| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "trace.h" |
| |
| #include <sys/uio.h> |
| #include <unistd.h> |
| |
| #include "android-base/macros.h" |
| #include "android-base/stringprintf.h" |
| |
| #include "art_method-inl.h" |
| #include "base/casts.h" |
| #include "base/enums.h" |
| #include "base/os.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/unix_file/fd_file.h" |
| #include "base/utils.h" |
| #include "class_linker.h" |
| #include "common_throws.h" |
| #include "debugger.h" |
| #include "dex/descriptors_names.h" |
| #include "dex/dex_file-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "gc/scoped_gc_critical_section.h" |
| #include "instrumentation.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "nativehelper/scoped_local_ref.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack.h" |
| #include "thread.h" |
| #include "thread_list.h" |
| |
| namespace art HIDDEN { |
| |
| using android::base::StringPrintf; |
| |
| static constexpr size_t TraceActionBits = MinimumBitsToStore( |
| static_cast<size_t>(kTraceMethodActionMask)); |
| static constexpr uint8_t kOpNewMethod = 1U; |
| static constexpr uint8_t kOpNewThread = 2U; |
| static constexpr uint8_t kOpTraceSummary = 3U; |
| |
| static const char kTraceTokenChar = '*'; |
| static const uint16_t kTraceHeaderLength = 32; |
| static const uint32_t kTraceMagicValue = 0x574f4c53; |
| static const uint16_t kTraceVersionSingleClock = 2; |
| static const uint16_t kTraceVersionDualClock = 3; |
| static const uint16_t kTraceRecordSizeSingleClock = 10; // using v2 |
| static const uint16_t kTraceRecordSizeDualClock = 14; // using v3 with two timestamps |
| static const size_t kNumTracePoolBuffers = 32; |
| |
| TraceClockSource Trace::default_clock_source_ = kDefaultTraceClockSource; |
| |
| Trace* volatile Trace::the_trace_ = nullptr; |
| pthread_t Trace::sampling_pthread_ = 0U; |
| std::unique_ptr<std::vector<ArtMethod*>> Trace::temp_stack_trace_; |
| |
| // The key identifying the tracer to update instrumentation. |
| static constexpr const char* kTracerInstrumentationKey = "Tracer"; |
| |
| static TraceAction DecodeTraceAction(uint32_t tmid) { |
| return static_cast<TraceAction>(tmid & kTraceMethodActionMask); |
| } |
| |
| namespace { |
| // Scaling factor to convert timestamp counter into wall clock time reported in micro seconds. |
| // This is initialized at the start of tracing using the timestamp counter update frequency. |
| // See InitializeTimestampCounters for more details. |
| double tsc_to_microsec_scaling_factor = -1.0; |
| |
| uint64_t GetTimestamp() { |
| uint64_t t = 0; |
| #if defined(__arm__) |
| // On ARM 32 bit, we don't always have access to the timestamp counters from user space. There is |
| // no easy way to check if it is safe to read the timestamp counters. There is HWCAP_EVTSTRM which |
| // is set when generic timer is available but not necessarily from the user space. Kernel disables |
| // access to generic timer when there are known problems on the target CPUs. Sometimes access is |
| // disabled only for 32-bit processes even when 64-bit processes can accesses the timer from user |
| // space. These are not reflected in the HWCAP_EVTSTRM capability.So just fallback to |
| // clock_gettime on these processes. See b/289178149 for more discussion. |
| t = MicroTime(); |
| #elif defined(__aarch64__) |
| // See Arm Architecture Registers Armv8 section System Registers |
| asm volatile("mrs %0, cntvct_el0" : "=r"(t)); |
| #elif defined(__i386__) || defined(__x86_64__) |
| // rdtsc returns two 32-bit values in rax and rdx even on 64-bit architectures. |
| unsigned int lo, hi; |
| asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); |
| t = (static_cast<uint64_t>(hi) << 32) | lo; |
| #elif defined(__riscv) |
| asm volatile("rdtime %0" : "=r"(t)); |
| #else |
| t = MicroTime(); |
| #endif |
| return t; |
| } |
| |
| #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) |
| // Here we compute the scaling factor by sleeping for a millisecond. Alternatively, we could |
| // generate raw timestamp counter and also time using clock_gettime at the start and the end of the |
| // trace. We can compute the frequency of timestamp counter upadtes in the post processing step |
| // using these two samples. However, that would require a change in Android Studio which is the main |
| // consumer of these profiles. For now, just compute the frequency of tsc updates here. |
| double computeScalingFactor() { |
| uint64_t start = MicroTime(); |
| uint64_t start_tsc = GetTimestamp(); |
| // Sleep for one millisecond. |
| usleep(1000); |
| uint64_t diff_tsc = GetTimestamp() - start_tsc; |
| uint64_t diff_time = MicroTime() - start; |
| double scaling_factor = static_cast<double>(diff_time) / diff_tsc; |
| DCHECK(scaling_factor > 0.0) << scaling_factor; |
| return scaling_factor; |
| } |
| #endif |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| double GetScalingFactorForX86() { |
| uint32_t eax, ebx, ecx; |
| asm volatile("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx) : "a"(0x0), "c"(0)); |
| if (eax < 0x15) { |
| // There is no 15H - Timestamp counter and core crystal clock information |
| // leaf. Just compute the frequency. |
| return computeScalingFactor(); |
| } |
| |
| // From Intel architecture-instruction-set-extensions-programming-reference: |
| // EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the |
| // core crystal clock frequency. |
| // If EBX[31:0] is 0, the TSC and "core crystal clock" ratio is not enumerated. |
| // If ECX is 0, the nominal core crystal clock frequency is not enumerated. |
| // "TSC frequency" = "core crystal clock frequency" * EBX/EAX. |
| // The core crystal clock may differ from the reference clock, bus clock, or core clock |
| // frequencies. |
| // EAX Bits 31 - 00: An unsigned integer which is the denominator of the |
| // TSC/"core crystal clock" ratio. |
| // EBX Bits 31 - 00: An unsigned integer which is the numerator of the |
| // TSC/"core crystal clock" ratio. |
| // ECX Bits 31 - 00: An unsigned integer which is the nominal frequency of the core |
| // crystal clock in Hz. |
| // EDX Bits 31 - 00: Reserved = 0. |
| asm volatile("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx) : "a"(0x15), "c"(0)); |
| if (ebx == 0 || ecx == 0) { |
| return computeScalingFactor(); |
| } |
| double coreCrystalFreq = ecx; |
| // frequency = coreCrystalFreq * (ebx / eax) |
| // scaling_factor = seconds_to_microseconds / frequency |
| // = seconds_to_microseconds * eax / (coreCrystalFreq * ebx) |
| double seconds_to_microseconds = 1000 * 1000; |
| double scaling_factor = (seconds_to_microseconds * eax) / (coreCrystalFreq * ebx); |
| return scaling_factor; |
| } |
| #endif |
| |
| void InitializeTimestampCounters() { |
| // It is sufficient to initialize this once for the entire execution. Just return if it is |
| // already initialized. |
| if (tsc_to_microsec_scaling_factor > 0.0) { |
| return; |
| } |
| |
| #if defined(__arm__) |
| // On ARM 32 bit, we don't always have access to the timestamp counters from |
| // user space. Seem comment in GetTimestamp for more details. |
| tsc_to_microsec_scaling_factor = 1.0; |
| #elif defined(__aarch64__) |
| double seconds_to_microseconds = 1000 * 1000; |
| uint64_t freq = 0; |
| // See Arm Architecture Registers Armv8 section System Registers |
| asm volatile("mrs %0, cntfrq_el0" : "=r"(freq)); |
| if (freq == 0) { |
| // It is expected that cntfrq_el0 is correctly setup during system initialization but some |
