blob: 963df5a93839f160fd6795488f7d1db5fb522e70 [file] [log] [blame]
Aart Bik281c6812016-08-26 11:31:48 -07001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "loop_optimization.h"
18
Aart Bikf8f5a162017-02-06 15:35:29 -080019#include "arch/instruction_set.h"
20#include "arch/arm/instruction_set_features_arm.h"
21#include "arch/arm64/instruction_set_features_arm64.h"
22#include "arch/mips/instruction_set_features_mips.h"
23#include "arch/mips64/instruction_set_features_mips64.h"
24#include "arch/x86/instruction_set_features_x86.h"
25#include "arch/x86_64/instruction_set_features_x86_64.h"
Aart Bik92685a82017-03-06 11:13:43 -080026#include "driver/compiler_driver.h"
Aart Bik96202302016-10-04 17:33:56 -070027#include "linear_order.h"
Aart Bik281c6812016-08-26 11:31:48 -070028
29namespace art {
30
Aart Bikf8f5a162017-02-06 15:35:29 -080031// Enables vectorization (SIMDization) in the loop optimizer.
32static constexpr bool kEnableVectorization = true;
33
Aart Bik9abf8942016-10-14 09:49:42 -070034// Remove the instruction from the graph. A bit more elaborate than the usual
35// instruction removal, since there may be a cycle in the use structure.
Aart Bik281c6812016-08-26 11:31:48 -070036static void RemoveFromCycle(HInstruction* instruction) {
Aart Bik281c6812016-08-26 11:31:48 -070037 instruction->RemoveAsUserOfAllInputs();
38 instruction->RemoveEnvironmentUsers();
39 instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
40}
41
Aart Bik807868e2016-11-03 17:51:43 -070042// Detect a goto block and sets succ to the single successor.
Aart Bike3dedc52016-11-02 17:50:27 -070043static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
44 if (block->GetPredecessors().size() == 1 &&
45 block->GetSuccessors().size() == 1 &&
46 block->IsSingleGoto()) {
47 *succ = block->GetSingleSuccessor();
48 return true;
49 }
50 return false;
51}
52
Aart Bik807868e2016-11-03 17:51:43 -070053// Detect an early exit loop.
54static bool IsEarlyExit(HLoopInformation* loop_info) {
55 HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
56 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
57 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
58 if (!loop_info->Contains(*successor)) {
59 return true;
60 }
61 }
62 }
63 return false;
64}
65
Aart Bikf3e61ee2017-04-12 17:09:20 -070066// Detect a sign extension from the given type. Returns the promoted operand on success.
67static bool IsSignExtensionAndGet(HInstruction* instruction,
68 Primitive::Type type,
69 /*out*/ HInstruction** operand) {
70 // Accept any already wider constant that would be handled properly by sign
71 // extension when represented in the *width* of the given narrower data type
72 // (the fact that char normally zero extends does not matter here).
73 int64_t value = 0;
Aart Bik50e20d52017-05-05 14:07:29 -070074 if (IsInt64AndGet(instruction, /*out*/ &value)) {
Aart Bikf3e61ee2017-04-12 17:09:20 -070075 switch (type) {
76 case Primitive::kPrimByte:
77 if (std::numeric_limits<int8_t>::min() <= value &&
78 std::numeric_limits<int8_t>::max() >= value) {
79 *operand = instruction;
80 return true;
81 }
82 return false;
83 case Primitive::kPrimChar:
84 case Primitive::kPrimShort:
85 if (std::numeric_limits<int16_t>::min() <= value &&
86 std::numeric_limits<int16_t>::max() <= value) {
87 *operand = instruction;
88 return true;
89 }
90 return false;
91 default:
92 return false;
93 }
94 }
95 // An implicit widening conversion of a signed integer to an integral type sign-extends
96 // the two's-complement representation of the integer value to fill the wider format.
97 if (instruction->GetType() == type && (instruction->IsArrayGet() ||
98 instruction->IsStaticFieldGet() ||
99 instruction->IsInstanceFieldGet())) {
100 switch (type) {
101 case Primitive::kPrimByte:
102 case Primitive::kPrimShort:
103 *operand = instruction;
104 return true;
105 default:
106 return false;
107 }
108 }
109 // TODO: perhaps explicit conversions later too?
110 // (this may return something different from instruction)
111 return false;
112}
113
114// Detect a zero extension from the given type. Returns the promoted operand on success.
115static bool IsZeroExtensionAndGet(HInstruction* instruction,
116 Primitive::Type type,
117 /*out*/ HInstruction** operand) {
118 // Accept any already wider constant that would be handled properly by zero
119 // extension when represented in the *width* of the given narrower data type
120 // (the fact that byte/short normally sign extend does not matter here).
121 int64_t value = 0;
Aart Bik50e20d52017-05-05 14:07:29 -0700122 if (IsInt64AndGet(instruction, /*out*/ &value)) {
Aart Bikf3e61ee2017-04-12 17:09:20 -0700123 switch (type) {
124 case Primitive::kPrimByte:
125 if (std::numeric_limits<uint8_t>::min() <= value &&
126 std::numeric_limits<uint8_t>::max() >= value) {
127 *operand = instruction;
128 return true;
129 }
130 return false;
131 case Primitive::kPrimChar:
132 case Primitive::kPrimShort:
133 if (std::numeric_limits<uint16_t>::min() <= value &&
134 std::numeric_limits<uint16_t>::max() <= value) {
135 *operand = instruction;
136 return true;
137 }
138 return false;
139 default:
140 return false;
141 }
142 }
143 // An implicit widening conversion of a char to an integral type zero-extends
144 // the representation of the char value to fill the wider format.
145 if (instruction->GetType() == type && (instruction->IsArrayGet() ||
146 instruction->IsStaticFieldGet() ||
147 instruction->IsInstanceFieldGet())) {
148 if (type == Primitive::kPrimChar) {
149 *operand = instruction;
150 return true;
151 }
152 }
153 // A sign (or zero) extension followed by an explicit removal of just the
154 // higher sign bits is equivalent to a zero extension of the underlying operand.
155 if (instruction->IsAnd()) {
156 int64_t mask = 0;
157 HInstruction* a = instruction->InputAt(0);
158 HInstruction* b = instruction->InputAt(1);
159 // In (a & b) find (mask & b) or (a & mask) with sign or zero extension on the non-mask.
160 if ((IsInt64AndGet(a, /*out*/ &mask) && (IsSignExtensionAndGet(b, type, /*out*/ operand) ||
161 IsZeroExtensionAndGet(b, type, /*out*/ operand))) ||
162 (IsInt64AndGet(b, /*out*/ &mask) && (IsSignExtensionAndGet(a, type, /*out*/ operand) ||
163 IsZeroExtensionAndGet(a, type, /*out*/ operand)))) {
164 switch ((*operand)->GetType()) {
165 case Primitive::kPrimByte: return mask == std::numeric_limits<uint8_t>::max();
166 case Primitive::kPrimChar:
167 case Primitive::kPrimShort: return mask == std::numeric_limits<uint16_t>::max();
168 default: return false;
169 }
170 }
171 }
172 // TODO: perhaps explicit conversions later too?
173 return false;
174}
175
Aart Bik5f805002017-05-16 16:42:41 -0700176// Detect up to two instructions a and b, and an acccumulated constant c.
177static bool IsAddConstHelper(HInstruction* instruction,
178 /*out*/ HInstruction** a,
179 /*out*/ HInstruction** b,
180 /*out*/ int64_t* c,
181 int32_t depth) {
182 static constexpr int32_t kMaxDepth = 8; // don't search too deep
183 int64_t value = 0;
184 if (IsInt64AndGet(instruction, &value)) {
185 *c += value;
186 return true;
187 } else if (instruction->IsAdd() && depth <= kMaxDepth) {
188 return IsAddConstHelper(instruction->InputAt(0), a, b, c, depth + 1) &&
189 IsAddConstHelper(instruction->InputAt(1), a, b, c, depth + 1);
190 } else if (*a == nullptr) {
191 *a = instruction;
192 return true;
193 } else if (*b == nullptr) {
194 *b = instruction;
195 return true;
196 }
197 return false; // too many non-const operands
198}
199
200// Detect a + b + c for an optional constant c.
201static bool IsAddConst(HInstruction* instruction,
202 /*out*/ HInstruction** a,
203 /*out*/ HInstruction** b,
204 /*out*/ int64_t* c) {
205 if (instruction->IsAdd()) {
206 // Try to find a + b and accumulated c.
