blob: 15b8b15c747b0e0014887a49d3b8103cef1f716b [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_
#define ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_
#include <vector>
#include "base/macros.h"
#include "constants_x86_64.h"
#include "globals.h"
#include "managed_register_x86_64.h"
#include "offsets.h"
#include "utils/assembler.h"
#include "utils.h"
namespace art {
namespace x86_64 {
// Encodes an immediate value for operands.
//
// Note: Immediates can be 64b on x86-64 for certain instructions, but are often restricted
// to 32b.
//
// Note: As we support cross-compilation, the value type must be int64_t. Please be aware of
// conversion rules in expressions regarding negation, especially size_t on 32b.
class Immediate : public ValueObject {
public:
explicit Immediate(int64_t value_in) : value_(value_in) {}
int64_t value() const { return value_; }
bool is_int8() const { return IsInt<8>(value_); }
bool is_uint8() const { return IsUint<8>(value_); }
bool is_int16() const { return IsInt<16>(value_); }
bool is_uint16() const { return IsUint<16>(value_); }
bool is_int32() const { return IsInt<32>(value_); }
private:
const int64_t value_;
};
class Operand : public ValueObject {
public:
uint8_t mod() const {
return (encoding_at(0) >> 6) & 3;
}
Register rm() const {
return static_cast<Register>(encoding_at(0) & 7);
}
ScaleFactor scale() const {
return static_cast<ScaleFactor>((encoding_at(1) >> 6) & 3);
}
Register index() const {
return static_cast<Register>((encoding_at(1) >> 3) & 7);
}
Register base() const {
return static_cast<Register>(encoding_at(1) & 7);
}
uint8_t rex() const {
return rex_;
}
int8_t disp8() const {
CHECK_GE(length_, 2);
return static_cast<int8_t>(encoding_[length_ - 1]);
}
int32_t disp32() const {
CHECK_GE(length_, 5);
int32_t value;
memcpy(&value, &encoding_[length_ - 4], sizeof(value));
return value;
}
bool IsRegister(CpuRegister reg) const {
return ((encoding_[0] & 0xF8) == 0xC0) // Addressing mode is register only.
&& ((encoding_[0] & 0x07) == reg.LowBits()) // Register codes match.
&& (reg.NeedsRex() == ((rex_ & 1) != 0)); // REX.000B bits match.
}
AssemblerFixup* GetFixup() const {
return fixup_;
}
protected:
// Operand can be sub classed (e.g: Address).
Operand() : rex_(0), length_(0), fixup_(nullptr) { }
void SetModRM(uint8_t mod_in, CpuRegister rm_in) {
CHECK_EQ(mod_in & ~3, 0);
if (rm_in.NeedsRex()) {
rex_ |= 0x41; // REX.000B
}
encoding_[0] = (mod_in << 6) | rm_in.LowBits();
length_ = 1;
}
void SetSIB(ScaleFactor scale_in, CpuRegister index_in, CpuRegister base_in) {
CHECK_EQ(length_, 1);
CHECK_EQ(scale_in & ~3, 0);
if (base_in.NeedsRex()) {
rex_ |= 0x41; // REX.000B
}
if (index_in.NeedsRex()) {
rex_ |= 0x42; // REX.00X0
}
encoding_[1] = (scale_in << 6) | (static_cast<uint8_t>(index_in.LowBits()) << 3) |
static_cast<uint8_t>(base_in.LowBits());
length_ = 2;
}
void SetDisp8(int8_t disp) {
CHECK(length_ == 1 || length_ == 2);
encoding_[length_++] = static_cast<uint8_t>(disp);
}
void SetDisp32(int32_t disp) {
CHECK(length_ == 1 || length_ == 2);
int disp_size = sizeof(disp);
memmove(&encoding_[length_], &disp, disp_size);
length_ += disp_size;
}
void SetFixup(AssemblerFixup* fixup) {
fixup_ = fixup;
}
private:
uint8_t rex_;
uint8_t length_;
uint8_t encoding_[6];
AssemblerFixup* fixup_;
explicit Operand(CpuRegister reg) : rex_(0), length_(0), fixup_(nullptr) { SetModRM(3, reg); }
// Get the operand encoding byte at the given index.
