blob: fa4dffd9b5aaf9b032be85142fc8f6726401e388 [file] [log] [blame]
// Copyright 2017 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package android
import (
"bytes"
"fmt"
"path/filepath"
"regexp"
"sort"
"strings"
"sync"
"testing"
mkparser "android/soong/androidmk/parser"
"github.com/google/blueprint"
"github.com/google/blueprint/proptools"
)
func newTestContextForFixture(config Config) *TestContext {
ctx := &TestContext{
Context: &Context{blueprint.NewContext(), config},
}
ctx.postDeps = append(ctx.postDeps, registerPathDepsMutator)
ctx.SetFs(ctx.config.fs)
if ctx.config.mockBpList != "" {
ctx.SetModuleListFile(ctx.config.mockBpList)
}
return ctx
}
func NewTestContext(config Config) *TestContext {
ctx := newTestContextForFixture(config)
nameResolver := NewNameResolver(config)
ctx.NameResolver = nameResolver
ctx.SetNameInterface(nameResolver)
return ctx
}
var PrepareForTestWithArchMutator = GroupFixturePreparers(
// Configure architecture targets in the fixture config.
FixtureModifyConfig(modifyTestConfigToSupportArchMutator),
// Add the arch mutator to the context.
FixtureRegisterWithContext(func(ctx RegistrationContext) {
ctx.PreDepsMutators(registerArchMutator)
}),
)
var PrepareForTestWithDefaults = FixtureRegisterWithContext(func(ctx RegistrationContext) {
ctx.PreArchMutators(RegisterDefaultsPreArchMutators)
})
var PrepareForTestWithComponentsMutator = FixtureRegisterWithContext(func(ctx RegistrationContext) {
ctx.PreArchMutators(RegisterComponentsMutator)
})
var PrepareForTestWithPrebuilts = FixtureRegisterWithContext(RegisterPrebuiltMutators)
var PrepareForTestWithOverrides = FixtureRegisterWithContext(func(ctx RegistrationContext) {
ctx.PostDepsMutators(RegisterOverridePostDepsMutators)
})
var PrepareForTestWithLicenses = GroupFixturePreparers(
FixtureRegisterWithContext(RegisterLicenseKindBuildComponents),
FixtureRegisterWithContext(RegisterLicenseBuildComponents),
FixtureRegisterWithContext(registerLicenseMutators),
)
var PrepareForTestWithGenNotice = FixtureRegisterWithContext(RegisterGenNoticeBuildComponents)
func registerLicenseMutators(ctx RegistrationContext) {
ctx.PreArchMutators(RegisterLicensesPackageMapper)
ctx.PreArchMutators(RegisterLicensesPropertyGatherer)
ctx.PostDepsMutators(RegisterLicensesDependencyChecker)
}
var PrepareForTestWithLicenseDefaultModules = GroupFixturePreparers(
FixtureAddTextFile("build/soong/licenses/Android.bp", `
license {
name: "Android-Apache-2.0",
package_name: "Android",
license_kinds: ["SPDX-license-identifier-Apache-2.0"],
copyright_notice: "Copyright (C) The Android Open Source Project",
license_text: ["LICENSE"],
}
license_kind {
name: "SPDX-license-identifier-Apache-2.0",
conditions: ["notice"],
url: "https://spdx.org/licenses/Apache-2.0.html",
}
license_kind {
name: "legacy_unencumbered",
conditions: ["unencumbered"],
}
`),
FixtureAddFile("build/soong/licenses/LICENSE", nil),
)
var PrepareForTestWithNamespace = FixtureRegisterWithContext(func(ctx RegistrationContext) {
registerNamespaceBuildComponents(ctx)
ctx.PreArchMutators(RegisterNamespaceMutator)
})
var PrepareForTestWithMakevars = FixtureRegisterWithContext(func(ctx RegistrationContext) {
ctx.RegisterSingletonType("makevars", makeVarsSingletonFunc)
})
// Test fixture preparer that will register most java build components.
//
// Singletons and mutators should only be added here if they are needed for a majority of java
// module types, otherwise they should be added under a separate preparer to allow them to be
// selected only when needed to reduce test execution time.
//
// Module types do not have much of an overhead unless they are used so this should include as many
// module types as possible. The exceptions are those module types that require mutators and/or
// singletons in order to function in which case they should be kept together in a separate
// preparer.
//
// The mutators in this group were chosen because they are needed by the vast majority of tests.
var PrepareForTestWithAndroidBuildComponents = GroupFixturePreparers(
// Sorted alphabetically as the actual order does not matter as tests automatically enforce the
// correct order.
PrepareForTestWithArchMutator,
PrepareForTestWithComponentsMutator,
PrepareForTestWithDefaults,
PrepareForTestWithFilegroup,
PrepareForTestWithOverrides,
PrepareForTestWithPackageModule,
PrepareForTestWithPrebuilts,
PrepareForTestWithVisibility,
)
// Prepares an integration test with all build components from the android package.
