blob: 6fbb6823d6199590f6a87d7d90d2709b7c795cf9 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "load_store_elimination.h"
#include "side_effects_analysis.h"
#include <iostream>
namespace art {
class ReferenceInfo;
// A cap for the number of heap locations to prevent pathological time/space consumption.
// The number of heap locations for most of the methods stays below this threshold.
constexpr size_t kMaxNumberOfHeapLocations = 32;
// A ReferenceInfo contains additional info about a reference such as
// whether it's a singleton, returned, etc.
class ReferenceInfo : public ArenaObject<kArenaAllocMisc> {
public:
ReferenceInfo(HInstruction* reference, size_t pos) : reference_(reference), position_(pos) {
is_singleton_ = true;
is_singleton_and_not_returned_ = true;
if (!reference_->IsNewInstance() && !reference_->IsNewArray()) {
// For references not allocated in the method, don't assume anything.
is_singleton_ = false;
is_singleton_and_not_returned_ = false;
return;
}
// Visit all uses to determine if this reference can spread into the heap,
// a method call, etc.
for (HUseIterator<HInstruction*> use_it(reference_->GetUses());
!use_it.Done();
use_it.Advance()) {
HInstruction* use = use_it.Current()->GetUser();
DCHECK(!use->IsNullCheck()) << "NullCheck should have been eliminated";
if (use->IsBoundType()) {
// BoundType shouldn't normally be necessary for a NewInstance.
// Just be conservative for the uncommon cases.
is_singleton_ = false;
is_singleton_and_not_returned_ = false;
return;
}
if (use->IsPhi() || use->IsInvoke() ||
(use->IsInstanceFieldSet() && (reference_ == use->InputAt(1))) ||
(use->IsUnresolvedInstanceFieldSet() && (reference_ == use->InputAt(1))) ||
(use->IsStaticFieldSet() && (reference_ == use->InputAt(1))) ||
(use->IsUnresolvedStaticFieldSet() && (reference_ == use->InputAt(0))) ||
(use->IsArraySet() && (reference_ == use->InputAt(2)))) {
// reference_ is merged to a phi, passed to a callee, or stored to heap.
// reference_ isn't the only name that can refer to its value anymore.
is_singleton_ = false;
is_singleton_and_not_returned_ = false;
return;
}
if (use->IsReturn()) {
is_singleton_and_not_returned_ = false;
}
}
}
HInstruction* GetReference() const {
return reference_;
}
size_t GetPosition() const {
return position_;
}
// Returns true if reference_ is the only name that can refer to its value during
// the lifetime of the method. So it's guaranteed to not have any alias in
// the method (including its callees).
bool IsSingleton() const {
return is_singleton_;
}
// Returns true if reference_ is a singleton and not returned to the caller.
// The allocation and stores into reference_ may be eliminated for such cases.
bool IsSingletonAndNotReturned() const {
return is_singleton_and_not_returned_;
}
private:
HInstruction* const reference_;
const size_t position_; // position in HeapLocationCollector's ref_info_array_.
bool is_singleton_; // can only be referred to by a single name in the method.
bool is_singleton_and_not_returned_; // reference_ is singleton and not returned to caller.
DISALLOW_COPY_AND_ASSIGN(ReferenceInfo);
};
// A heap location is a reference-offset/index pair that a value can be loaded from
// or stored to.
class HeapLocation : public ArenaObject<kArenaAllocMisc> {
public:
static constexpr size_t kInvalidFieldOffset = -1;
// TODO: more fine-grained array types.
static constexpr int16_t kDeclaringClassDefIndexForArrays = -1;
HeapLocation(ReferenceInfo* ref_info,
size_t offset,
HInstruction* index,
int16_t declaring_class_def_index)
: ref_info_(ref_info),
offset_(offset),
index_(index),
declaring_class_def_index_(declaring_class_def_index),
may_become_unknown_(true) {
DCHECK(ref_info != nullptr);
DCHECK((offset == kInvalidFieldOffset && index != nullptr) ||
(offset != kInvalidFieldOffset && index == nullptr));
if (ref_info->IsSingletonAndNotReturned()) {
// We try to track stores to singletons that aren't returned to eliminate the stores
// since values in singleton's fields cannot be killed due to aliasing. Those values
// can still be killed due to merging values since we don't build phi for merging heap
// values. SetMayBecomeUnknown(true) may be called later once such merge becomes possible.