207 if (IsAddConstHelper(instruction->InputAt(0), a, b, c, /*depth*/ 0) &&
208 IsAddConstHelper(instruction->InputAt(1), a, b, c, /*depth*/ 0) &&
209 *b != nullptr) {
210 return true;
211 }
212 // Found a + b.
213 *a = instruction->InputAt(0);
214 *b = instruction->InputAt(1);
215 *c = 0;
216 return true;
217 }
218 return false;
219}
220
Aart Bikf8f5a162017-02-06 15:35:29 -0800221// Test vector restrictions.
222static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
223 return (restrictions & tested) != 0;
224}
225
Aart Bikf3e61ee2017-04-12 17:09:20 -0700226// Insert an instruction.
Aart Bikf8f5a162017-02-06 15:35:29 -0800227static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
228 DCHECK(block != nullptr);
229 DCHECK(instruction != nullptr);
230 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
231 return instruction;
232}
233
Aart Bik281c6812016-08-26 11:31:48 -0700234//
235// Class methods.
236//
237
238HLoopOptimization::HLoopOptimization(HGraph* graph,
Aart Bik92685a82017-03-06 11:13:43 -0800239 CompilerDriver* compiler_driver,
Aart Bik281c6812016-08-26 11:31:48 -0700240 HInductionVarAnalysis* induction_analysis)
241 : HOptimization(graph, kLoopOptimizationPassName),
Aart Bik92685a82017-03-06 11:13:43 -0800242 compiler_driver_(compiler_driver),
Aart Bik281c6812016-08-26 11:31:48 -0700243 induction_range_(induction_analysis),
Aart Bik96202302016-10-04 17:33:56 -0700244 loop_allocator_(nullptr),
Aart Bikf8f5a162017-02-06 15:35:29 -0800245 global_allocator_(graph_->GetArena()),
Aart Bik281c6812016-08-26 11:31:48 -0700246 top_loop_(nullptr),
Aart Bik8c4a8542016-10-06 11:36:57 -0700247 last_loop_(nullptr),
Aart Bik482095d2016-10-10 15:39:10 -0700248 iset_(nullptr),
Aart Bikdf7822e2016-12-06 10:05:30 -0800249 induction_simplication_count_(0),
Aart Bikf8f5a162017-02-06 15:35:29 -0800250 simplified_(false),
251 vector_length_(0),
252 vector_refs_(nullptr),
253 vector_map_(nullptr) {
Aart Bik281c6812016-08-26 11:31:48 -0700254}
255
256void HLoopOptimization::Run() {
Mingyao Yang01b47b02017-02-03 12:09:57 -0800257 // Skip if there is no loop or the graph has try-catch/irreducible loops.
Aart Bik281c6812016-08-26 11:31:48 -0700258 // TODO: make this less of a sledgehammer.
Mingyao Yang69d75ff2017-02-07 13:06:06 -0800259 if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
Aart Bik281c6812016-08-26 11:31:48 -0700260 return;
261 }
262
Aart Bik96202302016-10-04 17:33:56 -0700263 // Phase-local allocator that draws from the global pool. Since the allocator
264 // itself resides on the stack, it is destructed on exiting Run(), which
265 // implies its underlying memory is released immediately.
Aart Bikf8f5a162017-02-06 15:35:29 -0800266 ArenaAllocator allocator(global_allocator_->GetArenaPool());
Aart Bik96202302016-10-04 17:33:56 -0700267 loop_allocator_ = &allocator;
Nicolas Geoffrayebe16742016-10-05 09:55:42 +0100268
Aart Bik96202302016-10-04 17:33:56 -0700269 // Perform loop optimizations.
270 LocalRun();
Mingyao Yang69d75ff2017-02-07 13:06:06 -0800271 if (top_loop_ == nullptr) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800272 graph_->SetHasLoops(false); // no more loops
Mingyao Yang69d75ff2017-02-07 13:06:06 -0800273 }
274
Aart Bik96202302016-10-04 17:33:56 -0700275 // Detach.
276 loop_allocator_ = nullptr;
277 last_loop_ = top_loop_ = nullptr;
278}
279
280void HLoopOptimization::LocalRun() {
281 // Build the linear order using the phase-local allocator. This step enables building
282 // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
283 ArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
284 LinearizeGraph(graph_, loop_allocator_, &linear_order);
285
Aart Bik281c6812016-08-26 11:31:48 -0700286 // Build the loop hierarchy.
Aart Bik96202302016-10-04 17:33:56 -0700287 for (HBasicBlock* block : linear_order) {
Aart Bik281c6812016-08-26 11:31:48 -0700288 if (block->IsLoopHeader()) {
289 AddLoop(block->GetLoopInformation());
290 }
291 }
Aart Bik96202302016-10-04 17:33:56 -0700292
Aart Bik8c4a8542016-10-06 11:36:57 -0700293 // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
Aart Bikf8f5a162017-02-06 15:35:29 -0800294 // temporary data structures using the phase-local allocator. All new HIR
295 // should use the global allocator.
Aart Bik8c4a8542016-10-06 11:36:57 -0700296 if (top_loop_ != nullptr) {
297 ArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
Aart Bikf8f5a162017-02-06 15:35:29 -0800298 ArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
299 ArenaSafeMap<HInstruction*, HInstruction*> map(
300 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
301 // Attach.
Aart Bik8c4a8542016-10-06 11:36:57 -0700302 iset_ = &iset;
Aart Bikf8f5a162017-02-06 15:35:29 -0800303 vector_refs_ = &refs;
304 vector_map_ = &map;
305 // Traverse.
Aart Bik8c4a8542016-10-06 11:36:57 -0700306 TraverseLoopsInnerToOuter(top_loop_);
Aart Bikf8f5a162017-02-06 15:35:29 -0800307 // Detach.
308 iset_ = nullptr;
309 vector_refs_ = nullptr;
310 vector_map_ = nullptr;
Aart Bik8c4a8542016-10-06 11:36:57 -0700311 }
Aart Bik281c6812016-08-26 11:31:48 -0700312}
313
314void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
315 DCHECK(loop_info != nullptr);
Aart Bikf8f5a162017-02-06 15:35:29 -0800316 LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
Aart Bik281c6812016-08-26 11:31:48 -0700317 if (last_loop_ == nullptr) {
318 // First loop.
319 DCHECK(top_loop_ == nullptr);
320 last_loop_ = top_loop_ = node;
321 } else if (loop_info->IsIn(*last_loop_->loop_info)) {
322 // Inner loop.
323 node->outer = last_loop_;
324 DCHECK(last_loop_->inner == nullptr);
325 last_loop_ = last_loop_->inner = node;
326 } else {
327 // Subsequent loop.
328 while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
329 last_loop_ = last_loop_->outer;
330 }
331 node->outer = last_loop_->outer;
332 node->previous = last_loop_;
333 DCHECK(last_loop_->next == nullptr);
334 last_loop_ = last_loop_->next = node;
335 }
336}
337
338void HLoopOptimization::RemoveLoop(LoopNode* node) {
339 DCHECK(node != nullptr);
Aart Bik8c4a8542016-10-06 11:36:57 -0700340 DCHECK(node->inner == nullptr);
341 if (node->previous != nullptr) {
342 // Within sequence.
343 node->previous->next = node->next;
344 if (node->next != nullptr) {
345 node->next->previous = node->previous;
346 }
347 } else {
348 // First of sequence.
349 if (node->outer != nullptr) {
350 node->outer->inner = node->next;
351 } else {
352 top_loop_ = node->next;
353 }
354 if (node->next != nullptr) {
355 node->next->outer = node->outer;
356 node->next->previous = nullptr;
357 }
358 }
Aart Bik281c6812016-08-26 11:31:48 -0700359}
360
361void HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
362 for ( ; node != nullptr; node = node->next) {
Aart Bik6b69e0a2017-01-11 10:20:43 -0800363 // Visit inner loops first.
Aart Bikf8f5a162017-02-06 15:35:29 -0800364 uint32_t current_induction_simplification_count = induction_simplication_count_;
Aart Bik281c6812016-08-26 11:31:48 -0700365 if (node->inner != nullptr) {
366 TraverseLoopsInnerToOuter(node->inner);
367 }
Aart Bik6b69e0a2017-01-11 10:20:43 -0800368 // Recompute induction information of this loop if the induction
369 // of any inner loop has been simplified.
Aart Bik482095d2016-10-10 15:39:10 -0700370 if (current_induction_simplification_count != induction_simplication_count_) {
371 induction_range_.ReVisit(node->loop_info);
372 }
Aart Bikf8f5a162017-02-06 15:35:29 -0800373 // Repeat simplifications in the loop-body until no more changes occur.