//
// This should only be used by tests that want to run with as much of the build enabled as possible.
var PrepareForIntegrationTestWithAndroid = GroupFixturePreparers(
PrepareForTestWithAndroidBuildComponents,
)
// Prepares a test that may be missing dependencies by setting allow_missing_dependencies to
// true.
var PrepareForTestWithAllowMissingDependencies = GroupFixturePreparers(
FixtureModifyProductVariables(func(variables FixtureProductVariables) {
variables.Allow_missing_dependencies = proptools.BoolPtr(true)
}),
FixtureModifyContext(func(ctx *TestContext) {
ctx.SetAllowMissingDependencies(true)
}),
)
// Prepares a test that disallows non-existent paths.
var PrepareForTestDisallowNonExistentPaths = FixtureModifyConfig(func(config Config) {
config.TestAllowNonExistentPaths = false
})
func NewTestArchContext(config Config) *TestContext {
ctx := NewTestContext(config)
ctx.preDeps = append(ctx.preDeps, registerArchMutator)
return ctx
}
type TestContext struct {
*Context
preArch, preDeps, postDeps, finalDeps []RegisterMutatorFunc
bp2buildPreArch, bp2buildMutators []RegisterMutatorFunc
NameResolver *NameResolver
// The list of singletons registered for the test.
singletons sortableComponents
// The order in which the mutators and singletons will be run in this test
// context; for debugging.
mutatorOrder, singletonOrder []string
}
func (ctx *TestContext) PreArchMutators(f RegisterMutatorFunc) {
ctx.preArch = append(ctx.preArch, f)
}
func (ctx *TestContext) HardCodedPreArchMutators(f RegisterMutatorFunc) {
// Register mutator function as normal for testing.
ctx.PreArchMutators(f)
}
func (ctx *TestContext) ModuleProvider(m blueprint.Module, p blueprint.ProviderKey) interface{} {
return ctx.Context.ModuleProvider(m, p)
}
func (ctx *TestContext) PreDepsMutators(f RegisterMutatorFunc) {
ctx.preDeps = append(ctx.preDeps, f)
}
func (ctx *TestContext) PostDepsMutators(f RegisterMutatorFunc) {
ctx.postDeps = append(ctx.postDeps, f)
}
func (ctx *TestContext) FinalDepsMutators(f RegisterMutatorFunc) {
ctx.finalDeps = append(ctx.finalDeps, f)
}
// PreArchBp2BuildMutators adds mutators to be register for converting Android Blueprint modules
// into Bazel BUILD targets that should run prior to deps and conversion.
func (ctx *TestContext) PreArchBp2BuildMutators(f RegisterMutatorFunc) {
ctx.bp2buildPreArch = append(ctx.bp2buildPreArch, f)
}
// registeredComponentOrder defines the order in which a sortableComponent type is registered at
// runtime and provides support for reordering the components registered for a test in the same
// way.
type registeredComponentOrder struct {
// The name of the component type, used for error messages.
componentType string
// The names of the registered components in the order in which they were registered.
namesInOrder []string
// Maps from the component name to its position in the runtime ordering.
namesToIndex map[string]int
// A function that defines the order between two named components that can be used to sort a slice
// of component names into the same order as they appear in namesInOrder.
less func(string, string) bool
}
// registeredComponentOrderFromExistingOrder takes an existing slice of sortableComponents and
// creates a registeredComponentOrder that contains a less function that can be used to sort a
// subset of that list of names so it is in the same order as the original sortableComponents.
func registeredComponentOrderFromExistingOrder(componentType string, existingOrder sortableComponents) registeredComponentOrder {
// Only the names from the existing order are needed for this so create a list of component names
// in the correct order.
namesInOrder := componentsToNames(existingOrder)
// Populate the map from name to position in the list.
nameToIndex := make(map[string]int)
for i, n := range namesInOrder {
nameToIndex[n] = i
}
// A function to use to map from a name to an index in the original order.
indexOf := func(name string) int {
index, ok := nameToIndex[name]
if !ok {
// Should never happen as tests that use components that are not known at runtime do not sort
// so should never use this function.
panic(fmt.Errorf("internal error: unknown %s %q should be one of %s", componentType, name, strings.Join(namesInOrder, ", ")))
}
return index
}
// The less function.
less := func(n1, n2 string) bool {
i1 := indexOf(n1)
i2 := indexOf(n2)
return i1 < i2
}
return registeredComponentOrder{
componentType: componentType,
namesInOrder: namesInOrder,
namesToIndex: nameToIndex,
less: less,
}
}
// componentsToNames maps from the slice of components to a slice of their names.
func componentsToNames(components sortableComponents) []string {
names := make([]string, len(components))
for i, c := range components {
names[i] = c.componentName()
}
return names
}
// enforceOrdering enforces the supplied components are in the same order as is defined in this
// object.
//
// If the supplied components contains any components that are not registered at runtime, i.e. test
// specific components, then it is impossible to sort them into an order that both matches the
// runtime and also preserves the implicit ordering defined in the test. In that case it will not
// sort the components, instead it will just check that the components are in the correct order.
//
// Otherwise, this will sort the supplied components in place.
func (o *registeredComponentOrder) enforceOrdering(components sortableComponents) {
// Check to see if the list of components contains any components that are
// not registered at runtime.
var unknownComponents []string
testOrder := componentsToNames(components)
for _, name := range testOrder {
if _, ok := o.namesToIndex[name]; !ok {
unknownComponents = append(unknownComponents, name)
break
}
}
// If the slice contains some unknown components then it is not possible to
// sort them into an order that matches the runtime while also preserving the
// order expected from the test, so in that case don't sort just check that
// the order of the known mutators does match.
if len(unknownComponents) > 0 {
// Check order.
o.checkTestOrder(testOrder, unknownComponents)
} else {
// Sort the components.
sort.Slice(components, func(i, j int) bool {
n1 := components[i].componentName()
n2 := components[j].componentName()
return o.less(n1, n2)
})
}
}
// checkTestOrder checks that the supplied testOrder matches the one defined by this object,
// panicking if it does not.
func (o *registeredComponentOrder) checkTestOrder(testOrder []string, unknownComponents []string) {
lastMatchingTest := -1
matchCount := 0
// Take a copy of the runtime order as it is modified during the comparison.
runtimeOrder := append([]string(nil), o.namesInOrder...)