uint8_t encoding_at(int index_in) const {
CHECK_GE(index_in, 0);
CHECK_LT(index_in, length_);
return encoding_[index_in];
}
friend class X86_64Assembler;
};
class Address : public Operand {
public:
Address(CpuRegister base_in, int32_t disp) {
Init(base_in, disp);
}
Address(CpuRegister base_in, Offset disp) {
Init(base_in, disp.Int32Value());
}
Address(CpuRegister base_in, FrameOffset disp) {
CHECK_EQ(base_in.AsRegister(), RSP);
Init(CpuRegister(RSP), disp.Int32Value());
}
Address(CpuRegister base_in, MemberOffset disp) {
Init(base_in, disp.Int32Value());
}
void Init(CpuRegister base_in, int32_t disp) {
if (disp == 0 && base_in.LowBits() != RBP) {
SetModRM(0, base_in);
if (base_in.LowBits() == RSP) {
SetSIB(TIMES_1, CpuRegister(RSP), base_in);
}
} else if (disp >= -128 && disp <= 127) {
SetModRM(1, base_in);
if (base_in.LowBits() == RSP) {
SetSIB(TIMES_1, CpuRegister(RSP), base_in);
}
SetDisp8(disp);
} else {
SetModRM(2, base_in);
if (base_in.LowBits() == RSP) {
SetSIB(TIMES_1, CpuRegister(RSP), base_in);
}
SetDisp32(disp);
}
}
Address(CpuRegister index_in, ScaleFactor scale_in, int32_t disp) {
CHECK_NE(index_in.AsRegister(), RSP); // Illegal addressing mode.
SetModRM(0, CpuRegister(RSP));
SetSIB(scale_in, index_in, CpuRegister(RBP));
SetDisp32(disp);
}
Address(CpuRegister base_in, CpuRegister index_in, ScaleFactor scale_in, int32_t disp) {
CHECK_NE(index_in.AsRegister(), RSP); // Illegal addressing mode.
if (disp == 0 && base_in.LowBits() != RBP) {
SetModRM(0, CpuRegister(RSP));
SetSIB(scale_in, index_in, base_in);
} else if (disp >= -128 && disp <= 127) {
SetModRM(1, CpuRegister(RSP));
SetSIB(scale_in, index_in, base_in);
SetDisp8(disp);
} else {
SetModRM(2, CpuRegister(RSP));
SetSIB(scale_in, index_in, base_in);
SetDisp32(disp);
}
}
// If no_rip is true then the Absolute address isn't RIP relative.
static Address Absolute(uintptr_t addr, bool no_rip = false) {
Address result;
if (no_rip) {
result.SetModRM(0, CpuRegister(RSP));
result.SetSIB(TIMES_1, CpuRegister(RSP), CpuRegister(RBP));
result.SetDisp32(addr);
} else {
// RIP addressing is done using RBP as the base register.
// The value in RBP isn't used. Instead the offset is added to RIP.
result.SetModRM(0, CpuRegister(RBP));
result.SetDisp32(addr);
}
return result;
}
// An RIP relative address that will be fixed up later.
static Address RIP(AssemblerFixup* fixup) {
Address result;
// RIP addressing is done using RBP as the base register.
// The value in RBP isn't used. Instead the offset is added to RIP.
result.SetModRM(0, CpuRegister(RBP));
result.SetDisp32(0);
result.SetFixup(fixup);
return result;
}
// If no_rip is true then the Absolute address isn't RIP relative.
static Address Absolute(ThreadOffset<8> addr, bool no_rip = false) {
return Absolute(addr.Int32Value(), no_rip);
}
private:
Address() {}
};
/**
* Class to handle constant area values.
