Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |
| 18 | #define ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |
| 19 | |
| 20 | #include <fstream> |
| 21 | |
| 22 | #include "base/time_utils.h" |
| 23 | #include "driver/compiler_driver.h" |
| 24 | #include "nodes.h" |
| 25 | #include "optimization.h" |
xueliang.zhong | f7caf68 | 2017-03-01 16:07:02 +0000 | [diff] [blame] | 26 | #include "code_generator.h" |
Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 27 | |
| 28 | namespace art { |
| 29 | |
| 30 | // General description of instruction scheduling. |
| 31 | // |
| 32 | // This pass tries to improve the quality of the generated code by reordering |
| 33 | // instructions in the graph to avoid execution delays caused by execution |
| 34 | // dependencies. |
| 35 | // Currently, scheduling is performed at the block level, so no `HInstruction` |
| 36 | // ever leaves its block in this pass. |
| 37 | // |
| 38 | // The scheduling process iterates through blocks in the graph. For blocks that |
| 39 | // we can and want to schedule: |
| 40 | // 1) Build a dependency graph for instructions. |
| 41 | // It includes data dependencies (inputs/uses), but also environment |
| 42 | // dependencies and side-effect dependencies. |
| 43 | // 2) Schedule the dependency graph. |
| 44 | // This is a topological sort of the dependency graph, using heuristics to |
| 45 | // decide what node to scheduler first when there are multiple candidates. |
| 46 | // |
| 47 | // A few factors impacting the quality of the scheduling are: |
| 48 | // - The heuristics used to decide what node to schedule in the topological sort |
| 49 | // when there are multiple valid candidates. There is a wide range of |
| 50 | // complexity possible here, going from a simple model only considering |
| 51 | // latencies, to a super detailed CPU pipeline model. |
| 52 | // - Fewer dependencies in the dependency graph give more freedom for the |
| 53 | // scheduling heuristics. For example de-aliasing can allow possibilities for |
| 54 | // reordering of memory accesses. |
| 55 | // - The level of abstraction of the IR. It is easier to evaluate scheduling for |
| 56 | // IRs that translate to a single assembly instruction than for IRs |
| 57 | // that generate multiple assembly instructions or generate different code |
| 58 | // depending on properties of the IR. |
| 59 | // - Scheduling is performed before register allocation, it is not aware of the |
| 60 | // impact of moving instructions on register allocation. |
| 61 | // |
| 62 | // |
| 63 | // The scheduling code uses the terms predecessors, successors, and dependencies. |
| 64 | // This can be confusing at times, so here are clarifications. |
| 65 | // These terms are used from the point of view of the program dependency graph. So |
| 66 | // the inputs of an instruction are part of its dependencies, and hence part its |
| 67 | // predecessors. So the uses of an instruction are (part of) its successors. |
| 68 | // (Side-effect dependencies can yield predecessors or successors that are not |
| 69 | // inputs or uses.) |
| 70 | // |
| 71 | // Here is a trivial example. For the Java code: |
| 72 | // |
| 73 | // int a = 1 + 2; |
| 74 | // |
| 75 | // we would have the instructions |
| 76 | // |
| 77 | // i1 HIntConstant 1 |
| 78 | // i2 HIntConstant 2 |
| 79 | // i3 HAdd [i1,i2] |
| 80 | // |
| 81 | // `i1` and `i2` are predecessors of `i3`. |
| 82 | // `i3` is a successor of `i1` and a successor of `i2`. |
| 83 | // In a scheduling graph for this code we would have three nodes `n1`, `n2`, |
| 84 | // and `n3` (respectively for instructions `i1`, `i1`, and `i3`). |
| 85 | // Conceptually the program dependency graph for this would contain two edges |
| 86 | // |
