blob: 4cc0f8a4f96d8cbdc664aadb20658654fd1f8f62 [file] [log] [blame]
// -*- C++ -*-
//===-------------------------- unordered_map -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_UNORDERED_MAP
#define _LIBCPP_UNORDERED_MAP
/*
unordered_map synopsis
#include <initializer_list>
namespace std
{
template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>,
class Alloc = allocator<pair<const Key, T>>>
class unordered_map
{
public:
// types
typedef Key key_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef pair<const key_type, mapped_type> value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef typename allocator_traits<allocator_type>::pointer pointer;
typedef typename allocator_traits<allocator_type>::const_pointer const_pointer;
typedef typename allocator_traits<allocator_type>::size_type size_type;
typedef typename allocator_traits<allocator_type>::difference_type difference_type;
typedef /unspecified/ iterator;
typedef /unspecified/ const_iterator;
typedef /unspecified/ local_iterator;
typedef /unspecified/ const_local_iterator;
explicit unordered_map(size_type n = 0, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template <class InputIterator>
unordered_map(InputIterator f, InputIterator l,
size_type n = 0, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
explicit unordered_map(const allocator_type&);
unordered_map(const unordered_map&);
unordered_map(const unordered_map&, const Allocator&);
unordered_map(unordered_map&&);
unordered_map(unordered_map&&, const Allocator&);
unordered_map(initializer_list<value_type>, size_type n = 0,
const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
~unordered_map();
unordered_map& operator=(const unordered_map&);
unordered_map& operator=(unordered_map&&);
unordered_map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;
bool empty() const;
size_type size() const;
size_type max_size() const;
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
template <class... Args>
pair<iterator, bool> emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
template <class P>
pair<iterator, bool> insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
template <class P>
iterator insert(const_iterator hint, P&& obj);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(unordered_map&);
hasher hash_function() const;
key_equal key_eq() const;
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
local_iterator end(size_type n);
const_local_iterator begin(size_type n) const;
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);
};
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,
unordered_map<Key, T, Hash, Pred, Alloc>& y);
template <class Key, class T, class Hash, class Pred, class Alloc>
bool
operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& x,
const unordered_map<Key, T, Hash, Pred, Alloc>& y);
template <class Key, class T, class Hash, class Pred, class Alloc>
bool
operator!=(const unordered_map<Key, T, Hash, Pred, Alloc>& x,
const unordered_map<Key, T, Hash, Pred, Alloc>& y);
template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>,
class Alloc = allocator<pair<const Key, T>>>
class unordered_multimap
{
public:
// types
typedef Key key_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef pair<const key_type, mapped_type> value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef typename allocator_traits<allocator_type>::pointer pointer;
typedef typename allocator_traits<allocator_type>::const_pointer const_pointer;
typedef typename allocator_traits<allocator_type>::size_type size_type;
typedef typename allocator_traits<allocator_type>::difference_type difference_type;
typedef /unspecified/ iterator;
typedef /unspecified/ const_iterator;
typedef /unspecified/ local_iterator;
typedef /unspecified/ const_local_iterator;
explicit unordered_multimap(size_type n = 0, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,
size_type n = 0, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
explicit unordered_multimap(const allocator_type&);
unordered_multimap(const unordered_multimap&);
unordered_multimap(const unordered_multimap&, const Allocator&);
unordered_multimap(unordered_multimap&&);
unordered_multimap(unordered_multimap&&, const Allocator&);
unordered_multimap(initializer_list<value_type>, size_type n = 0,
const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
~unordered_multimap();
unordered_multimap& operator=(const unordered_multimap&);
unordered_multimap& operator=(unordered_multimap&&);
unordered_multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const;
bool empty() const;
size_type size() const;
size_type max_size() const;
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
template <class... Args>
iterator emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
template <class P>
iterator insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
template <class P>
iterator insert(const_iterator hint, P&& obj);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type>);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(unordered_multimap&);
hasher hash_function() const;
key_equal key_eq() const;
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
local_iterator end(size_type n);
const_local_iterator begin(size_type n) const;
