| // Copyright 2015 Google Inc. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| package android |
| |
| import ( |
| "encoding" |
| "fmt" |
| "reflect" |
| "runtime" |
| "strings" |
| |
| "android/soong/bazel" |
| "android/soong/starlark_fmt" |
| |
| "github.com/google/blueprint" |
| "github.com/google/blueprint/bootstrap" |
| "github.com/google/blueprint/proptools" |
| ) |
| |
| /* |
| Example blueprints file containing all variant property groups, with comment listing what type |
| of variants get properties in that group: |
| |
| module { |
| arch: { |
| arm: { |
| // Host or device variants with arm architecture |
| }, |
| arm64: { |
| // Host or device variants with arm64 architecture |
| }, |
| x86: { |
| // Host or device variants with x86 architecture |
| }, |
| x86_64: { |
| // Host or device variants with x86_64 architecture |
| }, |
| }, |
| multilib: { |
| lib32: { |
| // Host or device variants for 32-bit architectures |
| }, |
| lib64: { |
| // Host or device variants for 64-bit architectures |
| }, |
| }, |
| target: { |
| android: { |
| // Device variants (implies Bionic) |
| }, |
| host: { |
| // Host variants |
| }, |
| bionic: { |
| // Bionic (device and host) variants |
| }, |
| linux_bionic: { |
| // Bionic host variants |
| }, |
| linux: { |
| // Bionic (device and host) and Linux glibc variants |
| }, |
| linux_glibc: { |
| // Linux host variants (using non-Bionic libc) |
| }, |
| darwin: { |
| // Darwin host variants |
| }, |
| windows: { |
| // Windows host variants |
| }, |
| not_windows: { |
| // Non-windows host variants |
| }, |
| android_arm: { |
| // Any <os>_<arch> combination restricts to that os and arch |
| }, |
| }, |
| } |
| */ |
| |
| // An Arch indicates a single CPU architecture. |
| type Arch struct { |
| // The type of the architecture (arm, arm64, x86, or x86_64). |
| ArchType ArchType |
| |
| // The variant of the architecture, for example "armv7-a" or "armv7-a-neon" for arm. |
| ArchVariant string |
| |
| // The variant of the CPU, for example "cortex-a53" for arm64. |
| CpuVariant string |
| |
| // The list of Android app ABIs supported by the CPU architecture, for example "arm64-v8a". |
| Abi []string |
| |
| // The list of arch-specific features supported by the CPU architecture, for example "neon". |
| ArchFeatures []string |
| } |
| |
| // String returns the Arch as a string. The value is used as the name of the variant created |
| // by archMutator. |
| func (a Arch) String() string { |
| s := a.ArchType.String() |
| if a.ArchVariant != "" { |
| s += "_" + a.ArchVariant |
| } |
| if a.CpuVariant != "" { |
| s += "_" + a.CpuVariant |
| } |
| return s |
| } |
| |
| // ArchType is used to define the 4 supported architecture types (arm, arm64, x86, x86_64), as |
| // well as the "common" architecture used for modules that support multiple architectures, for |
| // example Java modules. |
| type ArchType struct { |
| // Name is the name of the architecture type, "arm", "arm64", "x86", or "x86_64". |
| Name string |
| |
| // Field is the name of the field used in properties that refer to the architecture, e.g. "Arm64". |
| Field string |
| |
| // Multilib is either "lib32" or "lib64" for 32-bit or 64-bit architectures. |
| Multilib string |
| } |
| |
| // String returns the name of the ArchType. |
| func (a ArchType) String() string { |
| return a.Name |
| } |
| |
| const COMMON_VARIANT = "common" |
| |
| var ( |
| archTypeList []ArchType |
| |
| Arm = newArch("arm", "lib32") |
| Arm64 = newArch("arm64", "lib64") |
| X86 = newArch("x86", "lib32") |
| X86_64 = newArch("x86_64", "lib64") |
| |
| Common = ArchType{ |
| Name: COMMON_VARIANT, |
| } |
| ) |
| |
| var archTypeMap = map[string]ArchType{} |
| |
| func newArch(name, multilib string) ArchType { |
| archType := ArchType{ |
| Name: name, |
| Field: proptools.FieldNameForProperty(name), |
| Multilib: multilib, |
| } |
| archTypeList = append(archTypeList, archType) |
| archTypeMap[name] = archType |
| return archType |
| } |
| |
| // ArchTypeList returns a slice copy of the 4 supported ArchTypes for arm, |
| // arm64, x86 and x86_64. |
| func ArchTypeList() []ArchType { |
| return append([]ArchType(nil), archTypeList...) |
| } |
| |
| // MarshalText allows an ArchType to be serialized through any encoder that supports |
| // encoding.TextMarshaler. |
| func (a ArchType) MarshalText() ([]byte, error) { |
| return []byte(a.String()), nil |
| } |
| |
| var _ encoding.TextMarshaler = ArchType{} |
| |
| // UnmarshalText allows an ArchType to be deserialized through any decoder that supports |
| // encoding.TextUnmarshaler. |
| func (a *ArchType) UnmarshalText(text []byte) error { |
| if u, ok := archTypeMap[string(text)]; ok { |
| *a = u |
| return nil |
| } |
| |
| return fmt.Errorf("unknown ArchType %q", text) |
| } |
| |
| var _ encoding.TextUnmarshaler = &ArchType{} |
| |
| // OsClass is an enum that describes whether a variant of a module runs on the host, on the device, |
| // or is generic. |
| type OsClass int |
| |
| const ( |
| // Generic is used for variants of modules that are not OS-specific. |
| Generic OsClass = iota |
| // Device is used for variants of modules that run on the device. |
| Device |
| // Host is used for variants of modules that run on the host. |
| Host |
| ) |
| |
| // String returns the OsClass as a string. |
| func (class OsClass) String() string { |
| switch class { |
| case Generic: |
| return "generic" |
| case Device: |
| return "device" |
| case Host: |
| return "host" |
| default: |
| panic(fmt.Errorf("unknown class %d", class)) |
| } |
| } |
| |
| // OsType describes an OS variant of a module. |
| type OsType struct { |
| // Name is the name of the OS. It is also used as the name of the property in Android.bp |
| // files. |
| Name string |
| |
| // Field is the name of the OS converted to an exported field name, i.e. with the first |
| // character capitalized. |
| Field string |
| |
| // Class is the OsClass of the OS. |
| Class OsClass |
| |
| // DefaultDisabled is set when the module variants for the OS should not be created unless |
| // the module explicitly requests them. This is used to limit Windows cross compilation to |
| // only modules that need it. |
| DefaultDisabled bool |
| } |
| |
| // String returns the name of the OsType. |
| func (os OsType) String() string { |
| return os.Name |
| } |
| |
| // Bionic returns true if the OS uses the Bionic libc runtime, i.e. if the OS is Android or |
| // is Linux with Bionic. |
| func (os OsType) Bionic() bool { |
| return os == Android || os == LinuxBionic |
| } |
| |
| // Linux returns true if the OS uses the Linux kernel, i.e. if the OS is Android or is Linux |
| // with or without the Bionic libc runtime. |
| func (os OsType) Linux() bool { |
| return os == Android || os == Linux || os == LinuxBionic || os == LinuxMusl |
| } |
| |
| // newOsType constructs an OsType and adds it to the global lists. |
| func newOsType(name string, class OsClass, defDisabled bool, archTypes ...ArchType) OsType { |
| checkCalledFromInit() |
| os := OsType{ |
| Name: name, |
| Field: proptools.FieldNameForProperty(name), |
| Class: class, |
| |
| DefaultDisabled: defDisabled, |
| } |
| osTypeList = append(osTypeList, os) |
| |
| if _, found := commonTargetMap[name]; found { |
| panic(fmt.Errorf("Found Os type duplicate during OsType registration: %q", name)) |
| } else { |
| commonTargetMap[name] = Target{Os: os, Arch: CommonArch} |
| } |
| osArchTypeMap[os] = archTypes |
| |
| return os |
| } |
| |
| // osByName returns the OsType that has the given name, or NoOsType if none match. |
| func osByName(name string) OsType { |
| for _, os := range osTypeList { |
| if os.Name == name { |
| return os |
| } |
| } |
| |
| return NoOsType |
| } |
| |
| var ( |
| // osTypeList contains a list of all the supported OsTypes, including ones not supported |
| // by the current build host or the target device. |
| osTypeList []OsType |
| // commonTargetMap maps names of OsTypes to the corresponding common Target, i.e. the |
| // Target with the same OsType and the common ArchType. |
| commonTargetMap = make(map[string]Target) |
| // osArchTypeMap maps OsTypes to the list of supported ArchTypes for that OS. |
| osArchTypeMap = map[OsType][]ArchType{} |
| |
| // NoOsType is a placeholder for when no OS is needed. |
| NoOsType OsType |
| // Linux is the OS for the Linux kernel plus the glibc runtime. |
| Linux = newOsType("linux_glibc", Host, false, X86, X86_64) |
| // LinuxMusl is the OS for the Linux kernel plus the musl runtime. |
| LinuxMusl = newOsType("linux_musl", Host, false, X86, X86_64, Arm64, Arm) |
| // Darwin is the OS for MacOS/Darwin host machines. |
| Darwin = newOsType("darwin", Host, false, Arm64, X86_64) |
| // LinuxBionic is the OS for the Linux kernel plus the Bionic libc runtime, but without the |
| // rest of Android. |
| LinuxBionic = newOsType("linux_bionic", Host, false, Arm64, X86_64) |
| // Windows the OS for Windows host machines. |
| Windows = newOsType("windows", Host, true, X86, X86_64) |
| // Android is the OS for target devices that run all of Android, including the Linux kernel |
| // and the Bionic libc runtime. |
| Android = newOsType("android", Device, false, Arm, Arm64, X86, X86_64) |
| |
| // CommonOS is a pseudo OSType for a common OS variant, which is OsType agnostic and which |
| // has dependencies on all the OS variants. |
| CommonOS = newOsType("common_os", Generic, false) |
| |
| // CommonArch is the Arch for all modules that are os-specific but not arch specific, |
| // for example most Java modules. |
| CommonArch = Arch{ArchType: Common} |
| ) |
| |
| // OsTypeList returns a slice copy of the supported OsTypes. |
| func OsTypeList() []OsType { |
| return append([]OsType(nil), osTypeList...) |
| } |
| |
| // Target specifies the OS and architecture that a module is being compiled for. |
| type Target struct { |
| // Os the OS that the module is being compiled for (e.g. "linux_glibc", "android"). |
| Os OsType |
| // Arch is the architecture that the module is being compiled for. |
| Arch Arch |
| // NativeBridge is NativeBridgeEnabled if the architecture is supported using NativeBridge |
| // (i.e. arm on x86) for this device. |