componentType := o.componentType
for i, j := 0, 0; i < len(testOrder) && j < len(runtimeOrder); {
test := testOrder[i]
runtime := runtimeOrder[j]
if test == runtime {
testOrder[i] = test + fmt.Sprintf(" <-- matched with runtime %s %d", componentType, j)
runtimeOrder[j] = runtime + fmt.Sprintf(" <-- matched with test %s %d", componentType, i)
lastMatchingTest = i
i += 1
j += 1
matchCount += 1
} else if _, ok := o.namesToIndex[test]; !ok {
// The test component is not registered globally so assume it is the correct place, treat it
// as having matched and skip it.
i += 1
matchCount += 1
} else {
// Assume that the test list is in the same order as the runtime list but the runtime list
// contains some components that are not present in the tests. So, skip the runtime component
// to try and find the next one that matches the current test component.
j += 1
}
}
// If every item in the test order was either test specific or matched one in the runtime then
// it is in the correct order. Otherwise, it was not so fail.
if matchCount != len(testOrder) {
// The test component names were not all matched with a runtime component name so there must
// either be a component present in the test that is not present in the runtime or they must be
// in the wrong order.
testOrder[lastMatchingTest+1] = testOrder[lastMatchingTest+1] + " <--- unmatched"
panic(fmt.Errorf("the tests uses test specific components %q and so cannot be automatically sorted."+
" Unfortunately it uses %s components in the wrong order.\n"+
"test order:\n %s\n"+
"runtime order\n %s\n",
SortedUniqueStrings(unknownComponents),
componentType,
strings.Join(testOrder, "\n "),
strings.Join(runtimeOrder, "\n ")))
}
}
// registrationSorter encapsulates the information needed to ensure that the test mutators are
// registered, and thereby executed, in the same order as they are at runtime.
//
// It MUST be populated lazily AFTER all package initialization has been done otherwise it will
// only define the order for a subset of all the registered build components that are available for
// the packages being tested.
//
// e.g if this is initialized during say the cc package initialization then any tests run in the
// java package will not sort build components registered by the java package's init() functions.
type registrationSorter struct {
// Used to ensure that this is only created once.
once sync.Once
// The order of mutators
mutatorOrder registeredComponentOrder
// The order of singletons
singletonOrder registeredComponentOrder
}
// populate initializes this structure from globally registered build components.
//
// Only the first call has any effect.
func (s *registrationSorter) populate() {
s.once.Do(func() {
// Created an ordering from the globally registered mutators.
globallyRegisteredMutators := collateGloballyRegisteredMutators()
s.mutatorOrder = registeredComponentOrderFromExistingOrder("mutator", globallyRegisteredMutators)
// Create an ordering from the globally registered singletons.
globallyRegisteredSingletons := collateGloballyRegisteredSingletons()
s.singletonOrder = registeredComponentOrderFromExistingOrder("singleton", globallyRegisteredSingletons)
})
}
// Provides support for enforcing the same order in which build components are registered globally
// to the order in which they are registered during tests.
//
// MUST only be accessed via the globallyRegisteredComponentsOrder func.
var globalRegistrationSorter registrationSorter
// globallyRegisteredComponentsOrder returns the globalRegistrationSorter after ensuring it is
// correctly populated.
func globallyRegisteredComponentsOrder() *registrationSorter {
globalRegistrationSorter.populate()
return &globalRegistrationSorter
}
func (ctx *TestContext) Register() {
globalOrder := globallyRegisteredComponentsOrder()
mutators := collateRegisteredMutators(ctx.preArch, ctx.preDeps, ctx.postDeps, ctx.finalDeps)
// Ensure that the mutators used in the test are in the same order as they are used at runtime.
globalOrder.mutatorOrder.enforceOrdering(mutators)
mutators.registerAll(ctx.Context)
// Ensure that the singletons used in the test are in the same order as they are used at runtime.
globalOrder.singletonOrder.enforceOrdering(ctx.singletons)
ctx.singletons.registerAll(ctx.Context)
// Save the sorted components order away to make them easy to access while debugging.
ctx.mutatorOrder = componentsToNames(mutators)
ctx.singletonOrder = componentsToNames(singletons)
}
func (ctx *TestContext) ParseFileList(rootDir string, filePaths []string) (deps []string, errs []error) {
// This function adapts the old style ParseFileList calls that are spread throughout the tests
// to the new style that takes a config.
return ctx.Context.ParseFileList(rootDir, filePaths, ctx.config)
}
func (ctx *TestContext) ParseBlueprintsFiles(rootDir string) (deps []string, errs []error) {
// This function adapts the old style ParseBlueprintsFiles calls that are spread throughout the
// tests to the new style that takes a config.
return ctx.Context.ParseBlueprintsFiles(rootDir, ctx.config)
}
func (ctx *TestContext) RegisterModuleType(name string, factory ModuleFactory) {
ctx.Context.RegisterModuleType(name, ModuleFactoryAdaptor(factory))
}
func (ctx *TestContext) RegisterSingletonModuleType(name string, factory SingletonModuleFactory) {
s, m := SingletonModuleFactoryAdaptor(name, factory)
ctx.RegisterSingletonType(name, s)
ctx.RegisterModuleType(name, m)
}
func (ctx *TestContext) RegisterParallelSingletonModuleType(name string, factory SingletonModuleFactory) {
s, m := SingletonModuleFactoryAdaptor(name, factory)
ctx.RegisterParallelSingletonType(name, s)
ctx.RegisterModuleType(name, m)
}
func (ctx *TestContext) RegisterSingletonType(name string, factory SingletonFactory) {
ctx.singletons = append(ctx.singletons, newSingleton(name, factory, false))
}
func (ctx *TestContext) RegisterParallelSingletonType(name string, factory SingletonFactory) {
ctx.singletons = append(ctx.singletons, newSingleton(name, factory, true))
}
// ModuleVariantForTests selects a specific variant of the module with the given
// name by matching the variations map against the variations of each module
// variant. A module variant matches the map if every variation that exists in
// both have the same value. Both the module and the map are allowed to have
// extra variations that the other doesn't have. Panics if not exactly one
// module variant matches.