| // devices don't do this. In such cases fall back to computing the frequency. See b/315139000. |
| tsc_to_microsec_scaling_factor = computeScalingFactor(); |
| } else { |
| tsc_to_microsec_scaling_factor = seconds_to_microseconds / static_cast<double>(freq); |
| } |
| #elif defined(__i386__) || defined(__x86_64__) |
| tsc_to_microsec_scaling_factor = GetScalingFactorForX86(); |
| #else |
| tsc_to_microsec_scaling_factor = 1.0; |
| #endif |
| } |
| |
| ALWAYS_INLINE uint64_t GetMicroTime(uint64_t counter) { |
| DCHECK(tsc_to_microsec_scaling_factor > 0.0) << tsc_to_microsec_scaling_factor; |
| return tsc_to_microsec_scaling_factor * counter; |
| } |
| |
| } // namespace |
| |
| bool TraceWriter::HasMethodEncoding(ArtMethod* method) { |
| return art_method_id_map_.find(method) != art_method_id_map_.end(); |
| } |
| |
| std::pair<uint32_t, bool> TraceWriter::GetMethodEncoding(ArtMethod* method) { |
| auto it = art_method_id_map_.find(method); |
| if (it != art_method_id_map_.end()) { |
| return std::pair<uint32_t, bool>(it->second, false); |
| } else { |
| uint32_t idx = current_method_index_; |
| art_method_id_map_.emplace(method, idx); |
| current_method_index_++; |
| return std::pair<uint32_t, bool>(idx, true); |
| } |
| } |
| |
| uint16_t TraceWriter::GetThreadEncoding(pid_t thread_id) { |
| auto it = thread_id_map_.find(thread_id); |
| if (it != thread_id_map_.end()) { |
| return it->second; |
| } |
| |
| uint16_t idx = current_thread_index_; |
| thread_id_map_.emplace(thread_id, current_thread_index_); |
| DCHECK_LT(current_thread_index_, (1 << 16) - 2); |
| current_thread_index_++; |
| return idx; |
| } |
| |
| class TraceWriterTask final : public SelfDeletingTask { |
| public: |
| TraceWriterTask( |
| TraceWriter* trace_writer, int index, uintptr_t* buffer, size_t cur_offset, size_t thread_id) |
| : trace_writer_(trace_writer), |
| index_(index), |
| buffer_(buffer), |
| cur_offset_(cur_offset), |
| thread_id_(thread_id), |
| reserve_buf_for_tid_(0) {} |
| |
| void Run(Thread* self ATTRIBUTE_UNUSED) override { |
| std::unordered_map<ArtMethod*, std::string> method_infos; |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| trace_writer_->PreProcessTraceForMethodInfos(buffer_, cur_offset_, method_infos); |
| } |
| trace_writer_->FlushBuffer(buffer_, cur_offset_, thread_id_, method_infos); |
| if (index_ == -1) { |
| // This was a temporary buffer we allocated since there are no more free buffers and we |
| // couldn't find one by flushing the pending tasks either. This should only happen when we |
| // have fewer buffers than the number of threads. |
| if (reserve_buf_for_tid_ == 0) { |
| // Just free the buffer here if it wasn't reserved for any thread. |
| delete[] buffer_; |
| } |
| } else { |
| trace_writer_->FetchTraceBufferForThread(index_, reserve_buf_for_tid_); |
| } |
| } |
| |
| // Reserves the buffer for a particular thread. The thread is free to use this buffer once the |
| // task has finished running. This is used when there are no free buffers for the thread to use. |
| uintptr_t* ReserveBufferForTid(size_t tid) { |
| reserve_buf_for_tid_ = tid; |
| return buffer_; |
| } |
| |
| private: |
| TraceWriter* trace_writer_; |
| int index_; |
| uintptr_t* buffer_; |
| size_t cur_offset_; |
| size_t thread_id_; |
| // Sometimes we want to acquire a buffer for a particular thread. This holds |
| // the tid of the thread that we want to acquire the buffer for. If this value |
| // is 0 then it means we can use it for other threads. |
| size_t reserve_buf_for_tid_; |
| }; |
| |
| std::vector<ArtMethod*>* Trace::AllocStackTrace() { |
| return (temp_stack_trace_.get() != nullptr) ? temp_stack_trace_.release() : |
| new std::vector<ArtMethod*>(); |
| } |
| |
| void Trace::FreeStackTrace(std::vector<ArtMethod*>* stack_trace) { |
| stack_trace->clear(); |
| temp_stack_trace_.reset(stack_trace); |
| } |
| |
| void Trace::SetDefaultClockSource(TraceClockSource clock_source) { |
| #if defined(__linux__) |
| default_clock_source_ = clock_source; |
| #else |
| if (clock_source != TraceClockSource::kWall) { |
| LOG(WARNING) << "Ignoring tracing request to use CPU time."; |
| } |
| #endif |
| } |
| |
| static uint16_t GetTraceVersion(TraceClockSource clock_source) { |
| return (clock_source == TraceClockSource::kDual) ? kTraceVersionDualClock |
| : kTraceVersionSingleClock; |
| } |
| |
| static uint16_t GetRecordSize(TraceClockSource clock_source) { |
| return (clock_source == TraceClockSource::kDual) ? kTraceRecordSizeDualClock |
| : kTraceRecordSizeSingleClock; |
| } |
| |
| static uint16_t GetNumEntries(TraceClockSource clock_source) { |
| return (clock_source == TraceClockSource::kDual) ? kNumEntriesForDualClock |
| : kNumEntriesForWallClock; |
| } |
| |
| bool UseThreadCpuClock(TraceClockSource clock_source) { |
| return (clock_source == TraceClockSource::kThreadCpu) || |
| (clock_source == TraceClockSource::kDual); |
| } |
| |
| bool UseWallClock(TraceClockSource clock_source) { |
| return (clock_source == TraceClockSource::kWall) || (clock_source == TraceClockSource::kDual); |
| } |
| |
| void Trace::MeasureClockOverhead() { |
| if (UseThreadCpuClock(clock_source_)) { |
| Thread::Current()->GetCpuMicroTime(); |
| } |
| if (UseWallClock(clock_source_)) { |
| GetTimestamp(); |
| } |
| } |
| |
| // Compute an average time taken to measure clocks. |
| uint32_t Trace::GetClockOverheadNanoSeconds() { |
| Thread* self = Thread::Current(); |
| uint64_t start = self->GetCpuMicroTime(); |
| |
| for (int i = 4000; i > 0; i--) { |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| MeasureClockOverhead(); |
| } |
| |
| uint64_t elapsed_us = self->GetCpuMicroTime() - start; |
| return static_cast<uint32_t>(elapsed_us / 32); |
| } |
| |
| // TODO: put this somewhere with the big-endian equivalent used by JDWP. |
| static void Append2LE(uint8_t* buf, uint16_t val) { |
| *buf++ = static_cast<uint8_t>(val); |
| *buf++ = static_cast<uint8_t>(val >> 8); |
| } |
| |
| // TODO: put this somewhere with the big-endian equivalent used by JDWP. |
| static void Append4LE(uint8_t* buf, uint32_t val) { |
| *buf++ = static_cast<uint8_t>(val); |
| *buf++ = static_cast<uint8_t>(val >> 8); |
| *buf++ = static_cast<uint8_t>(val >> 16); |
| *buf++ = static_cast<uint8_t>(val >> 24); |
| } |
| |
| // TODO: put this somewhere with the big-endian equivalent used by JDWP. |
| static void Append8LE(uint8_t* buf, uint64_t val) { |
| *buf++ = static_cast<uint8_t>(val); |
| *buf++ = static_cast<uint8_t>(val >> 8); |
| *buf++ = static_cast<uint8_t>(val >> 16); |
| *buf++ = static_cast<uint8_t>(val >> 24); |
| *buf++ = static_cast<uint8_t>(val >> 32); |
| *buf++ = static_cast<uint8_t>(val >> 40); |
| *buf++ = static_cast<uint8_t>(val >> 48); |
| *buf++ = static_cast<uint8_t>(val >> 56); |
| } |
| |
| static void GetSample(Thread* thread, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { |
| std::vector<ArtMethod*>* const stack_trace = Trace::AllocStackTrace(); |
| StackVisitor::WalkStack( |
| [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* m = stack_visitor->GetMethod(); |
| // Ignore runtime frames (in particular callee save). |
| if (!m->IsRuntimeMethod()) { |
| stack_trace->push_back(m); |
| } |
| return true; |
| }, |
| thread, |
| /* context= */ nullptr, |
| art::StackVisitor::StackWalkKind::kIncludeInlinedFrames); |
| Trace* the_trace = reinterpret_cast<Trace*>(arg); |
| the_trace->CompareAndUpdateStackTrace(thread, stack_trace); |
| } |
| |
