blob: ff7dc1e27c578bc3dee100c64de1519f6bd57f9b [file] [log] [blame]
/*
* EAP peer state machines (RFC 4137)
* Copyright (c) 2004-2019, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*
* This file implements the Peer State Machine as defined in RFC 4137. The used
* states and state transitions match mostly with the RFC. However, there are
* couple of additional transitions for working around small issues noticed
* during testing. These exceptions are explained in comments within the
* functions in this file. The method functions, m.func(), are similar to the
* ones used in RFC 4137, but some small changes have used here to optimize
* operations and to add functionality needed for fast re-authentication
* (session resumption).
*/
#include "includes.h"
#include "common.h"
#include "pcsc_funcs.h"
#include "state_machine.h"
#include "ext_password.h"
#include "crypto/crypto.h"
#include "crypto/tls.h"
#include "crypto/sha256.h"
#include "common/wpa_ctrl.h"
#include "eap_common/eap_wsc_common.h"
#include "eap_i.h"
#include "eap_config.h"
#define STATE_MACHINE_DATA struct eap_sm
#define STATE_MACHINE_DEBUG_PREFIX "EAP"
#define EAP_MAX_AUTH_ROUNDS 100
#define EAP_MAX_AUTH_ROUNDS_SHORT 50
#define EAP_CLIENT_TIMEOUT_DEFAULT 60
static bool eap_sm_allowMethod(struct eap_sm *sm, int vendor,
enum eap_type method);
static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
static void eap_sm_processIdentity(struct eap_sm *sm,
const struct wpabuf *req);
static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
static struct wpabuf * eap_sm_buildNotify(int id);
static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
static const char * eap_sm_method_state_txt(EapMethodState state);
static const char * eap_sm_decision_txt(EapDecision decision);
#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
const char *msg, size_t msglen);
static bool eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
{
return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
}
static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
bool value)
{
sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
}
static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
{
return sm->eapol_cb->get_int(sm->eapol_ctx, var);
}
static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
unsigned int value)
{
sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
}
static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
{
return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
}
static void eap_notify_status(struct eap_sm *sm, const char *status,
const char *parameter)
{
wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
status, parameter);
if (sm->eapol_cb->notify_status)
sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
}
static void eap_report_error(struct eap_sm *sm, int error_code)
{
wpa_printf(MSG_DEBUG, "EAP: Error notification: %d", error_code);
if (sm->eapol_cb->notify_eap_error)
sm->eapol_cb->notify_eap_error(sm->eapol_ctx, error_code);
}
static void eap_sm_free_key(struct eap_sm *sm)
{
if (sm->eapKeyData) {
bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
sm->eapKeyData = NULL;
}
}
static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
{
ext_password_free(sm->ext_pw_buf);
sm->ext_pw_buf = NULL;
if (sm->m == NULL || sm->eap_method_priv == NULL)
return;
wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
"(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
sm->m->deinit(sm, sm->eap_method_priv);
sm->eap_method_priv = NULL;
sm->m = NULL;
}
/**
* eap_config_allowed_method - Check whether EAP method is allowed
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @config: EAP configuration
* @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
* @method: EAP type
* Returns: 1 = allowed EAP method, 0 = not allowed
*/
static int eap_config_allowed_method(struct eap_sm *sm,
struct eap_peer_config *config,
int vendor, u32 method)
{
int i;
struct eap_method_type *m;
if (config == NULL || config->eap_methods == NULL)
return 1;
m = config->eap_methods;
for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
m[i].method != EAP_TYPE_NONE; i++) {
if (m[i].vendor == vendor && m[i].method == method)
return 1;
}
return 0;
}
/**
* eap_allowed_method - Check whether EAP method is allowed
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
* @method: EAP type
* Returns: 1 = allowed EAP method, 0 = not allowed
*/
int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
{
return eap_config_allowed_method(sm, eap_get_config(sm), vendor,
method);
}
#if defined(PCSC_FUNCS) || defined(CONFIG_EAP_PROXY)
static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
size_t max_len, size_t *imsi_len,
int mnc_len)
{
char *pos, mnc[4];
if (*imsi_len + 36 > max_len) {
wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
return -1;
}
if (mnc_len != 2 && mnc_len != 3)
mnc_len = 3;
if (mnc_len == 2) {
mnc[0] = '0';
mnc[1] = imsi[3];
mnc[2] = imsi[4];
} else if (mnc_len == 3) {
mnc[0] = imsi[3];
mnc[1] = imsi[4];
mnc[2] = imsi[5];
}
mnc[3] = '\0';
pos = imsi + *imsi_len;
pos += os_snprintf(pos, imsi + max_len - pos,
"@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
mnc, imsi[0], imsi[1], imsi[2]);
*imsi_len = pos - imsi;
return 0;
}
#endif /* PCSC_FUNCS || CONFIG_EAP_PROXY */
/*
* This state initializes state machine variables when the machine is
* activated (portEnabled = true). This is also used when re-starting
* authentication (eapRestart == true).
*/
SM_STATE(EAP, INITIALIZE)
{
SM_ENTRY(EAP, INITIALIZE);
if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
!sm->prev_failure &&
sm->last_config == eap_get_config(sm)) {
wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
"fast reauthentication");
sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
} else {
sm->last_config = eap_get_config(sm);
eap_deinit_prev_method(sm, "INITIALIZE");
}
sm->selectedMethod = EAP_TYPE_NONE;
sm->methodState = METHOD_NONE;
sm->allowNotifications = true;
sm->decision = DECISION_FAIL;
sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
eapol_set_bool(sm, EAPOL_eapSuccess, false);
eapol_set_bool(sm, EAPOL_eapFail, false);
eap_sm_free_key(sm);
os_free(sm->eapSessionId);
sm->eapSessionId = NULL;
sm->eapKeyAvailable = false;
eapol_set_bool(sm, EAPOL_eapRestart, false);
sm->lastId = -1; /* new session - make sure this does not match with
* the first EAP-Packet */
/*
* RFC 4137 does not reset eapResp and eapNoResp here. However, this
* seemed to be able to trigger cases where both were set and if EAPOL
* state machine uses eapNoResp first, it may end up not sending a real
* reply correctly. This occurred when the workaround in FAIL state set
* eapNoResp = true.. Maybe that workaround needs to be fixed to do
* something else(?)
*/
eapol_set_bool(sm, EAPOL_eapResp, false);
eapol_set_bool(sm, EAPOL_eapNoResp, false);
/*
* RFC 4137 does not reset ignore here, but since it is possible for
* some method code paths to end up not setting ignore=false, clear the
* value here to avoid issues if a previous authentication attempt
* failed with ignore=true being left behind in the last
* m.check(eapReqData) operation.
*/
sm->ignore = 0;
sm->num_rounds = 0;
sm->num_rounds_short = 0;
sm->prev_failure = 0;
sm->expected_failure = 0;
sm->reauthInit = false;
sm->erp_seq = (u32) -1;
sm->use_machine_cred = 0;
sm->eap_fast_mschapv2 = false;
}
/*
* This state is reached whenever service from the lower layer is interrupted
* or unavailable (portEnabled == false). Immediate transition to INITIALIZE
* occurs when the port becomes enabled.
*/
SM_STATE(EAP, DISABLED)
{
SM_ENTRY(EAP, DISABLED);
sm->num_rounds = 0;
sm->num_rounds_short = 0;
/*
* RFC 4137 does not describe clearing of idleWhile here, but doing so
* allows the timer tick to be stopped more quickly when EAP is not in
* use.
*/
eapol_set_int(sm, EAPOL_idleWhile, 0);
}
/*
* The state machine spends most of its time here, waiting for something to
* happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
* SEND_RESPONSE states.
*/
SM_STATE(EAP, IDLE)
{
SM_ENTRY(EAP, IDLE);
}
/*
* This state is entered when an EAP packet is received (eapReq == true) to
* parse the packet header.
*/
SM_STATE(EAP, RECEIVED)
{
const struct wpabuf *eapReqData;
SM_ENTRY(EAP, RECEIVED);
eapReqData = eapol_get_eapReqData(sm);
/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
eap_sm_parseEapReq(sm, eapReqData);
sm->num_rounds++;
if (!eapReqData || wpabuf_len(eapReqData) < 20)
sm->num_rounds_short++;
else
sm->num_rounds_short = 0;
}
/*
* This state is entered when a request for a new type comes in. Either the
* correct method is started, or a Nak response is built.
*/
SM_STATE(EAP, GET_METHOD)
{
int reinit;
enum eap_type method;
const struct eap_method *eap_method;
SM_ENTRY(EAP, GET_METHOD);
if (sm->reqMethod == EAP_TYPE_EXPANDED)
method = sm->reqVendorMethod;
else
method = sm->reqMethod;
eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
sm->reqVendor, method);
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
"vendor=%u method=%u -> NAK",
sm->reqVendor, method);
eap_notify_status(sm, "refuse proposed method",
eap_method ? eap_method->name : "unknown");
goto nak;
}
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
"vendor=%u method=%u", sm->reqVendor, method);
eap_notify_status(sm, "accept proposed method",
eap_method ? eap_method->name : "unknown");
/*
* RFC 4137 does not define specific operation for fast
* re-authentication (session resumption). The design here is to allow
* the previously used method data to be maintained for
* re-authentication if the method support session resumption.
* Otherwise, the previously used method data is freed and a new method
* is allocated here.
*/
if (sm->fast_reauth &&
sm->m && sm->m->vendor == sm->reqVendor &&
sm->m->method == method &&
sm->m->has_reauth_data &&
sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
" for fast re-authentication");
reinit = 1;
} else {
eap_deinit_prev_method(sm, "GET_METHOD");
reinit = 0;
}
sm->selectedMethod = sm->reqMethod;
if (sm->m == NULL)
sm->m = eap_method;
if (!sm->m) {
wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
"vendor %d method %d",
sm->reqVendor, method);
goto nak;
}
sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
"vendor %u method %u (%s)",
sm->reqVendor, method, sm->m->name);
if (reinit) {
sm->eap_method_priv = sm->m->init_for_reauth(
sm, sm->eap_method_priv);
} else {
sm->waiting_ext_cert_check = 0;
sm->ext_cert_check = 0;
sm->eap_method_priv = sm->m->init(sm);
}
if (sm->eap_method_priv == NULL) {
struct eap_peer_config *config = eap_get_config(sm);
wpa_msg(sm->msg_ctx, MSG_INFO,
"EAP: Failed to initialize EAP method: vendor %u "
"method %u (%s)",
sm->reqVendor, method, sm->m->name);
sm->m = NULL;
sm->methodState = METHOD_NONE;
sm->selectedMethod = EAP_TYPE_NONE;
if (sm->reqMethod == EAP_TYPE_TLS && config &&
(config->pending_req_pin ||
config->pending_req_passphrase)) {
/*
* Return without generating Nak in order to allow
* entering of PIN code or passphrase to retry the
* current EAP packet.
