 219 }, { 7075, 7095, 227}, { -1, -1, -1 }
};
static const struct bw_item bw_80[] = {
{ 5180, 5240, 42 }, { 5260, 5320, 58 }, { 5500, 5560, 106 },
{ 5580, 5640, 122 }, { 5660, 5720, 138 }, { 5745, 5805, 155 },
{ 5825, 5885, 171},
{ 5955, 6015, 7 }, { 6035, 6095, 23 }, { 6115, 6175, 39 },
{ 6195, 6255, 55 }, { 6275, 6335, 71 }, { 6355, 6415, 87 },
{ 6435, 6495, 103 }, { 6515, 6575, 119 }, { 6595, 6655, 135 },
{ 6675, 6735, 151 }, { 6755, 6815, 167 }, { 6835, 6895, 183 },
{ 6915, 6975, 199 }, { 6995, 7055, 215 }, { -1, -1, -1 }
};
static const struct bw_item bw_160[] = {
{ 5180, 5320, 50 }, { 5500, 5640, 114 }, { 5745, 5885, 163 },
{ 5955, 6095, 15 }, { 6115, 6255, 47 }, { 6275, 6415, 79 },
{ 6435, 6575, 111 }, { 6595, 6735, 143 },
{ 6755, 6895, 175 }, { 6915, 7055, 207 }, { -1, -1, -1 }
};
static const struct bw_item *bw_desc[] = {
[ACS_BW40] = bw_40,
[ACS_BW80] = bw_80,
[ACS_BW160] = bw_160,
};
static int acs_request_scan(struct hostapd_iface *iface);
static int acs_survey_is_sufficient(struct freq_survey *survey);
static void acs_clean_chan_surveys(struct hostapd_channel_data *chan)
{
struct freq_survey *survey, *tmp;
if (dl_list_empty(&chan->survey_list))
return;
dl_list_for_each_safe(survey, tmp, &chan->survey_list,
struct freq_survey, list) {
dl_list_del(&survey->list);
os_free(survey);
}
}
static void acs_cleanup_mode(struct hostapd_hw_modes *mode)
{
int i;
struct hostapd_channel_data *chan;
for (i = 0; i < mode->num_channels; i++) {
chan = &mode->channels[i];
if (chan->flag & HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED)
acs_clean_chan_surveys(chan);
dl_list_init(&chan->survey_list);
chan->flag |= HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED;
chan->min_nf = 0;
chan->punct_bitmap = 0;
}
}
void acs_cleanup(struct hostapd_iface *iface)
{
int i;
for (i = 0; i < iface->num_hw_features; i++)
acs_cleanup_mode(&iface->hw_features[i]);
iface->chans_surveyed = 0;
iface->acs_num_completed_scans = 0;
}
static void acs_fail(struct hostapd_iface *iface)
{
wpa_printf(MSG_ERROR, "ACS: Failed to start");
acs_cleanup(iface);
hostapd_disable_iface(iface);
}
static long double
acs_survey_interference_factor(struct freq_survey *survey, s8 min_nf)
{
long double factor, busy, total;
if (survey->filled & SURVEY_HAS_CHAN_TIME_BUSY)
busy = survey->channel_time_busy;
else if (survey->filled & SURVEY_HAS_CHAN_TIME_RX)
busy = survey->channel_time_rx;
else {
wpa_printf(MSG_ERROR, "ACS: Survey data missing");
return 0;
}
total = survey->channel_time;
if (survey->filled & SURVEY_HAS_CHAN_TIME_TX) {
busy -= survey->channel_time_tx;
total -= survey->channel_time_tx;
}
/* TODO: figure out the best multiplier for noise floor base */
factor = pow(10, survey->nf / 5.0L) +
(total ? (busy / total) : 0) *
pow(2, pow(10, (long double) survey->nf / 10.0L) -
pow(10, (long double) min_nf / 10.0L));
return factor;
}
static void
acs_survey_chan_interference_factor(struct hostapd_iface *iface,
struct hostapd_channel_data *chan)
{
struct freq_survey *survey;
unsigned int i = 0;
long double int_factor = 0;
unsigned count = 0;
if (dl_list_empty(&chan->survey_list) ||
(chan->flag & HOSTAPD_CHAN_DISABLED))
return;
chan->interference_factor = 0;
dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list)
{
i++;
if (!acs_survey_is_sufficient(survey)) {
wpa_printf(MSG_DEBUG, "ACS: %d: insufficient data", i);
continue;
}
count++;
int_factor = acs_survey_interference_factor(survey,
iface->lowest_nf);
chan->interference_factor += int_factor;
wpa_printf(MSG_DEBUG, "ACS: %d: min_nf=%d interference_factor=%Lg nf=%d time=%lu busy=%lu rx=%lu",
i, chan->min_nf, int_factor,
survey->nf, (unsigned long) survey->channel_time,
(unsigned long) survey->channel_time_busy,
(unsigned long) survey->channel_time_rx);
}
if (count)
chan->interference_factor /= count;
}
static bool acs_usable_bw_chan(const struct hostapd_channel_data *chan,
enum bw_type bw)
{
unsigned int i = 0;
while (bw_desc[bw][i].first != -1) {
if (chan->freq == bw_desc[bw][i].first)
return true;
i++;
}
return false;
}
static int acs_get_bw_center_chan(int freq, enum bw_type bw)
{
unsigned int i = 0;
while (bw_desc[bw][i].first != -1) {
if (freq >= bw_desc[bw][i].first &&
freq <= bw_desc[bw][i].last)
return bw_desc[bw][i].center_chan;
i++;
}
return 0;
}
static int acs_survey_is_sufficient(struct freq_survey *survey)
{
if (!(survey->filled & SURVEY_HAS_NF)) {
wpa_printf(MSG_INFO,
"ACS: Survey for freq %d is missing noise floor",
survey->freq);
return 0;
}
if (!(survey->filled & SURVEY_HAS_CHAN_TIME)) {
wpa_printf(MSG_INFO,
"ACS: Survey for freq %d is missing channel time",
survey->freq);
return 0;
}
if (!(survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) &&
!(survey->filled & SURVEY_HAS_CHAN_TIME_RX)) {
wpa_printf(MSG_INFO,
"ACS: Survey for freq %d is missing RX and busy time (at least one is required)",
survey->freq);
return 0;
}
return 1;
}
static int acs_survey_list_is_sufficient(struct hostapd_channel_data *chan)
{
struct freq_survey *survey;
int ret = -1;
dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list)
{
if (acs_survey_is_sufficient(survey)) {
ret = 1;
break;
}
ret = 0;
}
if (ret == -1)
ret = 1; /* no survey list entries */
if (!ret) {
wpa_printf(MSG_INFO,
"ACS: Channel %d has insufficient survey data",
chan->chan);
}
return ret;
}
static int acs_surveys_are_sufficient_mode(struct hostapd_hw_modes *mode)
{
int i;
struct hostapd_channel_data *chan;
for (i = 0; i < mode->num_channels; i++) {
chan = &mode->channels[i];
if (!(chan->flag & HOSTAPD_CHAN_DISABLED) &&
acs_survey_list_is_sufficient(chan))
return 1;
}
return 0;
}
static int acs_surveys_are_sufficient(struct hostapd_iface *iface)
{
int i;
struct hostapd_hw_modes *mode;
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode) &&
acs_surveys_are_sufficient_mode(mode))
return 1;
}
return 0;
}
static int acs_usable_chan(struct hostapd_channel_data *chan)
{
return !dl_list_empty(&chan->survey_list) &&
!(chan->flag & HOSTAPD_CHAN_DISABLED) &&
acs_survey_list_is_sufficient(chan);
}
static int is_in_chanlist(struct hostapd_iface *iface,
struct hostapd_channel_data *chan)
{
if (!iface->conf->acs_ch_list.num)
return 1;
return freq_range_list_includes(&iface->conf->acs_ch_list, chan->chan);
}
static int is_in_freqlist(struct hostapd_iface *iface,
struct hostapd_channel_data *chan)
{
if (!iface->conf->acs_freq_list.num)
return 1;
return freq_range_list_includes(&iface->conf->acs_freq_list,