*/
class ConstantArea {
public:
ConstantArea() {}
// Add a double to the constant area, returning the offset into
// the constant area where the literal resides.
int AddDouble(double v);
// Add a float to the constant area, returning the offset into
// the constant area where the literal resides.
int AddFloat(float v);
// Add an int32_t to the constant area, returning the offset into
// the constant area where the literal resides.
int AddInt32(int32_t v);
// Add an int64_t to the constant area, returning the offset into
// the constant area where the literal resides.
int AddInt64(int64_t v);
int GetSize() const {
return buffer_.size() * elem_size_;
}
const std::vector<int32_t>& GetBuffer() const {
return buffer_;
}
private:
static constexpr size_t elem_size_ = sizeof(int32_t);
std::vector<int32_t> buffer_;
};
class X86_64Assembler FINAL : public Assembler {
public:
X86_64Assembler() {}
virtual ~X86_64Assembler() {}
/*
* Emit Machine Instructions.
*/
void call(CpuRegister reg);
void call(const Address& address);
void call(Label* label);
void pushq(CpuRegister reg);
void pushq(const Address& address);
void pushq(const Immediate& imm);
void popq(CpuRegister reg);
void popq(const Address& address);
void movq(CpuRegister dst, const Immediate& src);
void movl(CpuRegister dst, const Immediate& src);
void movq(CpuRegister dst, CpuRegister src);
void movl(CpuRegister dst, CpuRegister src);
void movq(CpuRegister dst, const Address& src);
void movl(CpuRegister dst, const Address& src);
void movq(const Address& dst, CpuRegister src);
void movl(const Address& dst, CpuRegister src);
void movl(const Address& dst, const Immediate& imm);
void cmov(Condition c, CpuRegister dst, CpuRegister src); // This is the 64b version.
void cmov(Condition c, CpuRegister dst, CpuRegister src, bool is64bit);
void movzxb(CpuRegister dst, CpuRegister src);
void movzxb(CpuRegister dst, const Address& src);
void movsxb(CpuRegister dst, CpuRegister src);
void movsxb(CpuRegister dst, const Address& src);
void movb(CpuRegister dst, const Address& src);
void movb(const Address& dst, CpuRegister src);
void movb(const Address& dst, const Immediate& imm);
void movzxw(CpuRegister dst, CpuRegister src);
void movzxw(CpuRegister dst, const Address& src);
void movsxw(CpuRegister dst, CpuRegister src);
void movsxw(CpuRegister dst, const Address& src);
void movw(CpuRegister dst, const Address& src);
void movw(const Address& dst, CpuRegister src);
void movw(const Address& dst, const Immediate& imm);
void leaq(CpuRegister dst, const Address& src);
void leal(CpuRegister dst, const Address& src);
void movaps(XmmRegister dst, XmmRegister src);
void movss(XmmRegister dst, const Address& src);
void movss(const Address& dst, XmmRegister src);
void movss(XmmRegister dst, XmmRegister src);
void movsxd(CpuRegister dst, CpuRegister src);
void movsxd(CpuRegister dst, const Address& src);
void movd(XmmRegister dst, CpuRegister src); // Note: this is the r64 version, formally movq.
void movd(CpuRegister dst, XmmRegister src); // Note: this is the r64 version, formally movq.
void movd(XmmRegister dst, CpuRegister src, bool is64bit);
void movd(CpuRegister dst, XmmRegister src, bool is64bit);
void addss(XmmRegister dst, XmmRegister src);
void addss(XmmRegister dst, const Address& src);
void subss(XmmRegister dst, XmmRegister src);
void subss(XmmRegister dst, const Address& src);
void mulss(XmmRegister dst, XmmRegister src);
void mulss(XmmRegister dst, const Address& src);
void divss(XmmRegister dst, XmmRegister src);
void divss(XmmRegister dst, const Address& src);
void movsd(XmmRegister dst, const Address& src);
void movsd(const Address& dst, XmmRegister src);
void movsd(XmmRegister dst, XmmRegister src);
void addsd(XmmRegister dst, XmmRegister src);
void addsd(XmmRegister dst, const Address& src);
void subsd(XmmRegister dst, XmmRegister src);
void subsd(XmmRegister dst, const Address& src);
void mulsd(XmmRegister dst, XmmRegister src);
void mulsd(XmmRegister dst, const Address& src);
void divsd(XmmRegister dst, XmmRegister src);
void divsd(XmmRegister dst, const Address& src);
void cvtsi2ss(XmmRegister dst, CpuRegister src); // Note: this is the r/m32 version.