*/
wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
"request - skip Nak");
return;
}
goto nak;
}
sm->methodState = METHOD_INIT;
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
"EAP vendor %u method %u (%s) selected",
sm->reqVendor, method, sm->m->name);
if (sm->eapol_cb->notify_eap_method_selected) {
char *format_str = "EAP vendor %u method %u (%s) selected";
int msg_len = snprintf(NULL, 0, format_str,
sm->reqVendor, method, sm->m->name) + 1;
char *msg = os_malloc(msg_len);
snprintf(msg, msg_len, format_str,
sm->reqVendor, method, sm->m->name);
sm->eapol_cb->notify_eap_method_selected(sm->eapol_ctx, msg);
os_free(msg);
}
return;
nak:
wpabuf_free(sm->eapRespData);
sm->eapRespData = NULL;
sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
}
#ifdef CONFIG_ERP
static char * eap_get_realm(struct eap_sm *sm, struct eap_peer_config *config)
{
char *realm;
size_t i, realm_len;
if (!config)
return NULL;
if (config->identity) {
for (i = 0; i < config->identity_len; i++) {
if (config->identity[i] == '@')
break;
}
if (i < config->identity_len) {
realm_len = config->identity_len - i - 1;
realm = os_malloc(realm_len + 1);
if (realm == NULL)
return NULL;
os_memcpy(realm, &config->identity[i + 1], realm_len);
realm[realm_len] = '\0';
return realm;
}
}
if (config->anonymous_identity) {
for (i = 0; i < config->anonymous_identity_len; i++) {
if (config->anonymous_identity[i] == '@')
break;
}
if (i < config->anonymous_identity_len) {
realm_len = config->anonymous_identity_len - i - 1;
realm = os_malloc(realm_len + 1);
if (realm == NULL)
return NULL;
os_memcpy(realm, &config->anonymous_identity[i + 1],
realm_len);
realm[realm_len] = '\0';
return realm;
}
}
#ifdef CONFIG_EAP_PROXY
/* When identity is not provided in the config, build the realm from
* IMSI for eap_proxy based methods.
*/
if (!config->identity && !config->anonymous_identity &&
sm->eapol_cb->get_imsi &&
(eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
EAP_TYPE_SIM) ||
eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
EAP_TYPE_AKA) ||
eap_config_allowed_method(sm, config, EAP_VENDOR_IETF,
EAP_TYPE_AKA_PRIME))) {
char imsi[100];
size_t imsi_len;
int mnc_len, pos;
wpa_printf(MSG_DEBUG, "EAP: Build realm from IMSI (eap_proxy)");
mnc_len = sm->eapol_cb->get_imsi(sm->eapol_ctx, config->sim_num,
imsi, &imsi_len);
if (mnc_len < 0)
return NULL;
pos = imsi_len + 1; /* points to the beginning of the realm */
if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
mnc_len) < 0) {
wpa_printf(MSG_WARNING, "Could not append realm");
return NULL;
}
realm = os_strdup(&imsi[pos]);
if (!realm)
return NULL;
wpa_printf(MSG_DEBUG, "EAP: Generated realm '%s'", realm);
return realm;
}
#endif /* CONFIG_EAP_PROXY */
return NULL;
}
static char * eap_home_realm(struct eap_sm *sm)
{
return eap_get_realm(sm, eap_get_config(sm));
}
static struct eap_erp_key *
eap_erp_get_key(struct eap_sm *sm, const char *realm)
{
struct eap_erp_key *erp;
dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
char *pos;
pos = os_strchr(erp->keyname_nai, '@');
if (!pos)
continue;
pos++;
if (os_strcmp(pos, realm) == 0)
return erp;
}
return NULL;
}
static struct eap_erp_key *
eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
{
struct eap_erp_key *erp;
dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
if (os_strcmp(erp->keyname_nai, nai) == 0)
return erp;
}
return NULL;
}
static void eap_peer_erp_free_key(struct eap_erp_key *erp)
{
dl_list_del(&erp->list);
bin_clear_free(erp, sizeof(*erp));
}
static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
{
struct eap_erp_key *erp;
while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
erp->keyname_nai);
eap_peer_erp_free_key(erp);
}
}
int eap_peer_update_erp_next_seq_num(struct eap_sm *sm, u16 next_seq_num)
{
struct eap_erp_key *erp;
char *home_realm;
home_realm = eap_home_realm(sm);
if (!home_realm || os_strlen(home_realm) == 0) {
os_free(home_realm);
return -1;
}
erp = eap_erp_get_key(sm, home_realm);
if (!erp) {
wpa_printf(MSG_DEBUG,
"EAP: Failed to find ERP key for realm: %s",
home_realm);
os_free(home_realm);
return -1;
}
if ((u32) next_seq_num < erp->next_seq) {
/* Sequence number has wrapped around, clear this ERP
* info and do a full auth next time.
*/
eap_peer_erp_free_key(erp);
} else {
erp->next_seq = (u32) next_seq_num;
}
os_free(home_realm);
return 0;
}
int eap_peer_get_erp_info(struct eap_sm *sm, struct eap_peer_config *config,
const u8 **username, size_t *username_len,
const u8 **realm, size_t *realm_len,
u16 *erp_next_seq_num, const u8 **rrk,
size_t *rrk_len)
{
struct eap_erp_key *erp;
char *home_realm;
char *pos;
if (config)
home_realm = eap_get_realm(sm, config);
else
home_realm = eap_home_realm(sm);
if (!home_realm || os_strlen(home_realm) == 0) {
os_free(home_realm);
return -1;
}
erp = eap_erp_get_key(sm, home_realm);
os_free(home_realm);
if (!erp)
return -1;
if (erp->next_seq >= 65536)
return -1; /* SEQ has range of 0..65535 */
pos = os_strchr(erp->keyname_nai, '@');
if (!pos)
return -1; /* this cannot really happen */
*username_len = pos - erp->keyname_nai;
*username = (u8 *) erp->keyname_nai;
pos++;
*realm_len = os_strlen(pos);
*realm = (u8 *) pos;
*erp_next_seq_num = (u16) erp->next_seq;
*rrk_len = erp->rRK_len;
*rrk = erp->rRK;
if (*username_len == 0 || *realm_len == 0 || *rrk_len == 0)
return -1;
return 0;
}
#endif /* CONFIG_ERP */
void eap_peer_erp_free_keys(struct eap_sm *sm)
{
#ifdef CONFIG_ERP
struct eap_erp_key *erp, *tmp;
dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
eap_peer_erp_free_key(erp);
#endif /* CONFIG_ERP */
}
/* Note: If ext_session and/or ext_emsk are passed to this function, they are
* expected to point to allocated memory and those allocations will be freed
* unconditionally. */
void eap_peer_erp_init(struct eap_sm *sm, u8 *ext_session_id,
size_t ext_session_id_len, u8 *ext_emsk,
size_t ext_emsk_len)
{
#ifdef CONFIG_ERP
u8 *emsk = NULL;
size_t emsk_len = 0;
u8 *session_id = NULL;
size_t session_id_len = 0;
u8 EMSKname[EAP_EMSK_NAME_LEN];
u8 len[2], ctx[3];
char *realm;
size_t realm_len, nai_buf_len;
struct eap_erp_key *erp = NULL;
int pos;
realm = eap_home_realm(sm);
if (!realm)
goto fail;
realm_len = os_strlen(realm);
wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
eap_erp_remove_keys_realm(sm, realm);
nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
if (nai_buf_len > 253) {
/*
* keyName-NAI has a maximum length of 253 octet to fit in
* RADIUS attributes.
*/
wpa_printf(MSG_DEBUG,
"EAP: Too long realm for ERP keyName-NAI maximum length");
goto fail;
}
nai_buf_len++; /* null termination */
erp = os_zalloc(sizeof(*erp) + nai_buf_len);
if (erp == NULL)
goto fail;
if (ext_emsk) {
emsk = ext_emsk;
emsk_len = ext_emsk_len;
} else {
emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
}
if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
wpa_printf(MSG_DEBUG,
"EAP: No suitable EMSK available for ERP");
goto fail;
}
wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
if (ext_session_id) {
session_id = ext_session_id;
session_id_len = ext_session_id_len;
} else {
session_id = sm->eapSessionId;
session_id_len = sm->eapSessionIdLen;
}
if (!session_id || session_id_len == 0) {
wpa_printf(MSG_DEBUG,
"EAP: No suitable session id available for ERP");
goto fail;
}
WPA_PUT_BE16(len, EAP_EMSK_NAME_LEN);
if (hmac_sha256_kdf(session_id, session_id_len, "EMSK", len,
sizeof(len), EMSKname, EAP_EMSK_NAME_LEN) < 0) {
wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
EMSKname, EAP_EMSK_NAME_LEN);
erp->keyname_nai[pos] = '@';
os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
WPA_PUT_BE16(len, emsk_len);
if (hmac_sha256_kdf(emsk, emsk_len,
"EAP Re-authentication Root Key@ietf.org",
len, sizeof(len), erp->rRK, emsk_len) < 0) {
wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
goto fail;
}
erp->rRK_len = emsk_len;
wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
ctx[0] = EAP_ERP_CS_HMAC_SHA256_128;
WPA_PUT_BE16(&ctx[1], erp->rRK_len);
if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
"Re-authentication Integrity Key@ietf.org",
ctx, sizeof(ctx), erp->rIK, erp->rRK_len) < 0) {
wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
goto fail;
}
erp->rIK_len = erp->rRK_len;
wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
dl_list_add(&sm->erp_keys, &erp->list);
erp = NULL;
fail:
if (ext_emsk)
bin_clear_free(ext_emsk, ext_emsk_len);
else
bin_clear_free(emsk, emsk_len);
bin_clear_free(ext_session_id, ext_session_id_len);
bin_clear_free(erp, sizeof(*erp));
os_free(realm);
#endif /* CONFIG_ERP */
}
#ifdef CONFIG_ERP
struct wpabuf * eap_peer_build_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
{
char *realm;
struct eap_erp_key *erp;
struct wpabuf *msg;
u8 hash[SHA256_MAC_LEN];
realm = eap_home_realm(sm);
if (!realm)
return NULL;
erp = eap_erp_get_key(sm, realm);
os_free(realm);
realm = NULL;
if (!erp)
return NULL;
if (erp->next_seq >= 65536)
return NULL; /* SEQ has range of 0..65535 */
/* TODO: check rRK lifetime expiration */
wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
erp->keyname_nai, erp->next_seq);
msg = eap_msg_alloc(EAP_VENDOR_IETF,
(enum eap_type) EAP_ERP_TYPE_REAUTH,
1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
EAP_CODE_INITIATE, eap_id);
if (msg == NULL)
return NULL;
wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
wpabuf_put_be16(msg, erp->next_seq);
wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
wpabuf_put_str(msg, erp->keyname_nai);
wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
if (hmac_sha256(erp->rIK, erp->rIK_len,
wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
wpabuf_free(msg);
return NULL;
}
wpabuf_put_data(msg, hash, 16);
sm->erp_seq = erp->next_seq;
erp->next_seq++;
wpa_hexdump_buf(MSG_DEBUG, "ERP: EAP-Initiate/Re-auth", msg);
return msg;
}
static int eap_peer_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
{
struct wpabuf *msg;
msg = eap_peer_build_erp_reauth_start(sm, eap_id);
if (!msg)
return -1;
wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
wpabuf_free(sm->eapRespData);
sm->eapRespData = msg;
sm->reauthInit = true;
return 0;
}
#endif /* CONFIG_ERP */
/*
* The method processing happens here. The request from the authenticator is
* processed, and an appropriate response packet is built.
