blob: 60f9a21b244dedd06782b98d3f6a7d442c68387a [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef TEST_ALLOCATOR_H
#define TEST_ALLOCATOR_H
#include <type_traits>
#include <new>
#include <memory>
#include <utility>
#include <cstddef>
#include <cstdlib>
#include <climits>
#include <cassert>
#include "test_macros.h"
template <class Alloc>
inline typename std::allocator_traits<Alloc>::size_type
alloc_max_size(Alloc const &a) {
typedef std::allocator_traits<Alloc> AT;
return AT::max_size(a);
}
class test_alloc_base
{
protected:
static int time_to_throw;
public:
static int throw_after;
static int count;
static int alloc_count;
static int copied;
static int moved;
static int converted;
const static int destructed_value = -1;
const static int default_value = 0;
const static int moved_value = INT_MAX;
static void clear() {
assert(count == 0 && "clearing leaking allocator data?");
count = 0;
time_to_throw = 0;
alloc_count = 0;
throw_after = INT_MAX;
clear_ctor_counters();
}
static void clear_ctor_counters() {
copied = 0;
moved = 0;
converted = 0;
}
};
int test_alloc_base::count = 0;
int test_alloc_base::time_to_throw = 0;
int test_alloc_base::alloc_count = 0;
int test_alloc_base::throw_after = INT_MAX;
int test_alloc_base::copied = 0;
int test_alloc_base::moved = 0;
int test_alloc_base::converted = 0;
template <class T>
class test_allocator
: public test_alloc_base
{
int data_; // participates in equality
int id_; // unique identifier, doesn't participate in equality
template <class U> friend class test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef typename std::add_lvalue_reference<value_type>::type reference;
typedef typename std::add_lvalue_reference<const value_type>::type const_reference;
template <class U> struct rebind {typedef test_allocator<U> other;};
test_allocator() TEST_NOEXCEPT : data_(0), id_(0) {++count;}
explicit test_allocator(int i, int id = 0) TEST_NOEXCEPT : data_(i), id_(id)
{++count;}
test_allocator(const test_allocator& a) TEST_NOEXCEPT : data_(a.data_),
id_(a.id_) {
++count;
++copied;
assert(a.data_ != destructed_value && a.id_ != destructed_value &&
"copying from destroyed allocator");
}
#if TEST_STD_VER >= 11
test_allocator(test_allocator&& a) TEST_NOEXCEPT : data_(a.data_),
id_(a.id_) {
++count;
++moved;
assert(a.data_ != destructed_value && a.id_ != destructed_value &&
"moving from destroyed allocator");
a.data_ = moved_value;
a.id_ = moved_value;
}
#endif
template <class U>
test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT : data_(a.data_),
id_(a.id_) {
++count;
++converted;
}
~test_allocator() TEST_NOEXCEPT {
assert(data_ >= 0); assert(id_ >= 0);
--count;
data_ = destructed_value;
id_ = destructed_value;
}
pointer address(reference x) const {return &x;}
const_pointer address(const_reference x) const {return &x;}
pointer allocate(size_type n, const void* = 0)
{
assert(data_ >= 0);
if (time_to_throw >= throw_after) {
#ifndef TEST_HAS_NO_EXCEPTIONS
throw std::bad_alloc();
#else
std::terminate();
#endif
}
++time_to_throw;
++alloc_count;
return (pointer)::operator new(n * sizeof(T));
}
void deallocate(pointer p, size_type)
{assert(data_ >= 0); --alloc_count; ::operator delete((void*)p);}
size_type max_size() const TEST_NOEXCEPT
{return UINT_MAX / sizeof(T);}
#if TEST_STD_VER < 11
void construct(pointer p, const T& val)
{::new(static_cast<void*>(p)) T(val);}
#else
template <class U> void construct(pointer p, U&& val)
{::new(static_cast<void*>(p)) T(std::forward<U>(val));}
#endif
void destroy(pointer p)
{p->~T();}
friend bool operator==(const test_allocator& x, const test_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const test_allocator& x, const test_allocator& y)
{return !(x == y);}
int get_data() const { return data_; }
int get_id() const { return id_; }
};
template <class T>
class non_default_test_allocator
: public test_alloc_base