Aart Bik6b69e0a2017-01-11 10:20:43 -0800374 // Note that since each simplification consists of eliminating code (without
375 // introducing new code), this process is always finite.
Aart Bikdf7822e2016-12-06 10:05:30 -0800376 do {
377 simplified_ = false;
Aart Bikdf7822e2016-12-06 10:05:30 -0800378 SimplifyInduction(node);
Aart Bik6b69e0a2017-01-11 10:20:43 -0800379 SimplifyBlocks(node);
Aart Bikdf7822e2016-12-06 10:05:30 -0800380 } while (simplified_);
Aart Bikf8f5a162017-02-06 15:35:29 -0800381 // Optimize inner loop.
Aart Bik9abf8942016-10-14 09:49:42 -0700382 if (node->inner == nullptr) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800383 OptimizeInnerLoop(node);
Aart Bik9abf8942016-10-14 09:49:42 -0700384 }
Aart Bik281c6812016-08-26 11:31:48 -0700385 }
386}
387
Aart Bikf8f5a162017-02-06 15:35:29 -0800388//
389// Optimization.
390//
391
Aart Bik281c6812016-08-26 11:31:48 -0700392void HLoopOptimization::SimplifyInduction(LoopNode* node) {
393 HBasicBlock* header = node->loop_info->GetHeader();
394 HBasicBlock* preheader = node->loop_info->GetPreHeader();
Aart Bik8c4a8542016-10-06 11:36:57 -0700395 // Scan the phis in the header to find opportunities to simplify an induction
396 // cycle that is only used outside the loop. Replace these uses, if any, with
397 // the last value and remove the induction cycle.
398 // Examples: for (int i = 0; x != null; i++) { .... no i .... }
399 // for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
Aart Bik281c6812016-08-26 11:31:48 -0700400 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
401 HPhi* phi = it.Current()->AsPhi();
Aart Bikf8f5a162017-02-06 15:35:29 -0800402 iset_->clear(); // prepare phi induction
403 if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
404 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
Aart Bik8c4a8542016-10-06 11:36:57 -0700405 for (HInstruction* i : *iset_) {
406 RemoveFromCycle(i);
Aart Bik281c6812016-08-26 11:31:48 -0700407 }
Aart Bikdf7822e2016-12-06 10:05:30 -0800408 simplified_ = true;
Aart Bik482095d2016-10-10 15:39:10 -0700409 }
410 }
411}
412
413void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
Aart Bikdf7822e2016-12-06 10:05:30 -0800414 // Iterate over all basic blocks in the loop-body.
415 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
416 HBasicBlock* block = it.Current();
417 // Remove dead instructions from the loop-body.
Aart Bik6b69e0a2017-01-11 10:20:43 -0800418 RemoveDeadInstructions(block->GetPhis());
419 RemoveDeadInstructions(block->GetInstructions());
Aart Bikdf7822e2016-12-06 10:05:30 -0800420 // Remove trivial control flow blocks from the loop-body.
Aart Bik6b69e0a2017-01-11 10:20:43 -0800421 if (block->GetPredecessors().size() == 1 &&
422 block->GetSuccessors().size() == 1 &&
423 block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
Aart Bikdf7822e2016-12-06 10:05:30 -0800424 simplified_ = true;
Aart Bik6b69e0a2017-01-11 10:20:43 -0800425 block->MergeWith(block->GetSingleSuccessor());
Aart Bikdf7822e2016-12-06 10:05:30 -0800426 } else if (block->GetSuccessors().size() == 2) {
427 // Trivial if block can be bypassed to either branch.
428 HBasicBlock* succ0 = block->GetSuccessors()[0];
429 HBasicBlock* succ1 = block->GetSuccessors()[1];
430 HBasicBlock* meet0 = nullptr;
431 HBasicBlock* meet1 = nullptr;
432 if (succ0 != succ1 &&
433 IsGotoBlock(succ0, &meet0) &&
434 IsGotoBlock(succ1, &meet1) &&
435 meet0 == meet1 && // meets again
436 meet0 != block && // no self-loop
437 meet0->GetPhis().IsEmpty()) { // not used for merging
438 simplified_ = true;
439 succ0->DisconnectAndDelete();
440 if (block->Dominates(meet0)) {
441 block->RemoveDominatedBlock(meet0);
442 succ1->AddDominatedBlock(meet0);
443 meet0->SetDominator(succ1);
Aart Bike3dedc52016-11-02 17:50:27 -0700444 }
Aart Bik482095d2016-10-10 15:39:10 -0700445 }
Aart Bik281c6812016-08-26 11:31:48 -0700446 }
Aart Bikdf7822e2016-12-06 10:05:30 -0800447 }
Aart Bik281c6812016-08-26 11:31:48 -0700448}
449
Aart Bikf8f5a162017-02-06 15:35:29 -0800450void HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
Aart Bik281c6812016-08-26 11:31:48 -0700451 HBasicBlock* header = node->loop_info->GetHeader();
452 HBasicBlock* preheader = node->loop_info->GetPreHeader();
Aart Bik9abf8942016-10-14 09:49:42 -0700453 // Ensure loop header logic is finite.
Aart Bikf8f5a162017-02-06 15:35:29 -0800454 int64_t trip_count = 0;
455 if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
456 return;
Aart Bik9abf8942016-10-14 09:49:42 -0700457 }
Aart Bikf8f5a162017-02-06 15:35:29 -0800458
Aart Bik281c6812016-08-26 11:31:48 -0700459 // Ensure there is only a single loop-body (besides the header).
460 HBasicBlock* body = nullptr;
461 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
462 if (it.Current() != header) {
463 if (body != nullptr) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800464 return;
Aart Bik281c6812016-08-26 11:31:48 -0700465 }
466 body = it.Current();
467 }
468 }
469 // Ensure there is only a single exit point.
470 if (header->GetSuccessors().size() != 2) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800471 return;
Aart Bik281c6812016-08-26 11:31:48 -0700472 }
473 HBasicBlock* exit = (header->GetSuccessors()[0] == body)
474 ? header->GetSuccessors()[1]
475 : header->GetSuccessors()[0];
Aart Bik8c4a8542016-10-06 11:36:57 -0700476 // Ensure exit can only be reached by exiting loop.
Aart Bik281c6812016-08-26 11:31:48 -0700477 if (exit->GetPredecessors().size() != 1) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800478 return;
Aart Bik281c6812016-08-26 11:31:48 -0700479 }
Aart Bik6b69e0a2017-01-11 10:20:43 -0800480 // Detect either an empty loop (no side effects other than plain iteration) or
481 // a trivial loop (just iterating once). Replace subsequent index uses, if any,
482 // with the last value and remove the loop, possibly after unrolling its body.
483 HInstruction* phi = header->GetFirstPhi();
Aart Bikf8f5a162017-02-06 15:35:29 -0800484 iset_->clear(); // prepare phi induction
485 if (TrySetSimpleLoopHeader(header)) {
Aart Bik6b69e0a2017-01-11 10:20:43 -0800486 bool is_empty = IsEmptyBody(body);
Aart Bikf8f5a162017-02-06 15:35:29 -0800487 if ((is_empty || trip_count == 1) &&
488 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) {
Aart Bik6b69e0a2017-01-11 10:20:43 -0800489 if (!is_empty) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800490 // Unroll the loop-body, which sees initial value of the index.
Aart Bik6b69e0a2017-01-11 10:20:43 -0800491 phi->ReplaceWith(phi->InputAt(0));
492 preheader->MergeInstructionsWith(body);
493 }
494 body->DisconnectAndDelete();
495 exit->RemovePredecessor(header);
496 header->RemoveSuccessor(exit);
497 header->RemoveDominatedBlock(exit);
498 header->DisconnectAndDelete();
499 preheader->AddSuccessor(exit);
Aart Bikf8f5a162017-02-06 15:35:29 -0800500 preheader->AddInstruction(new (global_allocator_) HGoto());
Aart Bik6b69e0a2017-01-11 10:20:43 -0800501 preheader->AddDominatedBlock(exit);
502 exit->SetDominator(preheader);
503 RemoveLoop(node); // update hierarchy
Aart Bikf8f5a162017-02-06 15:35:29 -0800504 return;
505 }
506 }
507
508 // Vectorize loop, if possible and valid.
509 if (kEnableVectorization) {
510 iset_->clear(); // prepare phi induction
511 if (TrySetSimpleLoopHeader(header) &&
512 CanVectorize(node, body, trip_count) &&
513 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) {
514 Vectorize(node, body, exit, trip_count);
515 graph_->SetHasSIMD(true); // flag SIMD usage
516 return;
517 }
518 }
519}
520
521//
522// Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
523// "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
524// Intel Press, June, 2004 (http://www.aartbik.com/).