may_become_unknown_ = false;
}
}
ReferenceInfo* GetReferenceInfo() const { return ref_info_; }
size_t GetOffset() const { return offset_; }
HInstruction* GetIndex() const { return index_; }
// Returns the definition of declaring class' dex index.
// It's kDeclaringClassDefIndexForArrays for an array element.
int16_t GetDeclaringClassDefIndex() const {
return declaring_class_def_index_;
}
bool IsArrayElement() const {
return index_ != nullptr;
}
// Returns true if this heap location's value may become unknown after it's
// set to a value, due to merge of values, or killed due to aliasing.
bool MayBecomeUnknown() const {
return may_become_unknown_;
}
void SetMayBecomeUnknown(bool val) {
may_become_unknown_ = val;
}
private:
ReferenceInfo* const ref_info_; // reference for instance/static field or array access.
const size_t offset_; // offset of static/instance field.
HInstruction* const index_; // index of an array element.
const int16_t declaring_class_def_index_; // declaring class's def's dex index.
bool may_become_unknown_; // value may become kUnknownHeapValue.
DISALLOW_COPY_AND_ASSIGN(HeapLocation);
};
static HInstruction* HuntForOriginalReference(HInstruction* ref) {
DCHECK(ref != nullptr);
while (ref->IsNullCheck() || ref->IsBoundType()) {
ref = ref->InputAt(0);
}
return ref;
}
// A HeapLocationCollector collects all relevant heap locations and keeps
// an aliasing matrix for all locations.
class HeapLocationCollector : public HGraphVisitor {
public:
static constexpr size_t kHeapLocationNotFound = -1;
// Start with a single uint32_t word. That's enough bits for pair-wise
// aliasing matrix of 8 heap locations.
static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32;
explicit HeapLocationCollector(HGraph* graph)
: HGraphVisitor(graph),
ref_info_array_(graph->GetArena()->Adapter(kArenaAllocLSE)),
heap_locations_(graph->GetArena()->Adapter(kArenaAllocLSE)),
aliasing_matrix_(graph->GetArena(), kInitialAliasingMatrixBitVectorSize, true),
has_heap_stores_(false),
has_volatile_(false),
has_monitor_operations_(false),
may_deoptimize_(false) {}
size_t GetNumberOfHeapLocations() const {
return heap_locations_.size();
}
HeapLocation* GetHeapLocation(size_t index) const {
return heap_locations_[index];
}
ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const {
for (size_t i = 0; i < ref_info_array_.size(); i++) {
ReferenceInfo* ref_info = ref_info_array_[i];
if (ref_info->GetReference() == ref) {
DCHECK_EQ(i, ref_info->GetPosition());
return ref_info;
}
}
return nullptr;
}
bool HasHeapStores() const {
return has_heap_stores_;
}
bool HasVolatile() const {
return has_volatile_;
}
bool HasMonitorOps() const {
return has_monitor_operations_;
}
// Returns whether this method may be deoptimized.