| NativeBridge NativeBridgeSupport |
| // NativeBridgeHostArchName is the name of the real architecture that is used to implement |
| // the NativeBridge architecture. For example, for arm on x86 this would be "x86". |
| NativeBridgeHostArchName string |
| // NativeBridgeRelativePath is the name of the subdirectory that will contain NativeBridge |
| // libraries and binaries. |
| NativeBridgeRelativePath string |
| |
| // HostCross is true when the target cannot run natively on the current build host. |
| // For example, linux_glibc_x86 returns true on a regular x86/i686/Linux machines, but returns false |
| // on Mac (different OS), or on 64-bit only i686/Linux machines (unsupported arch). |
| HostCross bool |
| } |
| |
| // NativeBridgeSupport is an enum that specifies if a Target supports NativeBridge. |
| type NativeBridgeSupport bool |
| |
| const ( |
| NativeBridgeDisabled NativeBridgeSupport = false |
| NativeBridgeEnabled NativeBridgeSupport = true |
| ) |
| |
| // String returns the OS and arch variations used for the Target. |
| func (target Target) String() string { |
| return target.OsVariation() + "_" + target.ArchVariation() |
| } |
| |
| // OsVariation returns the name of the variation used by the osMutator for the Target. |
| func (target Target) OsVariation() string { |
| return target.Os.String() |
| } |
| |
| // ArchVariation returns the name of the variation used by the archMutator for the Target. |
| func (target Target) ArchVariation() string { |
| var variation string |
| if target.NativeBridge { |
| variation = "native_bridge_" |
| } |
| variation += target.Arch.String() |
| |
| return variation |
| } |
| |
| // Variations returns a list of blueprint.Variations for the osMutator and archMutator for the |
| // Target. |
| func (target Target) Variations() []blueprint.Variation { |
| return []blueprint.Variation{ |
| {Mutator: "os", Variation: target.OsVariation()}, |
| {Mutator: "arch", Variation: target.ArchVariation()}, |
| } |
| } |
| |
| func registerBp2buildArchPathDepsMutator(ctx RegisterMutatorsContext) { |
| ctx.BottomUp("bp2build-arch-pathdeps", bp2buildArchPathDepsMutator).Parallel() |
| } |
| |
| // add dependencies for architecture specific properties tagged with `android:"path"` |
| func bp2buildArchPathDepsMutator(ctx BottomUpMutatorContext) { |
| var module Module |
| module = ctx.Module() |
| |
| m := module.base() |
| if !m.ArchSpecific() { |
| return |
| } |
| |
| // addPathDepsForProps does not descend into sub structs, so we need to descend into the |
| // arch-specific properties ourselves |
| var properties []interface{} |
| for _, archProperties := range m.archProperties { |
| for _, archProps := range archProperties { |
| archPropValues := reflect.ValueOf(archProps).Elem() |
| // there are three "arch" variations, descend into each |
| for _, variant := range []string{"Arch", "Multilib", "Target"} { |
| // The properties are an interface, get the value (a pointer) that it points to |
| archProps := archPropValues.FieldByName(variant).Elem() |
| if archProps.IsNil() { |
| continue |
| } |
| // And then a pointer to a struct |
| archProps = archProps.Elem() |
| for i := 0; i < archProps.NumField(); i += 1 { |
| f := archProps.Field(i) |
| // If the value of the field is a struct (as opposed to a pointer to a struct) then step |
| // into the BlueprintEmbed field. |
| if f.Kind() == reflect.Struct { |
| f = f.FieldByName("BlueprintEmbed") |
| } |
| if f.IsZero() { |
| continue |
| } |
| props := f.Interface().(interface{}) |
| properties = append(properties, props) |
| } |
| } |
| } |
| } |
| addPathDepsForProps(ctx, properties) |
| } |
| |
| // osMutator splits an arch-specific module into a variant for each OS that is enabled for the |
| // module. It uses the HostOrDevice value passed to InitAndroidArchModule and the |
| // device_supported and host_supported properties to determine which OsTypes are enabled for this |
| // module, then searches through the Targets to determine which have enabled Targets for this |
| // module. |
| func osMutator(bpctx blueprint.BottomUpMutatorContext) { |
| var module Module |
| var ok bool |
| if module, ok = bpctx.Module().(Module); !ok { |
| // The module is not a Soong module, it is a Blueprint module. |
| if bootstrap.IsBootstrapModule(bpctx.Module()) { |
| // Bootstrap Go modules are always the build OS or linux bionic. |
| config := bpctx.Config().(Config) |
| osNames := []string{config.BuildOSTarget.OsVariation()} |
| for _, hostCrossTarget := range config.Targets[LinuxBionic] { |
| if hostCrossTarget.Arch.ArchType == config.BuildOSTarget.Arch.ArchType { |
| osNames = append(osNames, hostCrossTarget.OsVariation()) |
| } |
| } |
| osNames = FirstUniqueStrings(osNames) |
| bpctx.CreateVariations(osNames...) |
| } |
| return |
| } |
| |
| // Bootstrap Go module support above requires this mutator to be a |
| // blueprint.BottomUpMutatorContext because android.BottomUpMutatorContext |
| // filters out non-Soong modules. Now that we've handled them, create a |
| // normal android.BottomUpMutatorContext. |
| mctx := bottomUpMutatorContextFactory(bpctx, module, false, false) |
| |
| base := module.base() |
| |
| // Nothing to do for modules that are not architecture specific (e.g. a genrule). |
| if !base.ArchSpecific() { |
| return |
| } |
| |
| // Collect a list of OSTypes supported by this module based on the HostOrDevice value |
| // passed to InitAndroidArchModule and the device_supported and host_supported properties. |
| var moduleOSList []OsType |
| for _, os := range osTypeList { |
| for _, t := range mctx.Config().Targets[os] { |
| if base.supportsTarget(t) { |
| moduleOSList = append(moduleOSList, os) |
| break |
| } |
| } |
| } |
| |
| // If there are no supported OSes then disable the module. |
| if len(moduleOSList) == 0 { |
| base.Disable() |
| return |
| } |
| |
| // Convert the list of supported OsTypes to the variation names. |
| osNames := make([]string, len(moduleOSList)) |
| for i, os := range moduleOSList { |
| osNames[i] = os.String() |
| } |
| |
| createCommonOSVariant := base.commonProperties.CreateCommonOSVariant |
| if createCommonOSVariant { |
| // A CommonOS variant was requested so add it to the list of OS variants to |
| // create. It needs to be added to the end because it needs to depend on the |
| // the other variants in the list returned by CreateVariations(...) and inter |
| // variant dependencies can only be created from a later variant in that list to |
| // an earlier one. That is because variants are always processed in the order in |
| // which they are returned from CreateVariations(...). |
| osNames = append(osNames, CommonOS.Name) |
| moduleOSList = append(moduleOSList, CommonOS) |
| } |
| |
| // Create the variations, annotate each one with which OS it was created for, and |
| // squash the appropriate OS-specific properties into the top level properties. |
| modules := mctx.CreateVariations(osNames...) |
| for i, m := range modules { |
| m.base().commonProperties.CompileOS = moduleOSList[i] |
| m.base().setOSProperties(mctx) |
| } |
| |
| if createCommonOSVariant { |
| // A CommonOS variant was requested so add dependencies from it (the last one in |
| // the list) to the OS type specific variants. |
| last := len(modules) - 1 |
| commonOSVariant := modules[last] |
| commonOSVariant.base().commonProperties.CommonOSVariant = true |
| for _, module := range modules[0:last] { |
| // Ignore modules that are enabled. Note, this will only avoid adding |
| // dependencies on OsType variants that are explicitly disabled in their |
| // properties. The CommonOS variant will still depend on disabled variants |
| // if they are disabled afterwards, e.g. in archMutator if |
| if module.Enabled() { |
| mctx.AddInterVariantDependency(commonOsToOsSpecificVariantTag, commonOSVariant, module) |
| } |
| } |
| } |
| } |
| |
| type archDepTag struct { |
| blueprint.BaseDependencyTag |
| name string |
| } |
| |
| // Identifies the dependency from CommonOS variant to the os specific variants. |
| var commonOsToOsSpecificVariantTag = archDepTag{name: "common os to os specific"} |
| |
| // Get the OsType specific variants for the current CommonOS variant. |
| // |
| // The returned list will only contain enabled OsType specific variants of the |
| // module referenced in the supplied context. An empty list is returned if there |
| // are no enabled variants or the supplied context is not for an CommonOS |
| // variant. |
| func GetOsSpecificVariantsOfCommonOSVariant(mctx BaseModuleContext) []Module { |
| var variants []Module |
| mctx.VisitDirectDeps(func(m Module) { |
| if mctx.OtherModuleDependencyTag(m) == commonOsToOsSpecificVariantTag { |
| if m.Enabled() { |
| variants = append(variants, m) |
| } |
| } |
| }) |
| return variants |
| } |
| |
| var DarwinUniversalVariantTag = archDepTag{name: "darwin universal binary"} |
| |
| // archMutator splits a module into a variant for each Target requested by the module. Target selection |
| // for a module is in three levels, OsClass, multilib, and then Target. |
| // OsClass selection is determined by: |
| // - The HostOrDeviceSupported value passed in to InitAndroidArchModule by the module type factory, which selects |
| // whether the module type can compile for host, device or both. |
| // - The host_supported and device_supported properties on the module. |
| // If host is supported for the module, the Host and HostCross OsClasses are selected. If device is supported |
| // for the module, the Device OsClass is selected. |
| // Within each selected OsClass, the multilib selection is determined by: |
| // - The compile_multilib property if it set (which may be overridden by target.android.compile_multilib or |
| // target.host.compile_multilib). |
| // - The default multilib passed to InitAndroidArchModule if compile_multilib was not set. |
| // Valid multilib values include: |
| // "both": compile for all Targets supported by the OsClass (generally x86_64 and x86, or arm64 and arm). |
| // "first": compile for only a single preferred Target supported by the OsClass. This is generally x86_64 or arm64, |
| // but may be arm for a 32-bit only build. |
