blob: f7180a02d72b633faf7b5b7bec6bdde323b9fea7 [file] [log] [blame]
Alexandre Rames22aa54b2016-10-18 09:32:29 +01001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
18#define ART_COMPILER_OPTIMIZING_SCHEDULER_H_
19
20#include <fstream>
21
Vladimir Markoca6fff82017-10-03 14:49:14 +010022#include "base/scoped_arena_allocator.h"
23#include "base/scoped_arena_containers.h"
Evgeny Astigeevich957c5382019-03-18 12:37:58 +000024#include "base/stl_util.h"
Alexandre Rames22aa54b2016-10-18 09:32:29 +010025#include "base/time_utils.h"
Andreas Gampe8cf9cb32017-07-19 09:28:38 -070026#include "code_generator.h"
xueliang.zhong2a3471f2017-05-08 18:36:40 +010027#include "load_store_analysis.h"
Alexandre Rames22aa54b2016-10-18 09:32:29 +010028#include "nodes.h"
29#include "optimization.h"
30
Vladimir Marko0a516052019-10-14 13:00:44 +000031namespace art {
Alexandre Rames22aa54b2016-10-18 09:32:29 +010032
33// General description of instruction scheduling.
34//
35// This pass tries to improve the quality of the generated code by reordering
36// instructions in the graph to avoid execution delays caused by execution
37// dependencies.
38// Currently, scheduling is performed at the block level, so no `HInstruction`
39// ever leaves its block in this pass.
40//
41// The scheduling process iterates through blocks in the graph. For blocks that
42// we can and want to schedule:
43// 1) Build a dependency graph for instructions.
44// It includes data dependencies (inputs/uses), but also environment
45// dependencies and side-effect dependencies.
46// 2) Schedule the dependency graph.
47// This is a topological sort of the dependency graph, using heuristics to
48// decide what node to scheduler first when there are multiple candidates.
49//
50// A few factors impacting the quality of the scheduling are:
51// - The heuristics used to decide what node to schedule in the topological sort
52// when there are multiple valid candidates. There is a wide range of
53// complexity possible here, going from a simple model only considering
54// latencies, to a super detailed CPU pipeline model.
55// - Fewer dependencies in the dependency graph give more freedom for the
56// scheduling heuristics. For example de-aliasing can allow possibilities for
57// reordering of memory accesses.
58// - The level of abstraction of the IR. It is easier to evaluate scheduling for
59// IRs that translate to a single assembly instruction than for IRs
60// that generate multiple assembly instructions or generate different code
61// depending on properties of the IR.
62// - Scheduling is performed before register allocation, it is not aware of the
63// impact of moving instructions on register allocation.
64//
65//
66// The scheduling code uses the terms predecessors, successors, and dependencies.
67// This can be confusing at times, so here are clarifications.
68// These terms are used from the point of view of the program dependency graph. So
69// the inputs of an instruction are part of its dependencies, and hence part its
70// predecessors. So the uses of an instruction are (part of) its successors.
71// (Side-effect dependencies can yield predecessors or successors that are not
72// inputs or uses.)
73//
74// Here is a trivial example. For the Java code:
75//
76// int a = 1 + 2;
77//
78// we would have the instructions
79//
80// i1 HIntConstant 1
81// i2 HIntConstant 2
82// i3 HAdd [i1,i2]
83//
84// `i1` and `i2` are predecessors of `i3`.
85// `i3` is a successor of `i1` and a successor of `i2`.
86// In a scheduling graph for this code we would have three nodes `n1`, `n2`,
87// and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
88// Conceptually the program dependency graph for this would contain two edges
89//
90// n1 -> n3
91// n2 -> n3
92//
93// Since we schedule backwards (starting from the last instruction in each basic
94// block), the implementation of nodes keeps a list of pointers their
95// predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
96//
97// Node dependencies are also referred to from the program dependency graph
98// point of view: we say that node `B` immediately depends on `A` if there is an
99// edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
100// `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
101// `n2`.