*/
SM_STATE(EAP, METHOD)
{
struct wpabuf *eapReqData;
struct eap_method_ret ret;
int min_len = 1;
SM_ENTRY(EAP, METHOD);
if (sm->m == NULL) {
wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
return;
}
eapReqData = eapol_get_eapReqData(sm);
if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
min_len = 0; /* LEAP uses EAP-Success without payload */
if (!eap_hdr_len_valid(eapReqData, min_len))
return;
/*
* Get ignore, methodState, decision, allowNotifications, and
* eapRespData. RFC 4137 uses three separate method procedure (check,
* process, and buildResp) in this state. These have been combined into
* a single function call to m->process() in order to optimize EAP
* method implementation interface a bit. These procedures are only
* used from within this METHOD state, so there is no need to keep
* these as separate C functions.
*
* The RFC 4137 procedures return values as follows:
* ignore = m.check(eapReqData)
* (methodState, decision, allowNotifications) = m.process(eapReqData)
* eapRespData = m.buildResp(reqId)
*/
os_memset(&ret, 0, sizeof(ret));
ret.ignore = sm->ignore;
ret.methodState = sm->methodState;
ret.decision = sm->decision;
ret.allowNotifications = sm->allowNotifications;
wpabuf_free(sm->eapRespData);
sm->eapRespData = NULL;
sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
eapReqData);
wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
"methodState=%s decision=%s eapRespData=%p",
ret.ignore ? "TRUE" : "FALSE",
eap_sm_method_state_txt(ret.methodState),
eap_sm_decision_txt(ret.decision),
sm->eapRespData);
sm->ignore = ret.ignore;
if (sm->ignore)
return;
sm->methodState = ret.methodState;
sm->decision = ret.decision;
sm->allowNotifications = ret.allowNotifications;
if (sm->m->isKeyAvailable && sm->m->getKey &&
sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
eap_sm_free_key(sm);
sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
&sm->eapKeyDataLen);
os_free(sm->eapSessionId);
sm->eapSessionId = NULL;
if (sm->m->getSessionId) {
sm->eapSessionId = sm->m->getSessionId(
sm, sm->eap_method_priv,
&sm->eapSessionIdLen);
wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
sm->eapSessionId, sm->eapSessionIdLen);
}
}
}
/*
* This state signals the lower layer that a response packet is ready to be
* sent.
*/
SM_STATE(EAP, SEND_RESPONSE)
{
SM_ENTRY(EAP, SEND_RESPONSE);
wpabuf_free(sm->lastRespData);
if (sm->eapRespData) {
if (wpabuf_len(sm->eapRespData) >= 20)
sm->num_rounds_short = 0;
if (sm->workaround)
os_memcpy(sm->last_sha1, sm->req_sha1, 20);
sm->lastId = sm->reqId;
sm->lastRespData = wpabuf_dup(sm->eapRespData);
eapol_set_bool(sm, EAPOL_eapResp, true);
} else {
wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
sm->lastRespData = NULL;
}
eapol_set_bool(sm, EAPOL_eapReq, false);
eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
sm->reauthInit = false;
}
/*
* This state signals the lower layer that the request was discarded, and no
* response packet will be sent at this time.
*/
SM_STATE(EAP, DISCARD)
{
SM_ENTRY(EAP, DISCARD);
eapol_set_bool(sm, EAPOL_eapReq, false);
eapol_set_bool(sm, EAPOL_eapNoResp, true);
}
/*
* Handles requests for Identity method and builds a response.
*/
SM_STATE(EAP, IDENTITY)
{
const struct wpabuf *eapReqData;
SM_ENTRY(EAP, IDENTITY);
eapReqData = eapol_get_eapReqData(sm);
if (!eap_hdr_len_valid(eapReqData, 1))
return;
eap_sm_processIdentity(sm, eapReqData);
wpabuf_free(sm->eapRespData);
sm->eapRespData = NULL;
sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
}
/*
* Handles requests for Notification method and builds a response.
*/
SM_STATE(EAP, NOTIFICATION)
{
const struct wpabuf *eapReqData;
SM_ENTRY(EAP, NOTIFICATION);
eapReqData = eapol_get_eapReqData(sm);
if (!eap_hdr_len_valid(eapReqData, 1))
return;
eap_sm_processNotify(sm, eapReqData);
wpabuf_free(sm->eapRespData);
sm->eapRespData = NULL;
sm->eapRespData = eap_sm_buildNotify(sm->reqId);
}
/*
* This state retransmits the previous response packet.
*/
SM_STATE(EAP, RETRANSMIT)
{
SM_ENTRY(EAP, RETRANSMIT);
wpabuf_free(sm->eapRespData);
if (sm->lastRespData)
sm->eapRespData = wpabuf_dup(sm->lastRespData);
else
sm->eapRespData = NULL;
}
/*
* This state is entered in case of a successful completion of authentication
* and state machine waits here until port is disabled or EAP authentication is
* restarted.
*/
SM_STATE(EAP, SUCCESS)
{
struct eap_peer_config *config = eap_get_config(sm);
SM_ENTRY(EAP, SUCCESS);
if (sm->eapKeyData != NULL)
sm->eapKeyAvailable = true;
eapol_set_bool(sm, EAPOL_eapSuccess, true);
/*
* RFC 4137 does not clear eapReq here, but this seems to be required
* to avoid processing the same request twice when state machine is
* initialized.
*/
eapol_set_bool(sm, EAPOL_eapReq, false);
/*
* RFC 4137 does not set eapNoResp here, but this seems to be required
* to get EAPOL Supplicant backend state machine into SUCCESS state. In
* addition, either eapResp or eapNoResp is required to be set after
* processing the received EAP frame.
*/
eapol_set_bool(sm, EAPOL_eapNoResp, true);
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
"EAP authentication completed successfully");
if (!config || !sm->m) {
/*
* This should not happen under normal conditions, but be more
* careful here since there was an earlier case where
* EAP-Success could end up getting delivered to the state
* machine for processing after the state had been cleaned with
* a call to eap_invalidate_cached_session() (and also
* eapol_sm_notify_config() having been used to clear EAP
* configuration in the EAPOL state machine).
*/
wpa_printf(MSG_DEBUG,
"EAP: State machine not configured - cannot initialize ERP");
return;
}
if (config->erp && sm->m->get_emsk && sm->eapSessionId &&
sm->m->isKeyAvailable &&
sm->m->isKeyAvailable(sm, sm->eap_method_priv))
eap_peer_erp_init(sm, NULL, 0, NULL, 0);
}
/*
* This state is entered in case of a failure and state machine waits here
* until port is disabled or EAP authentication is restarted.
*/
SM_STATE(EAP, FAILURE)
{
SM_ENTRY(EAP, FAILURE);
eapol_set_bool(sm, EAPOL_eapFail, true);
/*
* RFC 4137 does not clear eapReq here, but this seems to be required
* to avoid processing the same request twice when state machine is
* initialized.
*/
eapol_set_bool(sm, EAPOL_eapReq, false);
/*
* RFC 4137 does not set eapNoResp here. However, either eapResp or
* eapNoResp is required to be set after processing the received EAP
* frame.
*/
eapol_set_bool(sm, EAPOL_eapNoResp, true);
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
"EAP authentication failed");
sm->prev_failure = 1;
}
static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
{
/*
* At least Microsoft IAS and Meetinghouse Aegis seem to be sending
* EAP-Success/Failure with lastId + 1 even though RFC 3748 and
* RFC 4137 require that reqId == lastId. In addition, it looks like
* Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
*
* Accept this kind of Id if EAP workarounds are enabled. These are
* unauthenticated plaintext messages, so this should have minimal
* security implications (bit easier to fake EAP-Success/Failure).
*/
if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
reqId == ((lastId + 2) & 0xff))) {
wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
"identifier field in EAP Success: "
"reqId=%d lastId=%d (these are supposed to be "
"same)", reqId, lastId);
return 1;
}
wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
"lastId=%d", reqId, lastId);
return 0;
}
/*
* RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
*/
static void eap_peer_sm_step_idle(struct eap_sm *sm)
{
/*
* The first three transitions are from RFC 4137. The last two are
* local additions to handle special cases with LEAP and PEAP server
* not sending EAP-Success in some cases.
*/
if (eapol_get_bool(sm, EAPOL_eapReq))
SM_ENTER(EAP, RECEIVED);
else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
sm->decision != DECISION_FAIL) ||
(eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
sm->decision == DECISION_UNCOND_SUCC))
SM_ENTER(EAP, SUCCESS);
else if (eapol_get_bool(sm, EAPOL_altReject) ||
(eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
sm->decision != DECISION_UNCOND_SUCC) ||
(eapol_get_bool(sm, EAPOL_altAccept) &&
sm->methodState != METHOD_CONT &&
sm->decision == DECISION_FAIL))
SM_ENTER(EAP, FAILURE);
else if (sm->selectedMethod == EAP_TYPE_LEAP &&
sm->leap_done && sm->decision != DECISION_FAIL &&
sm->methodState == METHOD_DONE)
SM_ENTER(EAP, SUCCESS);
else if (sm->selectedMethod == EAP_TYPE_PEAP &&
sm->peap_done && sm->decision != DECISION_FAIL &&
sm->methodState == METHOD_DONE)
SM_ENTER(EAP, SUCCESS);
}
static int eap_peer_req_is_duplicate(struct eap_sm *sm)
{
int duplicate;
duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
if (sm->workaround && duplicate &&
os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
/*
* RFC 4137 uses (reqId == lastId) as the only verification for
* duplicate EAP requests. However, this misses cases where the
* AS is incorrectly using the same id again; and
* unfortunately, such implementations exist. Use SHA1 hash as
* an extra verification for the packets being duplicate to
* workaround these issues.
*/
wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
"EAP packets were not identical");
wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
"duplicate packet");
duplicate = 0;
}
return duplicate;
}
static int eap_peer_sm_allow_canned(struct eap_sm *sm)
{
struct eap_peer_config *config = eap_get_config(sm);
return config && config->phase1 &&
os_strstr(config->phase1, "allow_canned_success=1");
}
static void eap_peer_sm_step_received(struct eap_sm *sm)
{
int duplicate = eap_peer_req_is_duplicate(sm);
/*
* Two special cases below for LEAP are local additions to work around
* odd LEAP behavior (EAP-Success in the middle of authentication and
* then swapped roles). Other transitions are based on RFC 4137.