| 87 | // n1 -> n3 |
| 88 | // n2 -> n3 |
| 89 | // |
| 90 | // Since we schedule backwards (starting from the last instruction in each basic |
| 91 | // block), the implementation of nodes keeps a list of pointers their |
| 92 | // predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`. |
| 93 | // |
| 94 | // Node dependencies are also referred to from the program dependency graph |
| 95 | // point of view: we say that node `B` immediately depends on `A` if there is an |
| 96 | // edge from `A` to `B` in the program dependency graph. `A` is a predecessor of |
| 97 | // `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and |
| 98 | // `n2`. |
| 99 | // Since nodes in the scheduling graph keep a list of their predecessors, node |
| 100 | // `B` will have a pointer to its predecessor `A`. |
| 101 | // As we schedule backwards, `B` will be selected for scheduling before `A` is. |
| 102 | // |
| 103 | // So the scheduling for the example above could happen as follow |
| 104 | // |
| 105 | // |---------------------------+------------------------| |
| 106 | // | candidates for scheduling | instructions scheduled | |
| 107 | // | --------------------------+------------------------| |
| 108 | // |
| 109 | // The only node without successors is `n3`, so it is the only initial |
| 110 | // candidate. |
| 111 | // |
| 112 | // | n3 | (none) | |
| 113 | // |
| 114 | // We schedule `n3` as the last (and only) instruction. All its predecessors |
| 115 | // that do not have any unscheduled successors become candidate. That is, `n1` |
| 116 | // and `n2` become candidates. |
| 117 | // |
| 118 | // | n1, n2 | n3 | |
| 119 | // |
| 120 | // One of the candidates is selected. In practice this is where scheduling |
| 121 | // heuristics kick in, to decide which of the candidates should be selected. |
| 122 | // In this example, let it be `n1`. It is scheduled before previously scheduled |
| 123 | // nodes (in program order). There are no other nodes to add to the list of |
| 124 | // candidates. |
| 125 | // |
| 126 | // | n2 | n1 | |
| 127 | // | | n3 | |
| 128 | // |
| 129 | // The only candidate available for scheduling is `n2`. Schedule it before |
| 130 | // (in program order) the previously scheduled nodes. |
| 131 | // |
| 132 | // | (none) | n2 | |
| 133 | // | | n1 | |
| 134 | // | | n3 | |
| 135 | // |---------------------------+------------------------| |
| 136 | // |
| 137 | // So finally the instructions will be executed in the order `i2`, `i1`, and `i3`. |
| 138 | // In this trivial example, it does not matter which of `i1` and `i2` is |
| 139 | // scheduled first since they are constants. However the same process would |
| 140 | // apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`). |
| 141 | |
| 142 | // Set to true to have instruction scheduling dump scheduling graphs to the file |
| 143 | // `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`. |
| 144 | static constexpr bool kDumpDotSchedulingGraphs = false; |
| 145 | |
| 146 | // Typically used as a default instruction latency. |
| 147 | static constexpr uint32_t kGenericInstructionLatency = 1; |
| 148 | |
| 149 | class HScheduler; |
| 150 | |
| 151 | /** |
| 152 | * A node representing an `HInstruction` in the `SchedulingGraph`. |
| 153 | */ |
| 154 | class SchedulingNode : public ArenaObject<kArenaAllocScheduler> { |
| 155 | public: |
| 156 | SchedulingNode(HInstruction* instr, ArenaAllocator* arena, bool is_scheduling_barrier) |
| 157 | : latency_(0), |
| 158 | internal_latency_(0), |
| 159 | critical_path_(0), |
| 160 | instruction_(instr), |
| 161 | is_scheduling_barrier_(is_scheduling_barrier), |
| 162 | data_predecessors_(arena->Adapter(kArenaAllocScheduler)), |
| 163 | other_predecessors_(arena->Adapter(kArenaAllocScheduler)), |