102// Since nodes in the scheduling graph keep a list of their predecessors, node
103// `B` will have a pointer to its predecessor `A`.
104// As we schedule backwards, `B` will be selected for scheduling before `A` is.
105//
106// So the scheduling for the example above could happen as follow
107//
108// |---------------------------+------------------------|
109// | candidates for scheduling | instructions scheduled |
110// | --------------------------+------------------------|
111//
112// The only node without successors is `n3`, so it is the only initial
113// candidate.
114//
115// | n3 | (none) |
116//
117// We schedule `n3` as the last (and only) instruction. All its predecessors
118// that do not have any unscheduled successors become candidate. That is, `n1`
119// and `n2` become candidates.
120//
121// | n1, n2 | n3 |
122//
123// One of the candidates is selected. In practice this is where scheduling
124// heuristics kick in, to decide which of the candidates should be selected.
125// In this example, let it be `n1`. It is scheduled before previously scheduled
126// nodes (in program order). There are no other nodes to add to the list of
127// candidates.
128//
129// | n2 | n1 |
130// | | n3 |
131//
132// The only candidate available for scheduling is `n2`. Schedule it before
133// (in program order) the previously scheduled nodes.
134//
135// | (none) | n2 |
136// | | n1 |
137// | | n3 |
138// |---------------------------+------------------------|
139//
140// So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
141// In this trivial example, it does not matter which of `i1` and `i2` is
142// scheduled first since they are constants. However the same process would
143// apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).
144
145// Set to true to have instruction scheduling dump scheduling graphs to the file
146// `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
147static constexpr bool kDumpDotSchedulingGraphs = false;
148
149// Typically used as a default instruction latency.
150static constexpr uint32_t kGenericInstructionLatency = 1;
151
152class HScheduler;
153
154/**
155 * A node representing an `HInstruction` in the `SchedulingGraph`.
156 */
Vladimir Markoca6fff82017-10-03 14:49:14 +0100157class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> {
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100158 public:
Vladimir Markoe764d2e2017-10-05 14:35:55 +0100159 SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier)
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100160 : latency_(0),
161 internal_latency_(0),
162 critical_path_(0),
163 instruction_(instr),
164 is_scheduling_barrier_(is_scheduling_barrier),
Vladimir Markoe764d2e2017-10-05 14:35:55 +0100165 data_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
166 other_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100167 num_unscheduled_successors_(0) {
168 data_predecessors_.reserve(kPreallocatedPredecessors);
169 }
170
171 void AddDataPredecessor(SchedulingNode* predecessor) {
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000172 // Check whether the predecessor has been added earlier.
173 if (HasDataDependency(predecessor)) {
174 return;
175 }
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100176 data_predecessors_.push_back(predecessor);
177 predecessor->num_unscheduled_successors_++;
178 }
179
Vladimir Markoca6fff82017-10-03 14:49:14 +0100180 const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const {
181 return data_predecessors_;
182 }
183
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100184 void AddOtherPredecessor(SchedulingNode* predecessor) {
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000185 // Check whether the predecessor has been added earlier.
Evgeny Astigeevich45217372019-04-03 10:46:13 +0100186 // As an optimization of the scheduling graph, we don't need to create another dependency if
187 // there is a data dependency between scheduling nodes.