void cvtsi2ss(XmmRegister dst, CpuRegister src, bool is64bit);
void cvtsi2sd(XmmRegister dst, CpuRegister src); // Note: this is the r/m32 version.
void cvtsi2sd(XmmRegister dst, CpuRegister src, bool is64bit);
void cvtss2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvtss2sd(XmmRegister dst, XmmRegister src);
void cvtsd2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvtsd2ss(XmmRegister dst, XmmRegister src);
void cvttss2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvttss2si(CpuRegister dst, XmmRegister src, bool is64bit);
void cvttsd2si(CpuRegister dst, XmmRegister src); // Note: this is the r32 version.
void cvttsd2si(CpuRegister dst, XmmRegister src, bool is64bit);
void cvtdq2pd(XmmRegister dst, XmmRegister src);
void comiss(XmmRegister a, XmmRegister b);
void comisd(XmmRegister a, XmmRegister b);
void ucomiss(XmmRegister a, XmmRegister b);
void ucomisd(XmmRegister a, XmmRegister b);
void roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm);
void roundss(XmmRegister dst, XmmRegister src, const Immediate& imm);
void sqrtsd(XmmRegister dst, XmmRegister src);
void sqrtss(XmmRegister dst, XmmRegister src);
void xorpd(XmmRegister dst, const Address& src);
void xorpd(XmmRegister dst, XmmRegister src);
void xorps(XmmRegister dst, const Address& src);
void xorps(XmmRegister dst, XmmRegister src);
void andpd(XmmRegister dst, const Address& src);
void andpd(XmmRegister dst, XmmRegister src);
void andps(XmmRegister dst, XmmRegister src);
void orpd(XmmRegister dst, XmmRegister src);
void orps(XmmRegister dst, XmmRegister src);
void flds(const Address& src);
void fstps(const Address& dst);
void fsts(const Address& dst);
void fldl(const Address& src);
void fstpl(const Address& dst);
void fstl(const Address& dst);
void fstsw();
void fucompp();
void fnstcw(const Address& dst);
void fldcw(const Address& src);
void fistpl(const Address& dst);
void fistps(const Address& dst);
void fildl(const Address& src);
void fincstp();
void ffree(const Immediate& index);
void fsin();
void fcos();
void fptan();
void fprem();
void xchgl(CpuRegister dst, CpuRegister src);
void xchgq(CpuRegister dst, CpuRegister src);
void xchgl(CpuRegister reg, const Address& address);
void cmpw(const Address& address, const Immediate& imm);
void cmpl(CpuRegister reg, const Immediate& imm);
void cmpl(CpuRegister reg0, CpuRegister reg1);
void cmpl(CpuRegister reg, const Address& address);
void cmpl(const Address& address, CpuRegister reg);
void cmpl(const Address& address, const Immediate& imm);
void cmpq(CpuRegister reg0, CpuRegister reg1);
void cmpq(CpuRegister reg0, const Immediate& imm);
void cmpq(CpuRegister reg0, const Address& address);
void cmpq(const Address& address, const Immediate& imm);
void testl(CpuRegister reg1, CpuRegister reg2);
void testl(CpuRegister reg, const Address& address);
void testl(CpuRegister reg, const Immediate& imm);
void testq(CpuRegister reg1, CpuRegister reg2);
void testq(CpuRegister reg, const Address& address);
void andl(CpuRegister dst, const Immediate& imm);
void andl(CpuRegister dst, CpuRegister src);
void andl(CpuRegister reg, const Address& address);
void andq(CpuRegister dst, const Immediate& imm);