func (ctx *TestContext) ModuleVariantForTests(name string, matchVariations map[string]string) TestingModule {
modules := []Module{}
ctx.VisitAllModules(func(m blueprint.Module) {
if ctx.ModuleName(m) == name {
am := m.(Module)
amMut := am.base().commonProperties.DebugMutators
amVar := am.base().commonProperties.DebugVariations
matched := true
for i, mut := range amMut {
if wantedVar, found := matchVariations[mut]; found && amVar[i] != wantedVar {
matched = false
break
}
}
if matched {
modules = append(modules, am)
}
}
})
if len(modules) == 0 {
// Show all the modules or module variants that do exist.
var allModuleNames []string
var allVariants []string
ctx.VisitAllModules(func(m blueprint.Module) {
allModuleNames = append(allModuleNames, ctx.ModuleName(m))
if ctx.ModuleName(m) == name {
allVariants = append(allVariants, m.(Module).String())
}
})
if len(allVariants) == 0 {
panic(fmt.Errorf("failed to find module %q. All modules:\n %s",
name, strings.Join(SortedUniqueStrings(allModuleNames), "\n ")))
} else {
sort.Strings(allVariants)
panic(fmt.Errorf("failed to find module %q matching %v. All variants:\n %s",
name, matchVariations, strings.Join(allVariants, "\n ")))
}
}
if len(modules) > 1 {
moduleStrings := []string{}
for _, m := range modules {
moduleStrings = append(moduleStrings, m.String())
}
sort.Strings(moduleStrings)
panic(fmt.Errorf("module %q has more than one variant that match %v:\n %s",
name, matchVariations, strings.Join(moduleStrings, "\n ")))
}
return newTestingModule(ctx.config, modules[0])
}
func (ctx *TestContext) ModuleForTests(name, variant string) TestingModule {
var module Module
ctx.VisitAllModules(func(m blueprint.Module) {
if ctx.ModuleName(m) == name && ctx.ModuleSubDir(m) == variant {
module = m.(Module)
}
})
if module == nil {
// find all the modules that do exist
var allModuleNames []string
var allVariants []string
ctx.VisitAllModules(func(m blueprint.Module) {
allModuleNames = append(allModuleNames, ctx.ModuleName(m))
if ctx.ModuleName(m) == name {
allVariants = append(allVariants, ctx.ModuleSubDir(m))
}
})
sort.Strings(allVariants)
if len(allVariants) == 0 {
panic(fmt.Errorf("failed to find module %q. All modules:\n %s",
name, strings.Join(SortedUniqueStrings(allModuleNames), "\n ")))
} else {
panic(fmt.Errorf("failed to find module %q variant %q. All variants:\n %s",
name, variant, strings.Join(allVariants, "\n ")))
}
}
return newTestingModule(ctx.config, module)
}
func (ctx *TestContext) ModuleVariantsForTests(name string) []string {
var variants []string
ctx.VisitAllModules(func(m blueprint.Module) {
if ctx.ModuleName(m) == name {
variants = append(variants, ctx.ModuleSubDir(m))
}
})
return variants
}
// SingletonForTests returns a TestingSingleton for the singleton registered with the given name.
func (ctx *TestContext) SingletonForTests(name string) TestingSingleton {
allSingletonNames := []string{}
for _, s := range ctx.Singletons() {
n := ctx.SingletonName(s)
if n == name {
return TestingSingleton{
baseTestingComponent: newBaseTestingComponent(ctx.config, s.(testBuildProvider)),
singleton: s.(*singletonAdaptor).Singleton,
}
}
allSingletonNames = append(allSingletonNames, n)
}
panic(fmt.Errorf("failed to find singleton %q."+
"\nall singletons: %v", name, allSingletonNames))
}
type InstallMakeRule struct {
Target string
Deps []string
OrderOnlyDeps []string
}
func parseMkRules(t *testing.T, config Config, nodes []mkparser.Node) []InstallMakeRule {
var rules []InstallMakeRule
for _, node := range nodes {
if mkParserRule, ok := node.(*mkparser.Rule); ok {
var rule InstallMakeRule
if targets := mkParserRule.Target.Words(); len(targets) == 0 {
t.Fatalf("no targets for rule %s", mkParserRule.Dump())
} else if len(targets) > 1 {
t.Fatalf("unsupported multiple targets for rule %s", mkParserRule.Dump())
} else if !targets[0].Const() {
t.Fatalf("unsupported non-const target for rule %s", mkParserRule.Dump())
} else {
rule.Target = normalizeStringRelativeToTop(config, targets[0].Value(nil))
}
prereqList := &rule.Deps
for _, prereq := range mkParserRule.Prerequisites.Words() {
if !prereq.Const() {
t.Fatalf("unsupported non-const prerequisite for rule %s", mkParserRule.Dump())
}
if prereq.Value(nil) == "|" {
prereqList = &rule.OrderOnlyDeps
continue
}
*prereqList = append(*prereqList, normalizeStringRelativeToTop(config, prereq.Value(nil)))
}
rules = append(rules, rule)
}
}
return rules
}
func (ctx *TestContext) InstallMakeRulesForTesting(t *testing.T) []InstallMakeRule {
installs := ctx.SingletonForTests("makevars").Singleton().(*makeVarsSingleton).installsForTesting
buf := bytes.NewBuffer(append([]byte(nil), installs...))
parser := mkparser.NewParser("makevars", buf)
nodes, errs := parser.Parse()
if len(errs) > 0 {
t.Fatalf("error parsing install rules: %s", errs[0])
}
return parseMkRules(t, ctx.config, nodes)
}
// MakeVarVariable provides access to make vars that will be written by the makeVarsSingleton
type MakeVarVariable interface {
// Name is the name of the variable.