chan->freq);
}
static void acs_survey_mode_interference_factor(
struct hostapd_iface *iface, struct hostapd_hw_modes *mode)
{
int i;
struct hostapd_channel_data *chan;
for (i = 0; i < mode->num_channels; i++) {
chan = &mode->channels[i];
if (!acs_usable_chan(chan))
continue;
if ((chan->flag & HOSTAPD_CHAN_RADAR) &&
iface->conf->acs_exclude_dfs)
continue;
if (!is_in_chanlist(iface, chan))
continue;
if (!is_in_freqlist(iface, chan))
continue;
if (chan->max_tx_power < iface->conf->min_tx_power)
continue;
if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) &&
iface->conf->country[2] == 0x4f)
continue;
wpa_printf(MSG_DEBUG, "ACS: Survey analysis for channel %d (%d MHz)",
chan->chan, chan->freq);
acs_survey_chan_interference_factor(iface, chan);
wpa_printf(MSG_DEBUG, "ACS: * interference factor average: %Lg",
chan->interference_factor);
}
}
static void acs_survey_all_chans_interference_factor(
struct hostapd_iface *iface)
{
int i;
struct hostapd_hw_modes *mode;
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode))
acs_survey_mode_interference_factor(iface, mode);
}
}
static struct hostapd_channel_data *
acs_find_chan_mode(struct hostapd_hw_modes *mode, int freq)
{
struct hostapd_channel_data *chan;
int i;
for (i = 0; i < mode->num_channels; i++) {
chan = &mode->channels[i];
if (chan->flag & HOSTAPD_CHAN_DISABLED)
continue;
if (chan->freq == freq)
return chan;
}
return NULL;
}
static enum hostapd_hw_mode
acs_find_mode(struct hostapd_iface *iface, int freq)
{
int i;
struct hostapd_hw_modes *mode;
struct hostapd_channel_data *chan;
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode)) {
chan = acs_find_chan_mode(mode, freq);
if (chan)
return mode->mode;
}
}
return HOSTAPD_MODE_IEEE80211ANY;
}
static struct hostapd_channel_data *
acs_find_chan(struct hostapd_iface *iface, int freq)
{
int i;
struct hostapd_hw_modes *mode;
struct hostapd_channel_data *chan;
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode)) {
chan = acs_find_chan_mode(mode, freq);
if (chan)
return chan;
}
}
return NULL;
}
static int is_24ghz_mode(enum hostapd_hw_mode mode)
{
return mode == HOSTAPD_MODE_IEEE80211B ||
mode == HOSTAPD_MODE_IEEE80211G;
}
static int is_common_24ghz_chan(int chan)
{
return chan == 1 || chan == 6 || chan == 11;
}
#ifndef ACS_ADJ_WEIGHT
#define ACS_ADJ_WEIGHT 0.85
#endif /* ACS_ADJ_WEIGHT */
#ifndef ACS_NEXT_ADJ_WEIGHT
#define ACS_NEXT_ADJ_WEIGHT 0.55
#endif /* ACS_NEXT_ADJ_WEIGHT */
#ifndef ACS_24GHZ_PREFER_1_6_11
/*
* Select commonly used channels 1, 6, 11 by default even if a neighboring
* channel has a smaller interference factor as long as it is not better by more
* than this multiplier.
*/
#define ACS_24GHZ_PREFER_1_6_11 0.8
#endif /* ACS_24GHZ_PREFER_1_6_11 */
#ifdef CONFIG_IEEE80211BE
static void acs_update_puncturing_bitmap(struct hostapd_iface *iface,
struct hostapd_hw_modes *mode, u32 bw,
int n_chans,
struct hostapd_channel_data *chan,
long double factor,
int index_primary)
{
struct hostapd_config *conf = iface->conf;
struct hostapd_channel_data *adj_chan = NULL, *first_chan = chan;
int i;
long double threshold;
/*
* If threshold is 0 or user configured puncturing pattern is
* available then don't add additional puncturing.
