Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2020 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "execution_subgraph.h" |
| 18 | |
| 19 | #include <algorithm> |
| 20 | #include <unordered_set> |
| 21 | |
| 22 | #include "android-base/macros.h" |
| 23 | #include "base/arena_allocator.h" |
| 24 | #include "base/arena_bit_vector.h" |
| 25 | #include "base/globals.h" |
| 26 | #include "base/scoped_arena_allocator.h" |
| 27 | #include "nodes.h" |
| 28 | |
| 29 | namespace art { |
| 30 | |
Vladimir Marko | 5c82493 | 2021-06-02 15:54:17 +0100 | [diff] [blame] | 31 | ExecutionSubgraph::ExecutionSubgraph(HGraph* graph, ScopedArenaAllocator* allocator) |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 32 | : graph_(graph), |
| 33 | allocator_(allocator), |
Vladimir Marko | 5c82493 | 2021-06-02 15:54:17 +0100 | [diff] [blame] | 34 | allowed_successors_(graph_->GetBlocks().size(), |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 35 | ~(std::bitset<kMaxFilterableSuccessors> {}), |
| 36 | allocator_->Adapter(kArenaAllocLSA)), |
| 37 | unreachable_blocks_( |
Vladimir Marko | 5c82493 | 2021-06-02 15:54:17 +0100 | [diff] [blame] | 38 | allocator_, graph_->GetBlocks().size(), /*expandable=*/ false, kArenaAllocLSA), |
| 39 | valid_(true), |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 40 | needs_prune_(false), |
| 41 | finalized_(false) { |
| 42 | if (valid_) { |
| 43 | DCHECK(std::all_of(graph->GetBlocks().begin(), graph->GetBlocks().end(), [](HBasicBlock* it) { |
| 44 | return it == nullptr || it->GetSuccessors().size() <= kMaxFilterableSuccessors; |
| 45 | })); |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | void ExecutionSubgraph::RemoveBlock(const HBasicBlock* to_remove) { |
| 50 | if (!valid_) { |
| 51 | return; |
| 52 | } |
| 53 | uint32_t id = to_remove->GetBlockId(); |
| 54 | if (unreachable_blocks_.IsBitSet(id)) { |
| 55 | if (kIsDebugBuild) { |
| 56 | // This isn't really needed but it's good to have this so it functions as |
| 57 | // a DCHECK that we always call Prune after removing any block. |
| 58 | needs_prune_ = true; |
| 59 | } |
| 60 | return; |
| 61 | } |
| 62 | unreachable_blocks_.SetBit(id); |
| 63 | for (HBasicBlock* pred : to_remove->GetPredecessors()) { |
| 64 | std::bitset<kMaxFilterableSuccessors> allowed_successors {}; |
| 65 | // ZipCount iterates over both the successors and the index of them at the same time. |
| 66 | for (auto [succ, i] : ZipCount(MakeIterationRange(pred->GetSuccessors()))) { |
| 67 | if (succ != to_remove) { |
| 68 | allowed_successors.set(i); |
| 69 | } |
| 70 | } |
| 71 | LimitBlockSuccessors(pred, allowed_successors); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | // Removes sink nodes. |
| 76 | void ExecutionSubgraph::Prune() { |
| 77 | if (UNLIKELY(!valid_)) { |
| 78 | return; |
| 79 | } |
| 80 | needs_prune_ = false; |
| 81 | // This is the record of the edges that were both (1) explored and (2) reached |
| 82 | // the exit node. |
| 83 | { |
| 84 | // Allocator for temporary values. |
| 85 | ScopedArenaAllocator temporaries(graph_->GetArenaStack()); |
| 86 | ScopedArenaVector<std::bitset<kMaxFilterableSuccessors>> results( |
| 87 | graph_->GetBlocks().size(), temporaries.Adapter(kArenaAllocLSA)); |
| 88 | unreachable_blocks_.ClearAllBits(); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 89 | // Fills up the 'results' map with what we need to add to update |
| 90 | // allowed_successors in order to prune sink nodes. |
| 91 | bool start_reaches_end = false; |
| 92 | // This is basically a DFS of the graph with some edges skipped. |
| 93 | { |
| 94 | const size_t num_blocks = graph_->GetBlocks().size(); |
| 95 | constexpr ssize_t kUnvisitedSuccIdx = -1; |
| 96 | ArenaBitVector visiting(&temporaries, num_blocks, false, kArenaAllocLSA); |
| 97 | // How many of the successors of each block we have already examined. This |