| 164 | num_unscheduled_successors_(0) { |
| 165 | data_predecessors_.reserve(kPreallocatedPredecessors); |
| 166 | } |
| 167 | |
| 168 | void AddDataPredecessor(SchedulingNode* predecessor) { |
| 169 | data_predecessors_.push_back(predecessor); |
| 170 | predecessor->num_unscheduled_successors_++; |
| 171 | } |
| 172 | |
| 173 | void AddOtherPredecessor(SchedulingNode* predecessor) { |
| 174 | other_predecessors_.push_back(predecessor); |
| 175 | predecessor->num_unscheduled_successors_++; |
| 176 | } |
| 177 | |
| 178 | void DecrementNumberOfUnscheduledSuccessors() { |
| 179 | num_unscheduled_successors_--; |
| 180 | } |
| 181 | |
| 182 | void MaybeUpdateCriticalPath(uint32_t other_critical_path) { |
| 183 | critical_path_ = std::max(critical_path_, other_critical_path); |
| 184 | } |
| 185 | |
| 186 | bool HasUnscheduledSuccessors() const { |
| 187 | return num_unscheduled_successors_ != 0; |
| 188 | } |
| 189 | |
| 190 | HInstruction* GetInstruction() const { return instruction_; } |
| 191 | uint32_t GetLatency() const { return latency_; } |
| 192 | void SetLatency(uint32_t latency) { latency_ = latency; } |
| 193 | uint32_t GetInternalLatency() const { return internal_latency_; } |
| 194 | void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; } |
| 195 | uint32_t GetCriticalPath() const { return critical_path_; } |
| 196 | bool IsSchedulingBarrier() const { return is_scheduling_barrier_; } |
| 197 | const ArenaVector<SchedulingNode*>& GetDataPredecessors() const { return data_predecessors_; } |
| 198 | const ArenaVector<SchedulingNode*>& GetOtherPredecessors() const { return other_predecessors_; } |
| 199 | |
| 200 | private: |
| 201 | // The latency of this node. It represents the latency between the moment the |
| 202 | // last instruction for this node has executed to the moment the result |
| 203 | // produced by this node is available to users. |
| 204 | uint32_t latency_; |
| 205 | // This represents the time spent *within* the generated code for this node. |
| 206 | // It should be zero for nodes that only generate a single instruction. |
| 207 | uint32_t internal_latency_; |
| 208 | |
| 209 | // The critical path from this instruction to the end of scheduling. It is |
| 210 | // used by the scheduling heuristics to measure the priority of this instruction. |
| 211 | // It is defined as |
| 212 | // critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses) |
| 213 | // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in |
| 214 | // `HScheduler::Schedule(SchedulingNode* scheduling_node)`). |
| 215 | uint32_t critical_path_; |
| 216 | |
| 217 | // The instruction that this node represents. |
| 218 | HInstruction* const instruction_; |
| 219 | |
| 220 | // If a node is scheduling barrier, other nodes cannot be scheduled before it. |
| 221 | const bool is_scheduling_barrier_; |
| 222 | |
| 223 | // The lists of predecessors. They cannot be scheduled before this node. Once |
| 224 | // this node is scheduled, we check whether any of its predecessors has become a |
| 225 | // valid candidate for scheduling. |
| 226 | // Predecessors in `data_predecessors_` are data dependencies. Those in |
| 227 | // `other_predecessors_` contain side-effect dependencies, environment |
| 228 | // dependencies, and scheduling barrier dependencies. |
| 229 | ArenaVector<SchedulingNode*> data_predecessors_; |
| 230 | ArenaVector<SchedulingNode*> other_predecessors_; |
| 231 | |
| 232 | // The number of unscheduled successors for this node. This number is |
| 233 | // decremented as successors are scheduled. When it reaches zero this node |
| 234 | // becomes a valid candidate to schedule. |
| 235 | uint32_t num_unscheduled_successors_; |
| 236 | |
| 237 | static constexpr size_t kPreallocatedPredecessors = 4; |