188 if (HasOtherDependency(predecessor) || HasDataDependency(predecessor)) {
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000189 return;
190 }
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100191 other_predecessors_.push_back(predecessor);
192 predecessor->num_unscheduled_successors_++;
193 }
194
Vladimir Markoca6fff82017-10-03 14:49:14 +0100195 const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const {
196 return other_predecessors_;
197 }
198
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100199 void DecrementNumberOfUnscheduledSuccessors() {
200 num_unscheduled_successors_--;
201 }
202
203 void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
204 critical_path_ = std::max(critical_path_, other_critical_path);
205 }
206
207 bool HasUnscheduledSuccessors() const {
208 return num_unscheduled_successors_ != 0;
209 }
210
211 HInstruction* GetInstruction() const { return instruction_; }
212 uint32_t GetLatency() const { return latency_; }
213 void SetLatency(uint32_t latency) { latency_ = latency; }
214 uint32_t GetInternalLatency() const { return internal_latency_; }
215 void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
216 uint32_t GetCriticalPath() const { return critical_path_; }
217 bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100218
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000219 bool HasDataDependency(const SchedulingNode* node) const {
220 return ContainsElement(data_predecessors_, node);
221 }
222
223 bool HasOtherDependency(const SchedulingNode* node) const {
224 return ContainsElement(other_predecessors_, node);
225 }
226
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100227 private:
228 // The latency of this node. It represents the latency between the moment the
229 // last instruction for this node has executed to the moment the result
230 // produced by this node is available to users.
231 uint32_t latency_;
232 // This represents the time spent *within* the generated code for this node.
233 // It should be zero for nodes that only generate a single instruction.
234 uint32_t internal_latency_;
235
236 // The critical path from this instruction to the end of scheduling. It is
237 // used by the scheduling heuristics to measure the priority of this instruction.
238 // It is defined as
239 // critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
240 // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
241 // `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
242 uint32_t critical_path_;
243
244 // The instruction that this node represents.
245 HInstruction* const instruction_;
246
247 // If a node is scheduling barrier, other nodes cannot be scheduled before it.
248 const bool is_scheduling_barrier_;
249
250 // The lists of predecessors. They cannot be scheduled before this node. Once
251 // this node is scheduled, we check whether any of its predecessors has become a
252 // valid candidate for scheduling.
253 // Predecessors in `data_predecessors_` are data dependencies. Those in
254 // `other_predecessors_` contain side-effect dependencies, environment
255 // dependencies, and scheduling barrier dependencies.
Vladimir Markoca6fff82017-10-03 14:49:14 +0100256 ScopedArenaVector<SchedulingNode*> data_predecessors_;
257 ScopedArenaVector<SchedulingNode*> other_predecessors_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100258
259 // The number of unscheduled successors for this node. This number is
260 // decremented as successors are scheduled. When it reaches zero this node
261 // becomes a valid candidate to schedule.
262 uint32_t num_unscheduled_successors_;
263
264 static constexpr size_t kPreallocatedPredecessors = 4;
265};
266
267/*
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000268 * Provide analysis of instruction dependencies (side effects) which are not in a form of explicit
269 * def-use data dependencies.
270 */
271class SideEffectDependencyAnalysis {
272 public:
273 explicit SideEffectDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
274 : memory_dependency_analysis_(heap_location_collector) {}
275
276 bool HasSideEffectDependency(HInstruction* instr1, HInstruction* instr2) const {
277 if (memory_dependency_analysis_.HasMemoryDependency(instr1, instr2)) {
278 return true;
279 }
280
281 // Even if above memory dependency check has passed, it is still necessary to
282 // check dependencies between instructions that can throw and instructions
283 // that write to memory.
284 if (HasExceptionDependency(instr1, instr2)) {
285 return true;
286 }
287
288 return false;
289 }
290
291 private:
292 static bool HasExceptionDependency(const HInstruction* instr1, const HInstruction* instr2);
293 static bool HasReorderingDependency(const HInstruction* instr1, const HInstruction* instr2);
294
295 /*
296 * Memory dependency analysis of instructions based on their memory side effects
297 * and heap location information from the LCA pass if it is provided.