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);
};
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
template <class Key, class T, class Hash, class Pred, class Alloc>
bool
operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
const unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
template <class Key, class T, class Hash, class Pred, class Alloc>
bool
operator!=(const unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
const unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
} // std
*/
#include <__config>
#include <__hash_table>
#include <functional>
#include <stdexcept>
#pragma GCC system_header
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Tp, class _Hash, bool = is_empty<_Hash>::value>
class __unordered_map_hasher
: private _Hash
{
public:
__unordered_map_hasher() : _Hash() {}
__unordered_map_hasher(const _Hash& __h) : _Hash(__h) {}
const _Hash& hash_function() const {return *this;}
size_t operator()(const _Tp& __x) const
{return static_cast<const _Hash&>(*this)(__x.first);}
size_t operator()(const typename _Tp::first_type& __x) const
{return static_cast<const _Hash&>(*this)(__x);}
};
template <class _Tp, class _Hash>
class __unordered_map_hasher<_Tp, _Hash, false>
{
_Hash __hash_;
public:
__unordered_map_hasher() : __hash_() {}
__unordered_map_hasher(const _Hash& __h) : __hash_(__h) {}
const _Hash& hash_function() const {return __hash_;}
size_t operator()(const _Tp& __x) const
{return __hash_(__x.first);}
size_t operator()(const typename _Tp::first_type& __x) const
{return __hash_(__x);}
};
template <class _Tp, class _Pred, bool = is_empty<_Pred>::value>
class __unordered_map_equal
: private _Pred
{
public:
__unordered_map_equal() : _Pred() {}
__unordered_map_equal(const _Pred& __p) : _Pred(__p) {}
const _Pred& key_eq() const {return *this;}
bool operator()(const _Tp& __x, const _Tp& __y) const
{return static_cast<const _Pred&>(*this)(__x.first, __y.first);}
bool operator()(const typename _Tp::first_type& __x, const _Tp& __y) const
{return static_cast<const _Pred&>(*this)(__x, __y.first);}
bool operator()(const _Tp& __x, const typename _Tp::first_type& __y) const
{return static_cast<const _Pred&>(*this)(__x.first, __y);}
bool operator()(const typename _Tp::first_type& __x,
const typename _Tp::first_type& __y) const
{return static_cast<const _Pred&>(*this)(__x, __y);}
};
template <class _Tp, class _Pred>
class __unordered_map_equal<_Tp, _Pred, false>
{
_Pred __pred_;
public:
__unordered_map_equal() : __pred_() {}
__unordered_map_equal(const _Pred& __p) : __pred_(__p) {}
const _Pred& key_eq() const {return __pred_;}
bool operator()(const _Tp& __x, const _Tp& __y) const
{return __pred_(__x.first, __y.first);}
bool operator()(const typename _Tp::first_type& __x, const _Tp& __y) const
{return __pred_(__x, __y.first);}
bool operator()(const _Tp& __x, const typename _Tp::first_type& __y) const
{return __pred_(__x.first, __y);}
bool operator()(const typename _Tp::first_type& __x,
const typename _Tp::first_type& __y) const
{return __pred_(__x, __y);}
};
template <class _Alloc>
class __hash_map_node_destructor
{
typedef _Alloc allocator_type;
typedef allocator_traits<allocator_type> __alloc_traits;
typedef typename __alloc_traits::value_type::value_type value_type;
public:
typedef typename __alloc_traits::pointer pointer;
private:
typedef typename value_type::first_type first_type;
typedef typename value_type::second_type second_type;
allocator_type& __na_;
__hash_map_node_destructor& operator=(const __hash_map_node_destructor&);
public:
bool __first_constructed;
bool __second_constructed;
explicit __hash_map_node_destructor(allocator_type& __na)
: __na_(__na),
__first_constructed(false),
__second_constructed(false)
{}
#ifdef _LIBCPP_MOVE
__hash_map_node_destructor(__hash_node_destructor<allocator_type>&& __x)
: __na_(__x.__na_),
__first_constructed(__x.__value_constructed),
__second_constructed(__x.__value_constructed)
{
__x.__value_constructed = false;
}
#else
__hash_map_node_destructor(const __hash_node_destructor<allocator_type>& __x)
: __na_(__x.__na_),
__first_constructed(__x.__value_constructed),
__second_constructed(__x.__value_constructed)
{
const_cast<bool&>(__x.__value_constructed) = false;
}
#endif
void operator()(pointer __p)
{
if (__second_constructed)
__alloc_traits::destroy(__na_, addressof(__p->__value_.second));
if (__first_constructed)
__alloc_traits::destroy(__na_, addressof(__p->__value_.first));
if (__p)
__alloc_traits::deallocate(__na_, __p, 1);
}
};
template <class _HashIterator>
class __hash_map_iterator
{
_HashIterator __i_;
typedef pointer_traits<typename _HashIterator::pointer> __pointer_traits;
typedef const typename _HashIterator::value_type::first_type key_type;
typedef typename _HashIterator::value_type::second_type mapped_type;
public:
typedef forward_iterator_tag iterator_category;
typedef pair<key_type, mapped_type> value_type;
typedef typename _HashIterator::difference_type difference_type;
typedef value_type& reference;
typedef typename __pointer_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<value_type>
#else
rebind<value_type>::other
#endif
pointer;
__hash_map_iterator() {}
__hash_map_iterator(_HashIterator __i) : __i_(__i) {}
reference operator*() const {return *operator->();}