*/
if (!conf->punct_acs_threshold || conf->punct_bitmap)
return;
if (is_24ghz_mode(mode->mode) || bw < 80)
return;
threshold = factor * conf->punct_acs_threshold / 100;
for (i = 0; i < n_chans; i++) {
int adj_freq;
if (i == index_primary)
continue; /* Cannot puncture primary channel */
if (i > index_primary)
adj_freq = chan->freq + (i - index_primary) * 20;
else
adj_freq = chan->freq - (index_primary - i) * 20;
adj_chan = acs_find_chan(iface, adj_freq);
if (!adj_chan) {
chan->punct_bitmap = 0;
return;
}
if (i == 0)
first_chan = adj_chan;
if (adj_chan->interference_factor > threshold)
chan->punct_bitmap |= BIT(i);
}
if (!is_punct_bitmap_valid(bw, (chan->freq - first_chan->freq) / 20,
chan->punct_bitmap))
chan->punct_bitmap = 0;
}
#endif /* CONFIG_IEEE80211BE */
static void
acs_find_ideal_chan_mode(struct hostapd_iface *iface,
struct hostapd_hw_modes *mode,
int n_chans, u32 bw,
struct hostapd_channel_data **rand_chan,
struct hostapd_channel_data **ideal_chan,
long double *ideal_factor)
{
struct hostapd_channel_data *chan, *adj_chan = NULL, *best;
long double factor;
int i, j;
unsigned int k;
for (i = 0; i < mode->num_channels; i++) {
double total_weight;
struct acs_bias *bias, tmp_bias;
bool update_best = true;
best = chan = &mode->channels[i];
/* Since in the current ACS implementation the first channel is
* always a primary channel, skip channels not available as
* primary until more sophisticated channel selection is
* implemented.
*
* If this implementation is changed to allow any channel in
* the bandwidth to be the primary one, the last parameter to
* acs_update_puncturing_bitmap() should be changed to the index
* of the primary channel
*/
if (!chan_pri_allowed(chan))
continue;
if ((chan->flag & HOSTAPD_CHAN_RADAR) &&
iface->conf->acs_exclude_dfs)
continue;
if (!is_in_chanlist(iface, chan))
continue;
if (!is_in_freqlist(iface, chan))
continue;
if (chan->max_tx_power < iface->conf->min_tx_power)
continue;
if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) &&
iface->conf->country[2] == 0x4f)
continue;
if (!chan_bw_allowed(chan, bw, 1, 1)) {
wpa_printf(MSG_DEBUG,
"ACS: Channel %d: BW %u is not supported",
chan->chan, bw);
continue;
}
/* HT40 on 5 GHz has a limited set of primary channels as per
* 11n Annex J */
if (mode->mode == HOSTAPD_MODE_IEEE80211A &&
((iface->conf->ieee80211n &&
iface->conf->secondary_channel) ||
is_6ghz_freq(chan->freq)) &&
!acs_usable_bw_chan(chan, ACS_BW40)) {
wpa_printf(MSG_DEBUG,
"ACS: Channel %d: not allowed as primary channel for 40 MHz bandwidth",
chan->chan);
continue;
}
if (mode->mode == HOSTAPD_MODE_IEEE80211A &&
(iface->conf->ieee80211ac || iface->conf->ieee80211ax)) {
if (hostapd_get_oper_chwidth(iface->conf) ==
CONF_OPER_CHWIDTH_80MHZ &&
!acs_usable_bw_chan(chan, ACS_BW80)) {
wpa_printf(MSG_DEBUG,
"ACS: Channel %d: not allowed as primary channel for 80 MHz bandwidth",
chan->chan);
continue;
}
if (hostapd_get_oper_chwidth(iface->conf) ==
CONF_OPER_CHWIDTH_160MHZ &&
!acs_usable_bw_chan(chan, ACS_BW160)) {
wpa_printf(MSG_DEBUG,
"ACS: Channel %d: not allowed as primary channel for 160 MHz bandwidth",
chan->chan);
continue;
}
}
factor = 0;
if (acs_usable_chan(chan))
factor = chan->interference_factor;
total_weight = 1;