void andq(CpuRegister dst, CpuRegister src);
void orl(CpuRegister dst, const Immediate& imm);
void orl(CpuRegister dst, CpuRegister src);
void orl(CpuRegister reg, const Address& address);
void orq(CpuRegister dst, CpuRegister src);
void orq(CpuRegister dst, const Immediate& imm);
void xorl(CpuRegister dst, CpuRegister src);
void xorl(CpuRegister dst, const Immediate& imm);
void xorl(CpuRegister reg, const Address& address);
void xorq(CpuRegister dst, const Immediate& imm);
void xorq(CpuRegister dst, CpuRegister src);
void addl(CpuRegister dst, CpuRegister src);
void addl(CpuRegister reg, const Immediate& imm);
void addl(CpuRegister reg, const Address& address);
void addl(const Address& address, CpuRegister reg);
void addl(const Address& address, const Immediate& imm);
void addq(CpuRegister reg, const Immediate& imm);
void addq(CpuRegister dst, CpuRegister src);
void addq(CpuRegister dst, const Address& address);
void subl(CpuRegister dst, CpuRegister src);
void subl(CpuRegister reg, const Immediate& imm);
void subl(CpuRegister reg, const Address& address);
void subq(CpuRegister reg, const Immediate& imm);
void subq(CpuRegister dst, CpuRegister src);
void subq(CpuRegister dst, const Address& address);
void cdq();
void cqo();
void idivl(CpuRegister reg);
void idivq(CpuRegister reg);
void imull(CpuRegister dst, CpuRegister src);
void imull(CpuRegister reg, const Immediate& imm);
void imull(CpuRegister reg, const Address& address);
void imulq(CpuRegister src);
void imulq(CpuRegister dst, CpuRegister src);
void imulq(CpuRegister reg, const Immediate& imm);
void imulq(CpuRegister reg, const Address& address);
void imulq(CpuRegister dst, CpuRegister reg, const Immediate& imm);
void imull(CpuRegister reg);
void imull(const Address& address);
void mull(CpuRegister reg);
void mull(const Address& address);
void shll(CpuRegister reg, const Immediate& imm);
void shll(CpuRegister operand, CpuRegister shifter);
void shrl(CpuRegister reg, const Immediate& imm);
void shrl(CpuRegister operand, CpuRegister shifter);
void sarl(CpuRegister reg, const Immediate& imm);
void sarl(CpuRegister operand, CpuRegister shifter);
void shlq(CpuRegister reg, const Immediate& imm);
void shlq(CpuRegister operand, CpuRegister shifter);
void shrq(CpuRegister reg, const Immediate& imm);
void shrq(CpuRegister operand, CpuRegister shifter);
void sarq(CpuRegister reg, const Immediate& imm);
void sarq(CpuRegister operand, CpuRegister shifter);
void negl(CpuRegister reg);
void negq(CpuRegister reg);
void notl(CpuRegister reg);
void notq(CpuRegister reg);
void enter(const Immediate& imm);
void leave();
void ret();
void ret(const Immediate& imm);
void nop();
void int3();
void hlt();
void j(Condition condition, Label* label);
void jmp(CpuRegister reg);
void jmp(const Address& address);
void jmp(Label* label);
X86_64Assembler* lock();
void cmpxchgl(const Address& address, CpuRegister reg);
void cmpxchgq(const Address& address, CpuRegister reg);
void mfence();
X86_64Assembler* gs();
void setcc(Condition condition, CpuRegister dst);
void bswapl(CpuRegister dst);
void bswapq(CpuRegister dst);
//
// Macros for High-level operations.