{
int data_;
template <class U> friend class non_default_test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef typename std::add_lvalue_reference<value_type>::type reference;
typedef typename std::add_lvalue_reference<const value_type>::type const_reference;
template <class U> struct rebind {typedef non_default_test_allocator<U> other;};
// non_default_test_allocator() TEST_NOEXCEPT : data_(0) {++count;}
explicit non_default_test_allocator(int i) TEST_NOEXCEPT : data_(i) {++count;}
non_default_test_allocator(const non_default_test_allocator& a) TEST_NOEXCEPT
: data_(a.data_) {++count;}
template <class U> non_default_test_allocator(const non_default_test_allocator<U>& a) TEST_NOEXCEPT
: data_(a.data_) {++count;}
~non_default_test_allocator() TEST_NOEXCEPT {assert(data_ >= 0); --count; data_ = -1;}
pointer address(reference x) const {return &x;}
const_pointer address(const_reference x) const {return &x;}
pointer allocate(size_type n, const void* = 0)
{
assert(data_ >= 0);
if (time_to_throw >= throw_after) {
#ifndef TEST_HAS_NO_EXCEPTIONS
throw std::bad_alloc();
#else
std::terminate();
#endif
}
++time_to_throw;
++alloc_count;
return (pointer)::operator new (n * sizeof(T));
}
void deallocate(pointer p, size_type)
{assert(data_ >= 0); --alloc_count; ::operator delete((void*)p); }
size_type max_size() const TEST_NOEXCEPT
{return UINT_MAX / sizeof(T);}
#if TEST_STD_VER < 11
void construct(pointer p, const T& val)
{::new(static_cast<void*>(p)) T(val);}
#else
template <class U> void construct(pointer p, U&& val)
{::new(static_cast<void*>(p)) T(std::forward<U>(val));}
#endif
void destroy(pointer p) {p->~T();}
friend bool operator==(const non_default_test_allocator& x, const non_default_test_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const non_default_test_allocator& x, const non_default_test_allocator& y)
{return !(x == y);}
};
template <>
class test_allocator<void>
: public test_alloc_base
{
int data_;
int id_;
template <class U> friend class test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef void value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
template <class U> struct rebind {typedef test_allocator<U> other;};
test_allocator() TEST_NOEXCEPT : data_(0), id_(0) {}
explicit test_allocator(int i, int id = 0) TEST_NOEXCEPT : data_(i), id_(id) {}
test_allocator(const test_allocator& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_) {}
template <class U> test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_) {}
~test_allocator() TEST_NOEXCEPT {data_ = -1; id_ = -1; }
int get_id() const { return id_; }
int get_data() const { return data_; }
friend bool operator==(const test_allocator& x, const test_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const test_allocator& x, const test_allocator& y)
{return !(x == y);}
};
template <class T>
class other_allocator
{
int data_;
template <class U> friend class other_allocator;
public:
typedef T value_type;
other_allocator() : data_(-1) {}
explicit other_allocator(int i) : data_(i) {}
template <class U> other_allocator(const other_allocator<U>& a)
: data_(a.data_) {}
T* allocate(std::size_t n)
{return (T*)::operator new(n * sizeof(T));}
void deallocate(T* p, std::size_t)
{::operator delete((void*)p);}
other_allocator select_on_container_copy_construction() const
{return other_allocator(-2);}
friend bool operator==(const other_allocator& x, const other_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const other_allocator& x, const other_allocator& y)
{return !(x == y);}
typedef std::true_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
#if TEST_STD_VER < 11
std::size_t max_size() const
{return UINT_MAX / sizeof(T);}
#endif
};
#if TEST_STD_VER >= 11
struct Ctor_Tag {};
template <typename T> class TaggingAllocator;
struct Tag_X {
// All constructors must be passed the Tag type.