pointer operator->() const {return (pointer)__i_.operator->();}
__hash_map_iterator& operator++() {++__i_; return *this;}
__hash_map_iterator operator++(int)
{
__hash_map_iterator __t(*this);
++(*this);
return __t;
}
friend bool operator==(const __hash_map_iterator& __x, const __hash_map_iterator& __y)
{return __x.__i_ == __y.__i_;}
friend bool operator!=(const __hash_map_iterator& __x, const __hash_map_iterator& __y)
{return __x.__i_ != __y.__i_;}
template <class, class, class, class, class> friend class unordered_map;
template <class, class, class, class, class> friend class unordered_multimap;
template <class> friend class __hash_const_iterator;
template <class> friend class __hash_const_local_iterator;
template <class> friend class __hash_map_const_iterator;
};
template <class _HashIterator>
class __hash_map_const_iterator
{
_HashIterator __i_;
typedef pointer_traits<typename _HashIterator::pointer> __pointer_traits;
typedef const typename _HashIterator::value_type::first_type key_type;
typedef typename _HashIterator::value_type::second_type mapped_type;
public:
typedef forward_iterator_tag iterator_category;
typedef pair<key_type, mapped_type> value_type;
typedef typename _HashIterator::difference_type difference_type;
typedef const value_type& reference;
typedef typename __pointer_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<value_type>
#else
rebind<value_type>::other
#endif
pointer;
__hash_map_const_iterator() {}
__hash_map_const_iterator(_HashIterator __i) : __i_(__i) {}
__hash_map_const_iterator(
__hash_map_iterator<typename _HashIterator::__non_const_iterator> __i)
: __i_(__i.__i_) {}
reference operator*() const {return *operator->();}
pointer operator->() const {return (pointer)__i_.operator->();}
__hash_map_const_iterator& operator++() {++__i_; return *this;}
__hash_map_const_iterator operator++(int)
{
__hash_map_const_iterator __t(*this);
++(*this);
return __t;
}
friend bool operator==(const __hash_map_const_iterator& __x, const __hash_map_const_iterator& __y)
{return __x.__i_ == __y.__i_;}
friend bool operator!=(const __hash_map_const_iterator& __x, const __hash_map_const_iterator& __y)
{return __x.__i_ != __y.__i_;}
template <class, class, class, class, class> friend class unordered_map;
template <class, class, class, class, class> friend class unordered_multimap;
template <class> friend class __hash_const_iterator;
template <class> friend class __hash_const_local_iterator;
};
template <class _Key, class _Tp, class _Hash = hash<_Key>, class _Pred = equal_to<_Key>,
class _Alloc = allocator<pair<const _Key, _Tp> > >
class unordered_map
{
public:
// types
typedef _Key key_type;
typedef _Tp mapped_type;
typedef _Hash hasher;
typedef _Pred key_equal;
typedef _Alloc allocator_type;
typedef pair<const key_type, mapped_type> value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
private:
typedef pair<key_type, mapped_type> __value_type;
typedef __unordered_map_hasher<__value_type, hasher> __hasher;
typedef __unordered_map_equal<__value_type, key_equal> __key_equal;
typedef typename allocator_traits<allocator_type>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<__value_type>
#else
rebind_alloc<__value_type>::other
#endif
__allocator_type;
typedef __hash_table<__value_type, __hasher,
__key_equal, __allocator_type> __table;
__table __table_;
typedef typename __table::__node_pointer __node_pointer;
typedef typename __table::__node_const_pointer __node_const_pointer;
typedef typename __table::__node_traits __node_traits;
typedef typename __table::__node_allocator __node_allocator;
typedef typename __table::__node __node;
typedef __hash_map_node_destructor<__node_allocator> _D;
typedef unique_ptr<__node, _D> __node_holder;
typedef allocator_traits<allocator_type> __alloc_traits;
public:
typedef typename __alloc_traits::pointer pointer;
typedef typename __alloc_traits::const_pointer const_pointer;
typedef typename __alloc_traits::size_type size_type;
typedef typename __alloc_traits::difference_type difference_type;
typedef __hash_map_iterator<typename __table::iterator> iterator;
typedef __hash_map_const_iterator<typename __table::const_iterator> const_iterator;
typedef __hash_map_iterator<typename __table::local_iterator> local_iterator;
typedef __hash_map_const_iterator<typename __table::const_local_iterator> const_local_iterator;
unordered_map() {} // = default;
explicit unordered_map(size_type __n, const hasher& __hf = hasher(),
const key_equal& __eql = key_equal());
unordered_map(size_type __n, const hasher& __hf,
const key_equal& __eql,
const allocator_type& __a);
template <class _InputIterator>
unordered_map(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
unordered_map(_InputIterator __first, _InputIterator __last,
size_type __n, const hasher& __hf = hasher(),
const key_equal& __eql = key_equal());
template <class _InputIterator>
unordered_map(_InputIterator __first, _InputIterator __last,
size_type __n, const hasher& __hf,
const key_equal& __eql,
const allocator_type& __a);
explicit unordered_map(const allocator_type& __a);
unordered_map(const unordered_map& __u);
unordered_map(const unordered_map& __u, const allocator_type& __a);
#ifdef _LIBCPP_MOVE