| static void ClearThreadStackTraceAndClockBase(Thread* thread, [[maybe_unused]] void* arg) { |
| thread->SetTraceClockBase(0); |
| std::vector<ArtMethod*>* stack_trace = thread->GetStackTraceSample(); |
| thread->SetStackTraceSample(nullptr); |
| delete stack_trace; |
| } |
| |
| void Trace::CompareAndUpdateStackTrace(Thread* thread, |
| std::vector<ArtMethod*>* stack_trace) { |
| CHECK_EQ(pthread_self(), sampling_pthread_); |
| std::vector<ArtMethod*>* old_stack_trace = thread->GetStackTraceSample(); |
| // Update the thread's stack trace sample. |
| thread->SetStackTraceSample(stack_trace); |
| // Read timer clocks to use for all events in this trace. |
| uint32_t thread_clock_diff = 0; |
| uint64_t timestamp_counter = 0; |
| ReadClocks(thread, &thread_clock_diff, ×tamp_counter); |
| if (old_stack_trace == nullptr) { |
| // If there's no previous stack trace sample for this thread, log an entry event for all |
| // methods in the trace. |
| for (auto rit = stack_trace->rbegin(); rit != stack_trace->rend(); ++rit) { |
| LogMethodTraceEvent(thread, *rit, kTraceMethodEnter, thread_clock_diff, timestamp_counter); |
| } |
| } else { |
| // If there's a previous stack trace for this thread, diff the traces and emit entry and exit |
| // events accordingly. |
| auto old_rit = old_stack_trace->rbegin(); |
| auto rit = stack_trace->rbegin(); |
| // Iterate bottom-up over both traces until there's a difference between them. |
| while (old_rit != old_stack_trace->rend() && rit != stack_trace->rend() && *old_rit == *rit) { |
| old_rit++; |
| rit++; |
| } |
| // Iterate top-down over the old trace until the point where they differ, emitting exit events. |
| for (auto old_it = old_stack_trace->begin(); old_it != old_rit.base(); ++old_it) { |
| LogMethodTraceEvent(thread, *old_it, kTraceMethodExit, thread_clock_diff, timestamp_counter); |
| } |
| // Iterate bottom-up over the new trace from the point where they differ, emitting entry events. |
| for (; rit != stack_trace->rend(); ++rit) { |
| LogMethodTraceEvent(thread, *rit, kTraceMethodEnter, thread_clock_diff, timestamp_counter); |
| } |
| FreeStackTrace(old_stack_trace); |
| } |
| } |
| |
| void* Trace::RunSamplingThread(void* arg) { |
| Runtime* runtime = Runtime::Current(); |
| intptr_t interval_us = reinterpret_cast<intptr_t>(arg); |
| CHECK_GE(interval_us, 0); |
| CHECK(runtime->AttachCurrentThread("Sampling Profiler", true, runtime->GetSystemThreadGroup(), |
| !runtime->IsAotCompiler())); |
| |
| while (true) { |
| usleep(interval_us); |
| ScopedTrace trace("Profile sampling"); |
| Thread* self = Thread::Current(); |
| Trace* the_trace; |
| { |
| MutexLock mu(self, *Locks::trace_lock_); |
| the_trace = the_trace_; |
| if (the_trace_->stop_tracing_) { |
| break; |
| } |
| } |
| { |
| // Avoid a deadlock between a thread doing garbage collection |
| // and the profile sampling thread, by blocking GC when sampling |
| // thread stacks (see b/73624630). |
| gc::ScopedGCCriticalSection gcs(self, |
| art::gc::kGcCauseInstrumentation, |
| art::gc::kCollectorTypeInstrumentation); |
| ScopedSuspendAll ssa(__FUNCTION__); |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| runtime->GetThreadList()->ForEach(GetSample, the_trace); |
| } |
| } |
| |
| runtime->DetachCurrentThread(); |
| return nullptr; |
| } |
| |
| void Trace::Start(const char* trace_filename, |
| size_t buffer_size, |
| int flags, |
| TraceOutputMode output_mode, |
| TraceMode trace_mode, |
| int interval_us) { |
| std::unique_ptr<File> file(OS::CreateEmptyFileWriteOnly(trace_filename)); |
| if (file == nullptr) { |
| std::string msg = android::base::StringPrintf("Unable to open trace file '%s'", trace_filename); |
| PLOG(ERROR) << msg; |
| ScopedObjectAccess soa(Thread::Current()); |
| Thread::Current()->ThrowNewException("Ljava/lang/RuntimeException;", msg.c_str()); |
| return; |
| } |
| Start(std::move(file), buffer_size, flags, output_mode, trace_mode, interval_us); |
| } |
| |
| void Trace::Start(int trace_fd, |
| size_t buffer_size, |
| int flags, |
| TraceOutputMode output_mode, |
| TraceMode trace_mode, |
| int interval_us) { |
| if (trace_fd < 0) { |
| std::string msg = android::base::StringPrintf("Unable to start tracing with invalid fd %d", |
| trace_fd); |
| LOG(ERROR) << msg; |
| ScopedObjectAccess soa(Thread::Current()); |
| Thread::Current()->ThrowNewException("Ljava/lang/RuntimeException;", msg.c_str()); |
| return; |
| } |
| std::unique_ptr<File> file(new File(trace_fd, /* path= */ "tracefile", /* check_usage= */ true)); |
| Start(std::move(file), buffer_size, flags, output_mode, trace_mode, interval_us); |
| } |
| |
| void Trace::StartDDMS(size_t buffer_size, |
| int flags, |
| TraceMode trace_mode, |
| int interval_us) { |
| Start(std::unique_ptr<File>(), |
| buffer_size, |
| flags, |
| TraceOutputMode::kDDMS, |
| trace_mode, |
| interval_us); |
| } |
| |
| void Trace::Start(std::unique_ptr<File>&& trace_file_in, |
| size_t buffer_size, |
| int flags, |
| TraceOutputMode output_mode, |
| TraceMode trace_mode, |
| int interval_us) { |
| // We own trace_file now and are responsible for closing it. To account for error situations, use |
| // a specialized unique_ptr to ensure we close it on the way out (if it hasn't been passed to a |
| // Trace instance). |
| auto deleter = [](File* file) { |
| if (file != nullptr) { |
| file->MarkUnchecked(); // Don't deal with flushing requirements. |
| [[maybe_unused]] int result = file->Close(); |
| delete file; |
| } |
| }; |
| std::unique_ptr<File, decltype(deleter)> trace_file(trace_file_in.release(), deleter); |
| |
| Thread* self = Thread::Current(); |
| { |
| MutexLock mu(self, *Locks::trace_lock_); |
| if (the_trace_ != nullptr) { |
| LOG(ERROR) << "Trace already in progress, ignoring this request"; |
| return; |
| } |
| } |
| |
| // Check interval if sampling is enabled |
| if (trace_mode == TraceMode::kSampling && interval_us <= 0) { |
| LOG(ERROR) << "Invalid sampling interval: " << interval_us; |
| ScopedObjectAccess soa(self); |
| ThrowRuntimeException("Invalid sampling interval: %d", interval_us); |
| return; |
| } |
| |
| // Initialize the frequency of timestamp counter updates here. This is needed |
| // to get wallclock time from timestamp counter values. |
| InitializeTimestampCounters(); |
| |
| Runtime* runtime = Runtime::Current(); |
| |
| // Enable count of allocs if specified in the flags. |
| bool enable_stats = false; |
| |
| // Create Trace object. |
| { |
| // Suspend JIT here since we are switching runtime to debuggable. Debuggable runtimes cannot use |
| // JITed code from before so we need to invalidated all JITed code here. Enter suspend JIT scope |
| // to prevent any races with ongoing JIT compilations. |
| jit::ScopedJitSuspend suspend_jit; |
| // Required since EnableMethodTracing calls ConfigureStubs which visits class linker classes. |
| gc::ScopedGCCriticalSection gcs(self, |
| gc::kGcCauseInstrumentation, |
| gc::kCollectorTypeInstrumentation); |
| ScopedSuspendAll ssa(__FUNCTION__); |
| MutexLock mu(self, *Locks::trace_lock_); |
| if (the_trace_ != nullptr) { |
| LOG(ERROR) << "Trace already in progress, ignoring this request"; |
| } else { |
| enable_stats = (flags & kTraceCountAllocs) != 0; |
| the_trace_ = new Trace(trace_file.release(), buffer_size, flags, output_mode, trace_mode); |
| if (trace_mode == TraceMode::kSampling) { |
| CHECK_PTHREAD_CALL(pthread_create, (&sampling_pthread_, nullptr, &RunSamplingThread, |
| reinterpret_cast<void*>(interval_us)), |