525//
526
527bool HLoopOptimization::CanVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
528 // Reset vector bookkeeping.
529 vector_length_ = 0;
530 vector_refs_->clear();
531 vector_runtime_test_a_ =
532 vector_runtime_test_b_= nullptr;
533
534 // Phis in the loop-body prevent vectorization.
535 if (!block->GetPhis().IsEmpty()) {
536 return false;
537 }
538
539 // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
540 // occurrence, which allows passing down attributes down the use tree.
541 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
542 if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
543 return false; // failure to vectorize a left-hand-side
544 }
545 }
546
547 // Heuristics. Does vectorization seem profitable?
548 // TODO: refine
549 if (vector_length_ == 0) {
550 return false; // nothing found
551 } else if (0 < trip_count && trip_count < vector_length_) {
552 return false; // insufficient iterations
553 }
554
555 // Data dependence analysis. Find each pair of references with same type, where
556 // at least one is a write. Each such pair denotes a possible data dependence.
557 // This analysis exploits the property that differently typed arrays cannot be
558 // aliased, as well as the property that references either point to the same
559 // array or to two completely disjoint arrays, i.e., no partial aliasing.
560 // Other than a few simply heuristics, no detailed subscript analysis is done.
561 for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
562 for (auto j = i; ++j != vector_refs_->end(); ) {
563 if (i->type == j->type && (i->lhs || j->lhs)) {
564 // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
565 HInstruction* a = i->base;
566 HInstruction* b = j->base;
567 HInstruction* x = i->offset;
568 HInstruction* y = j->offset;
569 if (a == b) {
570 // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
571 // Conservatively assume a loop-carried data dependence otherwise, and reject.
572 if (x != y) {
573 return false;
574 }
575 } else {
576 // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
577 // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
578 // generating an explicit a != b disambiguation runtime test on the two references.
579 if (x != y) {
580 // For now, we reject after one test to avoid excessive overhead.
581 if (vector_runtime_test_a_ != nullptr) {
582 return false;
583 }
584 vector_runtime_test_a_ = a;
585 vector_runtime_test_b_ = b;
586 }
587 }
588 }
589 }
590 }
591
592 // Success!
593 return true;
594}
595
596void HLoopOptimization::Vectorize(LoopNode* node,
597 HBasicBlock* block,
598 HBasicBlock* exit,
599 int64_t trip_count) {
600 Primitive::Type induc_type = Primitive::kPrimInt;
601 HBasicBlock* header = node->loop_info->GetHeader();
602 HBasicBlock* preheader = node->loop_info->GetPreHeader();
603
604 // A cleanup is needed for any unknown trip count or for a known trip count
605 // with remainder iterations after vectorization.
606 bool needs_cleanup = trip_count == 0 || (trip_count % vector_length_) != 0;
607
608 // Adjust vector bookkeeping.
609 iset_->clear(); // prepare phi induction
610 bool is_simple_loop_header = TrySetSimpleLoopHeader(header); // fills iset_
611 DCHECK(is_simple_loop_header);
612
613 // Generate preheader:
614 // stc = <trip-count>;
615 // vtc = stc - stc % VL;
616 HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
617 HInstruction* vtc = stc;
618 if (needs_cleanup) {
619 DCHECK(IsPowerOfTwo(vector_length_));
620 HInstruction* rem = Insert(
621 preheader, new (global_allocator_) HAnd(induc_type,
622 stc,
623 graph_->GetIntConstant(vector_length_ - 1)));
624 vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
625 }
626
627 // Generate runtime disambiguation test:
628 // vtc = a != b ? vtc : 0;
629 if (vector_runtime_test_a_ != nullptr) {
630 HInstruction* rt = Insert(
631 preheader,
632 new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
633 vtc = Insert(preheader,
634 new (global_allocator_) HSelect(rt, vtc, graph_->GetIntConstant(0), kNoDexPc));
635 needs_cleanup = true;
636 }
637
638 // Generate vector loop:
639 // for (i = 0; i < vtc; i += VL)
640 // <vectorized-loop-body>
641 vector_mode_ = kVector;
642 GenerateNewLoop(node,
643 block,
644 graph_->TransformLoopForVectorization(header, block, exit),
645 graph_->GetIntConstant(0),
646 vtc,
647 graph_->GetIntConstant(vector_length_));
648 HLoopInformation* vloop = vector_header_->GetLoopInformation();
649
650 // Generate cleanup loop, if needed:
651 // for ( ; i < stc; i += 1)
652 // <loop-body>
653 if (needs_cleanup) {
654 vector_mode_ = kSequential;
655 GenerateNewLoop(node,
656 block,
657 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
658 vector_phi_,
659 stc,
660 graph_->GetIntConstant(1));
661 }
662
663 // Remove the original loop by disconnecting the body block
664 // and removing all instructions from the header.
665 block->DisconnectAndDelete();
666 while (!header->GetFirstInstruction()->IsGoto()) {
667 header->RemoveInstruction(header->GetFirstInstruction());
668 }
669 // Update loop hierarchy: the old header now resides in the
670 // same outer loop as the old preheader.
671 header->SetLoopInformation(preheader->GetLoopInformation()); // outward
672 node->loop_info = vloop;
673}
674
675void HLoopOptimization::GenerateNewLoop(LoopNode* node,
676 HBasicBlock* block,
677 HBasicBlock* new_preheader,
678 HInstruction* lo,
679 HInstruction* hi,
680 HInstruction* step) {
681 Primitive::Type induc_type = Primitive::kPrimInt;
682 // Prepare new loop.
683 vector_map_->clear();
684 vector_preheader_ = new_preheader,
685 vector_header_ = vector_preheader_->GetSingleSuccessor();
686 vector_body_ = vector_header_->GetSuccessors()[1];
687 vector_phi_ = new (global_allocator_) HPhi(global_allocator_,
688 kNoRegNumber,
689 0,
690 HPhi::ToPhiType(induc_type));
Aart Bikb07d1bc2017-04-05 10:03:15 -0700691 // Generate header and prepare body.
Aart Bikf8f5a162017-02-06 15:35:29 -0800692 // for (i = lo; i < hi; i += step)
693 // <loop-body>
694 HInstruction* cond = new (global_allocator_) HAboveOrEqual(vector_phi_, hi);
695 vector_header_->AddPhi(vector_phi_);
696 vector_header_->AddInstruction(cond);
697 vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
Aart Bikf8f5a162017-02-06 15:35:29 -0800698 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
699 bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
700 DCHECK(vectorized_def);
701 }
Aart Bik24b905f2017-04-06 09:59:06 -0700702 // Generate body from the instruction map, but in original program order.
Aart Bikb07d1bc2017-04-05 10:03:15 -0700703 HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
Aart Bikf8f5a162017-02-06 15:35:29 -0800704 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
705 auto i = vector_map_->find(it.Current());
706 if (i != vector_map_->end() && !i->second->IsInBlock()) {
Aart Bik24b905f2017-04-06 09:59:06 -0700707 Insert(vector_body_, i->second);
708 // Deal with instructions that need an environment, such as the scalar intrinsics.
Aart Bikf8f5a162017-02-06 15:35:29 -0800709 if (i->second->NeedsEnvironment()) {
Aart Bikb07d1bc2017-04-05 10:03:15 -0700710 i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
Aart Bikf8f5a162017-02-06 15:35:29 -0800711 }
712 }
713 }
714 // Finalize increment and phi.
715 HInstruction* inc = new (global_allocator_) HAdd(induc_type, vector_phi_, step);
716 vector_phi_->AddInput(lo);
717 vector_phi_->AddInput(Insert(vector_body_, inc));
718}
719
720// TODO: accept reductions at left-hand-side, mixed-type store idioms, etc.
721bool HLoopOptimization::VectorizeDef(LoopNode* node,
722 HInstruction* instruction,
723 bool generate_code) {
724 // Accept a left-hand-side array base[index] for
725 // (1) supported vector type,
726 // (2) loop-invariant base,
727 // (3) unit stride index,
728 // (4) vectorizable right-hand-side value.