298 */
299 class MemoryDependencyAnalysis {
300 public:
301 explicit MemoryDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
302 : heap_location_collector_(heap_location_collector) {}
303
304 bool HasMemoryDependency(HInstruction* instr1, HInstruction* instr2) const;
305
306 private:
307 bool ArrayAccessMayAlias(HInstruction* instr1, HInstruction* instr2) const;
308 bool FieldAccessMayAlias(const HInstruction* instr1, const HInstruction* instr2) const;
309 size_t ArrayAccessHeapLocation(HInstruction* instruction) const;
310 size_t FieldAccessHeapLocation(const HInstruction* instruction) const;
311
312 const HeapLocationCollector* const heap_location_collector_;
313 };
314
315 MemoryDependencyAnalysis memory_dependency_analysis_;
316};
317
318/*
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100319 * Directed acyclic graph for scheduling.
320 */
321class SchedulingGraph : public ValueObject {
322 public:
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000323 SchedulingGraph(ScopedArenaAllocator* allocator,
Vladimir Markoced04832018-07-26 14:42:17 +0100324 const HeapLocationCollector* heap_location_collector)
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000325 : allocator_(allocator),
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100326 contains_scheduling_barrier_(false),
Vladimir Marko69d310e2017-10-09 14:12:23 +0100327 nodes_map_(allocator_->Adapter(kArenaAllocScheduler)),
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000328 side_effect_dependency_analysis_(heap_location_collector) {}
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100329
330 SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
Vladimir Markoca6fff82017-10-03 14:49:14 +0100331 std::unique_ptr<SchedulingNode> node(
Vladimir Marko69d310e2017-10-09 14:12:23 +0100332 new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier));
Vladimir Markoca6fff82017-10-03 14:49:14 +0100333 SchedulingNode* result = node.get();
Vladimir Marko54159c62018-06-20 14:30:08 +0100334 nodes_map_.insert(std::make_pair(instr, std::move(node)));
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100335 contains_scheduling_barrier_ |= is_scheduling_barrier;
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000336 AddDependencies(result, is_scheduling_barrier);
Vladimir Markoca6fff82017-10-03 14:49:14 +0100337 return result;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100338 }
339
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100340 SchedulingNode* GetNode(const HInstruction* instr) const {
Vladimir Marko54159c62018-06-20 14:30:08 +0100341 auto it = nodes_map_.find(instr);
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100342 if (it == nodes_map_.end()) {
343 return nullptr;
344 } else {
Vladimir Markoca6fff82017-10-03 14:49:14 +0100345 return it->second.get();
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100346 }
347 }
348
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100349 size_t Size() const {
Vladimir Marko54159c62018-06-20 14:30:08 +0100350 return nodes_map_.size();
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100351 }
352
353 // Dump the scheduling graph, in dot file format, appending it to the file
354 // `scheduling_graphs.dot`.
355 void DumpAsDotGraph(const std::string& description,
Vladimir Markoca6fff82017-10-03 14:49:14 +0100356 const ScopedArenaVector<SchedulingNode*>& initial_candidates);
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100357
358 protected:
359 void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
360 void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
361 AddDependency(node, dependency, /*is_data_dependency*/true);
362 }
363 void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
364 AddDependency(node, dependency, /*is_data_dependency*/false);
365 }
366
Evgeny Astigeevich45217372019-04-03 10:46:13 +0100367 // Analyze whether the scheduling node has cross-iteration dependencies which mean it uses
368 // values defined on the previous iteration.
369 //
370 // Supported cases:
371 //
372 // L:
373 // v2 = loop_head_phi(v1)
374 // instr1(v2)
375 // v1 = instr2
376 // goto L
377 //
378 // In such cases moving instr2 before instr1 creates intersecting live ranges
379 // of v1 and v2. As a result a separate register is needed to keep the value
380 // defined by instr2 which is only used on the next iteration.
381 // If instr2 is not moved, no additional register is needed. The register
382 // used by instr1 is reused.
383 // To prevent such a situation a "other" dependency between instr1 and instr2 must be set.
384 void AddCrossIterationDependencies(SchedulingNode* node);
385
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000386 // Add dependencies nodes for the given `SchedulingNode`: inputs, environments, and side-effects.