Name() string
// Value is the value of the variable.
Value() string
}
func (v makeVarsVariable) Name() string {
return v.name
}
func (v makeVarsVariable) Value() string {
return v.value
}
// PrepareForTestAccessingMakeVars sets up the test so that MakeVarsForTesting will work.
var PrepareForTestAccessingMakeVars = GroupFixturePreparers(
PrepareForTestWithAndroidMk,
PrepareForTestWithMakevars,
)
// MakeVarsForTesting returns a filtered list of MakeVarVariable objects that represent the
// variables that will be written out.
//
// It is necessary to use PrepareForTestAccessingMakeVars in tests that want to call this function.
// Along with any other preparers needed to add the make vars.
func (ctx *TestContext) MakeVarsForTesting(filter func(variable MakeVarVariable) bool) []MakeVarVariable {
vars := ctx.SingletonForTests("makevars").Singleton().(*makeVarsSingleton).varsForTesting
result := make([]MakeVarVariable, 0, len(vars))
for _, v := range vars {
if filter(v) {
result = append(result, v)
}
}
return result
}
func (ctx *TestContext) Config() Config {
return ctx.config
}
type testBuildProvider interface {
BuildParamsForTests() []BuildParams
RuleParamsForTests() map[blueprint.Rule]blueprint.RuleParams
}
type TestingBuildParams struct {
BuildParams
RuleParams blueprint.RuleParams
config Config
}
// RelativeToTop creates a new instance of this which has had any usages of the current test's
// temporary and test specific build directory replaced with a path relative to the notional top.
//
// The parts of this structure which are changed are:
// * BuildParams
// - Args
// - All Path, Paths, WritablePath and WritablePaths fields.
//
// * RuleParams
// - Command
// - Depfile
// - Rspfile
// - RspfileContent
// - SymlinkOutputs
// - CommandDeps
// - CommandOrderOnly
//
// See PathRelativeToTop for more details.
//
// deprecated: this is no longer needed as TestingBuildParams are created in this form.
func (p TestingBuildParams) RelativeToTop() TestingBuildParams {
// If this is not a valid params then just return it back. That will make it easy to use with the
// Maybe...() methods.
if p.Rule == nil {
return p
}
if p.config.config == nil {
return p
}
// Take a copy of the build params and replace any args that contains test specific temporary
// paths with paths relative to the top.
bparams := p.BuildParams
bparams.Depfile = normalizeWritablePathRelativeToTop(bparams.Depfile)
bparams.Output = normalizeWritablePathRelativeToTop(bparams.Output)
bparams.Outputs = bparams.Outputs.RelativeToTop()
bparams.SymlinkOutput = normalizeWritablePathRelativeToTop(bparams.SymlinkOutput)
bparams.SymlinkOutputs = bparams.SymlinkOutputs.RelativeToTop()
bparams.ImplicitOutput = normalizeWritablePathRelativeToTop(bparams.ImplicitOutput)
bparams.ImplicitOutputs = bparams.ImplicitOutputs.RelativeToTop()
bparams.Input = normalizePathRelativeToTop(bparams.Input)
bparams.Inputs = bparams.Inputs.RelativeToTop()
bparams.Implicit = normalizePathRelativeToTop(bparams.Implicit)
bparams.Implicits = bparams.Implicits.RelativeToTop()
bparams.OrderOnly = bparams.OrderOnly.RelativeToTop()
bparams.Validation = normalizePathRelativeToTop(bparams.Validation)
bparams.Validations = bparams.Validations.RelativeToTop()
bparams.Args = normalizeStringMapRelativeToTop(p.config, bparams.Args)
// Ditto for any fields in the RuleParams.
rparams := p.RuleParams
rparams.Command = normalizeStringRelativeToTop(p.config, rparams.Command)
rparams.Depfile = normalizeStringRelativeToTop(p.config, rparams.Depfile)
rparams.Rspfile = normalizeStringRelativeToTop(p.config, rparams.Rspfile)
rparams.RspfileContent = normalizeStringRelativeToTop(p.config, rparams.RspfileContent)
rparams.SymlinkOutputs = normalizeStringArrayRelativeToTop(p.config, rparams.SymlinkOutputs)
rparams.CommandDeps = normalizeStringArrayRelativeToTop(p.config, rparams.CommandDeps)
rparams.CommandOrderOnly = normalizeStringArrayRelativeToTop(p.config, rparams.CommandOrderOnly)
return TestingBuildParams{
BuildParams: bparams,
RuleParams: rparams,
}
}
func normalizeWritablePathRelativeToTop(path WritablePath) WritablePath {
if path == nil {
return nil
}
return path.RelativeToTop().(WritablePath)
}
func normalizePathRelativeToTop(path Path) Path {
if path == nil {
return nil
}
return path.RelativeToTop()
}
func allOutputs(p BuildParams) []string {
outputs := append(WritablePaths(nil), p.Outputs...)
outputs = append(outputs, p.ImplicitOutputs...)
if p.Output != nil {
outputs = append(outputs, p.Output)
}
return outputs.Strings()
}
// AllOutputs returns all 'BuildParams.Output's and 'BuildParams.Outputs's in their full path string forms.
func (p TestingBuildParams) AllOutputs() []string {
return allOutputs(p.BuildParams)
}
// baseTestingComponent provides functionality common to both TestingModule and TestingSingleton.
type baseTestingComponent struct {
config Config
provider testBuildProvider
}
func newBaseTestingComponent(config Config, provider testBuildProvider) baseTestingComponent {
return baseTestingComponent{config, provider}
}
// A function that will normalize a string containing paths, e.g. ninja command, by replacing
// any references to the test specific temporary build directory that changes with each run to a
// fixed path relative to a notional top directory.