| // "32": compile for only a single 32-bit Target supported by the OsClass. |
| // "64": compile for only a single 64-bit Target supported by the OsClass. |
| // "common": compile a for a single Target that will work on all Targets supported by the OsClass (for example Java). |
| // "common_first": compile a for a Target that will work on all Targets supported by the OsClass |
| // (same as "common"), plus a second Target for the preferred Target supported by the OsClass |
| // (same as "first"). This is used for java_binary that produces a common .jar and a wrapper |
| // executable script. |
| // |
| // Once the list of Targets is determined, the module is split into a variant for each Target. |
| // |
| // Modules can be initialized with InitAndroidMultiTargetsArchModule, in which case they will be split by OsClass, |
| // but will have a common Target that is expected to handle all other selected Targets via ctx.MultiTargets(). |
| func archMutator(bpctx blueprint.BottomUpMutatorContext) { |
| var module Module |
| var ok bool |
| if module, ok = bpctx.Module().(Module); !ok { |
| if bootstrap.IsBootstrapModule(bpctx.Module()) { |
| // Bootstrap Go modules are always the build architecture. |
| bpctx.CreateVariations(bpctx.Config().(Config).BuildOSTarget.ArchVariation()) |
| } |
| return |
| } |
| |
| // Bootstrap Go module support above requires this mutator to be a |
| // blueprint.BottomUpMutatorContext because android.BottomUpMutatorContext |
| // filters out non-Soong modules. Now that we've handled them, create a |
| // normal android.BottomUpMutatorContext. |
| mctx := bottomUpMutatorContextFactory(bpctx, module, false, false) |
| |
| base := module.base() |
| |
| if !base.ArchSpecific() { |
| return |
| } |
| |
| os := base.commonProperties.CompileOS |
| if os == CommonOS { |
| // Make sure that the target related properties are initialized for the |
| // CommonOS variant. |
| addTargetProperties(module, commonTargetMap[os.Name], nil, true) |
| |
| // Do not create arch specific variants for the CommonOS variant. |
| return |
| } |
| |
| osTargets := mctx.Config().Targets[os] |
| image := base.commonProperties.ImageVariation |
| // Filter NativeBridge targets unless they are explicitly supported. |
| // Skip creating native bridge variants for non-core modules. |
| if os == Android && !(base.IsNativeBridgeSupported() && image == CoreVariation) { |
| |
| var targets []Target |
| for _, t := range osTargets { |
| if !t.NativeBridge { |
| targets = append(targets, t) |
| } |
| } |
| |
| osTargets = targets |
| } |
| |
| // only the primary arch in the ramdisk / vendor_ramdisk / recovery partition |
| if os == Android && (module.InstallInRecovery() || module.InstallInRamdisk() || module.InstallInVendorRamdisk() || module.InstallInDebugRamdisk()) { |
| osTargets = []Target{osTargets[0]} |
| } |
| |
| // Windows builds always prefer 32-bit |
| prefer32 := os == Windows |
| |
| // Determine the multilib selection for this module. |
| ignorePrefer32OnDevice := mctx.Config().IgnorePrefer32OnDevice() |
| multilib, extraMultilib := decodeMultilib(base, os, ignorePrefer32OnDevice) |
| |
| // Convert the multilib selection into a list of Targets. |
| targets, err := decodeMultilibTargets(multilib, osTargets, prefer32) |
| if err != nil { |
| mctx.ModuleErrorf("%s", err.Error()) |
| } |
| |
| // If the module is using extraMultilib, decode the extraMultilib selection into |
| // a separate list of Targets. |
| var multiTargets []Target |
| if extraMultilib != "" { |
| multiTargets, err = decodeMultilibTargets(extraMultilib, osTargets, prefer32) |
| if err != nil { |
| mctx.ModuleErrorf("%s", err.Error()) |
| } |
| } |
| |
| // Recovery is always the primary architecture, filter out any other architectures. |
| // Common arch is also allowed |
| if image == RecoveryVariation { |
| primaryArch := mctx.Config().DevicePrimaryArchType() |
| targets = filterToArch(targets, primaryArch, Common) |
| multiTargets = filterToArch(multiTargets, primaryArch, Common) |
| } |
| |
| // If there are no supported targets disable the module. |
| if len(targets) == 0 { |
| base.Disable() |
| return |
| } |
| |
| // Convert the targets into a list of arch variation names. |
| targetNames := make([]string, len(targets)) |
| for i, target := range targets { |
| targetNames[i] = target.ArchVariation() |
| } |
| |
| // Create the variations, annotate each one with which Target it was created for, and |
| // squash the appropriate arch-specific properties into the top level properties. |
| modules := mctx.CreateVariations(targetNames...) |
| for i, m := range modules { |
| addTargetProperties(m, targets[i], multiTargets, i == 0) |
| m.base().setArchProperties(mctx) |
| |
| // Install support doesn't understand Darwin+Arm64 |
| if os == Darwin && targets[i].HostCross { |
| m.base().commonProperties.SkipInstall = true |
| } |
| } |
| |
| // Create a dependency for Darwin Universal binaries from the primary to secondary |
| // architecture. The module itself will be responsible for calling lipo to merge the outputs. |
| if os == Darwin { |
| if multilib == "darwin_universal" && len(modules) == 2 { |
| mctx.AddInterVariantDependency(DarwinUniversalVariantTag, modules[1], modules[0]) |
| } else if multilib == "darwin_universal_common_first" && len(modules) == 3 { |
| mctx.AddInterVariantDependency(DarwinUniversalVariantTag, modules[2], modules[1]) |
| } |
| } |
| } |
| |
| // addTargetProperties annotates a variant with the Target is is being compiled for, the list |
| // of additional Targets it is supporting (if any), and whether it is the primary Target for |
| // the module. |
| func addTargetProperties(m Module, target Target, multiTargets []Target, primaryTarget bool) { |
| m.base().commonProperties.CompileTarget = target |
| m.base().commonProperties.CompileMultiTargets = multiTargets |
| m.base().commonProperties.CompilePrimary = primaryTarget |
| } |
| |
| // decodeMultilib returns the appropriate compile_multilib property for the module, or the default |
| // multilib from the factory's call to InitAndroidArchModule if none was set. For modules that |
| // called InitAndroidMultiTargetsArchModule it always returns "common" for multilib, and returns |
| // the actual multilib in extraMultilib. |
| func decodeMultilib(base *ModuleBase, os OsType, ignorePrefer32OnDevice bool) (multilib, extraMultilib string) { |
| // First check the "android.compile_multilib" or "host.compile_multilib" properties. |
| switch os.Class { |
| case Device: |
| multilib = String(base.commonProperties.Target.Android.Compile_multilib) |
| case Host: |
| multilib = String(base.commonProperties.Target.Host.Compile_multilib) |
| } |
| |
| // If those aren't set, try the "compile_multilib" property. |
| if multilib == "" { |
| multilib = String(base.commonProperties.Compile_multilib) |
| } |
| |
| // If that wasn't set, use the default multilib set by the factory. |
| if multilib == "" { |
| multilib = base.commonProperties.Default_multilib |
| } |
| |
| // If a device is configured with multiple targets, this option |
| // force all device targets that prefer32 to be compiled only as |
| // the first target. |
| if ignorePrefer32OnDevice && os.Class == Device && (multilib == "prefer32" || multilib == "first_prefer32") { |
| multilib = "first" |
| } |
| |
| if base.commonProperties.UseTargetVariants { |
| // Darwin has the concept of "universal binaries" which is implemented in Soong by |
| // building both x86_64 and arm64 variants, and having select module types know how to |
| // merge the outputs of their corresponding variants together into a final binary. Most |
| // module types don't need to understand this logic, as we only build a small portion |
| // of the tree for Darwin, and only module types writing macho files need to do the |
| // merging. |
| // |
| // This logic is not enabled for: |
| // "common", as it's not an arch-specific variant |
| // "32", as Darwin never has a 32-bit variant |
| // !UseTargetVariants, as the module has opted into handling the arch-specific logic on |
| // its own. |
| if os == Darwin && multilib != "common" && multilib != "32" { |
| if multilib == "common_first" { |
| multilib = "darwin_universal_common_first" |
| } else { |
| multilib = "darwin_universal" |
| } |
| } |
| |
| return multilib, "" |
| } else { |
| // For app modules a single arch variant will be created per OS class which is expected to handle all the |
| // selected arches. Return the common-type as multilib and any Android.bp provided multilib as extraMultilib |
| if multilib == base.commonProperties.Default_multilib { |
| multilib = "first" |
| } |
| return base.commonProperties.Default_multilib, multilib |
| } |
| } |
| |
| // filterToArch takes a list of Targets and an ArchType, and returns a modified list that contains |
| // only Targets that have the specified ArchTypes. |
| func filterToArch(targets []Target, archs ...ArchType) []Target { |
| for i := 0; i < len(targets); i++ { |
| found := false |
| for _, arch := range archs { |
| if targets[i].Arch.ArchType == arch { |
| found = true |
| break |
| } |
| } |
| if !found { |
| targets = append(targets[:i], targets[i+1:]...) |
| i-- |
| } |
| } |
| return targets |
| } |
| |
| // archPropRoot is a struct type used as the top level of the arch-specific properties. It |
| // contains the "arch", "multilib", and "target" property structs. It is used to split up the |
| // property structs to limit how much is allocated when a single arch-specific property group is |
| // used. The types are interface{} because they will hold instances of runtime-created types. |
| type archPropRoot struct { |
| Arch, Multilib, Target interface{} |
| } |
| |
| // archPropTypeDesc holds the runtime-created types for the property structs to instantiate to |
| // create an archPropRoot property struct. |
| type archPropTypeDesc struct { |
| arch, multilib, target reflect.Type |
| } |
| |
| // createArchPropTypeDesc takes a reflect.Type that is either a struct or a pointer to a struct, and |
| // returns lists of reflect.Types that contains the arch-variant properties inside structs for each |
| // arch, multilib and target property. |
| // |