| "Sampling profiler thread"); |
| the_trace_->interval_us_ = interval_us; |
| } else { |
| if (!runtime->IsJavaDebuggable()) { |
| art::jit::Jit* jit = runtime->GetJit(); |
| if (jit != nullptr) { |
| jit->GetCodeCache()->InvalidateAllCompiledCode(); |
| jit->GetCodeCache()->TransitionToDebuggable(); |
| jit->GetJitCompiler()->SetDebuggableCompilerOption(true); |
| } |
| runtime->SetRuntimeDebugState(art::Runtime::RuntimeDebugState::kJavaDebuggable); |
| runtime->GetInstrumentation()->UpdateEntrypointsForDebuggable(); |
| runtime->DeoptimizeBootImage(); |
| } |
| // For thread cpu clocks, we need to make a kernel call and hence we call into c++ to |
| // support them. |
| bool is_fast_trace = !UseThreadCpuClock(the_trace_->GetClockSource()); |
| #if defined(__arm__) |
| // On ARM 32 bit, we don't always have access to the timestamp counters from |
| // user space. Seem comment in GetTimestamp for more details. |
| is_fast_trace = false; |
| #endif |
| runtime->GetInstrumentation()->AddListener( |
| the_trace_, |
| instrumentation::Instrumentation::kMethodEntered | |
| instrumentation::Instrumentation::kMethodExited | |
| instrumentation::Instrumentation::kMethodUnwind, |
| is_fast_trace); |
| runtime->GetInstrumentation()->EnableMethodTracing(kTracerInstrumentationKey, |
| the_trace_, |
| /*needs_interpreter=*/false); |
| } |
| } |
| } |
| |
| // Can't call this when holding the mutator lock. |
| if (enable_stats) { |
| runtime->SetStatsEnabled(true); |
| } |
| } |
| |
| void Trace::StopTracing(bool flush_entries) { |
| Runtime* const runtime = Runtime::Current(); |
| Thread* const self = Thread::Current(); |
| |
| pthread_t sampling_pthread = 0U; |
| { |
| MutexLock mu(self, *Locks::trace_lock_); |
| if (the_trace_ == nullptr) { |
| LOG(ERROR) << "Trace stop requested, but no trace currently running"; |
| return; |
| } |
| // Tell sampling_pthread_ to stop tracing. |
| the_trace_->stop_tracing_ = true; |
| sampling_pthread = sampling_pthread_; |
| } |
| |
| // Make sure that we join before we delete the trace since we don't want to have |
| // the sampling thread access a stale pointer. This finishes since the sampling thread exits when |
| // the_trace_ is null. |
| if (sampling_pthread != 0U) { |
| CHECK_PTHREAD_CALL(pthread_join, (sampling_pthread, nullptr), "sampling thread shutdown"); |
| } |
| |
| // Make a copy of the_trace_, so it can be flushed later. We want to reset |
| // the_trace_ to nullptr in suspend all scope to prevent any races |
| Trace* the_trace = the_trace_; |
| bool stop_alloc_counting = (the_trace->flags_ & Trace::kTraceCountAllocs) != 0; |
| // Stop the trace sources adding more entries to the trace buffer and synchronise stores. |
| { |
| gc::ScopedGCCriticalSection gcs( |
| self, gc::kGcCauseInstrumentation, gc::kCollectorTypeInstrumentation); |
| jit::ScopedJitSuspend suspend_jit; |
| ScopedSuspendAll ssa(__FUNCTION__); |
| |
| if (the_trace->trace_mode_ == TraceMode::kSampling) { |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| runtime->GetThreadList()->ForEach(ClearThreadStackTraceAndClockBase, nullptr); |
| } else { |
| // For thread cpu clocks, we need to make a kernel call and hence we call into c++ to support |
| // them. |
| bool is_fast_trace = !UseThreadCpuClock(the_trace_->GetClockSource()); |
| #if defined(__arm__) |
| // On ARM 32 bit, we don't always have access to the timestamp counters from |
| // user space. Seem comment in GetTimestamp for more details. |
| is_fast_trace = false; |
| #endif |
| runtime->GetInstrumentation()->RemoveListener( |
| the_trace, |
| instrumentation::Instrumentation::kMethodEntered | |
| instrumentation::Instrumentation::kMethodExited | |
| instrumentation::Instrumentation::kMethodUnwind, |
| is_fast_trace); |
| runtime->GetInstrumentation()->DisableMethodTracing(kTracerInstrumentationKey); |
| } |
| |
| // Flush thread specific buffer from all threads before resetting the_trace_ to nullptr. |
| // We also flush the buffer when destroying a thread which expects the_trace_ to be valid so |
| // make sure that the per-thread buffer is reset before resetting the_trace_. |
| { |
| MutexLock tl_lock(Thread::Current(), *Locks::thread_list_lock_); |
| for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { |
| if (thread->GetMethodTraceBuffer() != nullptr) { |
| // We may have pending requests to flush the data. So just enqueue a |
| // request to flush the current buffer so all the requests are |
| // processed in order. |
| the_trace->trace_writer_->FlushBuffer( |
| thread, /* is_sync= */ false, /* free_buffer= */ true); |
| } |
| } |
| } |
| |
| // Reset the_trace_ by taking a trace_lock |
| MutexLock mu(self, *Locks::trace_lock_); |
| the_trace_ = nullptr; |
| sampling_pthread_ = 0U; |
| } |
| |
| // At this point, code may read buf_ as its writers are shutdown |
| // and the ScopedSuspendAll above has ensured all stores to buf_ |
| // are now visible. |
| the_trace->trace_writer_->FinishTracing(the_trace->flags_, flush_entries); |
| delete the_trace; |
| |
| if (stop_alloc_counting) { |
| // Can be racy since SetStatsEnabled is not guarded by any locks. |
| runtime->SetStatsEnabled(false); |
| } |
| } |
| |
| void Trace::FlushThreadBuffer(Thread* self) { |
| MutexLock mu(self, *Locks::trace_lock_); |
| the_trace_->trace_writer_->FlushBuffer(self, /* is_sync= */ false, /* free_buffer= */ true); |
| } |
| |
| void Trace::Abort() { |
| // Do not write anything anymore. |
| StopTracing(/* flush_entries= */ false); |
| } |
| |
| void Trace::Stop() { |
| // Finish writing. |
| StopTracing(/* flush_entries= */ true); |
| } |
| |
| void Trace::Shutdown() { |
| if (GetMethodTracingMode() != kTracingInactive) { |
| Stop(); |
| } |
| } |
| |
| TracingMode Trace::GetMethodTracingMode() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| if (the_trace_ == nullptr) { |
| return kTracingInactive; |
| } else { |
| switch (the_trace_->trace_mode_) { |
| case TraceMode::kSampling: |
| return kSampleProfilingActive; |
| case TraceMode::kMethodTracing: |
| return kMethodTracingActive; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| } |
| |
| static constexpr size_t kMinBufSize = 18U; // Trace header is up to 18B. |
| // Size of per-thread buffer size. The value is chosen arbitrarily. This value |
| // should be greater than kMinBufSize. |
| static constexpr size_t kPerThreadBufSize = 512 * 1024; |
| static_assert(kPerThreadBufSize > kMinBufSize); |
| // On average we need 12 bytes for encoding an entry. We typically use two |
| // entries in per-thread buffer, the scaling factor is 6. |
| static constexpr size_t kScalingFactorEncodedEntries = 6; |
| |
| namespace { |
| |
| TraceClockSource GetClockSourceFromFlags(int flags) { |
| bool need_wall = flags & Trace::TraceFlag::kTraceClockSourceWallClock; |
| bool need_thread_cpu = flags & Trace::TraceFlag::kTraceClockSourceThreadCpu; |
| if (need_wall && need_thread_cpu) { |
| return TraceClockSource::kDual; |
| } else if (need_wall) { |
| return TraceClockSource::kWall; |
| } else if (need_thread_cpu) { |
| return TraceClockSource::kThreadCpu; |
| } else { |
| return kDefaultTraceClockSource; |
| } |
| } |
| |
| } // namespace |
| |
| TraceWriter::TraceWriter(File* trace_file, |
| TraceOutputMode output_mode, |
| TraceClockSource clock_source, |
| size_t buffer_size, |
| int num_trace_buffers, |
| uint32_t clock_overhead_ns) |
| : trace_file_(trace_file), |
| trace_output_mode_(output_mode), |
| clock_source_(clock_source), |
| buf_(new uint8_t[std::max(kMinBufSize, buffer_size)]()), |