| 98 | // has three states. |
| 99 | // (1) kUnvisitedSuccIdx: we have not examined any edges, |
| 100 | // (2) 0 <= val < # of successors: we have examined 'val' successors/are |
| 101 | // currently examining successors_[val], |
| 102 | // (3) kMaxFilterableSuccessors: We have examined all of the successors of |
| 103 | // the block (the 'result' is final). |
| 104 | ScopedArenaVector<ssize_t> last_succ_seen( |
| 105 | num_blocks, kUnvisitedSuccIdx, temporaries.Adapter(kArenaAllocLSA)); |
| 106 | // A stack of which blocks we are visiting in this DFS traversal. Does not |
| 107 | // include the current-block. Used with last_succ_seen to figure out which |
| 108 | // bits to set if we find a path to the end/loop. |
| 109 | ScopedArenaVector<uint32_t> current_path(temporaries.Adapter(kArenaAllocLSA)); |
| 110 | // Just ensure we have enough space. The allocator will be cleared shortly |
| 111 | // anyway so this is fast. |
| 112 | current_path.reserve(num_blocks); |
| 113 | // Current block we are examining. Modified only by 'push_block' and 'pop_block' |
| 114 | const HBasicBlock* cur_block = graph_->GetEntryBlock(); |
| 115 | // Used to note a recur where we will start iterating on 'blk' and save |
| 116 | // where we are. We must 'continue' immediately after this. |
| 117 | auto push_block = [&](const HBasicBlock* blk) { |
| 118 | DCHECK(std::find(current_path.cbegin(), current_path.cend(), cur_block->GetBlockId()) == |
| 119 | current_path.end()); |
| 120 | if (kIsDebugBuild) { |
| 121 | std::for_each(current_path.cbegin(), current_path.cend(), [&](auto id) { |
| 122 | DCHECK_GT(last_succ_seen[id], kUnvisitedSuccIdx) << id; |
| 123 | DCHECK_LT(last_succ_seen[id], static_cast<ssize_t>(kMaxFilterableSuccessors)) << id; |
| 124 | }); |
| 125 | } |
| 126 | current_path.push_back(cur_block->GetBlockId()); |
| 127 | visiting.SetBit(cur_block->GetBlockId()); |
| 128 | cur_block = blk; |
| 129 | }; |
| 130 | // Used to note that we have fully explored a block and should return back |
| 131 | // up. Sets cur_block appropriately. We must 'continue' immediately after |
| 132 | // calling this. |
| 133 | auto pop_block = [&]() { |
| 134 | if (UNLIKELY(current_path.empty())) { |
| 135 | // Should only happen if entry-blocks successors are exhausted. |
| 136 | DCHECK_GE(last_succ_seen[graph_->GetEntryBlock()->GetBlockId()], |
| 137 | static_cast<ssize_t>(graph_->GetEntryBlock()->GetSuccessors().size())); |
| 138 | cur_block = nullptr; |
| 139 | } else { |
| 140 | const HBasicBlock* last = graph_->GetBlocks()[current_path.back()]; |
| 141 | visiting.ClearBit(current_path.back()); |
| 142 | current_path.pop_back(); |
| 143 | cur_block = last; |
| 144 | } |
| 145 | }; |
| 146 | // Mark the current path as a path to the end. This is in contrast to paths |
| 147 | // that end in (eg) removed blocks. |
| 148 | auto propagate_true = [&]() { |
| 149 | for (uint32_t id : current_path) { |
| 150 | DCHECK_GT(last_succ_seen[id], kUnvisitedSuccIdx); |
| 151 | DCHECK_LT(last_succ_seen[id], static_cast<ssize_t>(kMaxFilterableSuccessors)); |
| 152 | results[id].set(last_succ_seen[id]); |
| 153 | } |
| 154 | }; |
| 155 | ssize_t num_entry_succ = graph_->GetEntryBlock()->GetSuccessors().size(); |
| 156 | // As long as the entry-block has not explored all successors we still have |
| 157 | // work to do. |
| 158 | const uint32_t entry_block_id = graph_->GetEntryBlock()->GetBlockId(); |
| 159 | while (num_entry_succ > last_succ_seen[entry_block_id]) { |
| 160 | DCHECK(cur_block != nullptr); |
| 161 | uint32_t id = cur_block->GetBlockId(); |
| 162 | DCHECK((current_path.empty() && cur_block == graph_->GetEntryBlock()) || |
| 163 | current_path.front() == graph_->GetEntryBlock()->GetBlockId()) |
| 164 | << "current path size: " << current_path.size() |
| 165 | << " cur_block id: " << cur_block->GetBlockId() << " entry id " |