// Currently we don't have meta data support for deoptimizing
// a method that eliminates allocations/stores.
bool MayDeoptimize() const {
return may_deoptimize_;
}
// Find and return the heap location index in heap_locations_.
size_t FindHeapLocationIndex(ReferenceInfo* ref_info,
size_t offset,
HInstruction* index,
int16_t declaring_class_def_index) const {
for (size_t i = 0; i < heap_locations_.size(); i++) {
HeapLocation* loc = heap_locations_[i];
if (loc->GetReferenceInfo() == ref_info &&
loc->GetOffset() == offset &&
loc->GetIndex() == index &&
loc->GetDeclaringClassDefIndex() == declaring_class_def_index) {
return i;
}
}
return kHeapLocationNotFound;
}
// Returns true if heap_locations_[index1] and heap_locations_[index2] may alias.
bool MayAlias(size_t index1, size_t index2) const {
if (index1 < index2) {
return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2));
} else if (index1 > index2) {
return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1));
} else {
DCHECK(false) << "index1 and index2 are expected to be different";
return true;
}
}
void BuildAliasingMatrix() {
const size_t number_of_locations = heap_locations_.size();
if (number_of_locations == 0) {
return;
}
size_t pos = 0;
// Compute aliasing info between every pair of different heap locations.
// Save the result in a matrix represented as a BitVector.
for (size_t i = 0; i < number_of_locations - 1; i++) {
for (size_t j = i + 1; j < number_of_locations; j++) {
if (ComputeMayAlias(i, j)) {
aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos));
}
pos++;
}
}
}
private:
// An allocation cannot alias with a name which already exists at the point
// of the allocation, such as a parameter or a load happening before the allocation.
bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const {
if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) {
// Any reference that can alias with the allocation must appear after it in the block/in
// the block's successors. In reverse post order, those instructions will be visited after
// the allocation.
return ref_info2->GetPosition() >= ref_info1->GetPosition();
}
return true;
}
bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const {
if (ref_info1 == ref_info2) {
return true;
} else if (ref_info1->IsSingleton()) {
return false;
} else if (ref_info2->IsSingleton()) {
return false;
} else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) ||
!MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) {
return false;
}
return true;
}
// `index1` and `index2` are indices in the array of collected heap locations.
// Returns the position in the bit vector that tracks whether the two heap
// locations may alias.
size_t AliasingMatrixPosition(size_t index1, size_t index2) const {
DCHECK(index2 > index1);
const size_t number_of_locations = heap_locations_.size();
// It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1).
return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1));
}
// An additional position is passed in to make sure the calculated position is correct.
size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) {
size_t calculated_position = AliasingMatrixPosition(index1, index2);
DCHECK_EQ(calculated_position, position);
return calculated_position;
}
// Compute if two locations may alias to each other.
bool ComputeMayAlias(size_t index1, size_t index2) const {
HeapLocation* loc1 = heap_locations_[index1];
HeapLocation* loc2 = heap_locations_[index2];
if (loc1->GetOffset() != loc2->GetOffset()) {
// Either two different instance fields, or one is an instance
// field and the other is an array element.
return false;
}
if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) {
// Different types.
return false;
}
if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) {
return false;
}
if (loc1->IsArrayElement() && loc2->IsArrayElement()) {
HInstruction* array_index1 = loc1->GetIndex();
HInstruction* array_index2 = loc2->GetIndex();
DCHECK(array_index1 != nullptr);
DCHECK(array_index2 != nullptr);
if (array_index1->IsIntConstant() &&
array_index2->IsIntConstant() &&
array_index1->AsIntConstant()->GetValue() != array_index2->AsIntConstant()->GetValue()) {
// Different constant indices do not alias.
return false;
}
}
return true;
}
ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* ref) {
ReferenceInfo* ref_info = FindReferenceInfoOf(ref);
if (ref_info == nullptr) {
size_t pos = ref_info_array_.size();
ref_info = new (GetGraph()->GetArena()) ReferenceInfo(ref, pos);
ref_info_array_.push_back(ref_info);
}
return ref_info;
}
HeapLocation* GetOrCreateHeapLocation(HInstruction* ref,
size_t offset,
HInstruction* index,
int16_t declaring_class_def_index) {
HInstruction* original_ref = HuntForOriginalReference(ref);
ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref);
size_t heap_location_idx = FindHeapLocationIndex(
ref_info, offset, index, declaring_class_def_index);
if (heap_location_idx == kHeapLocationNotFound) {
HeapLocation* heap_loc = new (GetGraph()->GetArena())
HeapLocation(ref_info, offset, index, declaring_class_def_index);
heap_locations_.push_back(heap_loc);
return heap_loc;
}
return heap_locations_[heap_location_idx];
}
void VisitFieldAccess(HInstruction* field_access,
HInstruction* ref,
const FieldInfo& field_info,
bool is_store) {
if (field_info.IsVolatile()) {
has_volatile_ = true;
}
const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex();
const size_t offset = field_info.GetFieldOffset().SizeValue();
HeapLocation* location = GetOrCreateHeapLocation(ref, offset, nullptr, declaring_class_def_index);
// A store of a value may be eliminated if all future loads for that value can be eliminated.