| buffer_size_(std::max(kMinBufSize, buffer_size)), |
| start_time_(GetMicroTime(GetTimestamp())), |
| overflow_(false), |
| clock_overhead_ns_(clock_overhead_ns), |
| owner_tids_(num_trace_buffers), |
| tracing_lock_("tracing lock", LockLevel::kTracingStreamingLock) { |
| uint16_t trace_version = GetTraceVersion(clock_source_); |
| if (output_mode == TraceOutputMode::kStreaming) { |
| trace_version |= 0xF0U; |
| } |
| // Set up the beginning of the trace. |
| memset(buf_.get(), 0, kTraceHeaderLength); |
| Append4LE(buf_.get(), kTraceMagicValue); |
| Append2LE(buf_.get() + 4, trace_version); |
| Append2LE(buf_.get() + 6, kTraceHeaderLength); |
| Append8LE(buf_.get() + 8, start_time_); |
| if (trace_version >= kTraceVersionDualClock) { |
| uint16_t record_size = GetRecordSize(clock_source_); |
| Append2LE(buf_.get() + 16, record_size); |
| } |
| static_assert(18 <= kMinBufSize, "Minimum buffer size not large enough for trace header"); |
| |
| cur_offset_ = kTraceHeaderLength; |
| |
| if (output_mode == TraceOutputMode::kStreaming) { |
| // Flush the header information to the file. We use a per thread buffer, so |
| // it is easier to just write the header information directly to file. |
| if (!trace_file_->WriteFully(buf_.get(), kTraceHeaderLength)) { |
| PLOG(WARNING) << "Failed streaming a tracing event."; |
| } |
| cur_offset_ = 0; |
| } |
| // Thread index of 0 is a special identifier used to distinguish between trace |
| // event entries and thread / method info entries. |
| current_thread_index_ = 1; |
| |
| // Don't create threadpool for a zygote. This would cause slowdown when forking because we need |
| // to stop and start this thread pool. Method tracing on zygote isn't a frequent use case and |
| // it is okay to flush on the main thread in such cases. |
| if (!Runtime::Current()->IsZygote()) { |
| thread_pool_.reset(TraceWriterThreadPool::Create("Trace writer pool")); |
| thread_pool_->StartWorkers(Thread::Current()); |
| } |
| |
| // Initialize the pool of per-thread buffers. |
| InitializeTraceBuffers(); |
| } |
| |
| Trace::Trace(File* trace_file, |
| size_t buffer_size, |
| int flags, |
| TraceOutputMode output_mode, |
| TraceMode trace_mode) |
| : flags_(flags), |
| trace_mode_(trace_mode), |
| clock_source_(GetClockSourceFromFlags(flags)), |
| interval_us_(0), |
| stop_tracing_(false) { |
| CHECK_IMPLIES(trace_file == nullptr, output_mode == TraceOutputMode::kDDMS); |
| |
| // In streaming mode, we only need a buffer big enough to store data per each |
| // thread buffer. In non-streaming mode this is specified by the user and we |
| // stop tracing when the buffer is full. |
| size_t buf_size = (output_mode == TraceOutputMode::kStreaming) ? |
| kPerThreadBufSize * kScalingFactorEncodedEntries : |
| buffer_size; |
| trace_writer_.reset(new TraceWriter(trace_file, |
| output_mode, |
| clock_source_, |
| buf_size, |
| kNumTracePoolBuffers, |
| GetClockOverheadNanoSeconds())); |
| } |
| |
| void TraceWriter::FinishTracing(int flags, bool flush_entries) { |
| Thread* self = Thread::Current(); |
| if (flush_entries) { |
| if (thread_pool_ != nullptr) { |
| // Wait for any workers to be created. If we are stopping tracing as a part of runtime |
| // shutdown, any unstarted workers can create problems if they try attaching while shutting |
| // down. |
| thread_pool_->WaitForWorkersToBeCreated(); |
| // Wait for any outstanding writer tasks to finish. |
| thread_pool_->Wait(self, /* do_work= */ true, /* may_hold_locks= */ true); |
| DCHECK_EQ(thread_pool_->GetTaskCount(self), 0u); |
| thread_pool_->StopWorkers(self); |
| } |
| |
| size_t final_offset = 0; |
| if (trace_output_mode_ != TraceOutputMode::kStreaming) { |
| MutexLock mu(Thread::Current(), tracing_lock_); |
| final_offset = cur_offset_; |
| } |
| |
| // Compute elapsed time. |
| uint64_t elapsed = GetMicroTime(GetTimestamp()) - start_time_; |
| |
| std::ostringstream os; |
| |
| os << StringPrintf("%cversion\n", kTraceTokenChar); |
| os << StringPrintf("%d\n", GetTraceVersion(clock_source_)); |
| os << StringPrintf("data-file-overflow=%s\n", overflow_ ? "true" : "false"); |
| if (UseThreadCpuClock(clock_source_)) { |
| if (UseWallClock(clock_source_)) { |
| os << StringPrintf("clock=dual\n"); |
| } else { |
| os << StringPrintf("clock=thread-cpu\n"); |
| } |
| } else { |
| os << StringPrintf("clock=wall\n"); |
| } |
| os << StringPrintf("elapsed-time-usec=%" PRIu64 "\n", elapsed); |
| if (trace_output_mode_ != TraceOutputMode::kStreaming) { |
| size_t num_records = (final_offset - kTraceHeaderLength) / GetRecordSize(clock_source_); |
| os << StringPrintf("num-method-calls=%zd\n", num_records); |
| } |
| os << StringPrintf("clock-call-overhead-nsec=%d\n", clock_overhead_ns_); |
| os << StringPrintf("vm=art\n"); |
| os << StringPrintf("pid=%d\n", getpid()); |
| if ((flags & Trace::kTraceCountAllocs) != 0) { |
| os << "alloc-count=" << Runtime::Current()->GetStat(KIND_ALLOCATED_OBJECTS) << "\n"; |
| os << "alloc-size=" << Runtime::Current()->GetStat(KIND_ALLOCATED_BYTES) << "\n"; |
| os << "gc-count=" << Runtime::Current()->GetStat(KIND_GC_INVOCATIONS) << "\n"; |
| } |
| os << StringPrintf("%cthreads\n", kTraceTokenChar); |
| DumpThreadList(os); |
| os << StringPrintf("%cmethods\n", kTraceTokenChar); |
| DumpMethodList(os); |
| os << StringPrintf("%cend\n", kTraceTokenChar); |
| std::string header(os.str()); |
| |
| if (trace_output_mode_ == TraceOutputMode::kStreaming) { |
| DCHECK_NE(trace_file_.get(), nullptr); |
| // It is expected that this method is called when all other threads are suspended, so there |
| // cannot be any writes to trace_file_ after finish tracing. |
| // Write a special token to mark the end of trace records and the start of |
| // trace summary. |
| uint8_t buf[7]; |
| Append2LE(buf, 0); |
| buf[2] = kOpTraceSummary; |
| Append4LE(buf + 3, static_cast<uint32_t>(header.length())); |
| // Write the trace summary. The summary is identical to the file header when |
| // the output mode is not streaming (except for methods). |
| if (!trace_file_->WriteFully(buf, sizeof(buf)) || |
| !trace_file_->WriteFully(header.c_str(), header.length())) { |
| PLOG(WARNING) << "Failed streaming a tracing event."; |
| } |
| } else { |
| if (trace_file_.get() == nullptr) { |
| std::vector<uint8_t> data; |
| data.resize(header.length() + final_offset); |
| memcpy(data.data(), header.c_str(), header.length()); |
| memcpy(data.data() + header.length(), buf_.get(), final_offset); |
| Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(CHUNK_TYPE("MPSE"), |
| ArrayRef<const uint8_t>(data)); |
| } else { |
| if (!trace_file_->WriteFully(header.c_str(), header.length()) || |
| !trace_file_->WriteFully(buf_.get(), final_offset)) { |
| std::string detail(StringPrintf("Trace data write failed: %s", strerror(errno))); |
| PLOG(ERROR) << detail; |
| ThrowRuntimeException("%s", detail.c_str()); |
| } |
| } |
| } |
| } else { |
| // This is only called from the child process post fork to abort the trace. |
| // We shouldn't have any workers in the thread pool here. |
| DCHECK_EQ(thread_pool_, nullptr); |
| } |
| |
| if (trace_file_.get() != nullptr) { |
| // Do not try to erase, so flush and close explicitly. |
| if (flush_entries) { |
| if (trace_file_->Flush() != 0) { |
| PLOG(WARNING) << "Could not flush trace file."; |
| } |
| } else { |
| trace_file_->MarkUnchecked(); // Do not trigger guard. |
| } |
| if (trace_file_->Close() != 0) { |
| PLOG(ERROR) << "Could not close trace file."; |