for (j = 1; j < n_chans; j++) {
adj_chan = acs_find_chan(iface, chan->freq + (j * 20));
if (!adj_chan)
break;
if (!chan_bw_allowed(adj_chan, bw, 1, 0)) {
wpa_printf(MSG_DEBUG,
"ACS: PRI Channel %d: secondary channel %d BW %u is not supported",
chan->chan, adj_chan->chan, bw);
break;
}
if (acs_usable_chan(adj_chan)) {
factor += adj_chan->interference_factor;
total_weight += 1;
} else {
update_best = false;
}
/* find the best channel in this segment */
if (update_best &&
adj_chan->interference_factor <
best->interference_factor)
best = adj_chan;
}
if (j != n_chans) {
wpa_printf(MSG_DEBUG, "ACS: Channel %d: not enough bandwidth",
chan->chan);
continue;
}
/* If the AP is in the 5 GHz or 6 GHz band, lets prefer a less
* crowded primary channel if one was found in the segment */
if (iface->current_mode->mode == HOSTAPD_MODE_IEEE80211A &&
chan != best) {
wpa_printf(MSG_DEBUG,
"ACS: promoting channel %d over %d (less interference %Lg/%Lg)",
best->chan, chan->chan,
chan->interference_factor,
best->interference_factor);
chan = best;
}
/* 2.4 GHz has overlapping 20 MHz channels. Include adjacent
* channel interference factor. */
if (is_24ghz_mode(mode->mode)) {
for (j = 0; j < n_chans; j++) {
adj_chan = acs_find_chan(iface, chan->freq +
(j * 20) - 5);
if (adj_chan && acs_usable_chan(adj_chan)) {
factor += ACS_ADJ_WEIGHT *
adj_chan->interference_factor;
total_weight += ACS_ADJ_WEIGHT;
}
adj_chan = acs_find_chan(iface, chan->freq +
(j * 20) - 10);
if (adj_chan && acs_usable_chan(adj_chan)) {
factor += ACS_NEXT_ADJ_WEIGHT *
adj_chan->interference_factor;
total_weight += ACS_NEXT_ADJ_WEIGHT;
}
adj_chan = acs_find_chan(iface, chan->freq +
(j * 20) + 5);
if (adj_chan && acs_usable_chan(adj_chan)) {
factor += ACS_ADJ_WEIGHT *
adj_chan->interference_factor;
total_weight += ACS_ADJ_WEIGHT;
}
adj_chan = acs_find_chan(iface, chan->freq +
(j * 20) + 10);
if (adj_chan && acs_usable_chan(adj_chan)) {
factor += ACS_NEXT_ADJ_WEIGHT *
adj_chan->interference_factor;
total_weight += ACS_NEXT_ADJ_WEIGHT;
}
}
}
factor /= total_weight;
bias = NULL;
if (iface->conf->acs_chan_bias) {
for (k = 0; k < iface->conf->num_acs_chan_bias; k++) {
bias = &iface->conf->acs_chan_bias[k];
if (bias->channel == chan->chan)
break;
bias = NULL;
}
} else if (is_24ghz_mode(mode->mode) &&
is_common_24ghz_chan(chan->chan)) {
tmp_bias.channel = chan->chan;
tmp_bias.bias = ACS_24GHZ_PREFER_1_6_11;
bias = &tmp_bias;
}
if (bias) {
factor *= bias->bias;
wpa_printf(MSG_DEBUG,
"ACS: * channel %d: total interference = %Lg (%f bias)",
chan->chan, factor, bias->bias);
} else {
wpa_printf(MSG_DEBUG,
"ACS: * channel %d: total interference = %Lg",
chan->chan, factor);
}
if (acs_usable_chan(chan) &&
(!*ideal_chan || factor < *ideal_factor)) {
/* Reset puncturing bitmap for the previous ideal
* channel */
if (*ideal_chan)
(*ideal_chan)->punct_bitmap = 0;
*ideal_factor = factor;
*ideal_chan = chan;
#ifdef CONFIG_IEEE80211BE
if (iface->conf->ieee80211be)
acs_update_puncturing_bitmap(iface, mode, bw,
n_chans, chan,
factor, 0);
#endif /* CONFIG_IEEE80211BE */
}
/* This channel would at least be usable */
if (!(*rand_chan))
*rand_chan = chan;
}
}
/*
* At this point it's assumed chan->interference_factor has been computed.