*/
if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
(sm->reqId == sm->lastId ||
eap_success_workaround(sm, sm->reqId, sm->lastId)))
SM_ENTER(EAP, SUCCESS);
else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
!sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
!sm->rxReq && sm->methodState != METHOD_CONT &&
eap_peer_sm_allow_canned(sm))
SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
!sm->rxReq && sm->methodState != METHOD_CONT &&
eap_peer_sm_allow_canned(sm))
SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
else if (sm->methodState != METHOD_CONT &&
((sm->rxFailure &&
sm->decision != DECISION_UNCOND_SUCC) ||
(sm->rxSuccess && sm->decision == DECISION_FAIL &&
(sm->selectedMethod != EAP_TYPE_LEAP ||
sm->methodState != METHOD_MAY_CONT))) &&
(sm->reqId == sm->lastId ||
eap_success_workaround(sm, sm->reqId, sm->lastId)))
SM_ENTER(EAP, FAILURE);
else if (sm->rxReq && duplicate)
SM_ENTER(EAP, RETRANSMIT);
else if (sm->rxReq && !duplicate &&
sm->reqMethod == EAP_TYPE_NOTIFICATION &&
sm->allowNotifications)
SM_ENTER(EAP, NOTIFICATION);
else if (sm->rxReq && !duplicate &&
sm->selectedMethod == EAP_TYPE_NONE &&
sm->reqMethod == EAP_TYPE_IDENTITY)
SM_ENTER(EAP, IDENTITY);
else if (sm->rxReq && !duplicate &&
sm->selectedMethod == EAP_TYPE_NONE &&
sm->reqMethod != EAP_TYPE_IDENTITY &&
sm->reqMethod != EAP_TYPE_NOTIFICATION)
SM_ENTER(EAP, GET_METHOD);
else if (sm->rxReq && !duplicate &&
sm->reqMethod == sm->selectedMethod &&
sm->methodState != METHOD_DONE)
SM_ENTER(EAP, METHOD);
else if (sm->selectedMethod == EAP_TYPE_LEAP &&
(sm->rxSuccess || sm->rxResp))
SM_ENTER(EAP, METHOD);
else if (sm->reauthInit)
SM_ENTER(EAP, SEND_RESPONSE);
else
SM_ENTER(EAP, DISCARD);
}
static void eap_peer_sm_step_local(struct eap_sm *sm)
{
switch (sm->EAP_state) {
case EAP_INITIALIZE:
SM_ENTER(EAP, IDLE);
break;
case EAP_DISABLED:
if (eapol_get_bool(sm, EAPOL_portEnabled) &&
!sm->force_disabled)
SM_ENTER(EAP, INITIALIZE);
break;
case EAP_IDLE:
eap_peer_sm_step_idle(sm);
break;
case EAP_RECEIVED:
eap_peer_sm_step_received(sm);
break;
case EAP_GET_METHOD:
if (sm->selectedMethod == sm->reqMethod)
SM_ENTER(EAP, METHOD);
else
SM_ENTER(EAP, SEND_RESPONSE);
break;
case EAP_METHOD:
/*
* Note: RFC 4137 uses methodState == DONE && decision == FAIL
* as the condition. eapRespData == NULL here is used to allow
* final EAP method response to be sent without having to change
* all methods to either use methodState MAY_CONT or leaving
* decision to something else than FAIL in cases where the only
* expected response is EAP-Failure.
*/
if (sm->ignore)
SM_ENTER(EAP, DISCARD);
else if (sm->methodState == METHOD_DONE &&
sm->decision == DECISION_FAIL && !sm->eapRespData)
SM_ENTER(EAP, FAILURE);
else
SM_ENTER(EAP, SEND_RESPONSE);
break;
case EAP_SEND_RESPONSE:
SM_ENTER(EAP, IDLE);
break;
case EAP_DISCARD:
SM_ENTER(EAP, IDLE);
break;
case EAP_IDENTITY:
SM_ENTER(EAP, SEND_RESPONSE);
break;
case EAP_NOTIFICATION:
SM_ENTER(EAP, SEND_RESPONSE);
break;
case EAP_RETRANSMIT:
SM_ENTER(EAP, SEND_RESPONSE);
break;
case EAP_SUCCESS:
break;
case EAP_FAILURE:
break;
}
}
SM_STEP(EAP)
{
/* Global transitions */
if (eapol_get_bool(sm, EAPOL_eapRestart) &&
eapol_get_bool(sm, EAPOL_portEnabled))
SM_ENTER_GLOBAL(EAP, INITIALIZE);
else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
SM_ENTER_GLOBAL(EAP, DISABLED);
else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
/* RFC 4137 does not place any limit on number of EAP messages
* in an authentication session. However, some error cases have
* ended up in a state were EAP messages were sent between the
* peer and server in a loop (e.g., TLS ACK frame in both
* direction). Since this is quite undesired outcome, limit the
* total number of EAP round-trips and abort authentication if
* this limit is exceeded.
*/
if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
"authentication rounds - abort",
EAP_MAX_AUTH_ROUNDS);
sm->num_rounds++;
SM_ENTER_GLOBAL(EAP, FAILURE);
}
} else if (sm->num_rounds_short > EAP_MAX_AUTH_ROUNDS_SHORT) {
if (sm->num_rounds_short == EAP_MAX_AUTH_ROUNDS_SHORT + 1) {
wpa_msg(sm->msg_ctx, MSG_INFO,
"EAP: more than %d authentication rounds (short) - abort",
EAP_MAX_AUTH_ROUNDS_SHORT);
sm->num_rounds_short++;
SM_ENTER_GLOBAL(EAP, FAILURE);
}
} else {
/* Local transitions */
eap_peer_sm_step_local(sm);
}
}
static bool eap_sm_allowMethod(struct eap_sm *sm, int vendor,
enum eap_type method)
{
if (!eap_allowed_method(sm, vendor, method)) {
wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
"vendor %u method %u", vendor, method);
return false;
}
if (eap_peer_get_eap_method(vendor, method))
return true;
wpa_printf(MSG_DEBUG, "EAP: not included in build: "
"vendor %u method %u", vendor, method);
return false;
}
static struct wpabuf * eap_sm_build_expanded_nak(
struct eap_sm *sm, int id, const struct eap_method *methods,
size_t count)
{
struct wpabuf *resp;
int found = 0;
const struct eap_method *m;
wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
/* RFC 3748 - 5.3.2: Expanded Nak */
resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
if (resp == NULL)
return NULL;
wpabuf_put_be24(resp, EAP_VENDOR_IETF);
wpabuf_put_be32(resp, EAP_TYPE_NAK);
for (m = methods; m; m = m->next) {
if (sm->reqVendor == m->vendor &&
sm->reqVendorMethod == m->method)
continue; /* do not allow the current method again */
if (eap_allowed_method(sm, m->vendor, m->method)) {
wpa_printf(MSG_DEBUG, "EAP: allowed type: "
"vendor=%u method=%u",
m->vendor, m->method);
wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
wpabuf_put_be24(resp, m->vendor);
wpabuf_put_be32(resp, m->method);
found++;
}
}
if (!found) {
wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
wpabuf_put_be24(resp, EAP_VENDOR_IETF);
wpabuf_put_be32(resp, EAP_TYPE_NONE);
}
eap_update_len(resp);
return resp;
}
static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
{
struct wpabuf *resp;
u8 *start;
int found = 0, expanded_found = 0;
size_t count;
const struct eap_method *methods, *m;
wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
"vendor=%u method=%u not allowed)", sm->reqMethod,
sm->reqVendor, sm->reqVendorMethod);
methods = eap_peer_get_methods(&count);
if (methods == NULL)
return NULL;
if (sm->reqMethod == EAP_TYPE_EXPANDED)
return eap_sm_build_expanded_nak(sm, id, methods, count);
/* RFC 3748 - 5.3.1: Legacy Nak */
resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
sizeof(struct eap_hdr) + 1 + count + 1,
EAP_CODE_RESPONSE, id);
if (resp == NULL)
return NULL;
start = wpabuf_put(resp, 0);
for (m = methods; m; m = m->next) {
if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
continue; /* do not allow the current method again */
if (eap_allowed_method(sm, m->vendor, m->method)) {
if (m->vendor != EAP_VENDOR_IETF) {
if (expanded_found)
continue;
expanded_found = 1;
wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
} else
wpabuf_put_u8(resp, m->method);
found++;
}
}
if (!found)
wpabuf_put_u8(resp, EAP_TYPE_NONE);
wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
eap_update_len(resp);
return resp;
}
static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
{
const u8 *pos;
size_t msg_len;
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
"EAP authentication started");
eap_notify_status(sm, "started", "");
pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
&msg_len);
if (pos == NULL)
return;
/*
* RFC 3748 - 5.1: Identity
* Data field may contain a displayable message in UTF-8. If this
* includes NUL-character, only the data before that should be
* displayed. Some EAP implementasitons may piggy-back additional
* options after the NUL.
*/
/* TODO: could save displayable message so that it can be shown to the
* user in case of interaction is required */
wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
pos, msg_len);
}
#ifdef PCSC_FUNCS
/*
* Rules for figuring out MNC length based on IMSI for SIM cards that do not
* include MNC length field.
*/
static int mnc_len_from_imsi(const char *imsi)
{
char mcc_str[4];
unsigned int mcc;
os_memcpy(mcc_str, imsi, 3);
mcc_str[3] = '\0';
mcc = atoi(mcc_str);
if (mcc == 228)
return 2; /* Networks in Switzerland use 2-digit MNC */
if (mcc == 244)
return 2; /* Networks in Finland use 2-digit MNC */
return -1;
}
static int eap_sm_imsi_identity(struct eap_sm *sm,
struct eap_peer_config *conf)
{
enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
char imsi[100];
size_t imsi_len;
struct eap_method_type *m = conf->eap_methods;
int i, mnc_len;
imsi_len = sizeof(imsi);
if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
return -1;
}
wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
if (imsi_len < 7) {
wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
return -1;
}
/* MNC (2 or 3 digits) */
mnc_len = scard_get_mnc_len(sm->scard_ctx);
if (mnc_len < 0)
mnc_len = mnc_len_from_imsi(imsi);
if (mnc_len < 0) {
wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
"assuming 3");
mnc_len = 3;
}
if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len,
mnc_len) < 0) {
wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
return -1;
}
wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
m[i].method != EAP_TYPE_NONE); i++) {
if (m[i].vendor == EAP_VENDOR_IETF &&
m[i].method == EAP_TYPE_AKA_PRIME) {
method = EAP_SM_AKA_PRIME;
break;
}
if (m[i].vendor == EAP_VENDOR_IETF &&
m[i].method == EAP_TYPE_AKA) {
method = EAP_SM_AKA;
break;
}
}
os_free(conf->identity);
conf->identity = os_malloc(1 + imsi_len);
if (conf->identity == NULL) {
wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
"IMSI-based identity");
return -1;
}
switch (method) {
case EAP_SM_SIM:
conf->identity[0] = '1';
break;
case EAP_SM_AKA:
conf->identity[0] = '0';
break;
case EAP_SM_AKA_PRIME:
conf->identity[0] = '6';
break;
}
os_memcpy(conf->identity + 1, imsi, imsi_len);
conf->identity_len = 1 + imsi_len;
return 0;
}
static int eap_sm_set_scard_pin(struct eap_sm *sm,
struct eap_peer_config *conf)
{
if (scard_set_pin(sm->scard_ctx, conf->cert.pin)) {
/*
* Make sure the same PIN is not tried again in order to avoid
* blocking SIM.