// DefaultInsertable into vector<X, TaggingAllocator<X>>,
Tag_X(Ctor_Tag) {}
// CopyInsertable into vector<X, TaggingAllocator<X>>,
Tag_X(Ctor_Tag, const Tag_X&) {}
// MoveInsertable into vector<X, TaggingAllocator<X>>, and
Tag_X(Ctor_Tag, Tag_X&&) {}
// EmplaceConstructible into vector<X, TaggingAllocator<X>> from args.
template<typename... Args>
Tag_X(Ctor_Tag, Args&&...) { }
// not DefaultConstructible, CopyConstructible or MoveConstructible.
Tag_X() = delete;
Tag_X(const Tag_X&) = delete;
Tag_X(Tag_X&&) = delete;
// CopyAssignable.
Tag_X& operator=(const Tag_X&) { return *this; }
// MoveAssignable.
Tag_X& operator=(Tag_X&&) { return *this; }
private:
// Not Destructible.
~Tag_X() { }
// Erasable from vector<X, TaggingAllocator<X>>.
friend class TaggingAllocator<Tag_X>;
};
template<typename T>
class TaggingAllocator {
public:
using value_type = T;
TaggingAllocator() = default;
template<typename U>
TaggingAllocator(const TaggingAllocator<U>&) { }
T* allocate(std::size_t n) { return std::allocator<T>{}.allocate(n); }
void deallocate(T* p, std::size_t n) { std::allocator<T>{}.deallocate(p, n); }
template<typename... Args>
void construct(Tag_X* p, Args&&... args)
{ ::new((void*)p) Tag_X(Ctor_Tag{}, std::forward<Args>(args)...); }
template<typename U, typename... Args>
void construct(U* p, Args&&... args)
{ ::new((void*)p) U(std::forward<Args>(args)...); }
template<typename U, typename... Args>
void destroy(U* p)
{ p->~U(); }
};
template<typename T, typename U>
bool
operator==(const TaggingAllocator<T>&, const TaggingAllocator<U>&)
{ return true; }
template<typename T, typename U>
bool
operator!=(const TaggingAllocator<T>&, const TaggingAllocator<U>&)
{ return false; }
#endif
template <std::size_t MaxAllocs>
struct limited_alloc_handle {
std::size_t outstanding_;
void* last_alloc_;
limited_alloc_handle() : outstanding_(0), last_alloc_(nullptr) {}
template <class T>
T *allocate(std::size_t N) {
if (N + outstanding_ > MaxAllocs)
TEST_THROW(std::bad_alloc());
last_alloc_ = ::operator new(N*sizeof(T));
outstanding_ += N;
return static_cast<T*>(last_alloc_);
}
void deallocate(void* ptr, std::size_t N) {
if (ptr == last_alloc_) {
last_alloc_ = nullptr;
assert(outstanding_ >= N);
outstanding_ -= N;
}
::operator delete(ptr);
}
};
template <class T, std::size_t N>
class limited_allocator
{
template <class U, std::size_t UN> friend class limited_allocator;
typedef limited_alloc_handle<N> BuffT;
std::shared_ptr<BuffT> handle_;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template <class U> struct rebind { typedef limited_allocator<U, N> other; };
limited_allocator() : handle_(new BuffT) {}
limited_allocator(limited_allocator const& other) : handle_(other.handle_) {}
template <class U>
explicit limited_allocator(limited_allocator<U, N> const& other)
: handle_(other.handle_) {}
private:
limited_allocator& operator=(const limited_allocator&);// = delete;
public:
pointer allocate(size_type n) { return handle_->template allocate<T>(n); }
void deallocate(pointer p, size_type n) { handle_->deallocate(p, n); }
size_type max_size() const {return N;}
BuffT* getHandle() const { return handle_.get(); }
};
template <class T, class U, std::size_t N>
inline bool operator==(limited_allocator<T, N> const& LHS,
limited_allocator<U, N> const& RHS) {
return LHS.getHandle() == RHS.getHandle();
}
template <class T, class U, std::size_t N>
inline bool operator!=(limited_allocator<T, N> const& LHS,
limited_allocator<U, N> const& RHS) {
return !(LHS == RHS);
}
#endif // TEST_ALLOCATOR_H