unordered_map(unordered_map&& __u);
unordered_map(unordered_map&& __u, const allocator_type& __a);
#endif
unordered_map(initializer_list<value_type> __il);
unordered_map(initializer_list<value_type> __il, size_type __n,
const hasher& __hf = hasher(), const key_equal& __eql = key_equal());
unordered_map(initializer_list<value_type> __il, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a);
// ~unordered_map() = default;
// unordered_map& operator=(const unordered_map& __u) = default;
#ifdef _LIBCPP_MOVE
unordered_map& operator=(unordered_map&& __u);
#endif
unordered_map& operator=(initializer_list<value_type> __il);
allocator_type get_allocator() const
{return allocator_type(__table_.__node_alloc());}
bool empty() const {return __table_.size() == 0;}
size_type size() const {return __table_.size();}
size_type max_size() const {return __table_.max_size();}
iterator begin() {return __table_.begin();}
iterator end() {return __table_.end();}
const_iterator begin() const {return __table_.begin();}
const_iterator end() const {return __table_.end();}
const_iterator cbegin() const {return __table_.begin();}
const_iterator cend() const {return __table_.end();}
#ifdef _LIBCPP_MOVE
pair<iterator, bool> emplace()
{return __table_.__emplace_unique();}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
pair<iterator, bool> emplace(_A0&& __a0)
{return __table_.__emplace_unique(_STD::forward<_A0>(__a0));}
template <class _A0, class... _Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
pair<iterator, bool> emplace(_A0&& __a0, _Args&&... __args);
iterator emplace_hint(const_iterator)
{return __table_.__emplace_unique().first;}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
iterator emplace_hint(const_iterator, _A0&& __a0)
{return __table_.__emplace_unique(_STD::forward<_A0>(__a0)).first;}
template <class _A0, class... _Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
iterator emplace_hint(const_iterator, _A0&& __a0, _Args&&... __args)
{return emplace(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...).first;}
#endif
pair<iterator, bool> insert(const value_type& __x)
{return __table_.__insert_unique(__x);}
#ifdef _LIBCPP_MOVE
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
pair<iterator, bool> insert(_P&& __x)
{return __table_.__insert_unique(_STD::forward<_P>(__x));}
#endif
iterator insert(const_iterator, const value_type& __x)
{return insert(__x).first;}
#ifdef _LIBCPP_MOVE
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
iterator insert(const_iterator, _P&& __x)
{return insert(_STD::forward<_P>(__x)).first;}
#endif
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last);
void insert(initializer_list<value_type> __il)
{insert(__il.begin(), __il.end());}
iterator erase(const_iterator __p) {return __table_.erase(__p.__i_);}
size_type erase(const key_type& __k) {return __table_.__erase_unique(__k);}
iterator erase(const_iterator __first, const_iterator __last)
{return __table_.erase(__first.__i_, __last.__i_);}
void clear() {__table_.clear();}
void swap(unordered_map& __u) {__table_.swap(__u.__table_);}
hasher hash_function() const
{return __table_.hash_function().hash_function();}
key_equal key_eq() const
{return __table_.key_eq().key_eq();}
iterator find(const key_type& __k) {return __table_.find(__k);}
const_iterator find(const key_type& __k) const {return __table_.find(__k);}
size_type count(const key_type& __k) const {return __table_.__count_unique(__k);}
pair<iterator, iterator> equal_range(const key_type& __k)
{return __table_.__equal_range_unique(__k);}
pair<const_iterator, const_iterator> equal_range(const key_type& __k) const
{return __table_.__equal_range_unique(__k);}
mapped_type& operator[](const key_type& __k);
#ifdef _LIBCPP_MOVE
mapped_type& operator[](key_type&& __k);
#endif
mapped_type& at(const key_type& __k);
const mapped_type& at(const key_type& __k) const;
size_type bucket_count() const {return __table_.bucket_count();}
size_type max_bucket_count() const {return __table_.max_bucket_count();}
size_type bucket_size(size_type __n) const
{return __table_.bucket_size(__n);}
size_type bucket(const key_type& __k) const {return __table_.bucket(__k);}
local_iterator begin(size_type __n) {return __table_.begin(__n);}
local_iterator end(size_type __n) {return __table_.end(__n);}
const_local_iterator begin(size_type __n) const {return __table_.cbegin(__n);}
const_local_iterator end(size_type __n) const {return __table_.cend(__n);}
const_local_iterator cbegin(size_type __n) const {return __table_.cbegin(__n);}
const_local_iterator cend(size_type __n) const {return __table_.cend(__n);}
float load_factor() const {return __table_.load_factor();}
float max_load_factor() const {return __table_.max_load_factor();}
void max_load_factor(float __mlf) {__table_.max_load_factor(__mlf);}
void rehash(size_type __n) {__table_.rehash(__n);}
void reserve(size_type __n) {__table_.reserve(__n);}
private:
#ifdef _LIBCPP_MOVE
template <class _A0, class... _Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
__node_holder __construct_node(_A0&& __a0, _Args&&... __args);
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
__node_holder __construct_node(_A0&& __a0);
#else
__node_holder __construct_node(const key_type& __k);
#endif