*/
os_free(conf->cert.pin);
conf->cert.pin = NULL;
wpa_printf(MSG_WARNING, "PIN validation failed");
eap_sm_request_pin(sm);
return -1;
}
return 0;
}
static int eap_sm_get_scard_identity(struct eap_sm *sm,
struct eap_peer_config *conf)
{
if (eap_sm_set_scard_pin(sm, conf))
return -1;
return eap_sm_imsi_identity(sm, conf);
}
#endif /* PCSC_FUNCS */
/**
* eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @id: EAP identifier for the packet
* @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
* Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
* failure
*
* This function allocates and builds an EAP-Identity/Response packet for the
* current network. The caller is responsible for freeing the returned data.
*/
struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
{
struct eap_peer_config *config = eap_get_config(sm);
struct wpabuf *resp;
const u8 *identity;
size_t identity_len;
struct wpabuf *privacy_identity = NULL;
if (config == NULL) {
wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
"was not available");
return NULL;
}
if (sm->m && sm->m->get_identity &&
(identity = sm->m->get_identity(sm, sm->eap_method_priv,
&identity_len)) != NULL) {
wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
"identity", identity, identity_len);
} else if (!encrypted && config->anonymous_identity) {
identity = config->anonymous_identity;
identity_len = config->anonymous_identity_len;
wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
identity, identity_len);
} else if (sm->use_machine_cred) {
identity = config->machine_identity;
identity_len = config->machine_identity_len;
wpa_hexdump_ascii(MSG_DEBUG, "EAP: using machine identity",
identity, identity_len);
} else if (config->imsi_privacy_cert && config->identity &&
config->identity_len > 0) {
const u8 *pos = config->identity;
const u8 *end = config->identity + config->identity_len;
privacy_identity = wpabuf_alloc(9 + config->identity_len);
if (!privacy_identity)
return NULL;
/* Include method prefix */
if (*pos == '0' || *pos == '1' || *pos == '6')
wpabuf_put_u8(privacy_identity, *pos);
wpabuf_put_str(privacy_identity, "anonymous");
/* Include realm */
while (pos < end && *pos != '@')
pos++;
wpabuf_put_data(privacy_identity, pos, end - pos);
identity = wpabuf_head(privacy_identity);
identity_len = wpabuf_len(privacy_identity);
wpa_hexdump_ascii(MSG_DEBUG,
"EAP: using IMSI privacy anonymous identity",
identity, identity_len);
} else if (config->strict_conservative_peer_mode) {
wpa_printf(MSG_DEBUG, "EAP: never use real identity in conservative peer mode.");
return NULL;
} else {
identity = config->identity;
identity_len = config->identity_len;
wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
identity, identity_len);
}
if (config->pcsc) {
#ifdef PCSC_FUNCS
if (!identity) {
if (eap_sm_get_scard_identity(sm, config) < 0)
return NULL;
identity = config->identity;
identity_len = config->identity_len;
wpa_hexdump_ascii(MSG_DEBUG,
"permanent identity from IMSI",
identity, identity_len);
} else if (eap_sm_set_scard_pin(sm, config) < 0) {
return NULL;
}
#else /* PCSC_FUNCS */
return NULL;
#endif /* PCSC_FUNCS */
} else if (!identity) {
wpa_printf(MSG_WARNING,
"EAP: buildIdentity: identity configuration was not available");
eap_sm_request_identity(sm);
return NULL;
}
resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
EAP_CODE_RESPONSE, id);
if (resp == NULL)
return NULL;
wpabuf_put_data(resp, identity, identity_len);
wpabuf_free(privacy_identity);
return resp;
}
static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
{
const u8 *pos;
char *msg;
size_t i, msg_len;
pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
&msg_len);
if (pos == NULL)
return;
wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
pos, msg_len);
msg = os_malloc(msg_len + 1);
if (msg == NULL)
return;
for (i = 0; i < msg_len; i++)
msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
msg[msg_len] = '\0';
wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
WPA_EVENT_EAP_NOTIFICATION, msg);
os_free(msg);
}
static struct wpabuf * eap_sm_buildNotify(int id)
{
wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
EAP_CODE_RESPONSE, id);
}
static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
size_t len)
{
#ifdef CONFIG_ERP
const u8 *pos = (const u8 *) (hdr + 1);
const u8 *end = ((const u8 *) hdr) + len;
struct erp_tlvs parse;
if (len < sizeof(*hdr) + 1) {
wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
return;
}
if (*pos != EAP_ERP_TYPE_REAUTH_START) {
wpa_printf(MSG_DEBUG,
"EAP: Ignored unexpected EAP-Initiate Type=%u",
*pos);
return;
}
pos++;
if (pos >= end) {
wpa_printf(MSG_DEBUG,
"EAP: Too short EAP-Initiate/Re-auth-Start");
return;
}
pos++; /* Reserved */
wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
pos, end - pos);
if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
goto invalid;
if (parse.domain) {
wpa_hexdump_ascii(MSG_DEBUG,
"EAP: EAP-Initiate/Re-auth-Start - Domain name",
parse.domain, parse.domain_len);
/* TODO: Derivation of domain specific keys for local ER */
}
if (eap_peer_erp_reauth_start(sm, hdr->identifier) == 0)
return;
invalid:
#endif /* CONFIG_ERP */
wpa_printf(MSG_DEBUG,
"EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
eapol_set_bool(sm, EAPOL_eapTriggerStart, true);
}
void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr, size_t len)
{
#ifdef CONFIG_ERP
const u8 *pos = (const u8 *) (hdr + 1);
const u8 *end = ((const u8 *) hdr) + len;
const u8 *start;
struct erp_tlvs parse;
u8 flags;
u16 seq;
u8 hash[SHA256_MAC_LEN];
size_t hash_len;
struct eap_erp_key *erp;
int max_len;
char nai[254];
u8 seed[4];
int auth_tag_ok = 0;
if (len < sizeof(*hdr) + 1) {
wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
return;
}
if (*pos != EAP_ERP_TYPE_REAUTH) {
wpa_printf(MSG_DEBUG,
"EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
return;
}
if (len < sizeof(*hdr) + 4) {
wpa_printf(MSG_DEBUG,
"EAP: Ignored too short EAP-Finish/Re-auth");
return;
}
pos++;
flags = *pos++;
seq = WPA_GET_BE16(pos);
pos += 2;
wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
if (seq != sm->erp_seq) {
wpa_printf(MSG_DEBUG,
"EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
return;
}
/*
* Parse TVs/TLVs. Since we do not yet know the length of the
* Authentication Tag, stop parsing if an unknown TV/TLV is seen and
* just try to find the keyName-NAI first so that we can check the
* Authentication Tag.
*/
if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
return;
if (!parse.keyname) {
wpa_printf(MSG_DEBUG,
"EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
return;
}
wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
parse.keyname, parse.keyname_len);
if (parse.keyname_len > 253) {
wpa_printf(MSG_DEBUG,
"EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
return;
}
os_memcpy(nai, parse.keyname, parse.keyname_len);
nai[parse.keyname_len] = '\0';
erp = eap_erp_get_key_nai(sm, nai);
if (!erp) {
wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
nai);
return;
}
/* Is there enough room for Cryptosuite and Authentication Tag? */
start = parse.keyname + parse.keyname_len;
max_len = end - start;
hash_len = 16;
if (max_len < 1 + (int) hash_len) {
wpa_printf(MSG_DEBUG,
"EAP: Not enough room for Authentication Tag");
if (flags & 0x80)
goto no_auth_tag;
return;
}
if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
if (flags & 0x80)
goto no_auth_tag;
return;
}
if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
end - ((const u8 *) hdr) - hash_len, hash) < 0)
return;
if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
wpa_printf(MSG_DEBUG,
"EAP: Authentication Tag mismatch");
return;
}
auth_tag_ok = 1;
end -= 1 + hash_len;
no_auth_tag:
/*
* Parse TVs/TLVs again now that we know the exact part of the buffer
* that contains them.
*/
wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
pos, end - pos);
if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
return;
if (flags & 0x80 || !auth_tag_ok) {
wpa_printf(MSG_DEBUG,
"EAP: EAP-Finish/Re-auth indicated failure");
eapol_set_bool(sm, EAPOL_eapFail, true);
eapol_set_bool(sm, EAPOL_eapReq, false);
eapol_set_bool(sm, EAPOL_eapNoResp, true);
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
"EAP authentication failed");
sm->prev_failure = 1;
wpa_printf(MSG_DEBUG,
"EAP: Drop ERP key to try full authentication on next attempt");
eap_peer_erp_free_key(erp);
return;
}
eap_sm_free_key(sm);
sm->eapKeyDataLen = 0;
sm->eapKeyData = os_malloc(erp->rRK_len);
if (!sm->eapKeyData)
return;
sm->eapKeyDataLen = erp->rRK_len;
WPA_PUT_BE16(seed, seq);
WPA_PUT_BE16(&seed[2], erp->rRK_len);
if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
"Re-authentication Master Session Key@ietf.org",
seed, sizeof(seed),
sm->eapKeyData, erp->rRK_len) < 0) {
wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
eap_sm_free_key(sm);
return;
}
wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
sm->eapKeyData, sm->eapKeyDataLen);
sm->eapKeyAvailable = true;
eapol_set_bool(sm, EAPOL_eapSuccess, true);
eapol_set_bool(sm, EAPOL_eapReq, false);
eapol_set_bool(sm, EAPOL_eapNoResp, true);
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
"EAP re-authentication completed successfully");
#endif /* CONFIG_ERP */
}
static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
{
const struct eap_hdr *hdr;
size_t plen;
const u8 *pos;
sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = false;
sm->reqId = 0;
sm->reqMethod = EAP_TYPE_NONE;
sm->reqVendor = EAP_VENDOR_IETF;
sm->reqVendorMethod = EAP_TYPE_NONE;
if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
return;
hdr = wpabuf_head(req);
plen = be_to_host16(hdr->length);
if (plen > wpabuf_len(req)) {
wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
"(len=%lu plen=%lu)",
(unsigned long) wpabuf_len(req),
(unsigned long) plen);
return;
}
sm->reqId = hdr->identifier;
if (sm->workaround) {
const u8 *addr[1];
addr[0] = wpabuf_head(req);
sha1_vector(1, addr, &plen, sm->req_sha1);
}
switch (hdr->code) {
case EAP_CODE_REQUEST:
if (plen < sizeof(*hdr) + 1) {
wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
"no Type field");
return;
}
sm->rxReq = true;
pos = (const u8 *) (hdr + 1);
sm->reqMethod = *pos++;
if (sm->reqMethod == EAP_TYPE_EXPANDED) {
if (plen < sizeof(*hdr) + 8) {
wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
"expanded EAP-Packet (plen=%lu)",
(unsigned long) plen);
return;
}
sm->reqVendor = WPA_GET_BE24(pos);
pos += 3;
sm->reqVendorMethod = WPA_GET_BE32(pos);
}
wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
"method=%u vendor=%u vendorMethod=%u",
sm->reqId, sm->reqMethod, sm->reqVendor,
sm->reqVendorMethod);
break;
case EAP_CODE_RESPONSE:
if (sm->selectedMethod == EAP_TYPE_LEAP) {
/*
* LEAP differs from RFC 4137 by using reversed roles
* for mutual authentication and because of this, we
* need to accept EAP-Response frames if LEAP is used.