| // This is a relatively expensive operation, so the results are cached in the global |
| // archPropTypeMap. It is constructed entirely based on compile-time data, so there is no need |
| // to isolate the results between multiple tests running in parallel. |
| func createArchPropTypeDesc(props reflect.Type) []archPropTypeDesc { |
| // Each property struct shard will be nested many times under the runtime generated arch struct, |
| // which can hit the limit of 64kB for the name of runtime generated structs. They are nested |
| // 97 times now, which may grow in the future, plus there is some overhead for the containing |
| // type. This number may need to be reduced if too many are added, but reducing it too far |
| // could cause problems if a single deeply nested property no longer fits in the name. |
| const maxArchTypeNameSize = 500 |
| |
| // Convert the type to a new set of types that contains only the arch-specific properties |
| // (those that are tagged with `android:"arch_variant"`), and sharded into multiple types |
| // to keep the runtime-generated names under the limit. |
| propShards, _ := proptools.FilterPropertyStructSharded(props, maxArchTypeNameSize, filterArchStruct) |
| |
| // If the type has no arch-specific properties there is nothing to do. |
| if len(propShards) == 0 { |
| return nil |
| } |
| |
| var ret []archPropTypeDesc |
| for _, props := range propShards { |
| |
| // variantFields takes a list of variant property field names and returns a list the |
| // StructFields with the names and the type of the current shard. |
| variantFields := func(names []string) []reflect.StructField { |
| ret := make([]reflect.StructField, len(names)) |
| |
| for i, name := range names { |
| ret[i].Name = name |
| ret[i].Type = props |
| } |
| |
| return ret |
| } |
| |
| // Create a type that contains the properties in this shard repeated for each |
| // architecture, architecture variant, and architecture feature. |
| archFields := make([]reflect.StructField, len(archTypeList)) |
| for i, arch := range archTypeList { |
| var variants []string |
| |
| for _, archVariant := range archVariants[arch] { |
| archVariant := variantReplacer.Replace(archVariant) |
| variants = append(variants, proptools.FieldNameForProperty(archVariant)) |
| } |
| for _, cpuVariant := range cpuVariants[arch] { |
| cpuVariant := variantReplacer.Replace(cpuVariant) |
| variants = append(variants, proptools.FieldNameForProperty(cpuVariant)) |
| } |
| for _, feature := range archFeatures[arch] { |
| feature := variantReplacer.Replace(feature) |
| variants = append(variants, proptools.FieldNameForProperty(feature)) |
| } |
| |
| // Create the StructFields for each architecture variant architecture feature |
| // (e.g. "arch.arm.cortex-a53" or "arch.arm.neon"). |
| fields := variantFields(variants) |
| |
| // Create the StructField for the architecture itself (e.g. "arch.arm"). The special |
| // "BlueprintEmbed" name is used by Blueprint to put the properties in the |
| // parent struct. |
| fields = append([]reflect.StructField{{ |
| Name: "BlueprintEmbed", |
| Type: props, |
| Anonymous: true, |
| }}, fields...) |
| |
| archFields[i] = reflect.StructField{ |
| Name: arch.Field, |
| Type: reflect.StructOf(fields), |
| } |
| } |
| |
| // Create the type of the "arch" property struct for this shard. |
| archType := reflect.StructOf(archFields) |
| |
| // Create the type for the "multilib" property struct for this shard, containing the |
| // "multilib.lib32" and "multilib.lib64" property structs. |
| multilibType := reflect.StructOf(variantFields([]string{"Lib32", "Lib64"})) |
| |
| // Start with a list of the special targets |
| targets := []string{ |
| "Host", |
| "Android64", |
| "Android32", |
| "Bionic", |
| "Glibc", |
| "Musl", |
| "Linux", |
| "Host_linux", |
| "Not_windows", |
| "Arm_on_x86", |
| "Arm_on_x86_64", |
| "Native_bridge", |
| } |
| for _, os := range osTypeList { |
| // Add all the OSes. |
| targets = append(targets, os.Field) |
| |
| // Add the OS/Arch combinations, e.g. "android_arm64". |
| for _, archType := range osArchTypeMap[os] { |
| targets = append(targets, GetCompoundTargetField(os, archType)) |
| |
| // Also add the special "linux_<arch>", "bionic_<arch>" , "glibc_<arch>", and |
| // "musl_<arch>" property structs. |
| if os.Linux() { |
| target := "Linux_" + archType.Name |
| if !InList(target, targets) { |
| targets = append(targets, target) |
| } |
| } |
| if os.Linux() && os.Class == Host { |
| target := "Host_linux_" + archType.Name |
| if !InList(target, targets) { |
| targets = append(targets, target) |
| } |
| } |
| if os.Bionic() { |
| target := "Bionic_" + archType.Name |
| if !InList(target, targets) { |
| targets = append(targets, target) |
| } |
| } |
| if os == Linux { |
| target := "Glibc_" + archType.Name |
| if !InList(target, targets) { |
| targets = append(targets, target) |
| } |
| } |
| if os == LinuxMusl { |
| target := "Musl_" + archType.Name |
| if !InList(target, targets) { |
| targets = append(targets, target) |
| } |
| } |
| } |
| } |
| |
| // Create the type for the "target" property struct for this shard. |
| targetType := reflect.StructOf(variantFields(targets)) |
| |
| // Return a descriptor of the 3 runtime-created types. |
| ret = append(ret, archPropTypeDesc{ |
| arch: reflect.PtrTo(archType), |
| multilib: reflect.PtrTo(multilibType), |
| target: reflect.PtrTo(targetType), |
| }) |
| } |
| return ret |
| } |
| |
| // variantReplacer converts architecture variant or architecture feature names into names that |
| // are valid for an Android.bp file. |
| var variantReplacer = strings.NewReplacer("-", "_", ".", "_") |
| |
| // filterArchStruct returns true if the given field is an architecture specific property. |
| func filterArchStruct(field reflect.StructField, prefix string) (bool, reflect.StructField) { |
| if proptools.HasTag(field, "android", "arch_variant") { |
| // The arch_variant field isn't necessary past this point |
| // Instead of wasting space, just remove it. Go also has a |
| // 16-bit limit on structure name length. The name is constructed |
| // based on the Go source representation of the structure, so |
| // the tag names count towards that length. |
| |
| androidTag := field.Tag.Get("android") |
| values := strings.Split(androidTag, ",") |
| |
| if string(field.Tag) != `android:"`+strings.Join(values, ",")+`"` { |
| panic(fmt.Errorf("unexpected tag format %q", field.Tag)) |
| } |
| // don't delete path tag as it is needed for bp2build |
| // these tags don't need to be present in the runtime generated struct type. |
| values = RemoveListFromList(values, []string{"arch_variant", "variant_prepend"}) |
| if len(values) > 0 && values[0] != "path" { |
| panic(fmt.Errorf("unknown tags %q in field %q", values, prefix+field.Name)) |
| } else if len(values) == 1 { |
| // FIXME(b/200678898): This assumes that the only tag type when there's |
| // `android:"arch_variant"` is `android` itself and thus clobbers others |
| field.Tag = reflect.StructTag(`android:"` + strings.Join(values, ",") + `"`) |
| } else { |
| field.Tag = `` |
| } |
| |
| return true, field |
| } |
| return false, field |
| } |
| |
| // archPropTypeMap contains a cache of the results of createArchPropTypeDesc for each type. It is |
| // shared across all Contexts, but is constructed based only on compile-time information so there |
| // is no risk of contaminating one Context with data from another. |
| var archPropTypeMap OncePer |
| |
| // initArchModule adds the architecture-specific property structs to a Module. |
| func initArchModule(m Module) { |
| |
| base := m.base() |
| |
| if len(base.archProperties) != 0 { |
| panic(fmt.Errorf("module %s already has archProperties", m.Name())) |
| } |
| |
| getStructType := func(properties interface{}) reflect.Type { |
| propertiesValue := reflect.ValueOf(properties) |
| t := propertiesValue.Type() |
| if propertiesValue.Kind() != reflect.Ptr { |
| panic(fmt.Errorf("properties must be a pointer to a struct, got %T", |
| propertiesValue.Interface())) |
| } |
| |
| propertiesValue = propertiesValue.Elem() |
| if propertiesValue.Kind() != reflect.Struct { |
| panic(fmt.Errorf("properties must be a pointer to a struct, got a pointer to %T", |
| propertiesValue.Interface())) |
| } |
| return t |
| } |
| |
| for _, properties := range m.GetProperties() { |
| t := getStructType(properties) |
| // Get or create the arch-specific property struct types for this property struct type. |
| archPropTypes := archPropTypeMap.Once(NewCustomOnceKey(t), func() interface{} { |
| return createArchPropTypeDesc(t) |
| }).([]archPropTypeDesc) |
| |
| // Instantiate one of each arch-specific property struct type and add it to the |
| // properties for the Module. |
| var archProperties []interface{} |
| for _, t := range archPropTypes { |
| archProperties = append(archProperties, &archPropRoot{ |
| Arch: reflect.Zero(t.arch).Interface(), |
| Multilib: reflect.Zero(t.multilib).Interface(), |
| Target: reflect.Zero(t.target).Interface(), |
| }) |
| } |
| base.archProperties = append(base.archProperties, archProperties) |
| m.AddProperties(archProperties...) |
| } |
| |
| } |
| |
| func maybeBlueprintEmbed(src reflect.Value) reflect.Value { |
| // If the value of the field is a struct (as opposed to a pointer to a struct) then step |
| // into the BlueprintEmbed field. |
| if src.Kind() == reflect.Struct { |
| return src.FieldByName("BlueprintEmbed") |
| } else { |
| return src |
| } |
| } |
| |
| // Merges the property struct in srcValue into dst. |
| func mergePropertyStruct(ctx ArchVariantContext, dst interface{}, srcValue reflect.Value) { |
| src := maybeBlueprintEmbed(srcValue).Interface() |
| |
| // order checks the `android:"variant_prepend"` tag to handle properties where the |
| // arch-specific value needs to come before the generic value, for example for lists of |
| // include directories. |
| order := func(property string, |
| dstField, srcField reflect.StructField, |
| dstValue, srcValue interface{}) (proptools.Order, error) { |
| if proptools.HasTag(dstField, "android", "variant_prepend") { |
| return proptools.Prepend, nil |
| } else { |
| return proptools.Append, nil |