* This function should be reusable regardless of interference computation
* option (survey, BSS, spectral, ...). chan->interference factor must be
* summable (i.e., must be always greater than zero).
*/
static struct hostapd_channel_data *
acs_find_ideal_chan(struct hostapd_iface *iface)
{
struct hostapd_channel_data *ideal_chan = NULL,
*rand_chan = NULL;
long double ideal_factor = 0;
int i;
int n_chans = 1;
u32 bw;
struct hostapd_hw_modes *mode;
if (is_6ghz_op_class(iface->conf->op_class)) {
bw = op_class_to_bandwidth(iface->conf->op_class);
n_chans = bw / 20;
goto bw_selected;
}
/* TODO: HT40- support */
if (iface->conf->ieee80211n &&
iface->conf->secondary_channel == -1) {
wpa_printf(MSG_ERROR, "ACS: HT40- is not supported yet. Please try HT40+");
return NULL;
}
if (iface->conf->ieee80211n &&
iface->conf->secondary_channel)
n_chans = 2;
if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) {
switch (hostapd_get_oper_chwidth(iface->conf)) {
case CONF_OPER_CHWIDTH_80MHZ:
n_chans = 4;
break;
case CONF_OPER_CHWIDTH_160MHZ:
n_chans = 8;
break;
default:
break;
}
}
bw = num_chan_to_bw(n_chans);
bw_selected:
/* TODO: VHT/HE80+80. Update acs_adjust_center_freq() too. */
wpa_printf(MSG_DEBUG,
"ACS: Survey analysis for selected bandwidth %d MHz", bw);
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode))
acs_find_ideal_chan_mode(iface, mode, n_chans, bw,
&rand_chan, &ideal_chan,
&ideal_factor);
}
if (ideal_chan) {
wpa_printf(MSG_DEBUG, "ACS: Ideal channel is %d (%d MHz) with total interference factor of %Lg",
ideal_chan->chan, ideal_chan->freq, ideal_factor);
#ifdef CONFIG_IEEE80211BE
if (iface->conf->punct_acs_threshold)
wpa_printf(MSG_DEBUG, "ACS: RU puncturing bitmap 0x%x",
ideal_chan->punct_bitmap);
#endif /* CONFIG_IEEE80211BE */
return ideal_chan;
}
#ifdef CONFIG_IEEE80211BE
if (iface->conf->punct_acs_threshold)
wpa_printf(MSG_DEBUG, "ACS: RU puncturing bitmap 0x%x",
ideal_chan->punct_bitmap);
#endif /* CONFIG_IEEE80211BE */
return rand_chan;
}
static void acs_adjust_secondary(struct hostapd_iface *iface)
{
unsigned int i;
/* When working with bandwidth over 20 MHz on the 5 GHz or 6 GHz band,
* ACS can return a secondary channel which is not the first channel of
* the segment and we need to adjust. */
if (!iface->conf->secondary_channel ||
acs_find_mode(iface, iface->freq) != HOSTAPD_MODE_IEEE80211A)
return;
wpa_printf(MSG_DEBUG, "ACS: Adjusting HT/VHT/HE secondary frequency");
for (i = 0; bw_desc[ACS_BW40][i].first != -1; i++) {
if (iface->freq == bw_desc[ACS_BW40][i].first)
iface->conf->secondary_channel = 1;
else if (iface->freq == bw_desc[ACS_BW40][i].last)
iface->conf->secondary_channel = -1;
}
}
static void acs_adjust_center_freq(struct hostapd_iface *iface)
{
int center;
wpa_printf(MSG_DEBUG, "ACS: Adjusting VHT center frequency");
switch (hostapd_get_oper_chwidth(iface->conf)) {
