| // Copyright 2016 Ismael Jimenez Martinez. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Source project : https://github.com/ismaelJimenez/cpp.leastsq |
| // Adapted to be used with google benchmark |
| |
| #include "benchmark/benchmark.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include "check.h" |
| #include "complexity.h" |
| |
| namespace benchmark { |
| |
| // Internal function to calculate the different scalability forms |
| BigOFunc* FittingCurve(BigO complexity) { |
| static const double kLog2E = 1.44269504088896340736; |
| switch (complexity) { |
| case oN: |
| return [](int64_t n) -> double { return static_cast<double>(n); }; |
| case oNSquared: |
| return [](int64_t n) -> double { return std::pow(n, 2); }; |
| case oNCubed: |
| return [](int64_t n) -> double { return std::pow(n, 3); }; |
| case oLogN: |
| /* Note: can't use log2 because Android's GNU STL lacks it */ |
| return [](int64_t n) { return kLog2E * log(static_cast<double>(n)); }; |
| case oNLogN: |
| /* Note: can't use log2 because Android's GNU STL lacks it */ |
| return [](int64_t n) { return kLog2E * n * log(static_cast<double>(n)); }; |
| case o1: |
| default: |
| return [](int64_t) { return 1.0; }; |
| } |
| } |
| |
| // Function to return an string for the calculated complexity |
| std::string GetBigOString(BigO complexity) { |
| switch (complexity) { |
| case oN: |
| return "N"; |
| case oNSquared: |
| return "N^2"; |
| case oNCubed: |
| return "N^3"; |
| case oLogN: |
| return "lgN"; |
| case oNLogN: |
| return "NlgN"; |
| case o1: |
| return "(1)"; |
| default: |
| return "f(N)"; |
| } |
| } |
| |
| // Find the coefficient for the high-order term in the running time, by |
| // minimizing the sum of squares of relative error, for the fitting curve |
| // given by the lambda expression. |
| // - n : Vector containing the size of the benchmark tests. |
| // - time : Vector containing the times for the benchmark tests. |
| // - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };). |
| |
| // For a deeper explanation on the algorithm logic, please refer to |
| // https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics |
| |
| LeastSq MinimalLeastSq(const std::vector<int64_t>& n, |
| const std::vector<double>& time, |
| BigOFunc* fitting_curve) { |
| double sigma_gn = 0.0; |
| double sigma_gn_squared = 0.0; |
| double sigma_time = 0.0; |
| double sigma_time_gn = 0.0; |
| |
| // Calculate least square fitting parameter |
| for (size_t i = 0; i < n.size(); ++i) { |
| double gn_i = fitting_curve(n[i]); |
| sigma_gn += gn_i; |
| sigma_gn_squared += gn_i * gn_i; |
| sigma_time += time[i]; |
| sigma_time_gn += time[i] * gn_i; |
| } |
| |
| LeastSq result; |
| result.complexity = oLambda; |
| |
| // Calculate complexity. |
| result.coef = sigma_time_gn / sigma_gn_squared; |
| |
| // Calculate RMS |
| double rms = 0.0; |
| for (size_t i = 0; i < n.size(); ++i) { |
| double fit = result.coef * fitting_curve(n[i]); |
| rms += pow((time[i] - fit), 2); |
| } |
| |
| // Normalized RMS by the mean of the observed values |
| double mean = sigma_time / n.size(); |
| result.rms = sqrt(rms / n.size()) / mean; |
| |
| return result; |
| } |
| |
| // Find the coefficient for the high-order term in the running time, by |
| // minimizing the sum of squares of relative error. |
| // - n : Vector containing the size of the benchmark tests. |
| // - time : Vector containing the times for the benchmark tests. |
| // - complexity : If different than oAuto, the fitting curve will stick to |
| // this one. If it is oAuto, it will be calculated the best |
| // fitting curve. |
| LeastSq MinimalLeastSq(const std::vector<int64_t>& n, |