| } |
| } |
| |
| // Squash the located property struct into the destination property struct. |
| err := proptools.ExtendMatchingProperties([]interface{}{dst}, src, nil, order) |
| if err != nil { |
| if propertyErr, ok := err.(*proptools.ExtendPropertyError); ok { |
| ctx.PropertyErrorf(propertyErr.Property, "%s", propertyErr.Err.Error()) |
| } else { |
| panic(err) |
| } |
| } |
| } |
| |
| // Returns the immediate child of the input property struct that corresponds to |
| // the sub-property "field". |
| func getChildPropertyStruct(ctx ArchVariantContext, |
| src reflect.Value, field, userFriendlyField string) (reflect.Value, bool) { |
| |
| // Step into non-nil pointers to structs in the src value. |
| if src.Kind() == reflect.Ptr { |
| if src.IsNil() { |
| return reflect.Value{}, false |
| } |
| src = src.Elem() |
| } |
| |
| // Find the requested field in the src struct. |
| child := src.FieldByName(proptools.FieldNameForProperty(field)) |
| if !child.IsValid() { |
| ctx.ModuleErrorf("field %q does not exist", userFriendlyField) |
| return reflect.Value{}, false |
| } |
| |
| if child.IsZero() { |
| return reflect.Value{}, false |
| } |
| |
| return child, true |
| } |
| |
| // Squash the appropriate OS-specific property structs into the matching top level property structs |
| // based on the CompileOS value that was annotated on the variant. |
| func (m *ModuleBase) setOSProperties(ctx BottomUpMutatorContext) { |
| os := m.commonProperties.CompileOS |
| |
| for i := range m.archProperties { |
| genProps := m.GetProperties()[i] |
| if m.archProperties[i] == nil { |
| continue |
| } |
| for _, archProperties := range m.archProperties[i] { |
| archPropValues := reflect.ValueOf(archProperties).Elem() |
| |
| targetProp := archPropValues.FieldByName("Target").Elem() |
| |
| // Handle host-specific properties in the form: |
| // target: { |
| // host: { |
| // key: value, |
| // }, |
| // }, |
| if os.Class == Host { |
| field := "Host" |
| prefix := "target.host" |
| if hostProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, hostProperties) |
| } |
| } |
| |
| // Handle target OS generalities of the form: |
| // target: { |
| // bionic: { |
| // key: value, |
| // }, |
| // } |
| if os.Linux() { |
| field := "Linux" |
| prefix := "target.linux" |
| if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, linuxProperties) |
| } |
| } |
| |
| if os.Linux() && os.Class == Host { |
| field := "Host_linux" |
| prefix := "target.host_linux" |
| if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, linuxProperties) |
| } |
| } |
| |
| if os.Bionic() { |
| field := "Bionic" |
| prefix := "target.bionic" |
| if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, bionicProperties) |
| } |
| } |
| |
| if os == Linux { |
| field := "Glibc" |
| prefix := "target.glibc" |
| if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, bionicProperties) |
| } |
| } |
| |
| if os == LinuxMusl { |
| field := "Musl" |
| prefix := "target.musl" |
| if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, bionicProperties) |
| } |
| } |
| |
| // Handle target OS properties in the form: |
| // target: { |
| // linux_glibc: { |
| // key: value, |
| // }, |
| // not_windows: { |
| // key: value, |
| // }, |
| // android { |
| // key: value, |
| // }, |
| // }, |
| field := os.Field |
| prefix := "target." + os.Name |
| if osProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, osProperties) |
| } |
| |
| if os.Class == Host && os != Windows { |
| field := "Not_windows" |
| prefix := "target.not_windows" |
| if notWindowsProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, notWindowsProperties) |
| } |
| } |
| |
| // Handle 64-bit device properties in the form: |
| // target { |
| // android64 { |
| // key: value, |
| // }, |
| // android32 { |
| // key: value, |
| // }, |
| // }, |
| // WARNING: this is probably not what you want to use in your blueprints file, it selects |
| // options for all targets on a device that supports 64-bit binaries, not just the targets |
| // that are being compiled for 64-bit. Its expected use case is binaries like linker and |
| // debuggerd that need to know when they are a 32-bit process running on a 64-bit device |
| if os.Class == Device { |
| if ctx.Config().Android64() { |
| field := "Android64" |
| prefix := "target.android64" |
| if android64Properties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, android64Properties) |
| } |
| } else { |
| field := "Android32" |
| prefix := "target.android32" |
| if android32Properties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { |
| mergePropertyStruct(ctx, genProps, android32Properties) |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Returns the struct containing the properties specific to the given |
| // architecture type. These look like this in Blueprint files: |
| // arch: { |
| // arm64: { |
| // key: value, |
| // }, |
| // }, |
| // This struct will also contain sub-structs containing to the architecture/CPU |
| // variants and features that themselves contain properties specific to those. |
| func getArchTypeStruct(ctx ArchVariantContext, archProperties interface{}, archType ArchType) (reflect.Value, bool) { |
| archPropValues := reflect.ValueOf(archProperties).Elem() |
| archProp := archPropValues.FieldByName("Arch").Elem() |
| prefix := "arch." + archType.Name |
| return getChildPropertyStruct(ctx, archProp, archType.Name, prefix) |
| } |
| |
| // Returns the struct containing the properties specific to a given multilib |
| // value. These look like this in the Blueprint file: |
| // multilib: { |
| // lib32: { |
| // key: value, |
| // }, |
| // }, |
| func getMultilibStruct(ctx ArchVariantContext, archProperties interface{}, archType ArchType) (reflect.Value, bool) { |
| archPropValues := reflect.ValueOf(archProperties).Elem() |
| multilibProp := archPropValues.FieldByName("Multilib").Elem() |
| return getChildPropertyStruct(ctx, multilibProp, archType.Multilib, "multilib."+archType.Multilib) |
| } |
| |
| func GetCompoundTargetField(os OsType, arch ArchType) string { |
| return os.Field + "_" + arch.Name |
| } |
| |
| // Returns the structs corresponding to the properties specific to the given |
| // architecture and OS in archProperties. |
| func getArchProperties(ctx BaseMutatorContext, archProperties interface{}, arch Arch, os OsType, nativeBridgeEnabled bool) []reflect.Value { |
| result := make([]reflect.Value, 0) |
| archPropValues := reflect.ValueOf(archProperties).Elem() |
| |
| targetProp := archPropValues.FieldByName("Target").Elem() |
| |
| archType := arch.ArchType |
| |
| if arch.ArchType != Common { |
| archStruct, ok := getArchTypeStruct(ctx, archProperties, arch.ArchType) |
| if ok { |
| result = append(result, archStruct) |
| |
| // Handle arch-variant-specific properties in the form: |
| // arch: { |
| // arm: { |
| // variant: { |
| // key: value, |
| // }, |
| // }, |
| // }, |
| v := variantReplacer.Replace(arch.ArchVariant) |
| if v != "" { |
| prefix := "arch." + archType.Name + "." + v |
| if variantProperties, ok := getChildPropertyStruct(ctx, archStruct, v, prefix); ok { |
| result = append(result, variantProperties) |
| } |
| } |
| |
| // Handle cpu-variant-specific properties in the form: |
| // arch: { |
| // arm: { |
| // variant: { |
| // key: value, |
| // }, |
| // }, |
| // }, |
| if arch.CpuVariant != arch.ArchVariant { |
| c := variantReplacer.Replace(arch.CpuVariant) |
| if c != "" { |
| prefix := "arch." + archType.Name + "." + c |
| if cpuVariantProperties, ok := getChildPropertyStruct(ctx, archStruct, c, prefix); ok { |
| result = append(result, cpuVariantProperties) |
| } |
| } |
| } |
| |
| // Handle arch-feature-specific properties in the form: |
| // arch: { |
| // arm: { |
| // feature: { |
| // key: value, |
| // }, |
| // }, |
| // }, |
| for _, feature := range arch.ArchFeatures { |
| prefix := "arch." + archType.Name + "." + feature |
| if featureProperties, ok := getChildPropertyStruct(ctx, archStruct, feature, prefix); ok { |
| result = append(result, featureProperties) |
| } |
| } |
| } |
| |
| if multilibProperties, ok := getMultilibStruct(ctx, archProperties, archType); ok { |
| result = append(result, multilibProperties) |
| } |
| |
| // Handle combined OS-feature and arch specific properties in the form: |
| // target: { |
| // bionic_x86: { |
| // key: value, |
| // }, |
| // } |
| if os.Linux() { |
| field := "Linux_" + arch.ArchType.Name |
| userFriendlyField := "target.linux_" + arch.ArchType.Name |
| if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, linuxProperties) |
| } |
| } |
| |
| if os.Bionic() { |
| field := "Bionic_" + archType.Name |
| userFriendlyField := "target.bionic_" + archType.Name |
| if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, bionicProperties) |
| } |
| } |
| |
| // Handle combined OS and arch specific properties in the form: |
| // target: { |
| // linux_glibc_x86: { |
| // key: value, |
| // }, |
| // linux_glibc_arm: { |
| // key: value, |
| // }, |
| // android_arm { |
| // key: value, |
| // }, |
| // android_x86 { |
| // key: value, |
| // }, |
| // }, |
| field := GetCompoundTargetField(os, archType) |
| userFriendlyField := "target." + os.Name + "_" + archType.Name |
| if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, osArchProperties) |
| } |
| |
| if os == Linux { |
| field := "Glibc_" + archType.Name |
| userFriendlyField := "target.glibc_" + "_" + archType.Name |
| if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, osArchProperties) |
| } |
| } |
| |
| if os == LinuxMusl { |
| field := "Musl_" + archType.Name |
| userFriendlyField := "target.musl_" + "_" + archType.Name |
| if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, osArchProperties) |
| } |
| } |
| } |
| |
| // Handle arm on x86 properties in the form: |
| // target { |
| // arm_on_x86 { |
| // key: value, |
| // }, |
| // arm_on_x86_64 { |
| // key: value, |
| // }, |
| // }, |
| if os.Class == Device { |
| if arch.ArchType == X86 && (hasArmAbi(arch) || |
| hasArmAndroidArch(ctx.Config().Targets[Android])) { |
| field := "Arm_on_x86" |
| userFriendlyField := "target.arm_on_x86" |