*/
if (plen < sizeof(*hdr) + 1) {
wpa_printf(MSG_DEBUG, "EAP: Too short "
"EAP-Response - no Type field");
return;
}
sm->rxResp = true;
pos = (const u8 *) (hdr + 1);
sm->reqMethod = *pos;
wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
"LEAP method=%d id=%d",
sm->reqMethod, sm->reqId);
break;
}
wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
break;
case EAP_CODE_SUCCESS:
wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
eap_notify_status(sm, "completion", "success");
sm->rxSuccess = true;
break;
case EAP_CODE_FAILURE:
wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
eap_notify_status(sm, "completion", "failure");
/* Get the error code from method */
if (sm->m && sm->m->get_error_code) {
int error_code;
error_code = sm->m->get_error_code(sm->eap_method_priv);
if (error_code != NO_EAP_METHOD_ERROR)
eap_report_error(sm, error_code);
}
sm->rxFailure = true;
break;
case EAP_CODE_INITIATE:
eap_peer_initiate(sm, hdr, plen);
break;
case EAP_CODE_FINISH:
eap_peer_finish(sm, hdr, plen);
break;
default:
wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
"code %d", hdr->code);
break;
}
}
static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
union tls_event_data *data)
{
struct eap_sm *sm = ctx;
char *hash_hex = NULL;
switch (ev) {
case TLS_CERT_CHAIN_SUCCESS:
eap_notify_status(sm, "remote certificate verification",
"success");
if (sm->ext_cert_check) {
sm->waiting_ext_cert_check = 1;
eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
NULL, 0);
}
break;
case TLS_CERT_CHAIN_FAILURE:
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
"reason=%d depth=%d subject='%s' err='%s'",
data->cert_fail.reason,
data->cert_fail.depth,
data->cert_fail.subject,
data->cert_fail.reason_txt);
eap_notify_status(sm, "remote certificate verification",
data->cert_fail.reason_txt);
break;
case TLS_PEER_CERTIFICATE:
if (!sm->eapol_cb->notify_cert)
break;
if (data->peer_cert.hash) {
size_t len = data->peer_cert.hash_len * 2 + 1;
hash_hex = os_malloc(len);
if (hash_hex) {
wpa_snprintf_hex(hash_hex, len,
data->peer_cert.hash,
data->peer_cert.hash_len);
}
}
sm->eapol_cb->notify_cert(sm->eapol_ctx, &data->peer_cert,
hash_hex);
break;
case TLS_ALERT:
if (data->alert.is_local)
eap_notify_status(sm, "local TLS alert",
data->alert.description);
else
eap_notify_status(sm, "remote TLS alert",
data->alert.description);
break;
case TLS_UNSAFE_RENEGOTIATION_DISABLED:
wpa_printf(MSG_INFO,
"TLS handshake failed due to the server not supporting safe renegotiation (RFC 5746); phase1 parameter allow_unsafe_renegotiation=1 can be used to work around this");
eap_notify_status(sm, "unsafe server renegotiation", "failure");
break;
}
os_free(hash_hex);
}
ssize_t tls_certificate_callback(void* ctx, const char* alias, uint8_t** value) {
if (alias == NULL || ctx == NULL || value == NULL) return -1;
struct eap_sm *sm = (struct eap_sm*) ctx;
wpa_printf(MSG_INFO, "tls_certificate_callback: received sm=%p", (void*)sm);
if (sm->eapol_cb && sm->eapol_cb->get_certificate) {
return sm->eapol_cb->get_certificate(sm->eapol_ctx, alias, value);
}
return -1;
}
void tls_openssl_failure_callback(void* ctx, const char* msg) {
if (ctx == NULL || msg == NULL) return;
struct eap_sm *sm = (struct eap_sm*) ctx;
if (sm->eapol_cb && sm->eapol_cb->notify_open_ssl_failure) {
sm->eapol_cb->notify_open_ssl_failure(sm->eapol_ctx, msg);
}
}
/**
* eap_peer_sm_init - Allocate and initialize EAP peer state machine
* @eapol_ctx: Context data to be used with eapol_cb calls
* @eapol_cb: Pointer to EAPOL callback functions
* @msg_ctx: Context data for wpa_msg() calls
* @conf: EAP configuration
* Returns: Pointer to the allocated EAP state machine or %NULL on failure
*
* This function allocates and initializes an EAP state machine. In addition,
* this initializes TLS library for the new EAP state machine. eapol_cb pointer
* will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
* state machine. Consequently, the caller must make sure that this data
* structure remains alive while the EAP state machine is active.
*/
struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
const struct eapol_callbacks *eapol_cb,
void *msg_ctx, struct eap_config *conf)
{
struct eap_sm *sm;
struct tls_config tlsconf;
sm = os_zalloc(sizeof(*sm));
wpa_printf(MSG_INFO, "Init sm=%p", (void*)sm);
if (sm == NULL)
return NULL;
sm->eapol_ctx = eapol_ctx;
sm->eapol_cb = eapol_cb;
sm->msg_ctx = msg_ctx;
sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
sm->wps = conf->wps;
dl_list_init(&sm->erp_keys);
os_memset(&tlsconf, 0, sizeof(tlsconf));
tlsconf.opensc_engine_path = conf->opensc_engine_path;
tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
tlsconf.openssl_ciphers = conf->openssl_ciphers;
#ifdef CONFIG_FIPS
tlsconf.fips_mode = 1;
#endif /* CONFIG_FIPS */
tlsconf.event_cb = eap_peer_sm_tls_event;
tlsconf.cb_ctx = sm;
tlsconf.cert_in_cb = conf->cert_in_cb;
tls_register_cert_callback(&tls_certificate_callback);
tls_register_openssl_failure_callback(&tls_openssl_failure_callback);
sm->ssl_ctx = tls_init(&tlsconf);
if (sm->ssl_ctx == NULL) {
wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
"context.");
os_free(sm);
return NULL;
}
sm->ssl_ctx2 = tls_init(&tlsconf);
if (sm->ssl_ctx2 == NULL) {
wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
"context (2).");
/* Run without separate TLS context within TLS tunnel */
}
return sm;
}
/**
* eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* This function deinitializes EAP state machine and frees all allocated
* resources.
*/
void eap_peer_sm_deinit(struct eap_sm *sm)
{
wpa_printf(MSG_INFO, "Deinit sm=%p", (void*)sm);
if (sm == NULL)
return;
eap_deinit_prev_method(sm, "EAP deinit");
eap_sm_abort(sm);
if (sm->ssl_ctx2)
tls_deinit(sm->ssl_ctx2);
tls_deinit(sm->ssl_ctx);
eap_peer_erp_free_keys(sm);
os_free(sm);
}
/**
* eap_peer_sm_step - Step EAP peer state machine
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* Returns: 1 if EAP state was changed or 0 if not
*
* This function advances EAP state machine to a new state to match with the
* current variables. This should be called whenever variables used by the EAP
* state machine have changed.
*/
int eap_peer_sm_step(struct eap_sm *sm)
{
int res = 0;
do {
sm->changed = false;
SM_STEP_RUN(EAP);
if (sm->changed)
res = 1;
} while (sm->changed);
return res;
}
/**
* eap_sm_abort - Abort EAP authentication
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* Release system resources that have been allocated for the authentication
* session without fully deinitializing the EAP state machine.
*/
void eap_sm_abort(struct eap_sm *sm)
{
wpabuf_free(sm->lastRespData);
sm->lastRespData = NULL;
wpabuf_free(sm->eapRespData);
sm->eapRespData = NULL;
eap_sm_free_key(sm);
os_free(sm->eapSessionId);
sm->eapSessionId = NULL;
/* This is not clearly specified in the EAP statemachines draft, but
* it seems necessary to make sure that some of the EAPOL variables get
* cleared for the next authentication. */
eapol_set_bool(sm, EAPOL_eapSuccess, false);
}
#ifdef CONFIG_CTRL_IFACE
static const char * eap_sm_state_txt(int state)
{
switch (state) {
case EAP_INITIALIZE:
return "INITIALIZE";
case EAP_DISABLED:
return "DISABLED";
case EAP_IDLE:
return "IDLE";
case EAP_RECEIVED:
return "RECEIVED";
case EAP_GET_METHOD:
return "GET_METHOD";
case EAP_METHOD:
return "METHOD";
case EAP_SEND_RESPONSE:
return "SEND_RESPONSE";
case EAP_DISCARD:
return "DISCARD";
case EAP_IDENTITY:
return "IDENTITY";
case EAP_NOTIFICATION:
return "NOTIFICATION";
case EAP_RETRANSMIT:
return "RETRANSMIT";
case EAP_SUCCESS:
return "SUCCESS";
case EAP_FAILURE:
return "FAILURE";
default:
return "UNKNOWN";
}
}
#endif /* CONFIG_CTRL_IFACE */
#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
static const char * eap_sm_method_state_txt(EapMethodState state)
{
switch (state) {
case METHOD_NONE:
return "NONE";
case METHOD_INIT:
return "INIT";
case METHOD_CONT:
return "CONT";
case METHOD_MAY_CONT:
return "MAY_CONT";
case METHOD_DONE:
return "DONE";
default:
return "UNKNOWN";
}
}
static const char * eap_sm_decision_txt(EapDecision decision)
{
switch (decision) {
case DECISION_FAIL:
return "FAIL";
case DECISION_COND_SUCC:
return "COND_SUCC";
case DECISION_UNCOND_SUCC:
return "UNCOND_SUCC";
default:
return "UNKNOWN";
}
}
#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
#ifdef CONFIG_CTRL_IFACE
/**
* eap_sm_get_status - Get EAP state machine status
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @buf: Buffer for status information
* @buflen: Maximum buffer length
* @verbose: Whether to include verbose status information
* Returns: Number of bytes written to buf.