729 uint64_t restrictions = kNone;
730 if (instruction->IsArraySet()) {
731 Primitive::Type type = instruction->AsArraySet()->GetComponentType();
732 HInstruction* base = instruction->InputAt(0);
733 HInstruction* index = instruction->InputAt(1);
734 HInstruction* value = instruction->InputAt(2);
735 HInstruction* offset = nullptr;
736 if (TrySetVectorType(type, &restrictions) &&
737 node->loop_info->IsDefinedOutOfTheLoop(base) &&
Aart Bikfa762962017-04-07 11:33:37 -0700738 induction_range_.IsUnitStride(instruction, index, &offset) &&
Aart Bikf8f5a162017-02-06 15:35:29 -0800739 VectorizeUse(node, value, generate_code, type, restrictions)) {
740 if (generate_code) {
741 GenerateVecSub(index, offset);
742 GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), type);
743 } else {
744 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
745 }
Aart Bik6b69e0a2017-01-11 10:20:43 -0800746 return true;
747 }
Aart Bikf8f5a162017-02-06 15:35:29 -0800748 return false;
749 }
750 // Branch back okay.
751 if (instruction->IsGoto()) {
752 return true;
753 }
754 // Otherwise accept only expressions with no effects outside the immediate loop-body.
755 // Note that actual uses are inspected during right-hand-side tree traversal.
756 return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
757}
758
759// TODO: more operations and intrinsics, detect saturation arithmetic, etc.
760bool HLoopOptimization::VectorizeUse(LoopNode* node,
761 HInstruction* instruction,
762 bool generate_code,
763 Primitive::Type type,
764 uint64_t restrictions) {
765 // Accept anything for which code has already been generated.
766 if (generate_code) {
767 if (vector_map_->find(instruction) != vector_map_->end()) {
768 return true;
769 }
770 }
771 // Continue the right-hand-side tree traversal, passing in proper
772 // types and vector restrictions along the way. During code generation,
773 // all new nodes are drawn from the global allocator.
774 if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
775 // Accept invariant use, using scalar expansion.
776 if (generate_code) {
777 GenerateVecInv(instruction, type);
778 }
779 return true;
780 } else if (instruction->IsArrayGet()) {
781 // Accept a right-hand-side array base[index] for
782 // (1) exact matching vector type,
783 // (2) loop-invariant base,
784 // (3) unit stride index,
785 // (4) vectorizable right-hand-side value.
786 HInstruction* base = instruction->InputAt(0);
787 HInstruction* index = instruction->InputAt(1);
788 HInstruction* offset = nullptr;
789 if (type == instruction->GetType() &&
790 node->loop_info->IsDefinedOutOfTheLoop(base) &&
Aart Bikfa762962017-04-07 11:33:37 -0700791 induction_range_.IsUnitStride(instruction, index, &offset)) {
Aart Bikf8f5a162017-02-06 15:35:29 -0800792 if (generate_code) {
793 GenerateVecSub(index, offset);
794 GenerateVecMem(instruction, vector_map_->Get(index), nullptr, type);
795 } else {
796 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false));
797 }
798 return true;
799 }
800 } else if (instruction->IsTypeConversion()) {
801 // Accept particular type conversions.
802 HTypeConversion* conversion = instruction->AsTypeConversion();
803 HInstruction* opa = conversion->InputAt(0);
804 Primitive::Type from = conversion->GetInputType();
805 Primitive::Type to = conversion->GetResultType();
806 if ((to == Primitive::kPrimByte ||
807 to == Primitive::kPrimChar ||
808 to == Primitive::kPrimShort) && from == Primitive::kPrimInt) {
809 // Accept a "narrowing" type conversion from a "wider" computation for
810 // (1) conversion into final required type,
811 // (2) vectorizable operand,
812 // (3) "wider" operations cannot bring in higher order bits.
813 if (to == type && VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) {
814 if (generate_code) {
815 if (vector_mode_ == kVector) {
816 vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through
817 } else {
818 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
819 }
820 }
821 return true;
822 }
823 } else if (to == Primitive::kPrimFloat && from == Primitive::kPrimInt) {
824 DCHECK_EQ(to, type);
825 // Accept int to float conversion for
826 // (1) supported int,
827 // (2) vectorizable operand.
828 if (TrySetVectorType(from, &restrictions) &&
829 VectorizeUse(node, opa, generate_code, from, restrictions)) {
830 if (generate_code) {
831 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
832 }
833 return true;
834 }
835 }
836 return false;
837 } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
838 // Accept unary operator for vectorizable operand.
839 HInstruction* opa = instruction->InputAt(0);
840 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
841 if (generate_code) {
842 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
843 }
844 return true;
845 }
846 } else if (instruction->IsAdd() || instruction->IsSub() ||
847 instruction->IsMul() || instruction->IsDiv() ||
848 instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
849 // Deal with vector restrictions.
850 if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
851 (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
852 return false;
853 }
854 // Accept binary operator for vectorizable operands.
855 HInstruction* opa = instruction->InputAt(0);
856 HInstruction* opb = instruction->InputAt(1);
857 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
858 VectorizeUse(node, opb, generate_code, type, restrictions)) {
859 if (generate_code) {
860 GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
861 }
862 return true;
863 }
864 } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
Aart Bikf3e61ee2017-04-12 17:09:20 -0700865 // Recognize vectorization idioms.
866 if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
867 return true;
868 }
Aart Bikf8f5a162017-02-06 15:35:29 -0800869 // Deal with vector restrictions.
870 if ((HasVectorRestrictions(restrictions, kNoShift)) ||
871 (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
872 return false; // unsupported instruction
873 } else if ((instruction->IsShr() || instruction->IsUShr()) &&
874 HasVectorRestrictions(restrictions, kNoHiBits)) {
875 return false; // hibits may impact lobits; TODO: we can do better!
876 }
877 // Accept shift operator for vectorizable/invariant operands.
878 // TODO: accept symbolic, albeit loop invariant shift factors.
879 HInstruction* opa = instruction->InputAt(0);
880 HInstruction* opb = instruction->InputAt(1);
Aart Bik50e20d52017-05-05 14:07:29 -0700881 int64_t distance = 0;
882 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
883 IsInt64AndGet(opb, /*out*/ &distance)) {
Aart Bik65ffd8e2017-05-01 16:50:45 -0700884 // Restrict shift distance to packed data type width.
885 int64_t max_distance = Primitive::ComponentSize(type) * 8;
886 if (0 <= distance && distance < max_distance) {
887 if (generate_code) {
Aart Bik50e20d52017-05-05 14:07:29 -0700888 GenerateVecOp(instruction, vector_map_->Get(opa), opb, type);
Aart Bik65ffd8e2017-05-01 16:50:45 -0700889 }
890 return true;
Aart Bikf8f5a162017-02-06 15:35:29 -0800891 }
Aart Bikf8f5a162017-02-06 15:35:29 -0800892 }
893 } else if (instruction->IsInvokeStaticOrDirect()) {
Aart Bik6daebeb2017-04-03 14:35:41 -0700894 // Accept particular intrinsics.
895 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
896 switch (invoke->GetIntrinsic()) {
897 case Intrinsics::kMathAbsInt:
898 case Intrinsics::kMathAbsLong:
899 case Intrinsics::kMathAbsFloat:
900 case Intrinsics::kMathAbsDouble: {
901 // Deal with vector restrictions.
902 if (HasVectorRestrictions(restrictions, kNoAbs) ||
903 HasVectorRestrictions(restrictions, kNoHiBits)) {
904 // TODO: we can do better for some hibits cases.
905 return false;
906 }
907 // Accept ABS(x) for vectorizable operand.
908 HInstruction* opa = instruction->InputAt(0);
909 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
910 if (generate_code) {
911 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
912 }
913 return true;
914 }
915 return false;
916 }
Aart Bikc8e93c72017-05-10 10:49:22 -0700917 case Intrinsics::kMathMinIntInt:
918 case Intrinsics::kMathMinLongLong:
919 case Intrinsics::kMathMinFloatFloat:
920 case Intrinsics::kMathMinDoubleDouble:
921 case Intrinsics::kMathMaxIntInt:
922 case Intrinsics::kMathMaxLongLong:
923 case Intrinsics::kMathMaxFloatFloat:
924 case Intrinsics::kMathMaxDoubleDouble: {
925 // Deal with vector restrictions.
926 if (HasVectorRestrictions(restrictions, kNoMinMax) ||
927 HasVectorRestrictions(restrictions, kNoHiBits)) {
928 // TODO: we can do better for some hibits cases.
929 return false;
930 }
931 // Accept MIN/MAX(x, y) for vectorizable operands.