| 166 | << graph_->GetEntryBlock()->GetBlockId(); |
Nicolas Geoffray | 96dadef | 2021-08-29 16:51:55 +0100 | [diff] [blame] | 167 | if (visiting.IsBitSet(id)) { |
| 168 | // TODO We should support infinite loops as well. |
| 169 | start_reaches_end = false; |
| 170 | break; |
| 171 | } |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 172 | std::bitset<kMaxFilterableSuccessors>& result = results[id]; |
| 173 | if (cur_block == graph_->GetExitBlock()) { |
| 174 | start_reaches_end = true; |
| 175 | propagate_true(); |
| 176 | pop_block(); |
| 177 | continue; |
| 178 | } else if (last_succ_seen[id] == kMaxFilterableSuccessors) { |
| 179 | // Already fully explored. |
| 180 | if (result.any()) { |
| 181 | propagate_true(); |
| 182 | } |
| 183 | pop_block(); |
| 184 | continue; |
| 185 | } |
| 186 | // NB This is a pointer. Modifications modify the last_succ_seen. |
| 187 | ssize_t* cur_succ = &last_succ_seen[id]; |
| 188 | std::bitset<kMaxFilterableSuccessors> succ_bitmap = GetAllowedSuccessors(cur_block); |
| 189 | // Get next successor allowed. |
| 190 | while (++(*cur_succ) < static_cast<ssize_t>(kMaxFilterableSuccessors) && |
| 191 | !succ_bitmap.test(*cur_succ)) { |
| 192 | DCHECK_GE(*cur_succ, 0); |
| 193 | } |
| 194 | if (*cur_succ >= static_cast<ssize_t>(cur_block->GetSuccessors().size())) { |
| 195 | // No more successors. Mark that we've checked everything. Later visits |
| 196 | // to this node can use the existing data. |
| 197 | DCHECK_LE(*cur_succ, static_cast<ssize_t>(kMaxFilterableSuccessors)); |
| 198 | *cur_succ = kMaxFilterableSuccessors; |
| 199 | pop_block(); |
| 200 | continue; |
| 201 | } |
| 202 | const HBasicBlock* nxt = cur_block->GetSuccessors()[*cur_succ]; |
| 203 | DCHECK(nxt != nullptr) << "id: " << *cur_succ |
| 204 | << " max: " << cur_block->GetSuccessors().size(); |
| 205 | if (visiting.IsBitSet(nxt->GetBlockId())) { |
| 206 | // This is a loop. Mark it and continue on. Mark allowed-successor on |
| 207 | // this block's results as well. |
| 208 | result.set(*cur_succ); |
| 209 | propagate_true(); |
| 210 | } else { |
| 211 | // Not a loop yet. Recur. |
| 212 | push_block(nxt); |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | // If we can't reach the end then there is no path through the graph without |
| 217 | // hitting excluded blocks |
| 218 | if (UNLIKELY(!start_reaches_end)) { |
| 219 | valid_ = false; |
| 220 | return; |
| 221 | } |
| 222 | // Mark blocks we didn't see in the ReachesEnd flood-fill |
| 223 | for (const HBasicBlock* blk : graph_->GetBlocks()) { |
| 224 | if (blk != nullptr && |
| 225 | results[blk->GetBlockId()].none() && |
| 226 | blk != graph_->GetExitBlock() && |
| 227 | blk != graph_->GetEntryBlock()) { |
| 228 | // We never visited this block, must be unreachable. |
| 229 | unreachable_blocks_.SetBit(blk->GetBlockId()); |
| 230 | } |
| 231 | } |
| 232 | // write the new data. |
| 233 | memcpy(allowed_successors_.data(), |
| 234 | results.data(), |
| 235 | results.size() * sizeof(std::bitset<kMaxFilterableSuccessors>)); |
| 236 | } |
| 237 | RecalculateExcludedCohort(); |
| 238 | } |
| 239 | |
| 240 | void ExecutionSubgraph::RemoveConcavity() { |
| 241 | if (UNLIKELY(!valid_)) { |
| 242 | return; |
| 243 | } |
| 244 | DCHECK(!needs_prune_); |
| 245 | for (const HBasicBlock* blk : graph_->GetBlocks()) { |
| 246 | if (blk == nullptr || unreachable_blocks_.IsBitSet(blk->GetBlockId())) { |
| 247 | continue; |
| 248 | } |
| 249 | uint32_t blkid = blk->GetBlockId(); |
| 250 | if (std::any_of(unreachable_blocks_.Indexes().begin(), |
| 251 | unreachable_blocks_.Indexes().end(), |
| 252 | [&](uint32_t skipped) { return graph_->PathBetween(skipped, blkid); }) && |
| 253 | std::any_of(unreachable_blocks_.Indexes().begin(), |
| 254 | unreachable_blocks_.Indexes().end(), |
| 255 | [&](uint32_t skipped) { return graph_->PathBetween(blkid, skipped); })) { |