| if armOnX86Properties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, armOnX86Properties) |
| } |
| } |
| if arch.ArchType == X86_64 && (hasArmAbi(arch) || |
| hasArmAndroidArch(ctx.Config().Targets[Android])) { |
| field := "Arm_on_x86_64" |
| userFriendlyField := "target.arm_on_x86_64" |
| if armOnX8664Properties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { |
| result = append(result, armOnX8664Properties) |
| } |
| } |
| if os == Android && nativeBridgeEnabled { |
| userFriendlyField := "Native_bridge" |
| prefix := "target.native_bridge" |
| if nativeBridgeProperties, ok := getChildPropertyStruct(ctx, targetProp, userFriendlyField, prefix); ok { |
| result = append(result, nativeBridgeProperties) |
| } |
| } |
| } |
| |
| return result |
| } |
| |
| // Squash the appropriate arch-specific property structs into the matching top level property |
| // structs based on the CompileTarget value that was annotated on the variant. |
| func (m *ModuleBase) setArchProperties(ctx BottomUpMutatorContext) { |
| arch := m.Arch() |
| os := m.Os() |
| |
| for i := range m.archProperties { |
| genProps := m.GetProperties()[i] |
| if m.archProperties[i] == nil { |
| continue |
| } |
| |
| propStructs := make([]reflect.Value, 0) |
| for _, archProperty := range m.archProperties[i] { |
| propStructShard := getArchProperties(ctx, archProperty, arch, os, m.Target().NativeBridge == NativeBridgeEnabled) |
| propStructs = append(propStructs, propStructShard...) |
| } |
| |
| for _, propStruct := range propStructs { |
| mergePropertyStruct(ctx, genProps, propStruct) |
| } |
| } |
| } |
| |
| // determineBuildOS stores the OS and architecture used for host targets used during the build into |
| // config based on the runtime OS and architecture determined by Go and the product configuration. |
| func determineBuildOS(config *config) { |
| config.BuildOS = func() OsType { |
| switch runtime.GOOS { |
| case "linux": |
| if Bool(config.productVariables.HostMusl) { |
| return LinuxMusl |
| } |
| return Linux |
| case "darwin": |
| return Darwin |
| default: |
| panic(fmt.Sprintf("unsupported OS: %s", runtime.GOOS)) |
| } |
| }() |
| |
| config.BuildArch = func() ArchType { |
| switch runtime.GOARCH { |
| case "amd64": |
| return X86_64 |
| default: |
| panic(fmt.Sprintf("unsupported Arch: %s", runtime.GOARCH)) |
| } |
| }() |
| |
| } |
| |
| // Convert the arch product variables into a list of targets for each OsType. |
| func decodeTargetProductVariables(config *config) (map[OsType][]Target, error) { |
| variables := config.productVariables |
| |
| targets := make(map[OsType][]Target) |
| var targetErr error |
| |
| type targetConfig struct { |
| os OsType |
| archName string |
| archVariant *string |
| cpuVariant *string |
| abi []string |
| nativeBridgeEnabled NativeBridgeSupport |
| nativeBridgeHostArchName *string |
| nativeBridgeRelativePath *string |
| } |
| |
| addTarget := func(target targetConfig) { |
| if targetErr != nil { |
| return |
| } |
| |
| arch, err := decodeArch(target.os, target.archName, target.archVariant, target.cpuVariant, target.abi) |
| if err != nil { |
| targetErr = err |
| return |
| } |
| nativeBridgeRelativePathStr := String(target.nativeBridgeRelativePath) |
| nativeBridgeHostArchNameStr := String(target.nativeBridgeHostArchName) |
| |
| // Use guest arch as relative install path by default |
| if target.nativeBridgeEnabled && nativeBridgeRelativePathStr == "" { |
| nativeBridgeRelativePathStr = arch.ArchType.String() |
| } |
| |
| // A target is considered as HostCross if it's a host target which can't run natively on |
| // the currently configured build machine (either because the OS is different or because of |
| // the unsupported arch) |
| hostCross := false |
| if target.os.Class == Host { |
| var osSupported bool |
| if target.os == config.BuildOS { |
| osSupported = true |
| } else if config.BuildOS.Linux() && target.os.Linux() { |
| // LinuxBionic and Linux are compatible |
| osSupported = true |
| } else { |
| osSupported = false |
| } |
| |
| var archSupported bool |
| if arch.ArchType == Common { |
| archSupported = true |
| } else if arch.ArchType.Name == *variables.HostArch { |
| archSupported = true |
| } else if variables.HostSecondaryArch != nil && arch.ArchType.Name == *variables.HostSecondaryArch { |
| archSupported = true |
| } else { |
| archSupported = false |
| } |
| if !osSupported || !archSupported { |
| hostCross = true |
| } |
| } |
| |
| targets[target.os] = append(targets[target.os], |
| Target{ |
| Os: target.os, |
| Arch: arch, |
| NativeBridge: target.nativeBridgeEnabled, |
| NativeBridgeHostArchName: nativeBridgeHostArchNameStr, |
| NativeBridgeRelativePath: nativeBridgeRelativePathStr, |
| HostCross: hostCross, |
| }) |
| } |
| |
| if variables.HostArch == nil { |
| return nil, fmt.Errorf("No host primary architecture set") |
| } |
| |
| // The primary host target, which must always exist. |
| addTarget(targetConfig{os: config.BuildOS, archName: *variables.HostArch, nativeBridgeEnabled: NativeBridgeDisabled}) |
| |
| // An optional secondary host target. |
| if variables.HostSecondaryArch != nil && *variables.HostSecondaryArch != "" { |
| addTarget(targetConfig{os: config.BuildOS, archName: *variables.HostSecondaryArch, nativeBridgeEnabled: NativeBridgeDisabled}) |
| } |
| |
| // Optional cross-compiled host targets, generally Windows. |
| if String(variables.CrossHost) != "" { |
| crossHostOs := osByName(*variables.CrossHost) |
| if crossHostOs == NoOsType { |
| return nil, fmt.Errorf("Unknown cross host OS %q", *variables.CrossHost) |
| } |
| |
| if String(variables.CrossHostArch) == "" { |
| return nil, fmt.Errorf("No cross-host primary architecture set") |
| } |
| |
| // The primary cross-compiled host target. |
| addTarget(targetConfig{os: crossHostOs, archName: *variables.CrossHostArch, nativeBridgeEnabled: NativeBridgeDisabled}) |
| |
| // An optional secondary cross-compiled host target. |
| if variables.CrossHostSecondaryArch != nil && *variables.CrossHostSecondaryArch != "" { |
| addTarget(targetConfig{os: crossHostOs, archName: *variables.CrossHostSecondaryArch, nativeBridgeEnabled: NativeBridgeDisabled}) |
| } |
| } |
| |
| // Optional device targets |
| if variables.DeviceArch != nil && *variables.DeviceArch != "" { |
| // The primary device target. |
| addTarget(targetConfig{ |
| os: Android, |
| archName: *variables.DeviceArch, |
| archVariant: variables.DeviceArchVariant, |
| cpuVariant: variables.DeviceCpuVariant, |
| abi: variables.DeviceAbi, |
| nativeBridgeEnabled: NativeBridgeDisabled, |
| }) |
| |
| // An optional secondary device target. |
| if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" { |
| addTarget(targetConfig{ |
| os: Android, |
| archName: *variables.DeviceSecondaryArch, |
| archVariant: variables.DeviceSecondaryArchVariant, |
| cpuVariant: variables.DeviceSecondaryCpuVariant, |
| abi: variables.DeviceSecondaryAbi, |
| nativeBridgeEnabled: NativeBridgeDisabled, |
| }) |
| } |
| |
| // An optional NativeBridge device target. |
| if variables.NativeBridgeArch != nil && *variables.NativeBridgeArch != "" { |
| addTarget(targetConfig{ |
| os: Android, |
| archName: *variables.NativeBridgeArch, |
| archVariant: variables.NativeBridgeArchVariant, |
| cpuVariant: variables.NativeBridgeCpuVariant, |
| abi: variables.NativeBridgeAbi, |
| nativeBridgeEnabled: NativeBridgeEnabled, |
| nativeBridgeHostArchName: variables.DeviceArch, |
| nativeBridgeRelativePath: variables.NativeBridgeRelativePath, |
| }) |
| } |
| |
| // An optional secondary NativeBridge device target. |
| if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" && |
| variables.NativeBridgeSecondaryArch != nil && *variables.NativeBridgeSecondaryArch != "" { |
| addTarget(targetConfig{ |
| os: Android, |
| archName: *variables.NativeBridgeSecondaryArch, |
| archVariant: variables.NativeBridgeSecondaryArchVariant, |
| cpuVariant: variables.NativeBridgeSecondaryCpuVariant, |
| abi: variables.NativeBridgeSecondaryAbi, |
| nativeBridgeEnabled: NativeBridgeEnabled, |
| nativeBridgeHostArchName: variables.DeviceSecondaryArch, |
| nativeBridgeRelativePath: variables.NativeBridgeSecondaryRelativePath, |
| }) |
| } |
| } |
| |
| if targetErr != nil { |
| return nil, targetErr |
| } |
| |
| return targets, nil |
| } |
| |
| // hasArmAbi returns true if arch has at least one arm ABI |
| func hasArmAbi(arch Arch) bool { |
| return PrefixInList(arch.Abi, "arm") |
| } |
| |
| // hasArmAndroidArch returns true if targets has at least |
| // one arm Android arch (possibly native bridged) |
| func hasArmAndroidArch(targets []Target) bool { |
| for _, target := range targets { |
| if target.Os == Android && |
| (target.Arch.ArchType == Arm || target.Arch.ArchType == Arm64) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // archConfig describes a built-in configuration. |
| type archConfig struct { |
| arch string |
| archVariant string |
| cpuVariant string |
| abi []string |
| } |
| |
| // getNdkAbisConfig returns the list of archConfigs that are used for bulding |
| // the API stubs and static libraries that are included in the NDK. These are |
| // built *without Neon*, because non-Neon is still supported and building these |
| // with Neon will break those users. |
| func getNdkAbisConfig() []archConfig { |
| return []archConfig{ |
| {"arm64", "armv8-a-branchprot", "", []string{"arm64-v8a"}}, |
| {"arm", "armv7-a", "", []string{"armeabi-v7a"}}, |
| {"x86_64", "", "", []string{"x86_64"}}, |
| {"x86", "", "", []string{"x86"}}, |
| } |
| } |
| |
| // getAmlAbisConfig returns a list of archConfigs for the ABIs supported by mainline modules. |
| func getAmlAbisConfig() []archConfig { |
| return []archConfig{ |
| {"arm64", "armv8-a", "", []string{"arm64-v8a"}}, |
| {"arm", "armv7-a-neon", "", []string{"armeabi-v7a"}}, |
| {"x86_64", "", "", []string{"x86_64"}}, |
| {"x86", "", "", []string{"x86"}}, |
| } |
| } |
| |
| // decodeArchSettings converts a list of archConfigs into a list of Targets for the given OsType. |
| func decodeAndroidArchSettings(archConfigs []archConfig) ([]Target, error) { |
| var ret []Target |
| |
| for _, config := range archConfigs { |
| arch, err := decodeArch(Android, config.arch, &config.archVariant, |