case CONF_OPER_CHWIDTH_USE_HT:
if (iface->conf->secondary_channel &&
iface->freq >= 2400 && iface->freq < 2500)
center = iface->conf->channel +
2 * iface->conf->secondary_channel;
else if (iface->conf->secondary_channel)
center = acs_get_bw_center_chan(iface->freq, ACS_BW40);
else
center = iface->conf->channel;
break;
case CONF_OPER_CHWIDTH_80MHZ:
center = acs_get_bw_center_chan(iface->freq, ACS_BW80);
break;
case CONF_OPER_CHWIDTH_160MHZ:
center = acs_get_bw_center_chan(iface->freq, ACS_BW160);
break;
default:
/* TODO: How can this be calculated? Adjust
* acs_find_ideal_chan() */
wpa_printf(MSG_INFO,
"ACS: Only VHT20/40/80/160 is supported now");
return;
}
hostapd_set_oper_centr_freq_seg0_idx(iface->conf, center);
}
static int acs_study_survey_based(struct hostapd_iface *iface)
{
wpa_printf(MSG_DEBUG, "ACS: Trying survey-based ACS");
if (!iface->chans_surveyed) {
wpa_printf(MSG_ERROR, "ACS: Unable to collect survey data");
return -1;
}
if (!acs_surveys_are_sufficient(iface)) {
wpa_printf(MSG_ERROR, "ACS: Surveys have insufficient data");
return -1;
}
acs_survey_all_chans_interference_factor(iface);
return 0;
}
static int acs_study_options(struct hostapd_iface *iface)
{
if (acs_study_survey_based(iface) == 0)
return 0;
/* TODO: If no surveys are available/sufficient this is a good
* place to fallback to BSS-based ACS */
return -1;
}
static void acs_study(struct hostapd_iface *iface)
{
struct hostapd_channel_data *ideal_chan;
int err;
err = acs_study_options(iface);
if (err < 0) {
wpa_printf(MSG_ERROR, "ACS: All study options have failed");
goto fail;
}
ideal_chan = acs_find_ideal_chan(iface);
if (!ideal_chan) {
wpa_printf(MSG_ERROR, "ACS: Failed to compute ideal channel");
err = -1;
goto fail;
}
iface->conf->channel = ideal_chan->chan;
iface->freq = ideal_chan->freq;
#ifdef CONFIG_IEEE80211BE
iface->conf->punct_bitmap = ideal_chan->punct_bitmap;
#endif /* CONFIG_IEEE80211BE */
if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) {
acs_adjust_secondary(iface);
acs_adjust_center_freq(iface);
}
err = hostapd_select_hw_mode(iface);
if (err) {
wpa_printf(MSG_ERROR,
"ACS: Could not (err: %d) select hw_mode for freq=%d channel=%d",
err, iface->freq, iface->conf->channel);
err = -1;
goto fail;
}
err = 0;
fail:
/*
* hostapd_setup_interface_complete() will return -1 on failure,
* 0 on success and 0 is HOSTAPD_CHAN_VALID :)
*/
if (hostapd_acs_completed(iface, err) == HOSTAPD_CHAN_VALID) {
acs_cleanup(iface);
return;
}
/* This can possibly happen if channel parameters (secondary
* channel, center frequencies) are misconfigured */
wpa_printf(MSG_ERROR, "ACS: Possibly channel configuration is invalid, please report this along with your config file.");
acs_fail(iface);
}
static void acs_scan_complete(struct hostapd_iface *iface)
{
int err;
iface->scan_cb = NULL;
wpa_printf(MSG_DEBUG, "ACS: Using survey based algorithm (acs_num_scans=%d)",