932 HInstruction* opa = instruction->InputAt(0);
933 HInstruction* opb = instruction->InputAt(1);
934 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
935 VectorizeUse(node, opb, generate_code, type, restrictions)) {
936 if (generate_code) {
937 GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
938 }
939 return true;
940 }
941 return false;
942 }
Aart Bik6daebeb2017-04-03 14:35:41 -0700943 default:
944 return false;
945 } // switch
Aart Bik281c6812016-08-26 11:31:48 -0700946 }
Aart Bik6b69e0a2017-01-11 10:20:43 -0800947 return false;
Aart Bik281c6812016-08-26 11:31:48 -0700948}
949
Aart Bikf8f5a162017-02-06 15:35:29 -0800950bool HLoopOptimization::TrySetVectorType(Primitive::Type type, uint64_t* restrictions) {
951 const InstructionSetFeatures* features = compiler_driver_->GetInstructionSetFeatures();
952 switch (compiler_driver_->GetInstructionSet()) {
953 case kArm:
954 case kThumb2:
955 return false;
956 case kArm64:
957 // Allow vectorization for all ARM devices, because Android assumes that
Artem Serovd4bccf12017-04-03 18:47:32 +0100958 // ARMv8 AArch64 always supports advanced SIMD.
Aart Bikf8f5a162017-02-06 15:35:29 -0800959 switch (type) {
960 case Primitive::kPrimBoolean:
961 case Primitive::kPrimByte:
Aart Bik6daebeb2017-04-03 14:35:41 -0700962 *restrictions |= kNoDiv | kNoAbs;
Artem Serovd4bccf12017-04-03 18:47:32 +0100963 return TrySetVectorLength(16);
Aart Bikf8f5a162017-02-06 15:35:29 -0800964 case Primitive::kPrimChar:
965 case Primitive::kPrimShort:
Aart Bik6daebeb2017-04-03 14:35:41 -0700966 *restrictions |= kNoDiv | kNoAbs;
Artem Serovd4bccf12017-04-03 18:47:32 +0100967 return TrySetVectorLength(8);
Aart Bikf8f5a162017-02-06 15:35:29 -0800968 case Primitive::kPrimInt:
969 *restrictions |= kNoDiv;
Artem Serovd4bccf12017-04-03 18:47:32 +0100970 return TrySetVectorLength(4);
Artem Serovb31f91f2017-04-05 11:31:19 +0100971 case Primitive::kPrimLong:
Aart Bikc8e93c72017-05-10 10:49:22 -0700972 *restrictions |= kNoDiv | kNoMul | kNoMinMax;
Aart Bikf8f5a162017-02-06 15:35:29 -0800973 return TrySetVectorLength(2);
974 case Primitive::kPrimFloat:
Artem Serovd4bccf12017-04-03 18:47:32 +0100975 return TrySetVectorLength(4);
Artem Serovb31f91f2017-04-05 11:31:19 +0100976 case Primitive::kPrimDouble:
Aart Bikf8f5a162017-02-06 15:35:29 -0800977 return TrySetVectorLength(2);
978 default:
979 return false;
980 }
981 case kX86:
982 case kX86_64:
983 // Allow vectorization for SSE4-enabled X86 devices only (128-bit vectors).
984 if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
985 switch (type) {
986 case Primitive::kPrimBoolean:
987 case Primitive::kPrimByte:
Aart Bikf3e61ee2017-04-12 17:09:20 -0700988 *restrictions |= kNoMul | kNoDiv | kNoShift | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd;
Aart Bikf8f5a162017-02-06 15:35:29 -0800989 return TrySetVectorLength(16);
990 case Primitive::kPrimChar:
991 case Primitive::kPrimShort:
Aart Bikf3e61ee2017-04-12 17:09:20 -0700992 *restrictions |= kNoDiv | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd;
Aart Bikf8f5a162017-02-06 15:35:29 -0800993 return TrySetVectorLength(8);
994 case Primitive::kPrimInt:
995 *restrictions |= kNoDiv;
996 return TrySetVectorLength(4);
997 case Primitive::kPrimLong:
Aart Bikc8e93c72017-05-10 10:49:22 -0700998 *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoMinMax;
Aart Bikf8f5a162017-02-06 15:35:29 -0800999 return TrySetVectorLength(2);
1000 case Primitive::kPrimFloat:
Aart Bikc8e93c72017-05-10 10:49:22 -07001001 *restrictions |= kNoMinMax; // -0.0 vs +0.0
Aart Bikf8f5a162017-02-06 15:35:29 -08001002 return TrySetVectorLength(4);
1003 case Primitive::kPrimDouble:
Aart Bikc8e93c72017-05-10 10:49:22 -07001004 *restrictions |= kNoMinMax; // -0.0 vs +0.0
Aart Bikf8f5a162017-02-06 15:35:29 -08001005 return TrySetVectorLength(2);
1006 default:
1007 break;
1008 } // switch type
1009 }
1010 return false;
1011 case kMips:
1012 case kMips64:
1013 // TODO: implement MIPS SIMD.
1014 return false;
1015 default:
1016 return false;
1017 } // switch instruction set
1018}
1019
1020bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
1021 DCHECK(IsPowerOfTwo(length) && length >= 2u);
1022 // First time set?
1023 if (vector_length_ == 0) {
1024 vector_length_ = length;
1025 }
1026 // Different types are acceptable within a loop-body, as long as all the corresponding vector
1027 // lengths match exactly to obtain a uniform traversal through the vector iteration space
1028 // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
1029 return vector_length_ == length;
1030}
1031
1032void HLoopOptimization::GenerateVecInv(HInstruction* org, Primitive::Type type) {
1033 if (vector_map_->find(org) == vector_map_->end()) {
1034 // In scalar code, just use a self pass-through for scalar invariants
1035 // (viz. expression remains itself).
1036 if (vector_mode_ == kSequential) {
1037 vector_map_->Put(org, org);
1038 return;
1039 }
1040 // In vector code, explicit scalar expansion is needed.
1041 HInstruction* vector = new (global_allocator_) HVecReplicateScalar(
1042 global_allocator_, org, type, vector_length_);
1043 vector_map_->Put(org, Insert(vector_preheader_, vector));
1044 }
1045}
1046
1047void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
1048 if (vector_map_->find(org) == vector_map_->end()) {
1049 HInstruction* subscript = vector_phi_;
1050 if (offset != nullptr) {
1051 subscript = new (global_allocator_) HAdd(Primitive::kPrimInt, subscript, offset);
1052 if (org->IsPhi()) {
1053 Insert(vector_body_, subscript); // lacks layout placeholder
1054 }
1055 }
1056 vector_map_->Put(org, subscript);
1057 }
1058}
1059
1060void HLoopOptimization::GenerateVecMem(HInstruction* org,
1061 HInstruction* opa,
1062 HInstruction* opb,
1063 Primitive::Type type) {
1064 HInstruction* vector = nullptr;
1065 if (vector_mode_ == kVector) {
1066 // Vector store or load.
1067 if (opb != nullptr) {
1068 vector = new (global_allocator_) HVecStore(
1069 global_allocator_, org->InputAt(0), opa, opb, type, vector_length_);
1070 } else {
Aart Bikdb14fcf2017-04-25 15:53:58 -07001071 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
Aart Bikf8f5a162017-02-06 15:35:29 -08001072 vector = new (global_allocator_) HVecLoad(
Aart Bikdb14fcf2017-04-25 15:53:58 -07001073 global_allocator_, org->InputAt(0), opa, type, vector_length_, is_string_char_at);
Aart Bikf8f5a162017-02-06 15:35:29 -08001074 }
1075 } else {
1076 // Scalar store or load.
1077 DCHECK(vector_mode_ == kSequential);
1078 if (opb != nullptr) {
1079 vector = new (global_allocator_) HArraySet(org->InputAt(0), opa, opb, type, kNoDexPc);
1080 } else {
Aart Bikdb14fcf2017-04-25 15:53:58 -07001081 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1082 vector = new (global_allocator_) HArrayGet(
1083 org->InputAt(0), opa, type, kNoDexPc, is_string_char_at);
Aart Bikf8f5a162017-02-06 15:35:29 -08001084 }
1085 }
1086 vector_map_->Put(org, vector);
1087}
1088
1089#define GENERATE_VEC(x, y) \
1090 if (vector_mode_ == kVector) { \
1091 vector = (x); \
1092 } else { \
1093 DCHECK(vector_mode_ == kSequential); \
1094 vector = (y); \
1095 } \
1096 break;
1097
1098void HLoopOptimization::GenerateVecOp(HInstruction* org,
1099 HInstruction* opa,
1100 HInstruction* opb,
1101 Primitive::Type type) {
1102 if (vector_mode_ == kSequential) {
1103 // Scalar code follows implicit integral promotion.