| &config.cpuVariant, config.abi) |
| if err != nil { |
| return nil, err |
| } |
| |
| ret = append(ret, Target{ |
| Os: Android, |
| Arch: arch, |
| }) |
| } |
| |
| return ret, nil |
| } |
| |
| // decodeArch converts a set of strings from product variables into an Arch struct. |
| func decodeArch(os OsType, arch string, archVariant, cpuVariant *string, abi []string) (Arch, error) { |
| // Verify the arch is valid |
| archType, ok := archTypeMap[arch] |
| if !ok { |
| return Arch{}, fmt.Errorf("unknown arch %q", arch) |
| } |
| |
| a := Arch{ |
| ArchType: archType, |
| ArchVariant: String(archVariant), |
| CpuVariant: String(cpuVariant), |
| Abi: abi, |
| } |
| |
| // Convert generic arch variants into the empty string. |
| if a.ArchVariant == a.ArchType.Name || a.ArchVariant == "generic" { |
| a.ArchVariant = "" |
| } |
| |
| // Convert generic CPU variants into the empty string. |
| if a.CpuVariant == a.ArchType.Name || a.CpuVariant == "generic" { |
| a.CpuVariant = "" |
| } |
| |
| if a.ArchVariant != "" { |
| if validArchVariants := archVariants[archType]; !InList(a.ArchVariant, validArchVariants) { |
| return Arch{}, fmt.Errorf("[%q] unknown arch variant %q, support variants: %q", archType, a.ArchVariant, validArchVariants) |
| } |
| } |
| |
| if a.CpuVariant != "" { |
| if validCpuVariants := cpuVariants[archType]; !InList(a.CpuVariant, validCpuVariants) { |
| return Arch{}, fmt.Errorf("[%q] unknown cpu variant %q, support variants: %q", archType, a.CpuVariant, validCpuVariants) |
| } |
| } |
| |
| // Filter empty ABIs out of the list. |
| for i := 0; i < len(a.Abi); i++ { |
| if a.Abi[i] == "" { |
| a.Abi = append(a.Abi[:i], a.Abi[i+1:]...) |
| i-- |
| } |
| } |
| |
| // Set ArchFeatures from the arch type. for Android OS, other os-es do not specify features |
| if os == Android { |
| if featureMap, ok := androidArchFeatureMap[archType]; ok { |
| a.ArchFeatures = featureMap[a.ArchVariant] |
| } |
| } |
| |
| return a, nil |
| } |
| |
| // filterMultilibTargets takes a list of Targets and a multilib value and returns a new list of |
| // Targets containing only those that have the given multilib value. |
| func filterMultilibTargets(targets []Target, multilib string) []Target { |
| var ret []Target |
| for _, t := range targets { |
| if t.Arch.ArchType.Multilib == multilib { |
| ret = append(ret, t) |
| } |
| } |
| return ret |
| } |
| |
| // getCommonTargets returns the set of Os specific common architecture targets for each Os in a list |
| // of targets. |
| func getCommonTargets(targets []Target) []Target { |
| var ret []Target |
| set := make(map[string]bool) |
| |
| for _, t := range targets { |
| if _, found := set[t.Os.String()]; !found { |
| set[t.Os.String()] = true |
| common := commonTargetMap[t.Os.String()] |
| common.HostCross = t.HostCross |
| ret = append(ret, common) |
| } |
| } |
| |
| return ret |
| } |
| |
| // FirstTarget takes a list of Targets and a list of multilib values and returns a list of Targets |
| // that contains zero or one Target for each OsType, selecting the one that matches the earliest |
| // filter. |
| func FirstTarget(targets []Target, filters ...string) []Target { |
| // find the first target from each OS |
| var ret []Target |
| hasHost := false |
| set := make(map[OsType]bool) |
| |
| for _, filter := range filters { |
| buildTargets := filterMultilibTargets(targets, filter) |
| for _, t := range buildTargets { |
| if _, found := set[t.Os]; !found { |
| hasHost = hasHost || (t.Os.Class == Host) |
| set[t.Os] = true |
| ret = append(ret, t) |
| } |
| } |
| } |
| return ret |
| } |
| |
| // decodeMultilibTargets uses the module's multilib setting to select one or more targets from a |
| // list of Targets. |
| func decodeMultilibTargets(multilib string, targets []Target, prefer32 bool) ([]Target, error) { |
| var buildTargets []Target |
| |
| switch multilib { |
| case "common": |
| buildTargets = getCommonTargets(targets) |
| case "common_first": |
| buildTargets = getCommonTargets(targets) |
| if prefer32 { |
| buildTargets = append(buildTargets, FirstTarget(targets, "lib32", "lib64")...) |
| } else { |
| buildTargets = append(buildTargets, FirstTarget(targets, "lib64", "lib32")...) |
| } |
| case "both": |
| if prefer32 { |
| buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...) |
| buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...) |
| } else { |
| buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...) |
| buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...) |
| } |
| case "32": |
| buildTargets = filterMultilibTargets(targets, "lib32") |
| case "64": |
| buildTargets = filterMultilibTargets(targets, "lib64") |
| case "first": |
| if prefer32 { |
| buildTargets = FirstTarget(targets, "lib32", "lib64") |
| } else { |
| buildTargets = FirstTarget(targets, "lib64", "lib32") |
| } |
| case "first_prefer32": |
| buildTargets = FirstTarget(targets, "lib32", "lib64") |
| case "prefer32": |
| buildTargets = filterMultilibTargets(targets, "lib32") |
| if len(buildTargets) == 0 { |
| buildTargets = filterMultilibTargets(targets, "lib64") |
| } |
| case "darwin_universal": |
| buildTargets = filterMultilibTargets(targets, "lib64") |
| // Reverse the targets so that the first architecture can depend on the second |
| // architecture module in order to merge the outputs. |
| reverseSliceInPlace(buildTargets) |
| case "darwin_universal_common_first": |
| archTargets := filterMultilibTargets(targets, "lib64") |
| reverseSliceInPlace(archTargets) |
| buildTargets = append(getCommonTargets(targets), archTargets...) |
| default: |
| return nil, fmt.Errorf(`compile_multilib must be "both", "first", "32", "64", "prefer32" or "first_prefer32" found %q`, |
| multilib) |
| } |
| |
| return buildTargets, nil |
| } |
| |
| func (m *ModuleBase) getArchPropertySet(propertySet interface{}, archType ArchType) interface{} { |
| archString := archType.Field |
| for i := range m.archProperties { |
| if m.archProperties[i] == nil { |
| // Skip over nil properties |
| continue |
| } |
| |
| // Not archProperties are usable; this function looks for properties of a very specific |
| // form, and ignores the rest. |
| for _, archProperty := range m.archProperties[i] { |
| // archPropValue is a property struct, we are looking for the form: |
| // `arch: { arm: { key: value, ... }}` |
| archPropValue := reflect.ValueOf(archProperty).Elem() |
| |
| // Unwrap src so that it should looks like a pointer to `arm: { key: value, ... }` |
| src := archPropValue.FieldByName("Arch").Elem() |
| |
| // Step into non-nil pointers to structs in the src value. |
| if src.Kind() == reflect.Ptr { |
| if src.IsNil() { |
| continue |
| } |
| src = src.Elem() |
| } |
| |
| // Find the requested field (e.g. arm, x86) in the src struct. |
| src = src.FieldByName(archString) |
| |
| // We only care about structs. |
| if !src.IsValid() || src.Kind() != reflect.Struct { |
| continue |
| } |
| |
| // If the value of the field is a struct then step into the |
| // BlueprintEmbed field. The special "BlueprintEmbed" name is |
| // used by createArchPropTypeDesc to embed the arch properties |
| // in the parent struct, so the src arch prop should be in this |
| // field. |
| // |
| // See createArchPropTypeDesc for more details on how Arch-specific |
| // module properties are processed from the nested props and written |
| // into the module's archProperties. |
| src = src.FieldByName("BlueprintEmbed") |
| |
| // Clone the destination prop, since we want a unique prop struct per arch. |
| propertySetClone := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() |
| |
| // Copy the located property struct into the cloned destination property struct. |
| err := proptools.ExtendMatchingProperties([]interface{}{propertySetClone}, src.Interface(), nil, proptools.OrderReplace) |
| if err != nil { |
| // This is fine, it just means the src struct doesn't match the type of propertySet. |
| continue |
| } |
| |
| return propertySetClone |
| } |
| } |
| // No property set was found specific to the given arch, so return an empty |
| // property set. |
| return reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() |
| } |
| |
| // getMultilibPropertySet returns a property set struct matching the type of |
| // `propertySet`, containing multilib-specific module properties for the given architecture. |
| // If no multilib-specific properties exist for the given architecture, returns an empty property |
| // set matching `propertySet`'s type. |
| func (m *ModuleBase) getMultilibPropertySet(propertySet interface{}, archType ArchType) interface{} { |
| // archType.Multilib is lowercase (for example, lib32) but property struct field is |
| // capitalized, such as Lib32, so use strings.Title to capitalize it. |
| multiLibString := strings.Title(archType.Multilib) |
| |
| for i := range m.archProperties { |
| if m.archProperties[i] == nil { |
| // Skip over nil properties |
| continue |
| } |
| |
| // Not archProperties are usable; this function looks for properties of a very specific |
| // form, and ignores the rest. |
| for _, archProperties := range m.archProperties[i] { |
| // archPropValue is a property struct, we are looking for the form: |
| // `multilib: { lib32: { key: value, ... }}` |
| archPropValue := reflect.ValueOf(archProperties).Elem() |
| |
| // Unwrap src so that it should looks like a pointer to `lib32: { key: value, ... }` |
| src := archPropValue.FieldByName("Multilib").Elem() |
| |
| // Step into non-nil pointers to structs in the src value. |
| if src.Kind() == reflect.Ptr { |
| if src.IsNil() { |
| // Ignore nil pointers. |
| continue |
| } |
| src = src.Elem() |
| } |
| |
| // Find the requested field (e.g. lib32) in the src struct. |
| src = src.FieldByName(multiLibString) |
| |
| // We only care about valid struct pointers. |
| if !src.IsValid() || src.Kind() != reflect.Ptr || src.Elem().Kind() != reflect.Struct { |
| continue |
| } |
| |
| // Get the zero value for the requested property set. |
| propertySetClone := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() |
| |
| // Copy the located property struct into the "zero" property set struct. |