};
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
size_type __n, const hasher& __hf, const key_equal& __eql)
: __table_(__hf, __eql)
{
__table_.rehash(__n);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a)
: __table_(__hf, __eql, __a)
{
__table_.rehash(__n);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
const allocator_type& __a)
: __table_(__a)
{
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
_InputIterator __first, _InputIterator __last)
{
insert(__first, __last);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
_InputIterator __first, _InputIterator __last, size_type __n,
const hasher& __hf, const key_equal& __eql)
: __table_(__hf, __eql)
{
__table_.rehash(__n);
insert(__first, __last);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
_InputIterator __first, _InputIterator __last, size_type __n,
const hasher& __hf, const key_equal& __eql, const allocator_type& __a)
: __table_(__hf, __eql, __a)
{
__table_.rehash(__n);
insert(__first, __last);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
const unordered_map& __u)
: __table_(__u.__table_)
{
__table_.rehash(__u.bucket_count());
insert(__u.begin(), __u.end());
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
const unordered_map& __u, const allocator_type& __a)
: __table_(__u.__table_, __a)
{
__table_.rehash(__u.bucket_count());
insert(__u.begin(), __u.end());
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
unordered_map&& __u)
: __table_(_STD::move(__u.__table_))
{
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
unordered_map&& __u, const allocator_type& __a)
: __table_(_STD::move(__u.__table_), __a)
{
if (__a != __u.get_allocator())
{
iterator __i = __u.begin();
while (__u.size() != 0)
__table_.__insert_unique(
_STD::move(__u.__table_.remove((__i++).__i_)->__value_)
);
}
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
initializer_list<value_type> __il)
{
insert(__il.begin(), __il.end());
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
initializer_list<value_type> __il, size_type __n, const hasher& __hf,
const key_equal& __eql)
: __table_(__hf, __eql)
{
__table_.rehash(__n);
insert(__il.begin(), __il.end());
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_map(
initializer_list<value_type> __il, size_type __n, const hasher& __hf,
const key_equal& __eql, const allocator_type& __a)
: __table_(__hf, __eql, __a)
{
__table_.rehash(__n);
insert(__il.begin(), __il.end());
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>&
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::operator=(unordered_map&& __u)
{
__table_ = _STD::move(__u.__table_);
return *this;
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>&
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::operator=(
initializer_list<value_type> __il)
{
__table_.__assign_unique(__il.begin(), __il.end());
return *this;
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0, class... _Args,
class // = typename enable_if<is_convertible<_A0, key_type>::value>::type
>
typename unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::__node_holder
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::__construct_node(_A0&& __a0,
_Args&&... __args)
{
__node_allocator& __na = __table_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first),
_STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second),
_STD::forward<_Args>(__args)...);
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0,
class // = typename enable_if<is_convertible<_A0, value_type>::value>::type
>
typename unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::__node_holder
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::__construct_node(_A0&& __a0)
{
__node_allocator& __na = __table_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_),
_STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0, class... _Args,
class // = typename enable_if<is_convertible<_A0, key_type>::value>::type
>
pair<typename unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::iterator, bool>
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::emplace(_A0&& __a0, _Args&&... __args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
pair<iterator, bool> __r = __table_.__node_insert_unique(__h.get());
if (__r.second)
__h.release();
return __r;
}
#else
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
typename unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::__node_holder
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::__construct_node(const key_type& __k)
{
__node_allocator& __na = __table_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first), __k);
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second));
__h.get_deleter().__second_constructed = true;
return _STD::move(__h);
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
inline
void
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::insert(_InputIterator __first,
_InputIterator __last)
{
for (; __first != __last; ++__first)
__table_.__insert_unique(*__first);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
_Tp&
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::operator[](const key_type& __k)
{
iterator __i = find(__k);
if (__i != end())
return __i->second;