| } |
| } |
| } |
| |
| void Trace::DexPcMoved([[maybe_unused]] Thread* thread, |
| [[maybe_unused]] Handle<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t new_dex_pc) { |
| // We're not recorded to listen to this kind of event, so complain. |
| LOG(ERROR) << "Unexpected dex PC event in tracing " << ArtMethod::PrettyMethod(method) |
| << " " << new_dex_pc; |
| } |
| |
| void Trace::FieldRead([[maybe_unused]] Thread* thread, |
| [[maybe_unused]] Handle<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| [[maybe_unused]] ArtField* field) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // We're not recorded to listen to this kind of event, so complain. |
| LOG(ERROR) << "Unexpected field read event in tracing " << ArtMethod::PrettyMethod(method) |
| << " " << dex_pc; |
| } |
| |
| void Trace::FieldWritten([[maybe_unused]] Thread* thread, |
| [[maybe_unused]] Handle<mirror::Object> this_object, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| [[maybe_unused]] ArtField* field, |
| [[maybe_unused]] const JValue& field_value) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // We're not recorded to listen to this kind of event, so complain. |
| LOG(ERROR) << "Unexpected field write event in tracing " << ArtMethod::PrettyMethod(method) |
| << " " << dex_pc; |
| } |
| |
| void Trace::MethodEntered(Thread* thread, ArtMethod* method) { |
| uint32_t thread_clock_diff = 0; |
| uint64_t timestamp_counter = 0; |
| ReadClocks(thread, &thread_clock_diff, ×tamp_counter); |
| LogMethodTraceEvent(thread, method, kTraceMethodEnter, thread_clock_diff, timestamp_counter); |
| } |
| |
| void Trace::MethodExited(Thread* thread, |
| ArtMethod* method, |
| [[maybe_unused]] instrumentation::OptionalFrame frame, |
| [[maybe_unused]] JValue& return_value) { |
| uint32_t thread_clock_diff = 0; |
| uint64_t timestamp_counter = 0; |
| ReadClocks(thread, &thread_clock_diff, ×tamp_counter); |
| LogMethodTraceEvent(thread, method, kTraceMethodExit, thread_clock_diff, timestamp_counter); |
| } |
| |
| void Trace::MethodUnwind(Thread* thread, ArtMethod* method, [[maybe_unused]] uint32_t dex_pc) { |
| uint32_t thread_clock_diff = 0; |
| uint64_t timestamp_counter = 0; |
| ReadClocks(thread, &thread_clock_diff, ×tamp_counter); |
| LogMethodTraceEvent(thread, method, kTraceUnroll, thread_clock_diff, timestamp_counter); |
| } |
| |
| void Trace::ExceptionThrown([[maybe_unused]] Thread* thread, |
| [[maybe_unused]] Handle<mirror::Throwable> exception_object) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| LOG(ERROR) << "Unexpected exception thrown event in tracing"; |
| } |
| |
| void Trace::ExceptionHandled([[maybe_unused]] Thread* thread, |
| [[maybe_unused]] Handle<mirror::Throwable> exception_object) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| LOG(ERROR) << "Unexpected exception thrown event in tracing"; |
| } |
| |
| void Trace::Branch(Thread* /*thread*/, ArtMethod* method, |
| uint32_t /*dex_pc*/, int32_t /*dex_pc_offset*/) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| LOG(ERROR) << "Unexpected branch event in tracing" << ArtMethod::PrettyMethod(method); |
| } |
| |
| void Trace::WatchedFramePop([[maybe_unused]] Thread* self, |
| [[maybe_unused]] const ShadowFrame& frame) { |
| LOG(ERROR) << "Unexpected WatchedFramePop event in tracing"; |
| } |
| |
| void Trace::ReadClocks(Thread* thread, uint32_t* thread_clock_diff, uint64_t* timestamp_counter) { |
| if (UseThreadCpuClock(clock_source_)) { |
| uint64_t clock_base = thread->GetTraceClockBase(); |
| if (UNLIKELY(clock_base == 0)) { |
| // First event, record the base time in the map. |
| uint64_t time = thread->GetCpuMicroTime(); |
| thread->SetTraceClockBase(time); |
| } else { |
| *thread_clock_diff = thread->GetCpuMicroTime() - clock_base; |
| } |
| } |
| if (UseWallClock(clock_source_)) { |
| *timestamp_counter = GetTimestamp(); |
| } |
| } |
| |
| uintptr_t* TraceWriterThreadPool::FinishTaskAndClaimBuffer(size_t tid) { |
| Thread* self = Thread::Current(); |
| TraceWriterTask* task = static_cast<TraceWriterTask*>(TryGetTask(self)); |
| if (task == nullptr) { |
| // TODO(mythria): We need to ensure we have at least as many buffers in the pool as the number |
| // of active threads for efficiency. It's a bit unlikely to hit this case and not trivial to |
| // handle this. So we haven't fixed this yet. |
| LOG(WARNING) |
| << "Fewer buffers in the pool than the number of threads. Might cause some slowdown"; |
| return nullptr; |
| } |
| |
| uintptr_t* buffer = task->ReserveBufferForTid(tid); |
| task->Run(self); |
| task->Finalize(); |
| return buffer; |
| } |
| |
| std::string TraceWriter::GetMethodLine(const std::string& method_line, uint32_t method_index) { |
| return StringPrintf("%#x\t%s", (method_index << TraceActionBits), method_line.c_str()); |
| } |
| |
| std::string TraceWriter::GetMethodInfoLine(ArtMethod* method) { |
| method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| return StringPrintf("%s\t%s\t%s\t%s\n", |
| PrettyDescriptor(method->GetDeclaringClassDescriptor()).c_str(), |
| method->GetName(), |
| method->GetSignature().ToString().c_str(), |
| method->GetDeclaringClassSourceFile()); |
| } |
| |
| void TraceWriter::RecordThreadInfo(Thread* thread) { |
| // This is the first event from this thread, so first record information about the thread. |
| std::string thread_name; |
| thread->GetThreadName(thread_name); |
| |
| // In tests, we destroy VM after already detaching the current thread. We re-attach the current |
| // thread again as a "Shutdown thread" during the process of shutting down. So don't record |
| // information about shutdown threads since it overwrites the actual thread_name. |
| if (thread_name.compare("Shutdown thread") == 0) { |
| return; |
| } |
| |
| MutexLock mu(Thread::Current(), tracing_lock_); |
| if (trace_output_mode_ != TraceOutputMode::kStreaming) { |
| threads_list_.Overwrite(GetThreadEncoding(thread->GetTid()), thread_name); |
| return; |
| } |
| |
| static constexpr size_t kThreadNameHeaderSize = 7; |
| uint8_t header[kThreadNameHeaderSize]; |
| Append2LE(header, 0); |
| header[2] = kOpNewThread; |
| Append2LE(header + 3, GetThreadEncoding(thread->GetTid())); |
| DCHECK(thread_name.length() < (1 << 16)); |
| Append2LE(header + 5, static_cast<uint16_t>(thread_name.length())); |
| |
| if (!trace_file_->WriteFully(header, kThreadNameHeaderSize) || |
| !trace_file_->WriteFully(reinterpret_cast<const uint8_t*>(thread_name.c_str()), |
| thread_name.length())) { |
| PLOG(WARNING) << "Failed streaming a tracing event."; |
| } |
| } |
| |
| void TraceWriter::PreProcessTraceForMethodInfos( |
| uintptr_t* method_trace_entries, |
| size_t current_offset, |
| std::unordered_map<ArtMethod*, std::string>& method_infos) { |
| // Compute the method infos before we process the entries. We don't want to assign an encoding |
| // for the method here. The expectation is that once we assign a method id we write it to the |
| // file before any other thread can see the method id. So we should assign method encoding while |
| // holding the tracing_lock_ and not release it till we flush the method info to the file. We |
| // don't want to flush entries to file while holding the mutator lock. We need the mutator lock to |
| // get method info. So we just precompute method infos without assigning a method encoding here. |
| // There may be a race and multiple threads computing the method info but only one of them would |
| // actually put into the method_id_map_. |