1104 if (type == Primitive::kPrimBoolean ||
1105 type == Primitive::kPrimByte ||
1106 type == Primitive::kPrimChar ||
1107 type == Primitive::kPrimShort) {
1108 type = Primitive::kPrimInt;
1109 }
1110 }
1111 HInstruction* vector = nullptr;
1112 switch (org->GetKind()) {
1113 case HInstruction::kNeg:
1114 DCHECK(opb == nullptr);
1115 GENERATE_VEC(
1116 new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_),
1117 new (global_allocator_) HNeg(type, opa));
1118 case HInstruction::kNot:
1119 DCHECK(opb == nullptr);
1120 GENERATE_VEC(
1121 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_),
1122 new (global_allocator_) HNot(type, opa));
1123 case HInstruction::kBooleanNot:
1124 DCHECK(opb == nullptr);
1125 GENERATE_VEC(
1126 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_),
1127 new (global_allocator_) HBooleanNot(opa));
1128 case HInstruction::kTypeConversion:
1129 DCHECK(opb == nullptr);
1130 GENERATE_VEC(
1131 new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_),
1132 new (global_allocator_) HTypeConversion(type, opa, kNoDexPc));
1133 case HInstruction::kAdd:
1134 GENERATE_VEC(
1135 new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_),
1136 new (global_allocator_) HAdd(type, opa, opb));
1137 case HInstruction::kSub:
1138 GENERATE_VEC(
1139 new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_),
1140 new (global_allocator_) HSub(type, opa, opb));
1141 case HInstruction::kMul:
1142 GENERATE_VEC(
1143 new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_),
1144 new (global_allocator_) HMul(type, opa, opb));
1145 case HInstruction::kDiv:
1146 GENERATE_VEC(
1147 new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_),
1148 new (global_allocator_) HDiv(type, opa, opb, kNoDexPc));
1149 case HInstruction::kAnd:
1150 GENERATE_VEC(
1151 new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_),
1152 new (global_allocator_) HAnd(type, opa, opb));
1153 case HInstruction::kOr:
1154 GENERATE_VEC(
1155 new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_),
1156 new (global_allocator_) HOr(type, opa, opb));
1157 case HInstruction::kXor:
1158 GENERATE_VEC(
1159 new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_),
1160 new (global_allocator_) HXor(type, opa, opb));
1161 case HInstruction::kShl:
1162 GENERATE_VEC(
1163 new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_),
1164 new (global_allocator_) HShl(type, opa, opb));
1165 case HInstruction::kShr:
1166 GENERATE_VEC(
1167 new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_),
1168 new (global_allocator_) HShr(type, opa, opb));
1169 case HInstruction::kUShr:
1170 GENERATE_VEC(
1171 new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_),
1172 new (global_allocator_) HUShr(type, opa, opb));
1173 case HInstruction::kInvokeStaticOrDirect: {
Aart Bik6daebeb2017-04-03 14:35:41 -07001174 HInvokeStaticOrDirect* invoke = org->AsInvokeStaticOrDirect();
1175 if (vector_mode_ == kVector) {
1176 switch (invoke->GetIntrinsic()) {
1177 case Intrinsics::kMathAbsInt:
1178 case Intrinsics::kMathAbsLong:
1179 case Intrinsics::kMathAbsFloat:
1180 case Intrinsics::kMathAbsDouble:
1181 DCHECK(opb == nullptr);
1182 vector = new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_);
1183 break;
Aart Bikc8e93c72017-05-10 10:49:22 -07001184 case Intrinsics::kMathMinIntInt:
1185 case Intrinsics::kMathMinLongLong:
1186 case Intrinsics::kMathMinFloatFloat:
1187 case Intrinsics::kMathMinDoubleDouble: {
1188 bool is_unsigned = false; // TODO: detect unsigned versions
1189 vector = new (global_allocator_)
1190 HVecMin(global_allocator_, opa, opb, type, vector_length_, is_unsigned);
1191 break;
1192 }
1193 case Intrinsics::kMathMaxIntInt:
1194 case Intrinsics::kMathMaxLongLong:
1195 case Intrinsics::kMathMaxFloatFloat:
1196 case Intrinsics::kMathMaxDoubleDouble: {
1197 bool is_unsigned = false; // TODO: detect unsigned versions
1198 vector = new (global_allocator_)
1199 HVecMax(global_allocator_, opa, opb, type, vector_length_, is_unsigned);
1200 break;
1201 }
Aart Bik6daebeb2017-04-03 14:35:41 -07001202 default:
1203 LOG(FATAL) << "Unsupported SIMD intrinsic";
1204 UNREACHABLE();
1205 } // switch invoke
1206 } else {
Aart Bik24b905f2017-04-06 09:59:06 -07001207 // In scalar code, simply clone the method invoke, and replace its operands with the
1208 // corresponding new scalar instructions in the loop. The instruction will get an
1209 // environment while being inserted from the instruction map in original program order.
Aart Bik6daebeb2017-04-03 14:35:41 -07001210 DCHECK(vector_mode_ == kSequential);
1211 HInvokeStaticOrDirect* new_invoke = new (global_allocator_) HInvokeStaticOrDirect(
1212 global_allocator_,
1213 invoke->GetNumberOfArguments(),
1214 invoke->GetType(),
1215 invoke->GetDexPc(),
1216 invoke->GetDexMethodIndex(),
1217 invoke->GetResolvedMethod(),
1218 invoke->GetDispatchInfo(),
1219 invoke->GetInvokeType(),
1220 invoke->GetTargetMethod(),
1221 invoke->GetClinitCheckRequirement());
1222 HInputsRef inputs = invoke->GetInputs();
1223 for (size_t index = 0; index < inputs.size(); ++index) {
1224 new_invoke->SetArgumentAt(index, vector_map_->Get(inputs[index]));
1225 }
Aart Bik98990262017-04-10 13:15:57 -07001226 new_invoke->SetIntrinsic(invoke->GetIntrinsic(),
1227 kNeedsEnvironmentOrCache,
1228 kNoSideEffects,
1229 kNoThrow);
Aart Bik6daebeb2017-04-03 14:35:41 -07001230 vector = new_invoke;
1231 }
Aart Bikf8f5a162017-02-06 15:35:29 -08001232 break;
1233 }
1234 default:
1235 break;
1236 } // switch
1237 CHECK(vector != nullptr) << "Unsupported SIMD operator";
1238 vector_map_->Put(org, vector);
1239}
1240
1241#undef GENERATE_VEC
1242
1243//
Aart Bikf3e61ee2017-04-12 17:09:20 -07001244// Vectorization idioms.
1245//
1246
1247// Method recognizes the following idioms:
1248// rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
1249// regular halving add (a + b) >> 1 for unsigned/signed operands a, b
1250// Provided that the operands are promoted to a wider form to do the arithmetic and
1251// then cast back to narrower form, the idioms can be mapped into efficient SIMD
1252// implementation that operates directly in narrower form (plus one extra bit).
1253// TODO: current version recognizes implicit byte/short/char widening only;
1254// explicit widening from int to long could be added later.
1255bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
1256 HInstruction* instruction,
1257 bool generate_code,
1258 Primitive::Type type,
1259 uint64_t restrictions) {
1260 // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
1261 // (note whether the sign bit in higher precision is shifted in has no effect
1262 // on the narrow precision computed by the idiom).
Aart Bik5f805002017-05-16 16:42:41 -07001263 int64_t distance = 0;
Aart Bikf3e61ee2017-04-12 17:09:20 -07001264 if ((instruction->IsShr() ||
1265 instruction->IsUShr()) &&
Aart Bik5f805002017-05-16 16:42:41 -07001266 IsInt64AndGet(instruction->InputAt(1), /*out*/ &distance) && distance == 1) {
1267 // Test for (a + b + c) >> 1 for optional constant c.
1268 HInstruction* a = nullptr;
1269 HInstruction* b = nullptr;
1270 int64_t c = 0;
1271 if (IsAddConst(instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) {
1272 // Accept c == 1 (rounded) or c == 0 (not rounded).
1273 bool is_rounded = false;
1274 if (c == 1) {
1275 is_rounded = true;
1276 } else if (c != 0) {
1277 return false;
1278 }
1279 // Accept consistent zero or sign extension on operands a and b.
Aart Bikf3e61ee2017-04-12 17:09:20 -07001280 HInstruction* r = nullptr;
1281 HInstruction* s = nullptr;
1282 bool is_unsigned = false;
1283 if (IsZeroExtensionAndGet(a, type, &r) && IsZeroExtensionAndGet(b, type, &s)) {
1284 is_unsigned = true;
1285 } else if (IsSignExtensionAndGet(a, type, &r) && IsSignExtensionAndGet(b, type, &s)) {
1286 is_unsigned = false;
1287 } else {
1288 return false;
1289 }
1290 // Deal with vector restrictions.
