| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "benchmark/benchmark.h" |
| #include "test_macros.h" |
| |
| namespace internal { |
| |
| template <class D, class E, size_t I> |
| struct EnumValue : std::integral_constant<E, static_cast<E>(I)> { |
| static std::string name() { return std::string("_") + D::Names[I]; } |
| }; |
| |
| template <class D, class E, size_t ...Idxs> |
| constexpr auto makeEnumValueTuple(std::index_sequence<Idxs...>) { |
| return std::make_tuple(EnumValue<D, E, Idxs>{}...); |
| } |
| |
| template <class B> |
| static auto skip(const B& Bench, int) -> decltype(Bench.skip()) { |
| return Bench.skip(); |
| } |
| template <class B> |
| static auto skip(const B& Bench, char) { |
| return false; |
| } |
| |
| template <class B, class Args, size_t... Is> |
| void makeBenchmarkFromValuesImpl(const Args& A, std::index_sequence<Is...>) { |
| for (auto& V : A) { |
| B Bench{std::get<Is>(V)...}; |
| if (!internal::skip(Bench, 0)) { |
| benchmark::RegisterBenchmark(Bench.name().c_str(), |
| [=](benchmark::State& S) { Bench.run(S); }); |
| } |
| } |
| } |
| |
| template <class B, class... Args> |
| void makeBenchmarkFromValues(const std::vector<std::tuple<Args...> >& A) { |
| makeBenchmarkFromValuesImpl<B>(A, std::index_sequence_for<Args...>()); |
| } |
| |
| template <template <class...> class B, class Args, class... U> |
| void makeBenchmarkImpl(const Args& A, std::tuple<U...> t) { |
| makeBenchmarkFromValues<B<U...> >(A); |
| } |
| |
| template <template <class...> class B, class Args, class... U, |
| class... T, class... Tuples> |
| void makeBenchmarkImpl(const Args& A, std::tuple<U...>, std::tuple<T...>, |
| Tuples... rest) { |
| (internal::makeBenchmarkImpl<B>(A, std::tuple<U..., T>(), rest...), ...); |
| } |
| |
| template <class R, class T> |
| void allValueCombinations(R& Result, const T& Final) { |
| return Result.push_back(Final); |
| } |
| |
| template <class R, class T, class V, class... Vs> |
| void allValueCombinations(R& Result, const T& Prev, const V& Value, |
| const Vs&... Values) { |
| for (const auto& E : Value) { |
| allValueCombinations(Result, std::tuple_cat(Prev, std::make_tuple(E)), |
| Values...); |
| } |
| } |
| |
| } // namespace internal |
| |
| // CRTP class that enables using enum types as a dimension for |
| // makeCartesianProductBenchmark below. |
| // The type passed to `B` will be a std::integral_constant<E, e>, with the |
| // additional static function `name()` that returns the stringified name of the |
| // label. |
| // |
| // Eg: |
| // enum class MyEnum { A, B }; |
| // struct AllMyEnum : EnumValuesAsTuple<AllMyEnum, MyEnum, 2> { |
| // static constexpr absl::string_view Names[] = {"A", "B"}; |
| // }; |
| template <class Derived, class EnumType, size_t NumLabels> |
| using EnumValuesAsTuple = |
| decltype(internal::makeEnumValueTuple<Derived, EnumType>( |
| std::make_index_sequence<NumLabels>{})); |
| |
| // Instantiates B<T0, T1, ..., TN> where <Ti...> are the combinations in the |
| // cartesian product of `Tuples...`, and pass (arg0, ..., argN) as constructor |
| // arguments where `(argi...)` are the combination in the cartesian product of |
| // the runtime values of `A...`. |
| // B<T...> requires: |
| // - std::string name(args...): The name of the benchmark. |
| // - void run(benchmark::State&, args...): The body of the benchmark. |
| // It can also optionally provide: |
| // - bool skip(args...): When `true`, skips the combination. Default is false. |
| // |
| // Returns int to facilitate registration. The return value is unspecified. |
| template <template <class...> class B, class... Tuples, class... Args> |
| int makeCartesianProductBenchmark(const Args&... A) { |
| std::vector<std::tuple<typename Args::value_type...> > V; |
| internal::allValueCombinations(V, std::tuple<>(), A...); |
| internal::makeBenchmarkImpl<B>(V, std::tuple<>(), Tuples()...); |
| return 0; |
| } |
| |
| template <class B, class... Args> |
| int makeCartesianProductBenchmark(const Args&... A) { |
| std::vector<std::tuple<typename Args::value_type...> > V; |
| internal::allValueCombinations(V, std::tuple<>(), A...); |
| internal::makeBenchmarkFromValues<B>(V); |
| return 0; |
| } |
| |
| // When `opaque` is true, this function hides the runtime state of `value` from |
| // the optimizer. |
| // It returns `value`. |
| template <class T> |
| TEST_ALWAYS_INLINE inline T maybeOpaque(T value, bool opaque) { |
| if (opaque) benchmark::DoNotOptimize(value); |
| return value; |
| } |
| |