iface->conf->acs_num_scans);
err = hostapd_drv_get_survey(iface->bss[0], 0);
if (err) {
wpa_printf(MSG_ERROR, "ACS: Failed to get survey data");
goto fail;
}
if (++iface->acs_num_completed_scans < iface->conf->acs_num_scans) {
err = acs_request_scan(iface);
if (err) {
wpa_printf(MSG_ERROR, "ACS: Failed to request scan");
goto fail;
}
return;
}
acs_study(iface);
return;
fail:
hostapd_acs_completed(iface, 1);
acs_fail(iface);
}
static int * acs_request_scan_add_freqs(struct hostapd_iface *iface,
struct hostapd_hw_modes *mode,
int *freq)
{
struct hostapd_channel_data *chan;
int i;
for (i = 0; i < mode->num_channels; i++) {
chan = &mode->channels[i];
if ((chan->flag & HOSTAPD_CHAN_DISABLED) ||
((chan->flag & HOSTAPD_CHAN_RADAR) &&
iface->conf->acs_exclude_dfs))
continue;
if (!is_in_chanlist(iface, chan))
continue;
if (!is_in_freqlist(iface, chan))
continue;
if (chan->max_tx_power < iface->conf->min_tx_power)
continue;
if ((chan->flag & HOSTAPD_CHAN_INDOOR_ONLY) &&
iface->conf->country[2] == 0x4f)
continue;
*freq++ = chan->freq;
}
return freq;
}
static int acs_request_scan(struct hostapd_iface *iface)
{
struct wpa_driver_scan_params params;
int i, *freq;
int num_channels;
struct hostapd_hw_modes *mode;
os_memset(&params, 0, sizeof(params));
num_channels = 0;
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode))
num_channels += mode->num_channels;
}
params.freqs = os_calloc(num_channels + 1, sizeof(params.freqs[0]));
if (params.freqs == NULL)
return -1;
freq = params.freqs;
for (i = 0; i < iface->num_hw_features; i++) {
mode = &iface->hw_features[i];
if (!hostapd_hw_skip_mode(iface, mode))
freq = acs_request_scan_add_freqs(iface, mode, freq);
}
*freq = 0;
if (params.freqs == freq) {
wpa_printf(MSG_ERROR, "ACS: No available channels found");
os_free(params.freqs);
return -1;
}
iface->scan_cb = acs_scan_complete;
wpa_printf(MSG_DEBUG, "ACS: Scanning %d / %d",
iface->acs_num_completed_scans + 1,
iface->conf->acs_num_scans);
if (hostapd_driver_scan(iface->bss[0], &params) < 0) {
wpa_printf(MSG_ERROR, "ACS: Failed to request initial scan");
acs_cleanup(iface);
os_free(params.freqs);
return -1;
}
os_free(params.freqs);
return 0;
}
enum hostapd_chan_status acs_init(struct hostapd_iface *iface)
{
wpa_printf(MSG_INFO, "ACS: Automatic channel selection started, this may take a bit");
if (iface->drv_flags & WPA_DRIVER_FLAGS_ACS_OFFLOAD) {
wpa_printf(MSG_INFO, "ACS: Offloading to driver");
if (hostapd_drv_do_acs(iface->bss[0]))
return HOSTAPD_CHAN_INVALID;
return HOSTAPD_CHAN_ACS;
}
if (!iface->current_mode &&
iface->conf->hw_mode != HOSTAPD_MODE_IEEE80211ANY)
return HOSTAPD_CHAN_INVALID;
acs_cleanup(iface);
if (acs_request_scan(iface) < 0)
return HOSTAPD_CHAN_INVALID;
hostapd_set_state(iface, HAPD_IFACE_ACS);
wpa_msg(iface->bss[0]->msg_ctx, MSG_INFO, ACS_EVENT_STARTED);
return HOSTAPD_CHAN_ACS;
}