| const std::vector<double>& time, const BigO complexity) { |
| CHECK_EQ(n.size(), time.size()); |
| CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two |
| // benchmark runs are given |
| CHECK_NE(complexity, oNone); |
| |
| LeastSq best_fit; |
| |
| if (complexity == oAuto) { |
| std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed}; |
| |
| // Take o1 as default best fitting curve |
| best_fit = MinimalLeastSq(n, time, FittingCurve(o1)); |
| best_fit.complexity = o1; |
| |
| // Compute all possible fitting curves and stick to the best one |
| for (const auto& fit : fit_curves) { |
| LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit)); |
| if (current_fit.rms < best_fit.rms) { |
| best_fit = current_fit; |
| best_fit.complexity = fit; |
| } |
| } |
| } else { |
| best_fit = MinimalLeastSq(n, time, FittingCurve(complexity)); |
| best_fit.complexity = complexity; |
| } |
| |
| return best_fit; |
| } |
| |
| std::vector<BenchmarkReporter::Run> ComputeBigO( |
| const std::vector<BenchmarkReporter::Run>& reports) { |
| typedef BenchmarkReporter::Run Run; |
| std::vector<Run> results; |
| |
| if (reports.size() < 2) return results; |
| |
| // Accumulators. |
| std::vector<int64_t> n; |
| std::vector<double> real_time; |
| std::vector<double> cpu_time; |
| |
| // Populate the accumulators. |
| for (const Run& run : reports) { |
| CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?"; |
| n.push_back(run.complexity_n); |
| real_time.push_back(run.real_accumulated_time / run.iterations); |
| cpu_time.push_back(run.cpu_accumulated_time / run.iterations); |
| } |
| |
| LeastSq result_cpu; |
| LeastSq result_real; |
| |
| if (reports[0].complexity == oLambda) { |
| result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda); |
| result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda); |
| } else { |
| result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity); |
| result_real = MinimalLeastSq(n, real_time, result_cpu.complexity); |
| } |
| |
| std::string run_name = reports[0].benchmark_name().substr( |
| 0, reports[0].benchmark_name().find('/')); |
| |
| // Get the data from the accumulator to BenchmarkReporter::Run's. |
| Run big_o; |
| big_o.run_name = run_name; |
| big_o.run_type = BenchmarkReporter::Run::RT_Aggregate; |
| big_o.aggregate_name = "BigO"; |
| big_o.iterations = 0; |
| big_o.real_accumulated_time = result_real.coef; |
| big_o.cpu_accumulated_time = result_cpu.coef; |
| big_o.report_big_o = true; |
| big_o.complexity = result_cpu.complexity; |
| |
| // All the time results are reported after being multiplied by the |
| // time unit multiplier. But since RMS is a relative quantity it |
| // should not be multiplied at all. So, here, we _divide_ it by the |
| // multiplier so that when it is multiplied later the result is the |
| // correct one. |
| double multiplier = GetTimeUnitMultiplier(reports[0].time_unit); |
| |
| // Only add label to mean/stddev if it is same for all runs |
| Run rms; |
| rms.run_name = run_name; |
| big_o.report_label = reports[0].report_label; |
| rms.run_type = BenchmarkReporter::Run::RT_Aggregate; |
| rms.aggregate_name = "RMS"; |
| rms.report_label = big_o.report_label; |
| rms.iterations = 0; |
| rms.real_accumulated_time = result_real.rms / multiplier; |
| rms.cpu_accumulated_time = result_cpu.rms / multiplier; |
| rms.report_rms = true; |
| rms.complexity = result_cpu.complexity; |
| // don't forget to keep the time unit, or we won't be able to |
| // recover the correct value. |
| rms.time_unit = reports[0].time_unit; |
| |
| results.push_back(big_o); |
| results.push_back(rms); |
| return results; |
| } |
| |
| } // end namespace benchmark |