387 void AddDependencies(SchedulingNode* node, bool is_scheduling_barrier = false);
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100388
Vladimir Marko69d310e2017-10-09 14:12:23 +0100389 ScopedArenaAllocator* const allocator_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100390 bool contains_scheduling_barrier_;
Vladimir Markoca6fff82017-10-03 14:49:14 +0100391 ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_;
Evgeny Astigeevich957c5382019-03-18 12:37:58 +0000392 SideEffectDependencyAnalysis side_effect_dependency_analysis_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100393};
394
395/*
396 * The visitors derived from this base class are used by schedulers to evaluate
397 * the latencies of `HInstruction`s.
398 */
399class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
400 public:
401 // This class and its sub-classes will never be used to drive a visit of an
402 // `HGraph` but only to visit `HInstructions` one at a time, so we do not need
403 // to pass a valid graph to `HGraphDelegateVisitor()`.
Andreas Gamped9911ee2017-03-27 13:27:24 -0700404 SchedulingLatencyVisitor()
405 : HGraphDelegateVisitor(nullptr),
406 last_visited_latency_(0),
407 last_visited_internal_latency_(0) {}
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100408
Roland Levillainbbc6e7e2018-08-24 16:58:47 +0100409 void VisitInstruction(HInstruction* instruction) override {
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100410 LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
411 "Architecture-specific scheduling latency visitors must handle all instructions"
412 " (potentially by overriding the generic `VisitInstruction()`.";
413 UNREACHABLE();
414 }
415
416 void Visit(HInstruction* instruction) {
417 instruction->Accept(this);
418 }
419
420 void CalculateLatency(SchedulingNode* node) {
421 // By default nodes have no internal latency.
422 last_visited_internal_latency_ = 0;
423 Visit(node->GetInstruction());
424 }
425
426 uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
427 uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }
428
429 protected:
430 // The latency of the most recent visited SchedulingNode.
431 // This is for reporting the latency value to the user of this visitor.
432 uint32_t last_visited_latency_;
433 // This represents the time spent *within* the generated code for the most recent visited
434 // SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
435 uint32_t last_visited_internal_latency_;
436};
437
438class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
439 public:
Vladimir Markoced04832018-07-26 14:42:17 +0100440 virtual void Reset() {}
Vladimir Markoca6fff82017-10-03 14:49:14 +0100441 virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100442 const SchedulingGraph& graph) = 0;
443 virtual ~SchedulingNodeSelector() {}
444 protected:
Vladimir Markoca6fff82017-10-03 14:49:14 +0100445 static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) {
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100446 (*nodes)[index] = nodes->back();
447 nodes->pop_back();
448 }
449};
450
451/*
452 * Select a `SchedulingNode` at random within the candidates.
453 */
454class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
455 public:
Igor Murashkin2ffb7032017-11-08 13:35:21 -0800456 RandomSchedulingNodeSelector() : seed_(0) {
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100457 seed_ = static_cast<uint32_t>(NanoTime());
458 srand(seed_);
459 }
460
Vladimir Markoca6fff82017-10-03 14:49:14 +0100461 SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
Roland Levillainbbc6e7e2018-08-24 16:58:47 +0100462 const SchedulingGraph& graph) override {
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100463 UNUSED(graph);
464 DCHECK(!nodes->empty());
465 size_t select = rand_r(&seed_) % nodes->size();
466 SchedulingNode* select_node = (*nodes)[select];
467 DeleteNodeAtIndex(nodes, select);
468 return select_node;
469 }
470
471 uint32_t seed_;
472};
473
474/*
475 * Select a `SchedulingNode` according to critical path information,
476 * with heuristics to favor certain instruction patterns like materialized condition.