| err := proptools.ExtendMatchingProperties([]interface{}{propertySetClone}, src.Interface(), nil, proptools.OrderReplace) |
| |
| if err != nil { |
| // This is fine, it just means the src struct doesn't match. |
| continue |
| } |
| |
| return propertySetClone |
| } |
| } |
| |
| // There were no multilib properties specifically matching the given archtype. |
| // Return zeroed value. |
| return reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() |
| } |
| |
| // ArchVariantContext defines the limited context necessary to retrieve arch_variant properties. |
| type ArchVariantContext interface { |
| ModuleErrorf(fmt string, args ...interface{}) |
| PropertyErrorf(property, fmt string, args ...interface{}) |
| } |
| |
| // ArchVariantProperties represents a map of arch-variant config strings to a property interface{}. |
| type ArchVariantProperties map[string]interface{} |
| |
| // ConfigurationAxisToArchVariantProperties represents a map of bazel.ConfigurationAxis to |
| // ArchVariantProperties, such that each independent arch-variant axis maps to the |
| // configs/properties for that axis. |
| type ConfigurationAxisToArchVariantProperties map[bazel.ConfigurationAxis]ArchVariantProperties |
| |
| // GetArchVariantProperties returns a ConfigurationAxisToArchVariantProperties where the |
| // arch-variant properties correspond to the values of the properties of the 'propertySet' struct |
| // that are specific to that axis/configuration. Each axis is independent, containing |
| // non-overlapping configs that correspond to the various "arch-variant" support, at this time: |
| // arches (including multilib) |
| // oses |
| // arch+os combinations |
| // |
| // For example, passing a struct { Foo bool, Bar string } will return an interface{} that can be |
| // type asserted back into the same struct, containing the config-specific property value specified |
| // by the module if defined. |
| // |
| // Arch-specific properties may come from an arch stanza or a multilib stanza; properties |
| // in these stanzas are combined. |
| // For example: `arch: { x86: { Foo: ["bar"] } }, multilib: { lib32: {` Foo: ["baz"] } }` |
| // will result in `Foo: ["bar", "baz"]` being returned for architecture x86, if the given |
| // propertyset contains `Foo []string`. |
| func (m *ModuleBase) GetArchVariantProperties(ctx ArchVariantContext, propertySet interface{}) ConfigurationAxisToArchVariantProperties { |
| // Return value of the arch types to the prop values for that arch. |
| axisToProps := ConfigurationAxisToArchVariantProperties{} |
| |
| // Nothing to do for non-arch-specific modules. |
| if !m.ArchSpecific() { |
| return axisToProps |
| } |
| |
| dstType := reflect.ValueOf(propertySet).Type() |
| var archProperties []interface{} |
| |
| // First find the property set in the module that corresponds to the requested |
| // one. m.archProperties[i] corresponds to m.GetProperties()[i]. |
| for i, generalProp := range m.GetProperties() { |
| srcType := reflect.ValueOf(generalProp).Type() |
| if srcType == dstType { |
| archProperties = m.archProperties[i] |
| axisToProps[bazel.NoConfigAxis] = ArchVariantProperties{"": generalProp} |
| break |
| } |
| } |
| |
| if archProperties == nil { |
| // This module does not have the property set requested |
| return axisToProps |
| } |
| |
| archToProp := ArchVariantProperties{} |
| // For each arch type (x86, arm64, etc.) |
| for _, arch := range ArchTypeList() { |
| // Arch properties are sometimes sharded (see createArchPropTypeDesc() ). |
| // Iterate over ever shard and extract a struct with the same type as the |
| // input one that contains the data specific to that arch. |
| propertyStructs := make([]reflect.Value, 0) |
| for _, archProperty := range archProperties { |
| archTypeStruct, ok := getArchTypeStruct(ctx, archProperty, arch) |
| if ok { |
| propertyStructs = append(propertyStructs, archTypeStruct) |
| } |
| multilibStruct, ok := getMultilibStruct(ctx, archProperty, arch) |
| if ok { |
| propertyStructs = append(propertyStructs, multilibStruct) |
| } |
| } |
| |
| // Create a new instance of the requested property set |
| value := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() |
| |
| archToProp[arch.Name] = mergeStructs(ctx, propertyStructs, value) |
| } |
| axisToProps[bazel.ArchConfigurationAxis] = archToProp |
| |
| osToProp := ArchVariantProperties{} |
| archOsToProp := ArchVariantProperties{} |
| |
| linuxStructs := getTargetStructs(ctx, archProperties, "Linux") |
| bionicStructs := getTargetStructs(ctx, archProperties, "Bionic") |
| hostStructs := getTargetStructs(ctx, archProperties, "Host") |
| hostLinuxStructs := getTargetStructs(ctx, archProperties, "Host_linux") |
| hostNotWindowsStructs := getTargetStructs(ctx, archProperties, "Not_windows") |
| |
| // For android, linux, ... |
| for _, os := range osTypeList { |
| if os == CommonOS { |
| // It looks like this OS value is not used in Blueprint files |
| continue |
| } |
| osStructs := make([]reflect.Value, 0) |
| |
| osSpecificStructs := getTargetStructs(ctx, archProperties, os.Field) |
| if os.Class == Host { |
| osStructs = append(osStructs, hostStructs...) |
| } |
| if os.Linux() { |
| osStructs = append(osStructs, linuxStructs...) |
| } |
| if os.Bionic() { |
| osStructs = append(osStructs, bionicStructs...) |
| } |
| if os.Linux() && os.Class == Host { |
| osStructs = append(osStructs, hostLinuxStructs...) |
| } |
| |
| if os == LinuxMusl { |
| osStructs = append(osStructs, getTargetStructs(ctx, archProperties, "Musl")...) |
| } |
| if os == Linux { |
| osStructs = append(osStructs, getTargetStructs(ctx, archProperties, "Glibc")...) |
| } |
| |
| osStructs = append(osStructs, osSpecificStructs...) |
| |
| if os.Class == Host && os != Windows { |
| osStructs = append(osStructs, hostNotWindowsStructs...) |
| } |
| osToProp[os.Name] = mergeStructs(ctx, osStructs, propertySet) |
| |
| // For arm, x86, ... |
| for _, arch := range osArchTypeMap[os] { |
| osArchStructs := make([]reflect.Value, 0) |
| |
| // Auto-combine with Linux_ and Bionic_ targets. This potentially results in |
| // repetition and select() bloat, but use of Linux_* and Bionic_* targets is rare. |
| // TODO(b/201423152): Look into cleanup. |
| if os.Linux() { |
| targetField := "Linux_" + arch.Name |
| targetStructs := getTargetStructs(ctx, archProperties, targetField) |
| osArchStructs = append(osArchStructs, targetStructs...) |
| } |
| if os.Bionic() { |
| targetField := "Bionic_" + arch.Name |
| targetStructs := getTargetStructs(ctx, archProperties, targetField) |
| osArchStructs = append(osArchStructs, targetStructs...) |
| } |
| if os == LinuxMusl { |
| targetField := "Musl_" + arch.Name |
| targetStructs := getTargetStructs(ctx, archProperties, targetField) |
| osArchStructs = append(osArchStructs, targetStructs...) |
| } |
| if os == Linux { |
| targetField := "Glibc_" + arch.Name |
| targetStructs := getTargetStructs(ctx, archProperties, targetField) |
| osArchStructs = append(osArchStructs, targetStructs...) |
| } |
| |
| targetField := GetCompoundTargetField(os, arch) |
| targetName := fmt.Sprintf("%s_%s", os.Name, arch.Name) |
| targetStructs := getTargetStructs(ctx, archProperties, targetField) |
| osArchStructs = append(osArchStructs, targetStructs...) |
| |
| archOsToProp[targetName] = mergeStructs(ctx, osArchStructs, propertySet) |
| } |
| } |
| |
| axisToProps[bazel.OsConfigurationAxis] = osToProp |
| axisToProps[bazel.OsArchConfigurationAxis] = archOsToProp |
| return axisToProps |
| } |
| |
| // Returns a struct matching the propertySet interface, containing properties specific to the targetName |
| // For example, given these arguments: |
| // propertySet = BaseCompilerProperties |
| // targetName = "android_arm" |
| // And given this Android.bp fragment: |
| // target: |
| // android_arm: { |
| // srcs: ["foo.c"], |
| // } |
| // android_arm64: { |
| // srcs: ["bar.c"], |
| // } |
| // } |
| // This would return a BaseCompilerProperties with BaseCompilerProperties.Srcs = ["foo.c"] |
| func getTargetStructs(ctx ArchVariantContext, archProperties []interface{}, targetName string) []reflect.Value { |
| var propertyStructs []reflect.Value |
| for _, archProperty := range archProperties { |
| archPropValues := reflect.ValueOf(archProperty).Elem() |
| targetProp := archPropValues.FieldByName("Target").Elem() |
| targetStruct, ok := getChildPropertyStruct(ctx, targetProp, targetName, targetName) |
| if ok { |
| propertyStructs = append(propertyStructs, targetStruct) |
| } else { |
| return []reflect.Value{} |
| } |
| } |
| |
| return propertyStructs |
| } |
| |
| func mergeStructs(ctx ArchVariantContext, propertyStructs []reflect.Value, propertySet interface{}) interface{} { |
| // Create a new instance of the requested property set |
| value := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() |
| |
| // Merge all the structs together |
| for _, propertyStruct := range propertyStructs { |
| mergePropertyStruct(ctx, value, propertyStruct) |
| } |
| |
| return value |
| } |
| |
| func printArchTypeStarlarkDict(dict map[ArchType][]string) string { |
| valDict := make(map[string]string, len(dict)) |
| for k, v := range dict { |
| valDict[k.String()] = starlark_fmt.PrintStringList(v, 1) |
| } |
| return starlark_fmt.PrintDict(valDict, 0) |
| } |
| |
| func printArchTypeNestedStarlarkDict(dict map[ArchType]map[string][]string) string { |
| valDict := make(map[string]string, len(dict)) |
| for k, v := range dict { |
| valDict[k.String()] = starlark_fmt.PrintStringListDict(v, 1) |
| } |
| return starlark_fmt.PrintDict(valDict, 0) |
| } |
| |
| func StarlarkArchConfigurations() string { |
| return fmt.Sprintf(` |
| _arch_to_variants = %s |
| |
| _arch_to_cpu_variants = %s |
| |
| _arch_to_features = %s |
| |
| _android_arch_feature_for_arch_variant = %s |
| |
| arch_to_variants = _arch_to_variants |
| arch_to_cpu_variants = _arch_to_cpu_variants |
| arch_to_features = _arch_to_features |
| android_arch_feature_for_arch_variants = _android_arch_feature_for_arch_variant |
| `, printArchTypeStarlarkDict(archVariants), |
| printArchTypeStarlarkDict(cpuVariants), |
| printArchTypeStarlarkDict(archFeatures), |
| printArchTypeNestedStarlarkDict(androidArchFeatureMap), |
| ) |
| } |