__node_holder __h = __construct_node(__k);
pair<iterator, bool> __r = __table_.__node_insert_unique(__h.get());
__h.release();
return __r.first->second;
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
_Tp&
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::operator[](key_type&& __k)
{
iterator __i = find(__k);
if (__i != end())
return __i->second;
__node_holder __h = __construct_node(_STD::move(__k));
pair<iterator, bool> __r = __table_.__node_insert_unique(__h.get());
__h.release();
return __r.first->second;
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
_Tp&
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::at(const key_type& __k)
{
iterator __i = find(__k);
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__i == end())
throw out_of_range("unordered_map::at: key not found");
#endif
return __i->second;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
const _Tp&
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::at(const key_type& __k) const
{
const_iterator __i = find(__k);
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__i == end())
throw out_of_range("unordered_map::at: key not found");
#endif
return __i->second;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
void
swap(unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{
__x.swap(__y);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
bool
operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{
if (__x.size() != __y.size())
return false;
typedef typename unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>::const_iterator
const_iterator;
for (const_iterator __i = __x.begin(), __ex = __x.end(), __ey = __y.end();
__i != __ex; ++__i)
{
const_iterator __j = __y.find(__i->first);
if (__j == __ey || !(*__i == *__j))
return false;
}
return true;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
bool
operator!=(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{
return !(__x == __y);
}
template <class _Key, class _Tp, class _Hash = hash<_Key>, class _Pred = equal_to<_Key>,
class _Alloc = allocator<pair<const _Key, _Tp> > >
class unordered_multimap
{
public:
// types
typedef _Key key_type;
typedef _Tp mapped_type;
typedef _Hash hasher;
typedef _Pred key_equal;
typedef _Alloc allocator_type;
typedef pair<const key_type, mapped_type> value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
private:
typedef pair<key_type, mapped_type> __value_type;
typedef __unordered_map_hasher<__value_type, hasher> __hasher;
typedef __unordered_map_equal<__value_type, key_equal> __key_equal;
typedef typename allocator_traits<allocator_type>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<__value_type>
#else
rebind_alloc<__value_type>::other
#endif
__allocator_type;
typedef __hash_table<__value_type, __hasher,
__key_equal, __allocator_type> __table;
__table __table_;
typedef typename __table::__node_traits __node_traits;
typedef typename __table::__node_allocator __node_allocator;
typedef typename __table::__node __node;
typedef __hash_map_node_destructor<__node_allocator> _D;
typedef unique_ptr<__node, _D> __node_holder;
typedef allocator_traits<allocator_type> __alloc_traits;
public:
typedef typename __alloc_traits::pointer pointer;
typedef typename __alloc_traits::const_pointer const_pointer;
typedef typename __alloc_traits::size_type size_type;
typedef typename __alloc_traits::difference_type difference_type;
typedef __hash_map_iterator<typename __table::iterator> iterator;
typedef __hash_map_const_iterator<typename __table::const_iterator> const_iterator;
typedef __hash_map_iterator<typename __table::local_iterator> local_iterator;
typedef __hash_map_const_iterator<typename __table::const_local_iterator> const_local_iterator;
unordered_multimap() {} // = default
explicit unordered_multimap(size_type __n, const hasher& __hf = hasher(),
const key_equal& __eql = key_equal());
unordered_multimap(size_type __n, const hasher& __hf,
const key_equal& __eql,
const allocator_type& __a);
template <class _InputIterator>
unordered_multimap(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
unordered_multimap(_InputIterator __first, _InputIterator __last,
size_type __n, const hasher& __hf = hasher(),
const key_equal& __eql = key_equal());
template <class _InputIterator>
unordered_multimap(_InputIterator __first, _InputIterator __last,
size_type __n, const hasher& __hf,
const key_equal& __eql,
const allocator_type& __a);
explicit unordered_multimap(const allocator_type& __a);
unordered_multimap(const unordered_multimap& __u);
unordered_multimap(const unordered_multimap& __u, const allocator_type& __a);
#ifdef _LIBCPP_MOVE
unordered_multimap(unordered_multimap&& __u);
unordered_multimap(unordered_multimap&& __u, const allocator_type& __a);
#endif
unordered_multimap(initializer_list<value_type> __il);
unordered_multimap(initializer_list<value_type> __il, size_type __n,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal());
unordered_multimap(initializer_list<value_type> __il, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a);
// ~unordered_multimap() = default;
// unordered_multimap& operator=(const unordered_multimap& __u) = default;
#ifdef _LIBCPP_MOVE
unordered_multimap& operator=(unordered_multimap&& __u);
#endif