//
void AddImmediate(CpuRegister reg, const Immediate& imm);
void LoadDoubleConstant(XmmRegister dst, double value);
void LockCmpxchgl(const Address& address, CpuRegister reg) {
lock()->cmpxchgl(address, reg);
}
void LockCmpxchgq(const Address& address, CpuRegister reg) {
lock()->cmpxchgq(address, reg);
}
//
// Misc. functionality
//
int PreferredLoopAlignment() { return 16; }
void Align(int alignment, int offset);
void Bind(Label* label);
//
// Overridden common assembler high-level functionality
//
// Emit code that will create an activation on the stack
void BuildFrame(size_t frame_size, ManagedRegister method_reg,
const std::vector<ManagedRegister>& callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
// Emit code that will remove an activation from the stack
void RemoveFrame(size_t frame_size, const std::vector<ManagedRegister>& callee_save_regs)
OVERRIDE;
void IncreaseFrameSize(size_t adjust) OVERRIDE;
void DecreaseFrameSize(size_t adjust) OVERRIDE;
// Store routines
void Store(FrameOffset offs, ManagedRegister src, size_t size) OVERRIDE;
void StoreRef(FrameOffset dest, ManagedRegister src) OVERRIDE;
void StoreRawPtr(FrameOffset dest, ManagedRegister src) OVERRIDE;
void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister scratch) OVERRIDE;
void StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm, ManagedRegister scratch)
OVERRIDE;
void StoreStackOffsetToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs,
ManagedRegister scratch) OVERRIDE;
void StoreStackPointerToThread64(ThreadOffset<8> thr_offs) OVERRIDE;
void StoreSpanning(FrameOffset dest, ManagedRegister src, FrameOffset in_off,
ManagedRegister scratch) OVERRIDE;
// Load routines
void Load(ManagedRegister dest, FrameOffset src, size_t size) OVERRIDE;
void LoadFromThread64(ManagedRegister dest, ThreadOffset<8> src, size_t size) OVERRIDE;
void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs) OVERRIDE;
void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) OVERRIDE;
void LoadRawPtrFromThread64(ManagedRegister dest, ThreadOffset<8> offs) OVERRIDE;
// Copying routines
void Move(ManagedRegister dest, ManagedRegister src, size_t size);
void CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs,
ManagedRegister scratch) OVERRIDE;
void CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs, ManagedRegister scratch)
OVERRIDE;
void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister scratch) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister scratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister scratch,
size_t size) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister scratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset,
ManagedRegister scratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
ManagedRegister scratch, size_t size) OVERRIDE;
void MemoryBarrier(ManagedRegister) OVERRIDE;
// Sign extension
void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Zero extension
void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Exploit fast access in managed code to Thread::Current()
void GetCurrentThread(ManagedRegister tr) OVERRIDE;
void GetCurrentThread(FrameOffset dest_offset, ManagedRegister scratch) OVERRIDE;
// Set up out_reg to hold a Object** into the handle scope, or to be NULL if the
// value is null and null_allowed. in_reg holds a possibly stale reference
// that can be used to avoid loading the handle scope entry to see if the value is
// NULL.
void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset, ManagedRegister in_reg,
bool null_allowed) OVERRIDE;
// Set up out_off to hold a Object** into the handle scope, or to be NULL if the
// value is null and null_allowed.
void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, ManagedRegister scratch,
bool null_allowed) OVERRIDE;
// src holds a handle scope entry (Object**) load this into dst
virtual void LoadReferenceFromHandleScope(ManagedRegister dst,
ManagedRegister src);
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
// know that src may not be null.
void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
// Call to address held at [base+offset]
void Call(ManagedRegister base, Offset offset, ManagedRegister scratch) OVERRIDE;
void Call(FrameOffset base, Offset offset, ManagedRegister scratch) OVERRIDE;
void CallFromThread64(ThreadOffset<8> offset, ManagedRegister scratch) OVERRIDE;
// Generate code to check if Thread::Current()->exception_ is non-null
// and branch to a ExceptionSlowPath if it is.
void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) OVERRIDE;
// Add a double to the constant area, returning the offset into
// the constant area where the literal resides.
int AddDouble(double v) { return constant_area_.AddDouble(v); }
// Add a float to the constant area, returning the offset into
// the constant area where the literal resides.
int AddFloat(float v) { return constant_area_.AddFloat(v); }
// Add an int32_t to the constant area, returning the offset into
// the constant area where the literal resides.
int AddInt32(int32_t v) { return constant_area_.AddInt32(v); }
// Add an int64_t to the constant area, returning the offset into
// the constant area where the literal resides.
int AddInt64(int64_t v) { return constant_area_.AddInt64(v); }
// Add the contents of the constant area to the assembler buffer.