| MutexLock mu(Thread::Current(), tracing_lock_); |
| size_t num_entries = GetNumEntries(clock_source_); |
| DCHECK_EQ((kPerThreadBufSize - current_offset) % num_entries, 0u); |
| for (size_t entry_index = kPerThreadBufSize; entry_index != current_offset;) { |
| entry_index -= num_entries; |
| uintptr_t method_and_action = method_trace_entries[entry_index]; |
| ArtMethod* method = reinterpret_cast<ArtMethod*>(method_and_action & kMaskTraceAction); |
| if (!HasMethodEncoding(method) && method_infos.find(method) == method_infos.end()) { |
| method_infos.emplace(method, std::move(GetMethodInfoLine(method))); |
| } |
| } |
| } |
| |
| void TraceWriter::RecordMethodInfo(const std::string& method_info_line, uint32_t method_id) { |
| std::string method_line(GetMethodLine(method_info_line, method_id)); |
| // Write a special block with the name. |
| static constexpr size_t kMethodNameHeaderSize = 5; |
| uint8_t method_header[kMethodNameHeaderSize]; |
| DCHECK_LT(kMethodNameHeaderSize, kPerThreadBufSize); |
| Append2LE(method_header, 0); |
| method_header[2] = kOpNewMethod; |
| |
| uint16_t method_line_length = static_cast<uint16_t>(method_line.length()); |
| DCHECK(method_line.length() < (1 << 16)); |
| Append2LE(method_header + 3, method_line_length); |
| |
| const uint8_t* ptr = reinterpret_cast<const uint8_t*>(method_line.c_str()); |
| if (!trace_file_->WriteFully(method_header, kMethodNameHeaderSize) || |
| !trace_file_->WriteFully(ptr, method_line_length)) { |
| PLOG(WARNING) << "Failed streaming a tracing event."; |
| } |
| } |
| |
| void TraceWriter::FlushAllThreadBuffers() { |
| ScopedThreadStateChange stsc(Thread::Current(), ThreadState::kSuspended); |
| ScopedSuspendAll ssa(__FUNCTION__); |
| MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); |
| for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { |
| if (thread->GetMethodTraceBuffer() != nullptr) { |
| FlushBuffer(thread, /* is_sync= */ true, /* free_buffer= */ false); |
| // We cannot flush anynore data, so just return. |
| if (overflow_) { |
| return; |
| } |
| } |
| } |
| return; |
| } |
| |
| uintptr_t* TraceWriter::PrepareBufferForNewEntries(Thread* thread) { |
| if (trace_output_mode_ == TraceOutputMode::kStreaming) { |
| // In streaming mode, just flush the per-thread buffer and reuse the |
| // existing buffer for new entries. |
| FlushBuffer(thread, /* is_sync= */ false, /* free_buffer= */ false); |
| DCHECK_EQ(overflow_, false); |
| } else { |
| // For non-streaming mode, flush all the threads to check if we have space in the common |
| // buffer to record any future events. |
| FlushAllThreadBuffers(); |
| } |
| if (overflow_) { |
| return nullptr; |
| } |
| return thread->GetMethodTraceBuffer(); |
| } |
| |
| void TraceWriter::InitializeTraceBuffers() { |
| for (size_t i = 0; i < owner_tids_.size(); i++) { |
| owner_tids_[i].store(0); |
| } |
| |
| trace_buffer_.reset(new uintptr_t[kPerThreadBufSize * owner_tids_.size()]); |
| CHECK(trace_buffer_.get() != nullptr); |
| } |
| |
| uintptr_t* TraceWriter::AcquireTraceBuffer(size_t tid) { |
| for (size_t index = 0; index < owner_tids_.size(); index++) { |
| size_t owner = 0; |
| if (owner_tids_[index].compare_exchange_strong(owner, tid)) { |
| return trace_buffer_.get() + index * kPerThreadBufSize; |
| } |
| } |
| |
| // No free buffers, flush the buffer at the start of task queue synchronously and then use that |
| // buffer. |
| uintptr_t* buffer = thread_pool_->FinishTaskAndClaimBuffer(tid); |
| if (buffer == nullptr) { |
| // We couldn't find a free buffer even after flushing all the tasks. So allocate a new buffer |
| // here. This should only happen if we have more threads than the number of pool buffers. |
| // TODO(mythria): Add a check for the above case here. |
| buffer = new uintptr_t[kPerThreadBufSize]; |
| CHECK(buffer != nullptr); |
| } |
| return buffer; |
| } |
| |
| void TraceWriter::FetchTraceBufferForThread(int index, size_t tid) { |
| // Only the trace_writer_ thread can release the buffer. |
| owner_tids_[index].store(tid); |
| } |
| |
| int TraceWriter::GetMethodTraceIndex(uintptr_t* current_buffer) { |
| if (current_buffer < trace_buffer_.get() || |
| current_buffer > trace_buffer_.get() + (owner_tids_.size() - 1) * kPerThreadBufSize) { |
| // This was the temporary buffer we allocated. |
| return -1; |
| } |
| return (current_buffer - trace_buffer_.get()) / kPerThreadBufSize; |
| } |
| |
| void TraceWriter::FlushBuffer(Thread* thread, bool is_sync, bool release) { |
| uintptr_t* method_trace_entries = thread->GetMethodTraceBuffer(); |
| size_t* current_offset = thread->GetMethodTraceIndexPtr(); |
| size_t tid = thread->GetTid(); |
| DCHECK(method_trace_entries != nullptr); |
| |
| if (is_sync || thread_pool_ == nullptr) { |
| std::unordered_map<ArtMethod*, std::string> method_infos; |
| PreProcessTraceForMethodInfos(method_trace_entries, *current_offset, method_infos); |
| FlushBuffer(method_trace_entries, *current_offset, tid, method_infos); |
| |
| // This is a synchronous flush, so no need to allocate a new buffer. This is used either |
| // when the tracing has finished or in non-streaming mode. |
| // Just reset the buffer pointer to the initial value, so we can reuse the same buffer. |
| *current_offset = kPerThreadBufSize; |
| if (release) { |
| thread->SetMethodTraceBuffer(nullptr); |
| } |
| } else { |
| int old_index = GetMethodTraceIndex(method_trace_entries); |
| // The TraceWriterTask takes the ownership of the buffer and releases the buffer once the |
| // entries are flushed. |
| thread_pool_->AddTask( |
| Thread::Current(), |
| new TraceWriterTask(this, old_index, method_trace_entries, *current_offset, tid)); |
| *current_offset = kPerThreadBufSize; |
| if (release) { |
| thread->SetMethodTraceBuffer(nullptr); |
| } else { |
| thread->SetMethodTraceBuffer(AcquireTraceBuffer(tid)); |
| } |
| } |
| |
| return; |
| } |
| |
| void TraceWriter::FlushBuffer(uintptr_t* method_trace_entries, |
| size_t current_offset, |
| size_t tid, |
| const std::unordered_map<ArtMethod*, std::string>& method_infos) { |
| // Take a tracing_lock_ to serialize writes across threads. We also need to allocate a unique |
| // method id for each method. We do that by maintaining a map from id to method for each newly |
| // seen method. tracing_lock_ is required to serialize these. |
| MutexLock mu(Thread::Current(), tracing_lock_); |
| size_t current_index; |
| uint8_t* buffer_ptr = buf_.get(); |
| size_t buffer_size = buffer_size_; |
| if (trace_output_mode_ == TraceOutputMode::kStreaming) { |
| // In streaming mode, we flush the data to file each time we flush the per-thread buffer. |
| // Just reuse the entire buffer. |
| current_index = 0; |
| } else { |
| // In non-streaming mode we only flush at the end, so retain the earlier data. If the buffer |
| // is full we don't process any more entries. |
| current_index = cur_offset_; |
| } |
| uint16_t thread_id = GetThreadEncoding(tid); |
| |
| bool has_thread_cpu_clock = UseThreadCpuClock(clock_source_); |
| bool has_wall_clock = UseWallClock(clock_source_); |
| const size_t record_size = GetRecordSize(clock_source_); |
| DCHECK_LT(record_size, kPerThreadBufSize); |
| size_t num_entries = GetNumEntries(clock_source_); |
| size_t num_records = (kPerThreadBufSize - current_offset) / num_entries; |
| DCHECK_EQ((kPerThreadBufSize - current_offset) % num_entries, 0u); |
| |
| // Check if there is sufficient place in the buffer for non-streaming case. If not return early. |