unordered_multimap& operator=(initializer_list<value_type> __il);
allocator_type get_allocator() const
{return allocator_type(__table_.__node_alloc());}
bool empty() const {return __table_.size() == 0;}
size_type size() const {return __table_.size();}
size_type max_size() const {return __table_.max_size();}
iterator begin() {return __table_.begin();}
iterator end() {return __table_.end();}
const_iterator begin() const {return __table_.begin();}
const_iterator end() const {return __table_.end();}
const_iterator cbegin() const {return __table_.begin();}
const_iterator cend() const {return __table_.end();}
#ifdef _LIBCPP_MOVE
iterator emplace()
{return __table_.__emplace_multi();}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
iterator emplace(_A0&& __a0)
{return __table_.__emplace_multi(_STD::forward<_A0>(__a0));}
template <class _A0, class... _Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
iterator emplace(_A0&& __a0, _Args&&... __args);
iterator emplace_hint(const_iterator __p)
{return __table_.__emplace_hint_multi(__p.__i_);}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
iterator emplace_hint(const_iterator __p, _A0&& __a0)
{return __table_.__emplace_hint_multi(__p.__i_, _STD::forward<_A0>(__a0));}
template <class _A0, class... _Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
iterator emplace_hint(const_iterator __p, _A0&& __a0, _Args&&... __args);
#endif
iterator insert(const value_type& __x) {return __table_.__insert_multi(__x);}
#ifdef _LIBCPP_MOVE
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
iterator insert(_P&& __x)
{return __table_.__insert_multi(_STD::forward<_P>(__x));}
#endif
iterator insert(const_iterator __p, const value_type& __x)
{return __table_.__insert_multi(__p.__i_, __x);}
#ifdef _LIBCPP_MOVE
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
iterator insert(const_iterator __p, _P&& __x)
{return __table_.__insert_multi(__p.__i_, _STD::forward<_P>(__x));}
#endif
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last);
void insert(initializer_list<value_type> __il)
{insert(__il.begin(), __il.end());}
iterator erase(const_iterator __p) {return __table_.erase(__p.__i_);}
size_type erase(const key_type& __k) {return __table_.__erase_multi(__k);}
iterator erase(const_iterator __first, const_iterator __last)
{return __table_.erase(__first.__i_, __last.__i_);}
void clear() {__table_.clear();}
void swap(unordered_multimap& __u) {__table_.swap(__u.__table_);}
hasher hash_function() const
{return __table_.hash_function().hash_function();}
key_equal key_eq() const
{return __table_.key_eq().key_eq();}
iterator find(const key_type& __k) {return __table_.find(__k);}
const_iterator find(const key_type& __k) const {return __table_.find(__k);}
size_type count(const key_type& __k) const {return __table_.__count_multi(__k);}
pair<iterator, iterator> equal_range(const key_type& __k)
{return __table_.__equal_range_multi(__k);}
pair<const_iterator, const_iterator> equal_range(const key_type& __k) const
{return __table_.__equal_range_multi(__k);}
size_type bucket_count() const {return __table_.bucket_count();}
size_type max_bucket_count() const {return __table_.max_bucket_count();}
size_type bucket_size(size_type __n) const
{return __table_.bucket_size(__n);}
size_type bucket(const key_type& __k) const {return __table_.bucket(__k);}
local_iterator begin(size_type __n) {return __table_.begin(__n);}
local_iterator end(size_type __n) {return __table_.end(__n);}
const_local_iterator begin(size_type __n) const {return __table_.cbegin(__n);}
const_local_iterator end(size_type __n) const {return __table_.cend(__n);}
const_local_iterator cbegin(size_type __n) const {return __table_.cbegin(__n);}
const_local_iterator cend(size_type __n) const {return __table_.cend(__n);}
float load_factor() const {return __table_.load_factor();}
float max_load_factor() const {return __table_.max_load_factor();}
void max_load_factor(float __mlf) {__table_.max_load_factor(__mlf);}
void rehash(size_type __n) {__table_.rehash(__n);}
void reserve(size_type __n) {__table_.reserve(__n);}
private:
#ifdef _LIBCPP_MOVE
template <class _A0, class... _Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
__node_holder __construct_node(_A0&& __a0, _Args&&... __args);
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
__node_holder __construct_node(_A0&& __a0);
#endif
};
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
size_type __n, const hasher& __hf, const key_equal& __eql)
: __table_(__hf, __eql)
{
__table_.rehash(__n);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a)
: __table_(__hf, __eql, __a)
{
__table_.rehash(__n);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
_InputIterator __first, _InputIterator __last)
{
insert(__first, __last);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
_InputIterator __first, _InputIterator __last, size_type __n,
const hasher& __hf, const key_equal& __eql)
: __table_(__hf, __eql)
{
__table_.rehash(__n);
insert(__first, __last);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
_InputIterator __first, _InputIterator __last, size_type __n,
const hasher& __hf, const key_equal& __eql, const allocator_type& __a)
: __table_(__hf, __eql, __a)
{