477 */
478class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
479 public:
480 CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}
481
Roland Levillainbbc6e7e2018-08-24 16:58:47 +0100482 void Reset() override { prev_select_ = nullptr; }
Vladimir Markoca6fff82017-10-03 14:49:14 +0100483 SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
Roland Levillainbbc6e7e2018-08-24 16:58:47 +0100484 const SchedulingGraph& graph) override;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100485
486 protected:
487 SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
488 SchedulingNode* check) const;
489
Vladimir Markoca6fff82017-10-03 14:49:14 +0100490 SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes,
491 const SchedulingGraph& graph) const;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100492
493 private:
494 const SchedulingNode* prev_select_;
495};
496
497class HScheduler {
498 public:
Vladimir Markoced04832018-07-26 14:42:17 +0100499 HScheduler(SchedulingLatencyVisitor* latency_visitor, SchedulingNodeSelector* selector)
500 : latency_visitor_(latency_visitor),
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100501 selector_(selector),
502 only_optimize_loop_blocks_(true),
Vladimir Markoced04832018-07-26 14:42:17 +0100503 cursor_(nullptr) {}
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100504 virtual ~HScheduler() {}
505
506 void Schedule(HGraph* graph);
507
508 void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }
509
510 // Instructions can not be rescheduled across a scheduling barrier.
511 virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;
512
513 protected:
Vladimir Markoced04832018-07-26 14:42:17 +0100514 void Schedule(HBasicBlock* block, const HeapLocationCollector* heap_location_collector);
515 void Schedule(SchedulingNode* scheduling_node,
516 /*inout*/ ScopedArenaVector<SchedulingNode*>* candidates);
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100517 void Schedule(HInstruction* instruction);
518
519 // Any instruction returning `false` via this method will prevent its
520 // containing basic block from being scheduled.
521 // This method is used to restrict scheduling to instructions that we know are
522 // safe to handle.
Artem Serov89ff8b22017-11-20 11:51:05 +0000523 //
524 // For newly introduced instructions by default HScheduler::IsSchedulable returns false.
525 // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see
526 // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also
527 // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction.
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100528 virtual bool IsSchedulable(const HInstruction* instruction) const;
529 bool IsSchedulable(const HBasicBlock* block) const;
530
531 void CalculateLatency(SchedulingNode* node) {
532 latency_visitor_->CalculateLatency(node);
533 node->SetLatency(latency_visitor_->GetLastVisitedLatency());
534 node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency());
535 }
536
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100537 SchedulingLatencyVisitor* const latency_visitor_;
538 SchedulingNodeSelector* const selector_;
539 bool only_optimize_loop_blocks_;
540
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100541 // A pointer indicating where the next instruction to be scheduled will be inserted.
542 HInstruction* cursor_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100543
544 private:
545 DISALLOW_COPY_AND_ASSIGN(HScheduler);
546};
547
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100548class HInstructionScheduling : public HOptimization {
549 public:
Aart Bik2ca10eb2017-11-15 15:17:53 -0800550 HInstructionScheduling(HGraph* graph,
551 InstructionSet instruction_set,
552 CodeGenerator* cg = nullptr,
553 const char* name = kInstructionSchedulingPassName)
554 : HOptimization(graph, name),
xueliang.zhongf7caf682017-03-01 16:07:02 +0000555 codegen_(cg),
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100556 instruction_set_(instruction_set) {}
557
Roland Levillainbbc6e7e2018-08-24 16:58:47 +0100558 bool Run() override {
Aart Bik24773202018-04-26 10:28:51 -0700559 return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100560 }
Aart Bik24773202018-04-26 10:28:51 -0700561
562 bool Run(bool only_optimize_loop_blocks, bool schedule_randomly);
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100563
Aart Bik2ca10eb2017-11-15 15:17:53 -0800564 static constexpr const char* kInstructionSchedulingPassName = "scheduler";
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100565
xueliang.zhong2a3471f2017-05-08 18:36:40 +0100566 private:
xueliang.zhongf7caf682017-03-01 16:07:02 +0000567 CodeGenerator* const codegen_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100568 const InstructionSet instruction_set_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100569 DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
570};
571
572} // namespace art
573
574#endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_