*
* Query EAP state machine for status information. This function fills in a
* text area with current status information from the EAPOL state machine. If
* the buffer (buf) is not large enough, status information will be truncated
* to fit the buffer.
*/
int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
{
int len, ret;
if (sm == NULL)
return 0;
len = os_snprintf(buf, buflen,
"EAP state=%s\n",
eap_sm_state_txt(sm->EAP_state));
if (os_snprintf_error(buflen, len))
return 0;
if (sm->selectedMethod != EAP_TYPE_NONE) {
const char *name;
if (sm->m) {
name = sm->m->name;
} else {
const struct eap_method *m =
eap_peer_get_eap_method(EAP_VENDOR_IETF,
sm->selectedMethod);
if (m)
name = m->name;
else
name = "?";
}
ret = os_snprintf(buf + len, buflen - len,
"selectedMethod=%d (EAP-%s)\n",
sm->selectedMethod, name);
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
if (sm->m && sm->m->get_status) {
len += sm->m->get_status(sm, sm->eap_method_priv,
buf + len, buflen - len,
verbose);
}
}
if (verbose) {
ret = os_snprintf(buf + len, buflen - len,
"reqMethod=%d\n"
"methodState=%s\n"
"decision=%s\n"
"ClientTimeout=%d\n",
sm->reqMethod,
eap_sm_method_state_txt(sm->methodState),
eap_sm_decision_txt(sm->decision),
sm->ClientTimeout);
if (os_snprintf_error(buflen - len, ret))
return len;
len += ret;
}
return len;
}
#endif /* CONFIG_CTRL_IFACE */
static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
const char *msg, size_t msglen)
{
#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
struct eap_peer_config *config;
const char *txt = NULL;
char *tmp;
if (sm == NULL)
return;
config = eap_get_config(sm);
if (config == NULL)
return;
switch (field) {
case WPA_CTRL_REQ_EAP_IDENTITY:
config->pending_req_identity++;
break;
case WPA_CTRL_REQ_EAP_PASSWORD:
config->pending_req_password++;
break;
case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
config->pending_req_new_password++;
break;
case WPA_CTRL_REQ_EAP_PIN:
config->pending_req_pin++;
break;
case WPA_CTRL_REQ_EAP_OTP:
if (msg) {
tmp = os_malloc(msglen + 3);
if (tmp == NULL)
return;
tmp[0] = '[';
os_memcpy(tmp + 1, msg, msglen);
tmp[msglen + 1] = ']';
tmp[msglen + 2] = '\0';
txt = tmp;
os_free(config->pending_req_otp);
config->pending_req_otp = tmp;
config->pending_req_otp_len = msglen + 3;
} else {
if (config->pending_req_otp == NULL)
return;
txt = config->pending_req_otp;
}
break;
case WPA_CTRL_REQ_EAP_PASSPHRASE:
config->pending_req_passphrase++;
break;
case WPA_CTRL_REQ_SIM:
config->pending_req_sim++;
txt = msg;
break;
case WPA_CTRL_REQ_EXT_CERT_CHECK:
break;
default:
return;
}
if (sm->eapol_cb->eap_param_needed)
sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
}
const char * eap_sm_get_method_name(struct eap_sm *sm)
{
if (sm->m == NULL)
return "UNKNOWN";
return sm->m->name;
}
/**
* eap_sm_request_identity - Request identity from user (ctrl_iface)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* EAP methods can call this function to request identity information for the
* current network. This is normally called when the identity is not included
* in the network configuration. The request will be sent to monitor programs
* through the control interface.
*/
void eap_sm_request_identity(struct eap_sm *sm)
{
eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
}
/**
* eap_sm_request_password - Request password from user (ctrl_iface)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* EAP methods can call this function to request password information for the
* current network. This is normally called when the password is not included
* in the network configuration. The request will be sent to monitor programs
* through the control interface.
*/
void eap_sm_request_password(struct eap_sm *sm)
{
eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
}
/**
* eap_sm_request_new_password - Request new password from user (ctrl_iface)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* EAP methods can call this function to request new password information for
* the current network. This is normally called when the EAP method indicates
* that the current password has expired and password change is required. The
* request will be sent to monitor programs through the control interface.
*/
void eap_sm_request_new_password(struct eap_sm *sm)
{
eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
}
/**
* eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* EAP methods can call this function to request SIM or smart card PIN
* information for the current network. This is normally called when the PIN is
* not included in the network configuration. The request will be sent to
* monitor programs through the control interface.
*/
void eap_sm_request_pin(struct eap_sm *sm)
{
eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
}
/**
* eap_sm_request_otp - Request one time password from user (ctrl_iface)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @msg: Message to be displayed to the user when asking for OTP
* @msg_len: Length of the user displayable message
*
* EAP methods can call this function to request open time password (OTP) for
* the current network. The request will be sent to monitor programs through
* the control interface.
*/
void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
{
eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
}
/**
* eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* EAP methods can call this function to request passphrase for a private key
* for the current network. This is normally called when the passphrase is not
* included in the network configuration. The request will be sent to monitor
* programs through the control interface.
*/
void eap_sm_request_passphrase(struct eap_sm *sm)
{
eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
}
/**
* eap_sm_request_sim - Request external SIM processing
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @req: EAP method specific request
*/
void eap_sm_request_sim(struct eap_sm *sm, const char *req)
{
eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
}
/**
* eap_sm_notify_ctrl_attached - Notification of attached monitor
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* Notify EAP state machines that a monitor was attached to the control
* interface to trigger re-sending of pending requests for user input.
*/
void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return;
/* Re-send any pending requests for user data since a new control
* interface was added. This handles cases where the EAP authentication
* starts immediately after system startup when the user interface is
* not yet running. */
if (config->pending_req_identity)
eap_sm_request_identity(sm);
if (config->pending_req_password)
eap_sm_request_password(sm);
if (config->pending_req_new_password)
eap_sm_request_new_password(sm);
if (config->pending_req_otp)
eap_sm_request_otp(sm, NULL, 0);
if (config->pending_req_pin)
eap_sm_request_pin(sm);
if (config->pending_req_passphrase)
eap_sm_request_passphrase(sm);
}
static int eap_allowed_phase2_type(int vendor, int type)
{
if (vendor == EAP_VENDOR_HOSTAP)
return 1;
if (vendor != EAP_VENDOR_IETF)
return 0;
return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
type != EAP_TYPE_FAST && type != EAP_TYPE_TEAP;
}
/**
* eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
* @name: EAP method name, e.g., MD5
* @vendor: Buffer for returning EAP Vendor-Id
* Returns: EAP method type or %EAP_TYPE_NONE if not found
*
* This function maps EAP type names into EAP type numbers that are allowed for
* Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
* EAP-PEAP, EAP-TTLS, and EAP-FAST.
*/
u32 eap_get_phase2_type(const char *name, int *vendor)
{
int v;
u32 type = eap_peer_get_type(name, &v);
if (eap_allowed_phase2_type(v, type)) {
*vendor = v;
return type;
}
*vendor = EAP_VENDOR_IETF;
return EAP_TYPE_NONE;
}
/**
* eap_get_phase2_types - Get list of allowed EAP phase 2 types
* @config: Pointer to a network configuration
* @count: Pointer to a variable to be filled with number of returned EAP types
* Returns: Pointer to allocated type list or %NULL on failure
*
* This function generates an array of allowed EAP phase 2 (tunneled) types for
* the given network configuration.
*/
struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
size_t *count)
{
struct eap_method_type *buf;
u32 method;
int vendor;
size_t mcount;
const struct eap_method *methods, *m;
methods = eap_peer_get_methods(&mcount);
if (methods == NULL)
return NULL;
*count = 0;
buf = os_malloc(mcount * sizeof(struct eap_method_type));
if (buf == NULL)
return NULL;
for (m = methods; m; m = m->next) {
vendor = m->vendor;
method = m->method;
if (eap_allowed_phase2_type(vendor, method)) {
if (vendor == EAP_VENDOR_IETF &&
method == EAP_TYPE_TLS && config &&
!config->phase2_cert.private_key)
continue;
buf[*count].vendor = vendor;
buf[*count].method = method;
(*count)++;
}
}
return buf;
}
/**
* eap_set_fast_reauth - Update fast_reauth setting
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
*/
void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
{
sm->fast_reauth = enabled;
}
/**
* eap_set_workaround - Update EAP workarounds setting
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
*/
void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
{
sm->workaround = workaround;
}
/**
* eap_get_config - Get current network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* Returns: Pointer to the current network configuration or %NULL if not found
*
* EAP peer methods should avoid using this function if they can use other
* access functions, like eap_get_config_identity() and
* eap_get_config_password(), that do not require direct access to
* struct eap_peer_config.
*/
struct eap_peer_config * eap_get_config(struct eap_sm *sm)
{
return sm->eapol_cb->get_config(sm->eapol_ctx);
}
/**
* eap_get_config_identity - Get identity from the network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Buffer for the length of the identity
* Returns: Pointer to the identity or %NULL if not found
*/
const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
{
struct eap_peer_config *config = eap_get_config(sm);
if (!config)
return NULL;
if (sm->use_machine_cred) {
*len = config->machine_identity_len;
return config->machine_identity;
}
*len = config->identity_len;
return config->identity;
}
/**
* eap_get_config_strict_conservative_peer_mode - get the value of
* strict conservative peer mode in eap_peer_config.