| if (cur_offset_ + record_size * num_records >= buffer_size && |
| trace_output_mode_ != TraceOutputMode::kStreaming) { |
| overflow_ = true; |
| return; |
| } |
| |
| DCHECK_GT(buffer_size_, record_size * num_entries); |
| for (size_t entry_index = kPerThreadBufSize; entry_index != current_offset;) { |
| entry_index -= num_entries; |
| size_t record_index = entry_index; |
| uintptr_t method_and_action = method_trace_entries[record_index++]; |
| ArtMethod* method = reinterpret_cast<ArtMethod*>(method_and_action & kMaskTraceAction); |
| CHECK(method != nullptr); |
| TraceAction action = DecodeTraceAction(method_and_action); |
| uint32_t thread_time = 0; |
| uint32_t wall_time = 0; |
| if (has_thread_cpu_clock) { |
| thread_time = method_trace_entries[record_index++]; |
| } |
| if (has_wall_clock) { |
| uint64_t timestamp = method_trace_entries[record_index++]; |
| if (art::kRuntimePointerSize == PointerSize::k32) { |
| // On 32-bit architectures timestamp is stored as two 32-bit values. |
| uint64_t high_timestamp = method_trace_entries[record_index++]; |
| timestamp = (high_timestamp << 32 | timestamp); |
| } |
| wall_time = GetMicroTime(timestamp) - start_time_; |
| } |
| |
| auto [method_id, is_new_method] = GetMethodEncoding(method); |
| if (is_new_method && trace_output_mode_ == TraceOutputMode::kStreaming) { |
| RecordMethodInfo(method_infos.find(method)->second, method_id); |
| } |
| |
| DCHECK_LT(current_index + record_size, buffer_size); |
| EncodeEventEntry( |
| buffer_ptr + current_index, thread_id, method_id, action, thread_time, wall_time); |
| current_index += record_size; |
| } |
| |
| if (trace_output_mode_ == TraceOutputMode::kStreaming) { |
| // Flush the contents of buffer to file. |
| if (!trace_file_->WriteFully(buffer_ptr, current_index)) { |
| PLOG(WARNING) << "Failed streaming a tracing event."; |
| } |
| } else { |
| // In non-streaming mode, we keep the data in the buffer and write to the |
| // file when tracing has stopped. Just updated the offset of the buffer. |
| cur_offset_ = current_index; |
| } |
| return; |
| } |
| |
| void Trace::LogMethodTraceEvent(Thread* thread, |
| ArtMethod* method, |
| TraceAction action, |
| uint32_t thread_clock_diff, |
| uint64_t timestamp_counter) { |
| // This method is called in both tracing modes (method and sampling). In sampling mode, this |
| // method is only called by the sampling thread. In method tracing mode, it can be called |
| // concurrently. |
| |
| // In non-streaming modes, we stop recoding events once the buffer is full. |
| if (trace_writer_->HasOverflow()) { |
| return; |
| } |
| |
| uintptr_t* method_trace_buffer = thread->GetMethodTraceBuffer(); |
| size_t* current_index = thread->GetMethodTraceIndexPtr(); |
| // Initialize the buffer lazily. It's just simpler to keep the creation at one place. |
| if (method_trace_buffer == nullptr) { |
| method_trace_buffer = trace_writer_->AcquireTraceBuffer(thread->GetTid()); |
| DCHECK(method_trace_buffer != nullptr); |
| thread->SetMethodTraceBuffer(method_trace_buffer); |
| *current_index = kPerThreadBufSize; |
| trace_writer_->RecordThreadInfo(thread); |
| } |
| |
| size_t required_entries = GetNumEntries(clock_source_); |
| if (*current_index < required_entries) { |
| // This returns nullptr in non-streaming mode if there's an overflow and we cannot record any |
| // more entries. In streaming mode, it returns nullptr if it fails to allocate a new buffer. |
| method_trace_buffer = trace_writer_->PrepareBufferForNewEntries(thread); |
| if (method_trace_buffer == nullptr) { |
| return; |
| } |
| } |
| |
| // Record entry in per-thread trace buffer. |
| // Update the offset |
| int new_entry_index = *current_index - required_entries; |
| *current_index = new_entry_index; |
| |
| // Ensure we always use the non-obsolete version of the method so that entry/exit events have the |
| // same pointer value. |
| method = method->GetNonObsoleteMethod(); |
| method_trace_buffer[new_entry_index++] = reinterpret_cast<uintptr_t>(method) | action; |
| if (UseThreadCpuClock(clock_source_)) { |
| method_trace_buffer[new_entry_index++] = thread_clock_diff; |
| } |
| if (UseWallClock(clock_source_)) { |
| if (art::kRuntimePointerSize == PointerSize::k32) { |
| // On 32-bit architectures store timestamp counter as two 32-bit values. |
| method_trace_buffer[new_entry_index++] = static_cast<uint32_t>(timestamp_counter); |
| method_trace_buffer[new_entry_index++] = timestamp_counter >> 32; |
| } else { |
| method_trace_buffer[new_entry_index++] = timestamp_counter; |
| } |
| } |
| } |
| |
| void TraceWriter::EncodeEventEntry(uint8_t* ptr, |
| uint16_t thread_id, |
| uint32_t method_index, |
| TraceAction action, |
| uint32_t thread_clock_diff, |
| uint32_t wall_clock_diff) { |
| static constexpr size_t kPacketSize = 14U; // The maximum size of data in a packet. |
| DCHECK(method_index < (1 << (32 - TraceActionBits))); |
| uint32_t method_value = (method_index << TraceActionBits) | action; |
| Append2LE(ptr, thread_id); |
| Append4LE(ptr + 2, method_value); |
| ptr += 6; |
| |
| if (UseThreadCpuClock(clock_source_)) { |
| Append4LE(ptr, thread_clock_diff); |
| ptr += 4; |
| } |
| if (UseWallClock(clock_source_)) { |
| Append4LE(ptr, wall_clock_diff); |
| } |
| static_assert(kPacketSize == 2 + 4 + 4 + 4, "Packet size incorrect."); |
| } |
| |
| void TraceWriter::EnsureSpace(uint8_t* buffer, |
| size_t* current_index, |
| size_t buffer_size, |
| size_t required_size) { |
| if (*current_index + required_size < buffer_size) { |
| return; |
| } |
| |
| if (!trace_file_->WriteFully(buffer, *current_index)) { |
| PLOG(WARNING) << "Failed streaming a tracing event."; |
| } |
| *current_index = 0; |
| } |
| |
| void TraceWriter::DumpMethodList(std::ostream& os) { |
| MutexLock mu(Thread::Current(), tracing_lock_); |
| for (auto const& entry : art_method_id_map_) { |
| os << GetMethodLine(GetMethodInfoLine(entry.first), entry.second); |
| } |
| } |
| |
| void TraceWriter::DumpThreadList(std::ostream& os) { |
| MutexLock mu(Thread::Current(), tracing_lock_); |
| for (const auto& it : threads_list_) { |
| os << it.first << "\t" << it.second << "\n"; |
| } |
| } |
| |
| TraceOutputMode Trace::GetOutputMode() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| CHECK(the_trace_ != nullptr) << "Trace output mode requested, but no trace currently running"; |
| return the_trace_->trace_writer_->GetOutputMode(); |
| } |
| |
| Trace::TraceMode Trace::GetMode() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| CHECK(the_trace_ != nullptr) << "Trace mode requested, but no trace currently running"; |
| return the_trace_->trace_mode_; |
| } |
| |
| int Trace::GetFlags() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| CHECK(the_trace_ != nullptr) << "Trace flags requested, but no trace currently running"; |
| return the_trace_->flags_; |
| } |
| |
| int Trace::GetIntervalInMillis() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| CHECK(the_trace_ != nullptr) << "Trace interval requested, but no trace currently running"; |
| return the_trace_->interval_us_; |
| } |
| |
| size_t Trace::GetBufferSize() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| CHECK(the_trace_ != nullptr) << "Trace buffer size requested, but no trace currently running"; |
| return the_trace_->trace_writer_->GetBufferSize(); |
| } |
| |
| bool Trace::IsTracingEnabled() { |
| MutexLock mu(Thread::Current(), *Locks::trace_lock_); |
| return the_trace_ != nullptr; |
| } |
| |
| } // namespace art |