| 238 | }; |
| 239 | |
| 240 | /* |
| 241 | * Directed acyclic graph for scheduling. |
| 242 | */ |
| 243 | class SchedulingGraph : public ValueObject { |
| 244 | public: |
| 245 | SchedulingGraph(const HScheduler* scheduler, ArenaAllocator* arena) |
| 246 | : scheduler_(scheduler), |
| 247 | arena_(arena), |
| 248 | contains_scheduling_barrier_(false), |
| 249 | nodes_map_(arena_->Adapter(kArenaAllocScheduler)) {} |
| 250 | |
| 251 | SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) { |
| 252 | SchedulingNode* node = new (arena_) SchedulingNode(instr, arena_, is_scheduling_barrier); |
| 253 | nodes_map_.Insert(std::make_pair(instr, node)); |
| 254 | contains_scheduling_barrier_ |= is_scheduling_barrier; |
| 255 | AddDependencies(instr, is_scheduling_barrier); |
| 256 | return node; |
| 257 | } |
| 258 | |
| 259 | void Clear() { |
| 260 | nodes_map_.Clear(); |
| 261 | contains_scheduling_barrier_ = false; |
| 262 | } |
| 263 | |
| 264 | SchedulingNode* GetNode(const HInstruction* instr) const { |
| 265 | auto it = nodes_map_.Find(instr); |
| 266 | if (it == nodes_map_.end()) { |
| 267 | return nullptr; |
| 268 | } else { |
| 269 | return it->second; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | bool IsSchedulingBarrier(const HInstruction* instruction) const; |
| 274 | |
| 275 | bool HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const; |
| 276 | bool HasImmediateDataDependency(const HInstruction* node, const HInstruction* other) const; |
| 277 | bool HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const; |
| 278 | bool HasImmediateOtherDependency(const HInstruction* node, const HInstruction* other) const; |
| 279 | |
| 280 | size_t Size() const { |
| 281 | return nodes_map_.Size(); |
| 282 | } |
| 283 | |
| 284 | // Dump the scheduling graph, in dot file format, appending it to the file |
| 285 | // `scheduling_graphs.dot`. |
| 286 | void DumpAsDotGraph(const std::string& description, |
| 287 | const ArenaVector<SchedulingNode*>& initial_candidates); |
| 288 | |
| 289 | protected: |
| 290 | void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency); |
| 291 | void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) { |
| 292 | AddDependency(node, dependency, /*is_data_dependency*/true); |
| 293 | } |
| 294 | void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) { |
| 295 | AddDependency(node, dependency, /*is_data_dependency*/false); |
| 296 | } |
| 297 | |
| 298 | // Add dependencies nodes for the given `HInstruction`: inputs, environments, and side-effects. |
| 299 | void AddDependencies(HInstruction* instruction, bool is_scheduling_barrier = false); |
| 300 | |
| 301 | const HScheduler* const scheduler_; |
| 302 | |
| 303 | ArenaAllocator* const arena_; |
| 304 | |
| 305 | bool contains_scheduling_barrier_; |
| 306 | |
| 307 | ArenaHashMap<const HInstruction*, SchedulingNode*> nodes_map_; |
| 308 | }; |
| 309 | |
| 310 | /* |
| 311 | * The visitors derived from this base class are used by schedulers to evaluate |
| 312 | * the latencies of `HInstruction`s. |
| 313 | */ |
| 314 | class SchedulingLatencyVisitor : public HGraphDelegateVisitor { |
| 315 | public: |
| 316 | // This class and its sub-classes will never be used to drive a visit of an |
| 317 | // `HGraph` but only to visit `HInstructions` one at a time, so we do not need |
| 318 | // to pass a valid graph to `HGraphDelegateVisitor()`. |
Andreas Gampe | d9911ee | 2017-03-27 13:27:24 -0700 | [diff] [blame] | 319 | SchedulingLatencyVisitor() |
| 320 | : HGraphDelegateVisitor(nullptr), |
| 321 | last_visited_latency_(0), |
| 322 | last_visited_internal_latency_(0) {} |
Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 323 | |
| 324 | void VisitInstruction(HInstruction* instruction) OVERRIDE { |