//
// This is similar to StringPathRelativeToTop except that assumes the string is a single path
// containing at most one instance of the temporary build directory at the start of the path while
// this assumes that there can be any number at any position.
func normalizeStringRelativeToTop(config Config, s string) string {
// The soongOutDir usually looks something like: /tmp/testFoo2345/001
//
// Replace any usage of the soongOutDir with out/soong, e.g. replace "/tmp/testFoo2345/001" with
// "out/soong".
outSoongDir := filepath.Clean(config.soongOutDir)
re := regexp.MustCompile(`\Q` + outSoongDir + `\E\b`)
s = re.ReplaceAllString(s, "out/soong")
// Replace any usage of the soongOutDir/.. with out, e.g. replace "/tmp/testFoo2345" with
// "out". This must come after the previous replacement otherwise this would replace
// "/tmp/testFoo2345/001" with "out/001" instead of "out/soong".
outDir := filepath.Dir(outSoongDir)
re = regexp.MustCompile(`\Q` + outDir + `\E\b`)
s = re.ReplaceAllString(s, "out")
return s
}
// normalizeStringArrayRelativeToTop creates a new slice constructed by applying
// normalizeStringRelativeToTop to each item in the slice.
func normalizeStringArrayRelativeToTop(config Config, slice []string) []string {
newSlice := make([]string, len(slice))
for i, s := range slice {
newSlice[i] = normalizeStringRelativeToTop(config, s)
}
return newSlice
}
// normalizeStringMapRelativeToTop creates a new map constructed by applying
// normalizeStringRelativeToTop to each value in the map.
func normalizeStringMapRelativeToTop(config Config, m map[string]string) map[string]string {
newMap := map[string]string{}
for k, v := range m {
newMap[k] = normalizeStringRelativeToTop(config, v)
}
return newMap
}
func (b baseTestingComponent) newTestingBuildParams(bparams BuildParams) TestingBuildParams {
return TestingBuildParams{
config: b.config,
BuildParams: bparams,
RuleParams: b.provider.RuleParamsForTests()[bparams.Rule],
}.RelativeToTop()
}
func (b baseTestingComponent) maybeBuildParamsFromRule(rule string) (TestingBuildParams, []string) {
var searchedRules []string
buildParams := b.provider.BuildParamsForTests()
for _, p := range buildParams {
ruleAsString := p.Rule.String()
searchedRules = append(searchedRules, ruleAsString)
if strings.Contains(ruleAsString, rule) {
return b.newTestingBuildParams(p), searchedRules
}
}
return TestingBuildParams{}, searchedRules
}
func (b baseTestingComponent) buildParamsFromRule(rule string) TestingBuildParams {
p, searchRules := b.maybeBuildParamsFromRule(rule)
if p.Rule == nil {
panic(fmt.Errorf("couldn't find rule %q.\nall rules:\n%s", rule, strings.Join(searchRules, "\n")))
}
return p
}
func (b baseTestingComponent) maybeBuildParamsFromDescription(desc string) (TestingBuildParams, []string) {
var searchedDescriptions []string
for _, p := range b.provider.BuildParamsForTests() {
searchedDescriptions = append(searchedDescriptions, p.Description)
if strings.Contains(p.Description, desc) {
return b.newTestingBuildParams(p), searchedDescriptions
}
}
return TestingBuildParams{}, searchedDescriptions
}
func (b baseTestingComponent) buildParamsFromDescription(desc string) TestingBuildParams {
p, searchedDescriptions := b.maybeBuildParamsFromDescription(desc)
if p.Rule == nil {
panic(fmt.Errorf("couldn't find description %q\nall descriptions:\n%s", desc, strings.Join(searchedDescriptions, "\n")))
}
return p
}
func (b baseTestingComponent) maybeBuildParamsFromOutput(file string) (TestingBuildParams, []string) {
searchedOutputs := WritablePaths(nil)
for _, p := range b.provider.BuildParamsForTests() {
outputs := append(WritablePaths(nil), p.Outputs...)
outputs = append(outputs, p.ImplicitOutputs...)
if p.Output != nil {
outputs = append(outputs, p.Output)
}
for _, f := range outputs {
if f.String() == file || f.Rel() == file || PathRelativeToTop(f) == file {
return b.newTestingBuildParams(p), nil
}
searchedOutputs = append(searchedOutputs, f)
}
}
formattedOutputs := []string{}
for _, f := range searchedOutputs {
formattedOutputs = append(formattedOutputs,
fmt.Sprintf("%s (rel=%s)", PathRelativeToTop(f), f.Rel()))
}
return TestingBuildParams{}, formattedOutputs
}
func (b baseTestingComponent) buildParamsFromOutput(file string) TestingBuildParams {
p, searchedOutputs := b.maybeBuildParamsFromOutput(file)
if p.Rule == nil {
panic(fmt.Errorf("couldn't find output %q.\nall outputs:\n %s\n",
file, strings.Join(searchedOutputs, "\n ")))
}
return p
}
func (b baseTestingComponent) allOutputs() []string {
var outputFullPaths []string
for _, p := range b.provider.BuildParamsForTests() {
outputFullPaths = append(outputFullPaths, allOutputs(p)...)