1291 if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
1292 (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
1293 return false;
1294 }
1295 // Accept recognized halving add for vectorizable operands. Vectorized code uses the
1296 // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
1297 DCHECK(r != nullptr && s != nullptr);
1298 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1299 VectorizeUse(node, s, generate_code, type, restrictions)) {
1300 if (generate_code) {
1301 if (vector_mode_ == kVector) {
1302 vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
1303 global_allocator_,
1304 vector_map_->Get(r),
1305 vector_map_->Get(s),
1306 type,
1307 vector_length_,
1308 is_unsigned,
1309 is_rounded));
1310 } else {
1311 VectorizeUse(node, instruction->InputAt(0), generate_code, type, restrictions);
1312 VectorizeUse(node, instruction->InputAt(1), generate_code, type, restrictions);
1313 GenerateVecOp(instruction,
1314 vector_map_->Get(instruction->InputAt(0)),
1315 vector_map_->Get(instruction->InputAt(1)),
1316 type);
1317 }
1318 }
1319 return true;
1320 }
1321 }
1322 }
1323 return false;
1324}
1325
1326//
Aart Bikf8f5a162017-02-06 15:35:29 -08001327// Helpers.
1328//
1329
1330bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
1331 DCHECK(iset_->empty());
Aart Bikcc42be02016-10-20 16:14:16 -07001332 ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
1333 if (set != nullptr) {
1334 for (HInstruction* i : *set) {
Aart Bike3dedc52016-11-02 17:50:27 -07001335 // Check that, other than instructions that are no longer in the graph (removed earlier)
Aart Bikf8f5a162017-02-06 15:35:29 -08001336 // each instruction is removable and, when restrict uses are requested, other than for phi,
1337 // all uses are contained within the cycle.
Aart Bike3dedc52016-11-02 17:50:27 -07001338 if (!i->IsInBlock()) {
1339 continue;
1340 } else if (!i->IsRemovable()) {
1341 return false;
Aart Bikf8f5a162017-02-06 15:35:29 -08001342 } else if (i != phi && restrict_uses) {
Aart Bikcc42be02016-10-20 16:14:16 -07001343 for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
1344 if (set->find(use.GetUser()) == set->end()) {
1345 return false;
1346 }
1347 }
1348 }
Aart Bike3dedc52016-11-02 17:50:27 -07001349 iset_->insert(i); // copy
Aart Bikcc42be02016-10-20 16:14:16 -07001350 }
Aart Bikcc42be02016-10-20 16:14:16 -07001351 return true;
1352 }
1353 return false;
1354}
1355
1356// Find: phi: Phi(init, addsub)
1357// s: SuspendCheck
1358// c: Condition(phi, bound)
1359// i: If(c)
1360// TODO: Find a less pattern matching approach?
Aart Bikf8f5a162017-02-06 15:35:29 -08001361bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block) {
Aart Bikcc42be02016-10-20 16:14:16 -07001362 DCHECK(iset_->empty());
1363 HInstruction* phi = block->GetFirstPhi();
Aart Bikf8f5a162017-02-06 15:35:29 -08001364 if (phi != nullptr &&
1365 phi->GetNext() == nullptr &&
1366 TrySetPhiInduction(phi->AsPhi(), /*restrict_uses*/ false)) {
Aart Bikcc42be02016-10-20 16:14:16 -07001367 HInstruction* s = block->GetFirstInstruction();
1368 if (s != nullptr && s->IsSuspendCheck()) {
1369 HInstruction* c = s->GetNext();
Aart Bikd86c0852017-04-14 12:00:15 -07001370 if (c != nullptr &&
1371 c->IsCondition() &&
1372 c->GetUses().HasExactlyOneElement() && // only used for termination
1373 !c->HasEnvironmentUses()) { // unlikely, but not impossible
Aart Bikcc42be02016-10-20 16:14:16 -07001374 HInstruction* i = c->GetNext();
1375 if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
1376 iset_->insert(c);
1377 iset_->insert(s);
1378 return true;
1379 }
1380 }
1381 }
1382 }
1383 return false;
1384}
1385
1386bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
Aart Bikf8f5a162017-02-06 15:35:29 -08001387 if (!block->GetPhis().IsEmpty()) {
1388 return false;
1389 }
1390 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1391 HInstruction* instruction = it.Current();
1392 if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
1393 return false;
Aart Bikcc42be02016-10-20 16:14:16 -07001394 }
Aart Bikf8f5a162017-02-06 15:35:29 -08001395 }
1396 return true;
1397}
1398
1399bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
1400 HInstruction* instruction) {
1401 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1402 if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
1403 return true;
1404 }
Aart Bikcc42be02016-10-20 16:14:16 -07001405 }
1406 return false;
1407}
1408
Aart Bik482095d2016-10-10 15:39:10 -07001409bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
Aart Bik8c4a8542016-10-06 11:36:57 -07001410 HInstruction* instruction,
Aart Bik6b69e0a2017-01-11 10:20:43 -08001411 bool collect_loop_uses,
Aart Bik8c4a8542016-10-06 11:36:57 -07001412 /*out*/ int32_t* use_count) {
1413 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1414 HInstruction* user = use.GetUser();
1415 if (iset_->find(user) == iset_->end()) { // not excluded?
1416 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
Aart Bik482095d2016-10-10 15:39:10 -07001417 if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
Aart Bik6b69e0a2017-01-11 10:20:43 -08001418 // If collect_loop_uses is set, simply keep adding those uses to the set.
1419 // Otherwise, reject uses inside the loop that were not already in the set.
1420 if (collect_loop_uses) {
1421 iset_->insert(user);
1422 continue;
1423 }
Aart Bik8c4a8542016-10-06 11:36:57 -07001424 return false;
1425 }
1426 ++*use_count;
1427 }
1428 }
1429 return true;
1430}
1431
Aart Bik807868e2016-11-03 17:51:43 -07001432bool HLoopOptimization::TryReplaceWithLastValue(HInstruction* instruction, HBasicBlock* block) {
1433 // Try to replace outside uses with the last value. Environment uses can consume this
1434 // value too, since any first true use is outside the loop (although this may imply
1435 // that de-opting may look "ahead" a bit on the phi value). If there are only environment
1436 // uses, the value is dropped altogether, since the computations have no effect.
1437 if (induction_range_.CanGenerateLastValue(instruction)) {
Aart Bik6b69e0a2017-01-11 10:20:43 -08001438 HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
1439 const HUseList<HInstruction*>& uses = instruction->GetUses();
1440 for (auto it = uses.begin(), end = uses.end(); it != end;) {
1441 HInstruction* user = it->GetUser();
1442 size_t index = it->GetIndex();
1443 ++it; // increment before replacing
1444 if (iset_->find(user) == iset_->end()) { // not excluded?
1445 user->ReplaceInput(replacement, index);
1446 induction_range_.Replace(user, instruction, replacement); // update induction
1447 }
1448 }
1449 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
1450 for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
1451 HEnvironment* user = it->GetUser();
1452 size_t index = it->GetIndex();
1453 ++it; // increment before replacing
1454 if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
1455 user->RemoveAsUserOfInput(index);
1456 user->SetRawEnvAt(index, replacement);
1457 replacement->AddEnvUseAt(user, index);
1458 }
1459 }
1460 induction_simplication_count_++;
Aart Bik807868e2016-11-03 17:51:43 -07001461 return true;
Aart Bik8c4a8542016-10-06 11:36:57 -07001462 }
Aart Bik807868e2016-11-03 17:51:43 -07001463 return false;
Aart Bik8c4a8542016-10-06 11:36:57 -07001464}
1465
Aart Bikf8f5a162017-02-06 15:35:29 -08001466bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
1467 HInstruction* instruction,
1468 HBasicBlock* block,
1469 bool collect_loop_uses) {
1470 // Assigning the last value is always successful if there are no uses.
1471 // Otherwise, it succeeds in a no early-exit loop by generating the
1472 // proper last value assignment.
1473 int32_t use_count = 0;
1474 return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
1475 (use_count == 0 ||
1476 (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(instruction, block)));
1477}
1478
Aart Bik6b69e0a2017-01-11 10:20:43 -08001479void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
1480 for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
1481 HInstruction* instruction = i.Current();
1482 if (instruction->IsDeadAndRemovable()) {
1483 simplified_ = true;
1484 instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
1485 }
1486 }
1487}
1488
Aart Bik281c6812016-08-26 11:31:48 -07001489} // namespace art