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*/
int eap_get_config_strict_conservative_peer_mode(struct eap_sm *sm)
{
struct eap_peer_config *config;
config = eap_get_config(sm);
if (config) {
return config->strict_conservative_peer_mode;
}
return 0;
}
static const u8 * strnchr(const u8 *str, size_t len, u8 needle) {
const u8 *cur = str;
if (NULL == str) return NULL;
if (0 >= len) return NULL;
while (cur < str + len) {
if (*cur == needle)
return cur;
cur++;
}
return NULL;
}
const u8 * eap_get_config_realm(struct eap_sm *sm, size_t *len) {
struct eap_peer_config *config = eap_get_config(sm);
const u8 *realm = NULL;
size_t realm_len = 0;
const u8 *identity = NULL;
size_t identity_len = 0;
if (!config)
return NULL;
/* Look for the realm of the permanent identity */
identity = eap_get_config_identity(sm, &identity_len);
realm = strnchr(identity, identity_len, '@');
if (NULL != realm) {
wpa_printf(MSG_DEBUG, "Get the realm from identity.");
*len = identity_len - (realm - identity);
return realm;
}
/* Look for the realm of the anonymous identity. */
identity = config->anonymous_identity;
identity_len = config->anonymous_identity_len;
realm = strnchr(identity, identity_len, '@');
if (NULL != realm) {
wpa_printf(MSG_DEBUG, "Get the realm from anonymous identity.");
*len = identity_len - (realm - identity);
return realm;
}
/* Look for the realm of the real identity. */
identity = config->imsi_identity;
identity_len = config->imsi_identity_len;
realm = strnchr(identity, identity_len, '@');
if (NULL != realm) {
wpa_printf(MSG_DEBUG, "Get the realm from IMSI identity.");
*len = identity_len - (realm - identity);
return realm;
}
wpa_printf(MSG_DEBUG, "No realm information in identities.");
*len = 0;
return NULL;
}
static int eap_get_ext_password(struct eap_sm *sm,
struct eap_peer_config *config)
{
char *name;
const u8 *password;
size_t password_len;
if (sm->use_machine_cred) {
password = config->machine_password;
password_len = config->machine_password_len;
} else {
password = config->password;
password_len = config->password_len;
}
if (!password)
return -1;
name = os_zalloc(password_len + 1);
if (!name)
return -1;
os_memcpy(name, password, password_len);
ext_password_free(sm->ext_pw_buf);
sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
os_free(name);
return sm->ext_pw_buf == NULL ? -1 : 0;
}
/**
* eap_get_config_password - Get password from the network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Buffer for the length of the password
* Returns: Pointer to the password or %NULL if not found
*/
const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
{
struct eap_peer_config *config = eap_get_config(sm);
if (!config)
return NULL;
if ((sm->use_machine_cred &&
(config->flags & EAP_CONFIG_FLAGS_EXT_MACHINE_PASSWORD)) ||
(!sm->use_machine_cred &&
(config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD))) {
if (eap_get_ext_password(sm, config) < 0)
return NULL;
*len = wpabuf_len(sm->ext_pw_buf);
return wpabuf_head(sm->ext_pw_buf);
}
if (sm->use_machine_cred) {
*len = config->machine_password_len;
return config->machine_password;
}
*len = config->password_len;
return config->password;
}
/**
* eap_get_config_password2 - Get password from the network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Buffer for the length of the password
* @hash: Buffer for returning whether the password is stored as a
* NtPasswordHash instead of plaintext password; can be %NULL if this
* information is not needed
* Returns: Pointer to the password or %NULL if not found
*/
const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
{
struct eap_peer_config *config = eap_get_config(sm);
if (!config)
return NULL;
if ((sm->use_machine_cred &&
(config->flags & EAP_CONFIG_FLAGS_EXT_MACHINE_PASSWORD)) ||
(!sm->use_machine_cred &&
(config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD))) {
if (eap_get_ext_password(sm, config) < 0)
return NULL;
if (hash)
*hash = 0;
*len = wpabuf_len(sm->ext_pw_buf);
return wpabuf_head(sm->ext_pw_buf);
}
if (sm->use_machine_cred) {
*len = config->machine_password_len;
if (hash)
*hash = !!(config->flags &
EAP_CONFIG_FLAGS_MACHINE_PASSWORD_NTHASH);
return config->machine_password;
}
*len = config->password_len;
if (hash)
*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
return config->password;
}
/**
* eap_get_config_new_password - Get new password from network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Buffer for the length of the new password
* Returns: Pointer to the new password or %NULL if not found
*/
const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return NULL;
*len = config->new_password_len;
return config->new_password;
}
/**
* eap_get_config_otp - Get one-time password from the network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Buffer for the length of the one-time password
* Returns: Pointer to the one-time password or %NULL if not found
*/
const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return NULL;
*len = config->otp_len;
return config->otp;
}
/**
* eap_clear_config_otp - Clear used one-time password
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* This function clears a used one-time password (OTP) from the current network
* configuration. This should be called when the OTP has been used and is not
* needed anymore.
*/
void eap_clear_config_otp(struct eap_sm *sm)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return;
os_memset(config->otp, 0, config->otp_len);
os_free(config->otp);
config->otp = NULL;
config->otp_len = 0;
}
/**
* eap_get_config_phase1 - Get phase1 data from the network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* Returns: Pointer to the phase1 data or %NULL if not found
*/
const char * eap_get_config_phase1(struct eap_sm *sm)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return NULL;
return config->phase1;
}
/**
* eap_get_config_phase2 - Get phase2 data from the network configuration
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* Returns: Pointer to the phase1 data or %NULL if not found
*/
const char * eap_get_config_phase2(struct eap_sm *sm)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return NULL;
return config->phase2;
}
int eap_get_config_fragment_size(struct eap_sm *sm)
{
struct eap_peer_config *config = eap_get_config(sm);
if (config == NULL)
return -1;
return config->fragment_size;
}
/**
* eap_key_available - Get key availability (eapKeyAvailable variable)
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* Returns: 1 if EAP keying material is available, 0 if not
*/
int eap_key_available(struct eap_sm *sm)
{
return sm ? sm->eapKeyAvailable : 0;
}
/**
* eap_notify_permanent_id_req_denied - Notify that the AT_PERMANENT_ID_REQ
* is denied from eap_peer when the strict conservative mode is enabled.
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*/
void eap_notify_permanent_id_req_denied(struct eap_sm *sm)
{
if (!sm || !sm->eapol_cb->notify_permanent_id_req_denied)
return;
sm->eapol_cb->notify_permanent_id_req_denied(sm->eapol_ctx);
}
/**
* eap_notify_success - Notify EAP state machine about external success trigger
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* This function is called when external event, e.g., successful completion of
* WPA-PSK key handshake, is indicating that EAP state machine should move to
* success state. This is mainly used with security modes that do not use EAP
* state machine (e.g., WPA-PSK).
*/
void eap_notify_success(struct eap_sm *sm)
{
if (sm) {
sm->decision = DECISION_COND_SUCC;
sm->EAP_state = EAP_SUCCESS;
}
}
/**
* eap_notify_lower_layer_success - Notification of lower layer success
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* Notify EAP state machines that a lower layer has detected a successful
* authentication. This is used to recover from dropped EAP-Success messages.
*/
void eap_notify_lower_layer_success(struct eap_sm *sm)
{
if (sm == NULL)
return;
if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
sm->decision == DECISION_FAIL ||
(sm->methodState != METHOD_MAY_CONT &&
sm->methodState != METHOD_DONE))
return;
if (sm->eapKeyData != NULL)
sm->eapKeyAvailable = true;
eapol_set_bool(sm, EAPOL_eapSuccess, true);
wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
"EAP authentication completed successfully (based on lower "
"layer success)");
}
/**
* eap_get_eapSessionId - Get Session-Id from EAP state machine
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Pointer to variable that will be set to number of bytes in the session
* Returns: Pointer to the EAP Session-Id or %NULL on failure
*
* Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
* only after a successful authentication. EAP state machine continues to manage
* the Session-Id and the caller must not change or free the returned data.
*/
const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
{
if (sm == NULL || sm->eapSessionId == NULL) {
*len = 0;
return NULL;
}
*len = sm->eapSessionIdLen;
return sm->eapSessionId;
}
/**
* eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @len: Pointer to variable that will be set to number of bytes in the key
* Returns: Pointer to the EAP keying data or %NULL on failure
*
* Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
* key is available only after a successful authentication. EAP state machine
* continues to manage the key data and the caller must not change or free the
* returned data.
*/
const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
{
if (sm == NULL || sm->eapKeyData == NULL) {
*len = 0;
return NULL;
}
*len = sm->eapKeyDataLen;
return sm->eapKeyData;
}
/**
* eap_get_eapKeyData - Get EAP response data
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
*
* Fetch EAP response (eapRespData) from the EAP state machine. This data is
* available when EAP state machine has processed an incoming EAP request. The
* EAP state machine does not maintain a reference to the response after this
* function is called and the caller is responsible for freeing the data.
*/
struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
{
struct wpabuf *resp;
if (sm == NULL || sm->eapRespData == NULL)
return NULL;
resp = sm->eapRespData;
sm->eapRespData = NULL;
return resp;
}
/**
* eap_sm_register_scard_ctx - Notification of smart card context
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @ctx: Context data for smart card operations
*
* Notify EAP state machines of context data for smart card operations. This
* context data will be used as a parameter for scard_*() functions.
*/
void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
{
if (sm)
sm->scard_ctx = ctx;
}
/**
* eap_set_config_blob - Set or add a named configuration blob
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @blob: New value for the blob
*
* Adds a new configuration blob or replaces the current value of an existing
* blob.
*/
void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
{
#ifndef CONFIG_NO_CONFIG_BLOBS
sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
#endif /* CONFIG_NO_CONFIG_BLOBS */
}
/**
* eap_get_config_blob - Get a named configuration blob
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @name: Name of the blob
* Returns: Pointer to blob data or %NULL if not found
*/
const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
const char *name)
{
#ifndef CONFIG_NO_CONFIG_BLOBS
return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
#else /* CONFIG_NO_CONFIG_BLOBS */
return NULL;
#endif /* CONFIG_NO_CONFIG_BLOBS */
}
/**
* eap_set_force_disabled - Set force_disabled flag
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @disabled: 1 = EAP disabled, 0 = EAP enabled
*
* This function is used to force EAP state machine to be disabled when it is
* not in use (e.g., with WPA-PSK or plaintext connections).
*/
void eap_set_force_disabled(struct eap_sm *sm, int disabled)
{
sm->force_disabled = disabled;
}
/**
* eap_set_external_sim - Set external_sim flag
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @external_sim: Whether external SIM/USIM processing is used
*/
void eap_set_external_sim(struct eap_sm *sm, int external_sim)
{
sm->external_sim = external_sim;
}
/**
* eap_notify_pending - Notify that EAP method is ready to re-process a request
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*
* An EAP method can perform a pending operation (e.g., to get a response from
* an external process). Once the response is available, this function can be
* used to request EAPOL state machine to retry delivering the previously
* received (and still unanswered) EAP request to EAP state machine.
*/
void eap_notify_pending(struct eap_sm *sm)
{
sm->eapol_cb->notify_pending(sm->eapol_ctx);
}
/**
* eap_invalidate_cached_session - Mark cached session data invalid
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
*/
void eap_invalidate_cached_session(struct eap_sm *sm)
{
if (sm)
eap_deinit_prev_method(sm, "invalidate");
}
int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
{
if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
return 0; /* Not a WPS Enrollee */
if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
return 0; /* Not using PBC */
return 1;
}
int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
{
if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
return 0; /* Not a WPS Enrollee */
if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
return 0; /* Not using PIN */
return 1;
}
void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
{
ext_password_free(sm->ext_pw_buf);
sm->ext_pw_buf = NULL;
sm->ext_pw = ext;
}
/**
* eap_set_anon_id - Set or add anonymous identity
* @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
* @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
* @len: Length of anonymous identity in octets
*/
void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
{
if (sm->eapol_cb->set_anon_id)
sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
}
int eap_peer_was_failure_expected(struct eap_sm *sm)
{
return sm->expected_failure;
}