}
return outputFullPaths
}
// MaybeRule finds a call to ctx.Build with BuildParams.Rule set to a rule with the given name. Returns an empty
// BuildParams if no rule is found.
func (b baseTestingComponent) MaybeRule(rule string) TestingBuildParams {
r, _ := b.maybeBuildParamsFromRule(rule)
return r
}
// Rule finds a call to ctx.Build with BuildParams.Rule set to a rule with the given name. Panics if no rule is found.
func (b baseTestingComponent) Rule(rule string) TestingBuildParams {
return b.buildParamsFromRule(rule)
}
// MaybeDescription finds a call to ctx.Build with BuildParams.Description set to a the given string. Returns an empty
// BuildParams if no rule is found.
func (b baseTestingComponent) MaybeDescription(desc string) TestingBuildParams {
p, _ := b.maybeBuildParamsFromDescription(desc)
return p
}
// Description finds a call to ctx.Build with BuildParams.Description set to a the given string. Panics if no rule is
// found.
func (b baseTestingComponent) Description(desc string) TestingBuildParams {
return b.buildParamsFromDescription(desc)
}
// MaybeOutput finds a call to ctx.Build with a BuildParams.Output or BuildParams.Outputs whose String() or Rel()
// value matches the provided string. Returns an empty BuildParams if no rule is found.
func (b baseTestingComponent) MaybeOutput(file string) TestingBuildParams {
p, _ := b.maybeBuildParamsFromOutput(file)
return p
}
// Output finds a call to ctx.Build with a BuildParams.Output or BuildParams.Outputs whose String() or Rel()
// value matches the provided string. Panics if no rule is found.
func (b baseTestingComponent) Output(file string) TestingBuildParams {
return b.buildParamsFromOutput(file)
}
// AllOutputs returns all 'BuildParams.Output's and 'BuildParams.Outputs's in their full path string forms.
func (b baseTestingComponent) AllOutputs() []string {
return b.allOutputs()
}
// TestingModule is wrapper around an android.Module that provides methods to find information about individual
// ctx.Build parameters for verification in tests.
type TestingModule struct {
baseTestingComponent
module Module
}
func newTestingModule(config Config, module Module) TestingModule {
return TestingModule{
newBaseTestingComponent(config, module),
module,
}
}
// Module returns the Module wrapped by the TestingModule.
func (m TestingModule) Module() Module {
return m.module
}
// VariablesForTestsRelativeToTop returns a copy of the Module.VariablesForTests() with every value
// having any temporary build dir usages replaced with paths relative to a notional top.
func (m TestingModule) VariablesForTestsRelativeToTop() map[string]string {
return normalizeStringMapRelativeToTop(m.config, m.module.VariablesForTests())
}
// OutputFiles calls OutputFileProducer.OutputFiles on the encapsulated module, exits the test
// immediately if there is an error and otherwise returns the result of calling Paths.RelativeToTop
// on the returned Paths.
func (m TestingModule) OutputFiles(t *testing.T, tag string) Paths {
producer, ok := m.module.(OutputFileProducer)
if !ok {
t.Fatalf("%q must implement OutputFileProducer\n", m.module.Name())
}
paths, err := producer.OutputFiles(tag)
if err != nil {
t.Fatal(err)
}
return paths.RelativeToTop()
}
// TestingSingleton is wrapper around an android.Singleton that provides methods to find information about individual
// ctx.Build parameters for verification in tests.
type TestingSingleton struct {
baseTestingComponent
singleton Singleton
}
// Singleton returns the Singleton wrapped by the TestingSingleton.
func (s TestingSingleton) Singleton() Singleton {
return s.singleton
}
func FailIfErrored(t *testing.T, errs []error) {
t.Helper()
if len(errs) > 0 {
for _, err := range errs {
t.Error(err)
}
t.FailNow()
}
}
// Fail if no errors that matched the regular expression were found.
//
// Returns true if a matching error was found, false otherwise.
func FailIfNoMatchingErrors(t *testing.T, pattern string, errs []error) bool {
t.Helper()
matcher, err := regexp.Compile(pattern)
if err != nil {
t.Fatalf("failed to compile regular expression %q because %s", pattern, err)
}
found := false
for _, err := range errs {
if matcher.FindStringIndex(err.Error()) != nil {
found = true
break
}
}
if !found {
t.Errorf("could not match the expected error regex %q (checked %d error(s))", pattern, len(errs))
for i, err := range errs {
t.Errorf("errs[%d] = %q", i, err)
}
}
return found
}
func CheckErrorsAgainstExpectations(t *testing.T, errs []error, expectedErrorPatterns []string) {
t.Helper()
if expectedErrorPatterns == nil {
FailIfErrored(t, errs)
} else {
for _, expectedError := range expectedErrorPatterns {
FailIfNoMatchingErrors(t, expectedError, errs)
}
if len(errs) > len(expectedErrorPatterns) {
t.Errorf("additional errors found, expected %d, found %d",
len(expectedErrorPatterns), len(errs))
for i, expectedError := range expectedErrorPatterns {
t.Errorf("expectedErrors[%d] = %s", i, expectedError)
}
for i, err := range errs {
t.Errorf("errs[%d] = %s", i, err)
}
t.FailNow()
}
}
}
func SetKatiEnabledForTests(config Config) {
config.katiEnabled = true
}
func SetTrimmedApexEnabledForTests(config Config) {
config.productVariables.TrimmedApex = new(bool)
*config.productVariables.TrimmedApex = true
}
func AndroidMkEntriesForTest(t *testing.T, ctx *TestContext, mod blueprint.Module) []AndroidMkEntries {
t.Helper()
var p AndroidMkEntriesProvider
var ok bool
if p, ok = mod.(AndroidMkEntriesProvider); !ok {
t.Errorf("module does not implement AndroidMkEntriesProvider: " + mod.Name())
}
entriesList := p.AndroidMkEntries()
for i, _ := range entriesList {
entriesList[i].fillInEntries(ctx, mod)
}
return entriesList
}
func AndroidMkDataForTest(t *testing.T, ctx *TestContext, mod blueprint.Module) AndroidMkData {
t.Helper()
var p AndroidMkDataProvider
var ok bool
if p, ok = mod.(AndroidMkDataProvider); !ok {
t.Fatalf("module does not implement AndroidMkDataProvider: " + mod.Name())
}
data := p.AndroidMk()
data.fillInData(ctx, mod)
return data
}
// Normalize the path for testing.