// For a value that's stored into a singleton field, the value will not be killed due
// to aliasing. However if the value is set in a block that doesn't post dominate the definition,
// the value may be killed due to merging later. Before we have post dominating info, we check
// if the store is in the same block as the definition just to be conservative.
if (is_store &&
location->GetReferenceInfo()->IsSingletonAndNotReturned() &&
field_access->GetBlock() != ref->GetBlock()) {
location->SetMayBecomeUnknown(true);
}
}
void VisitArrayAccess(HInstruction* array, HInstruction* index) {
GetOrCreateHeapLocation(array, HeapLocation::kInvalidFieldOffset,
index, HeapLocation::kDeclaringClassDefIndexForArrays);
}
void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE {
VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), false);
}
void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE {
VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), true);
has_heap_stores_ = true;
}
void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE {
VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), false);
}
void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE {
VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), true);
has_heap_stores_ = true;
}
// We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses
// since we cannot accurately track the fields.
void VisitArrayGet(HArrayGet* instruction) OVERRIDE {
VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1));
}
void VisitArraySet(HArraySet* instruction) OVERRIDE {
VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1));
has_heap_stores_ = true;
}
void VisitNewInstance(HNewInstance* new_instance) OVERRIDE {
// Any references appearing in the ref_info_array_ so far cannot alias with new_instance.
GetOrCreateReferenceInfo(new_instance);
}
void VisitDeoptimize(HDeoptimize* instruction ATTRIBUTE_UNUSED) OVERRIDE {
may_deoptimize_ = true;
}
void VisitMonitorOperation(HMonitorOperation* monitor ATTRIBUTE_UNUSED) OVERRIDE {
has_monitor_operations_ = true;
}
ArenaVector<ReferenceInfo*> ref_info_array_; // All references used for heap accesses.
ArenaVector<HeapLocation*> heap_locations_; // All heap locations.
ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations.
bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better
// alias analysis and won't be as effective.
bool has_volatile_; // If there are volatile field accesses.
bool has_monitor_operations_; // If there are monitor operations.
bool may_deoptimize_;
DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector);
};
// An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
static HInstruction* const kUnknownHeapValue =
reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1));
// Default heap value after an allocation.
static HInstruction* const kDefaultHeapValue =
reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2));
class LSEVisitor : public HGraphVisitor {
public:
LSEVisitor(HGraph* graph,
const HeapLocationCollector& heap_locations_collector,
const SideEffectsAnalysis& side_effects)
: HGraphVisitor(graph),
heap_location_collector_(heap_locations_collector),
side_effects_(side_effects),
heap_values_for_(graph->GetBlocks().size(),
ArenaVector<HInstruction*>(heap_locations_collector.
GetNumberOfHeapLocations(),
kUnknownHeapValue,
graph->GetArena()->Adapter(kArenaAllocLSE)),
graph->GetArena()->Adapter(kArenaAllocLSE)),
removed_instructions_(graph->GetArena()->Adapter(kArenaAllocLSE)),
substitute_instructions_(graph->GetArena()->Adapter(kArenaAllocLSE)),
singleton_new_instances_(graph->GetArena()->Adapter(kArenaAllocLSE)) {
}
void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
int block_id = block->GetBlockId();
ArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id];
// TODO: try to reuse the heap_values array from one predecessor if possible.
if (block->IsLoopHeader()) {
// We do a single pass in reverse post order. For loops, use the side effects as a hint
// to see if the heap values should be killed.
if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) {
// Leave all values as kUnknownHeapValue.