| 256 | RemoveBlock(blk); |
| 257 | } |
| 258 | } |
| 259 | Prune(); |
| 260 | } |
| 261 | |
| 262 | void ExecutionSubgraph::RecalculateExcludedCohort() { |
| 263 | DCHECK(!needs_prune_); |
| 264 | excluded_list_.emplace(allocator_->Adapter(kArenaAllocLSA)); |
| 265 | ScopedArenaVector<ExcludedCohort>& res = excluded_list_.value(); |
| 266 | // Make a copy of unreachable_blocks_; |
| 267 | ArenaBitVector unreachable(allocator_, graph_->GetBlocks().size(), false, kArenaAllocLSA); |
| 268 | unreachable.Copy(&unreachable_blocks_); |
| 269 | // Split cohorts with union-find |
| 270 | while (unreachable.IsAnyBitSet()) { |
| 271 | res.emplace_back(allocator_, graph_); |
| 272 | ExcludedCohort& cohort = res.back(); |
| 273 | // We don't allocate except for the queue beyond here so create another arena to save memory. |
| 274 | ScopedArenaAllocator alloc(graph_->GetArenaStack()); |
| 275 | ScopedArenaQueue<const HBasicBlock*> worklist(alloc.Adapter(kArenaAllocLSA)); |
| 276 | // Select an arbitrary node |
| 277 | const HBasicBlock* first = graph_->GetBlocks()[unreachable.GetHighestBitSet()]; |
| 278 | worklist.push(first); |
| 279 | do { |
| 280 | // Flood-fill both forwards and backwards. |
| 281 | const HBasicBlock* cur = worklist.front(); |
| 282 | worklist.pop(); |
| 283 | if (!unreachable.IsBitSet(cur->GetBlockId())) { |
| 284 | // Already visited or reachable somewhere else. |
| 285 | continue; |
| 286 | } |
| 287 | unreachable.ClearBit(cur->GetBlockId()); |
| 288 | cohort.blocks_.SetBit(cur->GetBlockId()); |
| 289 | // don't bother filtering here, it's done next go-around |
| 290 | for (const HBasicBlock* pred : cur->GetPredecessors()) { |
| 291 | worklist.push(pred); |
| 292 | } |
| 293 | for (const HBasicBlock* succ : cur->GetSuccessors()) { |
| 294 | worklist.push(succ); |
| 295 | } |
| 296 | } while (!worklist.empty()); |
| 297 | } |
| 298 | // Figure out entry & exit nodes. |
| 299 | for (ExcludedCohort& cohort : res) { |
| 300 | DCHECK(cohort.blocks_.IsAnyBitSet()); |
| 301 | auto is_external = [&](const HBasicBlock* ext) -> bool { |
| 302 | return !cohort.blocks_.IsBitSet(ext->GetBlockId()); |
| 303 | }; |
| 304 | for (const HBasicBlock* blk : cohort.Blocks()) { |
| 305 | const auto& preds = blk->GetPredecessors(); |
| 306 | const auto& succs = blk->GetSuccessors(); |
| 307 | if (std::any_of(preds.cbegin(), preds.cend(), is_external)) { |
| 308 | cohort.entry_blocks_.SetBit(blk->GetBlockId()); |
| 309 | } |
| 310 | if (std::any_of(succs.cbegin(), succs.cend(), is_external)) { |
| 311 | cohort.exit_blocks_.SetBit(blk->GetBlockId()); |
| 312 | } |
| 313 | } |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | std::ostream& operator<<(std::ostream& os, const ExecutionSubgraph::ExcludedCohort& ex) { |
| 318 | ex.Dump(os); |
| 319 | return os; |
| 320 | } |
| 321 | |
| 322 | void ExecutionSubgraph::ExcludedCohort::Dump(std::ostream& os) const { |
| 323 | auto dump = [&](BitVecBlockRange arr) { |
| 324 | os << "["; |
| 325 | bool first = true; |
| 326 | for (const HBasicBlock* b : arr) { |
| 327 | if (!first) { |
| 328 | os << ", "; |
| 329 | } |
| 330 | first = false; |
| 331 | os << b->GetBlockId(); |
| 332 | } |
| 333 | os << "]"; |
| 334 | }; |
| 335 | auto dump_blocks = [&]() { |
| 336 | os << "["; |
| 337 | bool first = true; |
| 338 | for (const HBasicBlock* b : Blocks()) { |
| 339 | if (!entry_blocks_.IsBitSet(b->GetBlockId()) && !exit_blocks_.IsBitSet(b->GetBlockId())) { |
| 340 | if (!first) { |
| 341 | os << ", "; |
| 342 | } |
| 343 | first = false; |
| 344 | os << b->GetBlockId(); |
| 345 | } |
| 346 | } |
| 347 | os << "]"; |
| 348 | }; |
| 349 | |
| 350 | os << "{ entry: "; |
| 351 | dump(EntryBlocks()); |
| 352 | os << ", interior: "; |
| 353 | dump_blocks(); |
| 354 | os << ", exit: "; |
| 355 | dump(ExitBlocks()); |
| 356 | os << "}"; |
| 357 | } |
| 358 | |
| 359 | } // namespace art |