__table_.rehash(__n);
insert(__first, __last);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
const allocator_type& __a)
: __table_(__a)
{
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
const unordered_multimap& __u)
: __table_(__u.__table_)
{
__table_.rehash(__u.bucket_count());
insert(__u.begin(), __u.end());
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
const unordered_multimap& __u, const allocator_type& __a)
: __table_(__u.__table_, __a)
{
__table_.rehash(__u.bucket_count());
insert(__u.begin(), __u.end());
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
unordered_multimap&& __u)
: __table_(_STD::move(__u.__table_))
{
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
unordered_multimap&& __u, const allocator_type& __a)
: __table_(_STD::move(__u.__table_), __a)
{
if (__a != __u.get_allocator())
{
iterator __i = __u.begin();
while (__u.size() != 0)
{
__table_.__insert_multi(
_STD::move(__u.__table_.remove((__i++).__i_)->__value_)
);
}
}
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
initializer_list<value_type> __il)
{
insert(__il.begin(), __il.end());
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
initializer_list<value_type> __il, size_type __n, const hasher& __hf,
const key_equal& __eql)
: __table_(__hf, __eql)
{
__table_.rehash(__n);
insert(__il.begin(), __il.end());
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::unordered_multimap(
initializer_list<value_type> __il, size_type __n, const hasher& __hf,
const key_equal& __eql, const allocator_type& __a)
: __table_(__hf, __eql, __a)
{
__table_.rehash(__n);
insert(__il.begin(), __il.end());
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>&
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::operator=(unordered_multimap&& __u)
{
__table_ = _STD::move(__u.__table_);
return *this;
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>&
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::operator=(
initializer_list<value_type> __il)
{
__table_.__assign_multi(__il.begin(), __il.end());
return *this;
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0, class... _Args,
class // = typename enable_if<is_convertible<_A0, key_type>::value>::type
>
typename unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::__node_holder
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::__construct_node(
_A0&& __a0, _Args&&... __args)
{
__node_allocator& __na = __table_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first),
_STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second),
_STD::forward<_Args>(__args)...);
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0,
class // = typename enable_if<is_convertible<_A0, value_type>::value>::type
>
typename unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::__node_holder
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::__construct_node(_A0&& __a0)
{
__node_allocator& __na = __table_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_),
_STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0, class... _Args,
class // = typename enable_if<is_convertible<_A0, key_type>::value>::type
>
typename unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::iterator
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::emplace(_A0&& __a0, _Args&&... __args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
iterator __r = __table_.__node_insert_multi(__h.get());
__h.release();
return __r;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _A0, class... _Args,
class // = typename enable_if<is_convertible<_A0, key_type>::value>::type
>
typename unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::iterator
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::emplace_hint(
const_iterator __p, _A0&& __a0, _Args&&... __args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
iterator __r = __table_.__node_insert_multi(__p.__i_, __h.get());
__h.release();
return __r;
}
#endif
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
template <class _InputIterator>
inline
void
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::insert(_InputIterator __first,
_InputIterator __last)
{
for (; __first != __last; ++__first)
__table_.__insert_multi(*__first);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
void
swap(unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{
__x.swap(__y);
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
bool
operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{
if (__x.size() != __y.size())
return false;
typedef typename unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>::const_iterator
const_iterator;
typedef pair<const_iterator, const_iterator> _EqRng;
for (const_iterator __i = __x.begin(), __ex = __x.end(); __i != __ex;)
{
_EqRng __xeq = __x.equal_range(__i->first);
_EqRng __yeq = __y.equal_range(__i->first);
if (_STD::distance(__xeq.first, __xeq.second) !=
_STD::distance(__yeq.first, __yeq.second) ||
!_STD::is_permutation(__xeq.first, __xeq.second, __yeq.first))
return false;
__i = __xeq.second;
}
return true;
}
template <class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline
bool
operator!=(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{
return !(__x == __y);
}
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_UNORDERED_MAP