} else {
// Inherit the values from pre-header.
HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
ArenaVector<HInstruction*>& pre_header_heap_values =
heap_values_for_[pre_header->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
heap_values[i] = pre_header_heap_values[i];
}
}
} else {
MergePredecessorValues(block);
}
HGraphVisitor::VisitBasicBlock(block);
}
// Remove recorded instructions that should be eliminated.
void RemoveInstructions() {
size_t size = removed_instructions_.size();
DCHECK_EQ(size, substitute_instructions_.size());
for (size_t i = 0; i < size; i++) {
HInstruction* instruction = removed_instructions_[i];
DCHECK(instruction != nullptr);
HInstruction* substitute = substitute_instructions_[i];
if (substitute != nullptr) {
// Keep tracing substitute till one that's not removed.
HInstruction* sub_sub = FindSubstitute(substitute);
while (sub_sub != substitute) {
substitute = sub_sub;
sub_sub = FindSubstitute(substitute);
}
instruction->ReplaceWith(substitute);
}
instruction->GetBlock()->RemoveInstruction(instruction);
}
// TODO: remove unnecessary allocations.
// Eliminate instructions in singleton_new_instances_ that:
// - don't have uses,
// - don't have finalizers,
// - are instantiable and accessible,
// - have no/separate clinit check.
}
private:
void MergePredecessorValues(HBasicBlock* block) {
const ArenaVector<HBasicBlock*>& predecessors = block->GetPredecessors();
if (predecessors.size() == 0) {
return;
}
ArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
HInstruction* value = heap_values_for_[predecessors[0]->GetBlockId()][i];
if (value != kUnknownHeapValue) {
for (size_t j = 1; j < predecessors.size(); j++) {
if (heap_values_for_[predecessors[j]->GetBlockId()][i] != value) {
value = kUnknownHeapValue;
break;
}
}
}
heap_values[i] = value;
}
}
// `instruction` is being removed. Try to see if the null check on it
// can be removed. This can happen if the same value is set in two branches
// but not in dominators. Such as:
// int[] a = foo();
// if () {
// a[0] = 2;
// } else {
// a[0] = 2;
// }
// // a[0] can now be replaced with constant 2, and the null check on it can be removed.
void TryRemovingNullCheck(HInstruction* instruction) {
HInstruction* prev = instruction->GetPrevious();
if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) {
// Previous instruction is a null check for this instruction. Remove the null check.
prev->ReplaceWith(prev->InputAt(0));
prev->GetBlock()->RemoveInstruction(prev);
}
}
HInstruction* GetDefaultValue(Primitive::Type type) {
switch (type) {
case Primitive::kPrimNot:
return GetGraph()->GetNullConstant();
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
return GetGraph()->GetIntConstant(0);
case Primitive::kPrimLong:
return GetGraph()->GetLongConstant(0);
case Primitive::kPrimFloat:
return GetGraph()->GetFloatConstant(0);
case Primitive::kPrimDouble:
return GetGraph()->GetDoubleConstant(0);
default:
UNREACHABLE();
}
}
void VisitGetLocation(HInstruction* instruction,
HInstruction* ref,
size_t offset,
HInstruction* index,
int16_t declaring_class_def_index) {
HInstruction* original_ref = HuntForOriginalReference(ref);
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
size_t idx = heap_location_collector_.FindHeapLocationIndex(
ref_info, offset, index, declaring_class_def_index);
DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
ArenaVector<HInstruction*>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
HInstruction* heap_value = heap_values[idx];
if (heap_value == kDefaultHeapValue) {
HInstruction* constant = GetDefaultValue(instruction->GetType());
removed_instructions_.push_back(instruction);
substitute_instructions_.push_back(constant);
heap_values[idx] = constant;
return;
}
if ((heap_value != kUnknownHeapValue) &&
// Keep the load due to possible I/F, J/D array aliasing.