//
// If the path is relative to the build directory then return the relative path
// to avoid tests having to deal with the dynamically generated build directory.
//
// Otherwise, return the supplied path as it is almost certainly a source path
// that is relative to the root of the source tree.
//
// The build and source paths should be distinguishable based on their contents.
//
// deprecated: use PathRelativeToTop instead as it handles make install paths and differentiates
// between output and source properly.
func NormalizePathForTesting(path Path) string {
if path == nil {
return "<nil path>"
}
p := path.String()
if w, ok := path.(WritablePath); ok {
rel, err := filepath.Rel(w.getSoongOutDir(), p)
if err != nil {
panic(err)
}
return rel
}
return p
}
// NormalizePathsForTesting creates a slice of strings where each string is the result of applying
// NormalizePathForTesting to the corresponding Path in the input slice.
//
// deprecated: use PathsRelativeToTop instead as it handles make install paths and differentiates
// between output and source properly.
func NormalizePathsForTesting(paths Paths) []string {
var result []string
for _, path := range paths {
relative := NormalizePathForTesting(path)
result = append(result, relative)
}
return result
}
// PathRelativeToTop returns a string representation of the path relative to a notional top
// directory.
//
// It return "<nil path>" if the supplied path is nil, otherwise it returns the result of calling
// Path.RelativeToTop to obtain a relative Path and then calling Path.String on that to get the
// string representation.
func PathRelativeToTop(path Path) string {
if path == nil {
return "<nil path>"
}
return path.RelativeToTop().String()
}
// PathsRelativeToTop creates a slice of strings where each string is the result of applying
// PathRelativeToTop to the corresponding Path in the input slice.
func PathsRelativeToTop(paths Paths) []string {
var result []string
for _, path := range paths {
relative := PathRelativeToTop(path)
result = append(result, relative)
}
return result
}
// StringPathRelativeToTop returns a string representation of the path relative to a notional top
// directory.
//
// See Path.RelativeToTop for more details as to what `relative to top` means.
//
// This is provided for processing paths that have already been converted into a string, e.g. paths
// in AndroidMkEntries structures. As a result it needs to be supplied the soong output dir against
// which it can try and relativize paths. PathRelativeToTop must be used for process Path objects.
func StringPathRelativeToTop(soongOutDir string, path string) string {
ensureTestOnly()
// A relative path must be a source path so leave it as it is.
if !filepath.IsAbs(path) {
return path
}
// Check to see if the path is relative to the soong out dir.
rel, isRel, err := maybeRelErr(soongOutDir, path)
if err != nil {
panic(err)
}
if isRel {
// The path is in the soong out dir so indicate that in the relative path.
return filepath.Join("out/soong", rel)
}
// Check to see if the path is relative to the top level out dir.
outDir := filepath.Dir(soongOutDir)
rel, isRel, err = maybeRelErr(outDir, path)
if err != nil {
panic(err)
}
if isRel {
// The path is in the out dir so indicate that in the relative path.
return filepath.Join("out", rel)
}
// This should never happen.
panic(fmt.Errorf("internal error: absolute path %s is not relative to the out dir %s", path, outDir))
}
// StringPathsRelativeToTop creates a slice of strings where each string is the result of applying
// StringPathRelativeToTop to the corresponding string path in the input slice.
//
// This is provided for processing paths that have already been converted into a string, e.g. paths
// in AndroidMkEntries structures. As a result it needs to be supplied the soong output dir against
// which it can try and relativize paths. PathsRelativeToTop must be used for process Paths objects.
func StringPathsRelativeToTop(soongOutDir string, paths []string) []string {
var result []string
for _, path := range paths {
relative := StringPathRelativeToTop(soongOutDir, path)
result = append(result, relative)
}
return result
}
// StringRelativeToTop will normalize a string containing paths, e.g. ninja command, by replacing
// any references to the test specific temporary build directory that changes with each run to a
// fixed path relative to a notional top directory.
//
// This is similar to StringPathRelativeToTop except that assumes the string is a single path
// containing at most one instance of the temporary build directory at the start of the path while
// this assumes that there can be any number at any position.
func StringRelativeToTop(config Config, command string) string {
return normalizeStringRelativeToTop(config, command)
}
// StringsRelativeToTop will return a new slice such that each item in the new slice is the result
// of calling StringRelativeToTop on the corresponding item in the input slice.
func StringsRelativeToTop(config Config, command []string) []string {
return normalizeStringArrayRelativeToTop(config, command)
}
func EnsureListContainsSuffix(t *testing.T, result []string, expected string) {
t.Helper()
if !SuffixInList(result, expected) {
t.Errorf("%q is not found in %v", expected, result)
}
}