| 325 | LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". " |
| 326 | "Architecture-specific scheduling latency visitors must handle all instructions" |
| 327 | " (potentially by overriding the generic `VisitInstruction()`."; |
| 328 | UNREACHABLE(); |
| 329 | } |
| 330 | |
| 331 | void Visit(HInstruction* instruction) { |
| 332 | instruction->Accept(this); |
| 333 | } |
| 334 | |
| 335 | void CalculateLatency(SchedulingNode* node) { |
| 336 | // By default nodes have no internal latency. |
| 337 | last_visited_internal_latency_ = 0; |
| 338 | Visit(node->GetInstruction()); |
| 339 | } |
| 340 | |
| 341 | uint32_t GetLastVisitedLatency() const { return last_visited_latency_; } |
| 342 | uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; } |
| 343 | |
| 344 | protected: |
| 345 | // The latency of the most recent visited SchedulingNode. |
| 346 | // This is for reporting the latency value to the user of this visitor. |
| 347 | uint32_t last_visited_latency_; |
| 348 | // This represents the time spent *within* the generated code for the most recent visited |
| 349 | // SchedulingNode. This is for reporting the internal latency value to the user of this visitor. |
| 350 | uint32_t last_visited_internal_latency_; |
| 351 | }; |
| 352 | |
| 353 | class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> { |
| 354 | public: |
| 355 | virtual SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, |
| 356 | const SchedulingGraph& graph) = 0; |
| 357 | virtual ~SchedulingNodeSelector() {} |
| 358 | protected: |
| 359 | static void DeleteNodeAtIndex(ArenaVector<SchedulingNode*>* nodes, size_t index) { |
| 360 | (*nodes)[index] = nodes->back(); |
| 361 | nodes->pop_back(); |
| 362 | } |
| 363 | }; |
| 364 | |
| 365 | /* |
| 366 | * Select a `SchedulingNode` at random within the candidates. |
| 367 | */ |
| 368 | class RandomSchedulingNodeSelector : public SchedulingNodeSelector { |
| 369 | public: |
| 370 | explicit RandomSchedulingNodeSelector() : seed_(0) { |
| 371 | seed_ = static_cast<uint32_t>(NanoTime()); |
| 372 | srand(seed_); |
| 373 | } |
| 374 | |
| 375 | SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, |
| 376 | const SchedulingGraph& graph) OVERRIDE { |
| 377 | UNUSED(graph); |
| 378 | DCHECK(!nodes->empty()); |
| 379 | size_t select = rand_r(&seed_) % nodes->size(); |
| 380 | SchedulingNode* select_node = (*nodes)[select]; |
| 381 | DeleteNodeAtIndex(nodes, select); |
| 382 | return select_node; |
| 383 | } |
| 384 | |
| 385 | uint32_t seed_; |
| 386 | }; |
| 387 | |
| 388 | /* |
| 389 | * Select a `SchedulingNode` according to critical path information, |
| 390 | * with heuristics to favor certain instruction patterns like materialized condition. |
| 391 | */ |
| 392 | class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector { |
| 393 | public: |
| 394 | CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {} |
| 395 | |
| 396 | SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, |
| 397 | const SchedulingGraph& graph) OVERRIDE; |
| 398 | |
| 399 | protected: |
| 400 | SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate, |
| 401 | SchedulingNode* check) const; |
| 402 | |
| 403 | SchedulingNode* SelectMaterializedCondition(ArenaVector<SchedulingNode*>* nodes, |
| 404 | const SchedulingGraph& graph) const; |
| 405 | |
| 406 | private: |
| 407 | const SchedulingNode* prev_select_; |
| 408 | }; |
| 409 | |
| 410 | class HScheduler { |
| 411 | public: |
| 412 | HScheduler(ArenaAllocator* arena, |
| 413 | SchedulingLatencyVisitor* latency_visitor, |
| 414 | SchedulingNodeSelector* selector) |
| 415 | : arena_(arena), |
| 416 | latency_visitor_(latency_visitor), |
| 417 | selector_(selector), |
| 418 | only_optimize_loop_blocks_(true), |