// See b/22538329 for details.
(heap_value->GetType() == instruction->GetType())) {
removed_instructions_.push_back(instruction);
substitute_instructions_.push_back(heap_value);
TryRemovingNullCheck(instruction);
return;
}
if (heap_value == kUnknownHeapValue) {
// Put the load as the value into the HeapLocation.
// This acts like GVN but with better aliasing analysis.
heap_values[idx] = instruction;
}
}
bool Equal(HInstruction* heap_value, HInstruction* value) {
if (heap_value == value) {
return true;
}
if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) {
return true;
}
return false;
}
void VisitSetLocation(HInstruction* instruction,
HInstruction* ref,
size_t offset,
HInstruction* index,
int16_t declaring_class_def_index,
HInstruction* value) {
HInstruction* original_ref = HuntForOriginalReference(ref);
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
size_t idx = heap_location_collector_.FindHeapLocationIndex(
ref_info, offset, index, declaring_class_def_index);
DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
ArenaVector<HInstruction*>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
HInstruction* heap_value = heap_values[idx];
bool redundant_store = false;
if (Equal(heap_value, value)) {
// Store into the heap location with the same value.
redundant_store = true;
} else if (index != nullptr) {
// For array element, don't eliminate stores since it can be easily aliased
// with non-constant index.
} else if (!heap_location_collector_.MayDeoptimize() &&
ref_info->IsSingletonAndNotReturned() &&
!heap_location_collector_.GetHeapLocation(idx)->MayBecomeUnknown()) {
// Store into a field of a singleton that's not returned. And that value cannot be
// killed due to merge. It's redundant since future loads will get the value
// set by this instruction.
Primitive::Type type = Primitive::kPrimVoid;
if (instruction->IsInstanceFieldSet()) {
type = instruction->AsInstanceFieldSet()->GetFieldInfo().GetFieldType();
} else if (instruction->IsStaticFieldSet()) {
type = instruction->AsStaticFieldSet()->GetFieldInfo().GetFieldType();
} else {
DCHECK(false) << "Must be an instance/static field set instruction.";
}
if (value->GetType() != type) {
// I/F, J/D aliasing should not happen for fields.
DCHECK(Primitive::IsIntegralType(value->GetType()));
DCHECK(!Primitive::Is64BitType(value->GetType()));
DCHECK(Primitive::IsIntegralType(type));
DCHECK(!Primitive::Is64BitType(type));
// Keep the store since the corresponding load isn't eliminated due to different types.
// TODO: handle the different int types so that we can eliminate this store.
redundant_store = false;
} else {
redundant_store = true;
}
// TODO: eliminate the store if the singleton object is not finalizable.
redundant_store = false;
}
if (redundant_store) {
removed_instructions_.push_back(instruction);
substitute_instructions_.push_back(nullptr);
TryRemovingNullCheck(instruction);
}
heap_values[idx] = value;
// This store may kill values in other heap locations due to aliasing.
for (size_t i = 0; i < heap_values.size(); i++) {
if (heap_values[i] == value) {
// Same value should be kept even if aliasing happens.
continue;
}
if (heap_values[i] == kUnknownHeapValue) {
// Value is already unknown, no need for aliasing check.
continue;
}
if (heap_location_collector_.MayAlias(i, idx)) {
// Kill heap locations that may alias.