void AddConstantArea();
// Is the constant area empty? Return true if there are no literals in the constant area.
bool IsConstantAreaEmpty() const { return constant_area_.GetSize() == 0; }
private:
void EmitUint8(uint8_t value);
void EmitInt32(int32_t value);
void EmitInt64(int64_t value);
void EmitRegisterOperand(uint8_t rm, uint8_t reg);
void EmitXmmRegisterOperand(uint8_t rm, XmmRegister reg);
void EmitFixup(AssemblerFixup* fixup);
void EmitOperandSizeOverride();
void EmitOperand(uint8_t rm, const Operand& operand);
void EmitImmediate(const Immediate& imm);
void EmitComplex(uint8_t rm, const Operand& operand, const Immediate& immediate);
void EmitLabel(Label* label, int instruction_size);
void EmitLabelLink(Label* label);
void EmitNearLabelLink(Label* label);
void EmitGenericShift(bool wide, int rm, CpuRegister reg, const Immediate& imm);
void EmitGenericShift(bool wide, int rm, CpuRegister operand, CpuRegister shifter);
// If any input is not false, output the necessary rex prefix.
void EmitOptionalRex(bool force, bool w, bool r, bool x, bool b);
// Emit a rex prefix byte if necessary for reg. ie if reg is a register in the range R8 to R15.
void EmitOptionalRex32(CpuRegister reg);
void EmitOptionalRex32(CpuRegister dst, CpuRegister src);
void EmitOptionalRex32(XmmRegister dst, XmmRegister src);
void EmitOptionalRex32(CpuRegister dst, XmmRegister src);
void EmitOptionalRex32(XmmRegister dst, CpuRegister src);
void EmitOptionalRex32(const Operand& operand);
void EmitOptionalRex32(CpuRegister dst, const Operand& operand);
void EmitOptionalRex32(XmmRegister dst, const Operand& operand);
// Emit a REX.W prefix plus necessary register bit encodings.
void EmitRex64();
void EmitRex64(CpuRegister reg);
void EmitRex64(const Operand& operand);
void EmitRex64(CpuRegister dst, CpuRegister src);
void EmitRex64(CpuRegister dst, const Operand& operand);
void EmitRex64(XmmRegister dst, CpuRegister src);
void EmitRex64(CpuRegister dst, XmmRegister src);
// Emit a REX prefix to normalize byte registers plus necessary register bit encodings.
void EmitOptionalByteRegNormalizingRex32(CpuRegister dst, CpuRegister src);
void EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand);
ConstantArea constant_area_;
DISALLOW_COPY_AND_ASSIGN(X86_64Assembler);
};
inline void X86_64Assembler::EmitUint8(uint8_t value) {
buffer_.Emit<uint8_t>(value);
}
inline void X86_64Assembler::EmitInt32(int32_t value) {
buffer_.Emit<int32_t>(value);
}
inline void X86_64Assembler::EmitInt64(int64_t value) {
// Write this 64-bit value as two 32-bit words for alignment reasons
// (this is essentially when running on ARM, which does not allow
// 64-bit unaligned accesses). We assume little-endianness here.
EmitInt32(Low32Bits(value));
EmitInt32(High32Bits(value));
}
inline void X86_64Assembler::EmitRegisterOperand(uint8_t rm, uint8_t reg) {
CHECK_GE(rm, 0);
CHECK_LT(rm, 8);
buffer_.Emit<uint8_t>((0xC0 | (reg & 7)) + (rm << 3));
}
inline void X86_64Assembler::EmitXmmRegisterOperand(uint8_t rm, XmmRegister reg) {
EmitRegisterOperand(rm, static_cast<uint8_t>(reg.AsFloatRegister()));
}
inline void X86_64Assembler::EmitFixup(AssemblerFixup* fixup) {
buffer_.EmitFixup(fixup);
}
inline void X86_64Assembler::EmitOperandSizeOverride() {
EmitUint8(0x66);
}
} // namespace x86_64
} // namespace art
#endif // ART_COMPILER_UTILS_X86_64_ASSEMBLER_X86_64_H_