| 419 | scheduling_graph_(this, arena), |
Andreas Gampe | d9911ee | 2017-03-27 13:27:24 -0700 | [diff] [blame] | 420 | cursor_(nullptr), |
Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 421 | candidates_(arena_->Adapter(kArenaAllocScheduler)) {} |
| 422 | virtual ~HScheduler() {} |
| 423 | |
| 424 | void Schedule(HGraph* graph); |
| 425 | |
| 426 | void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; } |
| 427 | |
| 428 | // Instructions can not be rescheduled across a scheduling barrier. |
| 429 | virtual bool IsSchedulingBarrier(const HInstruction* instruction) const; |
| 430 | |
| 431 | protected: |
| 432 | void Schedule(HBasicBlock* block); |
| 433 | void Schedule(SchedulingNode* scheduling_node); |
| 434 | void Schedule(HInstruction* instruction); |
| 435 | |
| 436 | // Any instruction returning `false` via this method will prevent its |
| 437 | // containing basic block from being scheduled. |
| 438 | // This method is used to restrict scheduling to instructions that we know are |
| 439 | // safe to handle. |
| 440 | virtual bool IsSchedulable(const HInstruction* instruction) const; |
| 441 | bool IsSchedulable(const HBasicBlock* block) const; |
| 442 | |
| 443 | void CalculateLatency(SchedulingNode* node) { |
| 444 | latency_visitor_->CalculateLatency(node); |
| 445 | node->SetLatency(latency_visitor_->GetLastVisitedLatency()); |
| 446 | node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency()); |
| 447 | } |
| 448 | |
| 449 | ArenaAllocator* const arena_; |
| 450 | SchedulingLatencyVisitor* const latency_visitor_; |
| 451 | SchedulingNodeSelector* const selector_; |
| 452 | bool only_optimize_loop_blocks_; |
| 453 | |
| 454 | // We instantiate the members below as part of this class to avoid |
| 455 | // instantiating them locally for every chunk scheduled. |
| 456 | SchedulingGraph scheduling_graph_; |
| 457 | // A pointer indicating where the next instruction to be scheduled will be inserted. |
| 458 | HInstruction* cursor_; |
| 459 | // The list of candidates for scheduling. A node becomes a candidate when all |
| 460 | // its predecessors have been scheduled. |
| 461 | ArenaVector<SchedulingNode*> candidates_; |
| 462 | |
| 463 | private: |
| 464 | DISALLOW_COPY_AND_ASSIGN(HScheduler); |
| 465 | }; |
| 466 | |
| 467 | inline bool SchedulingGraph::IsSchedulingBarrier(const HInstruction* instruction) const { |
| 468 | return scheduler_->IsSchedulingBarrier(instruction); |
| 469 | } |
| 470 | |
| 471 | class HInstructionScheduling : public HOptimization { |
| 472 | public: |
xueliang.zhong | f7caf68 | 2017-03-01 16:07:02 +0000 | [diff] [blame] | 473 | HInstructionScheduling(HGraph* graph, InstructionSet instruction_set, CodeGenerator* cg = nullptr) |
Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 474 | : HOptimization(graph, kInstructionScheduling), |
xueliang.zhong | f7caf68 | 2017-03-01 16:07:02 +0000 | [diff] [blame] | 475 | codegen_(cg), |
Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 476 | instruction_set_(instruction_set) {} |
| 477 | |
| 478 | void Run() { |
| 479 | Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false); |
| 480 | } |
| 481 | void Run(bool only_optimize_loop_blocks, bool schedule_randomly); |
| 482 | |
| 483 | static constexpr const char* kInstructionScheduling = "scheduler"; |
| 484 | |
xueliang.zhong | f7caf68 | 2017-03-01 16:07:02 +0000 | [diff] [blame] | 485 | CodeGenerator* const codegen_; |
Alexandre Rames | 22aa54b | 2016-10-18 09:32:29 +0100 | [diff] [blame] | 486 | const InstructionSet instruction_set_; |
| 487 | |
| 488 | private: |
| 489 | DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling); |
| 490 | }; |
| 491 | |
| 492 | } // namespace art |
| 493 | |
| 494 | #endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_ |