heap_values[i] = kUnknownHeapValue;
}
}
}
void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE {
HInstruction* obj = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
VisitGetLocation(instruction, obj, offset, nullptr, declaring_class_def_index);
}
void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE {
HInstruction* obj = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
HInstruction* value = instruction->InputAt(1);
VisitSetLocation(instruction, obj, offset, nullptr, declaring_class_def_index, value);
}
void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE {
HInstruction* cls = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
VisitGetLocation(instruction, cls, offset, nullptr, declaring_class_def_index);
}
void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE {
HInstruction* cls = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
HInstruction* value = instruction->InputAt(1);
VisitSetLocation(instruction, cls, offset, nullptr, declaring_class_def_index, value);
}
void VisitArrayGet(HArrayGet* instruction) OVERRIDE {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
VisitGetLocation(instruction,
array,
HeapLocation::kInvalidFieldOffset,
index,
HeapLocation::kDeclaringClassDefIndexForArrays);
}
void VisitArraySet(HArraySet* instruction) OVERRIDE {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
HInstruction* value = instruction->InputAt(2);
VisitSetLocation(instruction,
array,
HeapLocation::kInvalidFieldOffset,
index,
HeapLocation::kDeclaringClassDefIndexForArrays,
value);
}
void HandleInvoke(HInstruction* invoke) {
ArenaVector<HInstruction*>& heap_values =
heap_values_for_[invoke->GetBlock()->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
if (ref_info->IsSingleton()) {
// Singleton references cannot be seen by the callee.
} else {
heap_values[i] = kUnknownHeapValue;
}
}
}
void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE {
HandleInvoke(invoke);
}
void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE {
HandleInvoke(invoke);
}
void VisitInvokeInterface(HInvokeInterface* invoke) OVERRIDE {
HandleInvoke(invoke);
}
void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE {
HandleInvoke(invoke);
}
void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE {
HandleInvoke(clinit);
}
void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitNewInstance(HNewInstance* new_instance) OVERRIDE {
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
if (ref_info == nullptr) {
// new_instance isn't used for field accesses. No need to process it.
return;
}
if (!heap_location_collector_.MayDeoptimize() &&
ref_info->IsSingletonAndNotReturned()) {
// The allocation might be eliminated.
singleton_new_instances_.push_back(new_instance);
}
ArenaVector<HInstruction*>& heap_values =
heap_values_for_[new_instance->GetBlock()->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
HInstruction* ref =
heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference();
size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
if (ref == new_instance && offset >= mirror::kObjectHeaderSize) {
// Instance fields except the header fields are set to default heap values.
heap_values[i] = kDefaultHeapValue;
}
}
}
// Find an instruction's substitute if it should be removed.
// Return the same instruction if it should not be removed.
HInstruction* FindSubstitute(HInstruction* instruction) {
size_t size = removed_instructions_.size();
for (size_t i = 0; i < size; i++) {
if (removed_instructions_[i] == instruction) {
return substitute_instructions_[i];
}
}
return instruction;
}
const HeapLocationCollector& heap_location_collector_;
const SideEffectsAnalysis& side_effects_;
// One array of heap values for each block.
ArenaVector<ArenaVector<HInstruction*>> heap_values_for_;
// We record the instructions that should be eliminated but may be
// used by heap locations. They'll be removed in the end.
ArenaVector<HInstruction*> removed_instructions_;
ArenaVector<HInstruction*> substitute_instructions_;
ArenaVector<HInstruction*> singleton_new_instances_;
DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
};
void LoadStoreElimination::Run() {
if (graph_->IsDebuggable()) {
// Debugger may set heap values or trigger deoptimization of callers.
// Skip this optimization.
return;
}
HeapLocationCollector heap_location_collector(graph_);
for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
heap_location_collector.VisitBasicBlock(it.Current());
}
if (heap_location_collector.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) {
// Bail out if there are too many heap locations to deal with.
return;
}
if (!heap_location_collector.HasHeapStores()) {
// Without heap stores, this pass would act mostly as GVN on heap accesses.
return;
}
if (heap_location_collector.HasVolatile() || heap_location_collector.HasMonitorOps()) {
// Don't do load/store elimination if the method has volatile field accesses or
// monitor operations, for now.
// TODO: do it right.
return;
}
heap_location_collector.BuildAliasingMatrix();
LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_);
for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
lse_visitor.VisitBasicBlock(it.Current());
}
lse_visitor.RemoveInstructions();
}
} // namespace art