blob: db7095dafb71181c8cb60d226349634d30521d0e [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mir_to_lir-inl.h"
#include "arm/codegen_arm.h"
#include "dex/compiler_ir.h"
#include "dex/dex_flags.h"
#include "dex/mir_graph.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "invoke_type.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/object_array-inl.h"
#include "mirror/string.h"
#include "scoped_thread_state_change.h"
namespace art {
// Shortcuts to repeatedly used long types.
typedef mirror::ObjectArray<mirror::Object> ObjArray;
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
public:
IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info_in, LIR* branch_in, LIR* resume_in)
: LIRSlowPath(m2l, branch_in, resume_in), info_(info_in) {
DCHECK_EQ(info_in->offset, current_dex_pc_);
}
void Compile() {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoIntrinsicRetry);
// NOTE: GenInvokeNoInline() handles MarkSafepointPC.
m2l_->GenInvokeNoInline(info_);
if (cont_ != nullptr) {
m2l_->OpUnconditionalBranch(cont_);
}
}
private:
CallInfo* const info_;
};
AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
}
/*
* To save scheduling time, helper calls are broken into two parts: generation of
* the helper target address, and the actual call to the helper. Because x86
* has a memory call operation, part 1 is a NOP for x86. For other targets,
* load arguments between the two parts.
*/
// template <size_t pointer_size>
RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
return RegStorage::InvalidReg();
} else {
return LoadHelper(trampoline);
}
}
LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
bool use_link) {
LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
if (r_tgt.Valid()) {
FreeTemp(r_tgt);
}
if (safepoint_pc) {
MarkSafepointPC(call_inst);
}
return call_inst;
}
void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
} else {
LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
}
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
LoadConstant(TargetReg(kArg1, kNotWide), arg1);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
RegLocation arg1, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
if (arg1.wide == 0) {
LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
} else {
RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
LoadValueDirectWideFixed(arg1, r_tmp);
}
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
int arg1, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
DCHECK(!arg0.wide);
LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
LoadConstant(TargetReg(kArg1, kNotWide), arg1);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
LoadConstant(TargetReg(kArg1, kNotWide), arg1);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
LoadCurrMethodDirect(TargetReg(kArg1, kRef));
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
if (r_tmp.NotExactlyEquals(arg0)) {
OpRegCopy(r_tmp, arg0);
}
LoadCurrMethodDirect(TargetReg(kArg1, kRef));
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
RegLocation arg1, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
DCHECK(!IsSameReg(TargetReg(kArg2, arg0.GetWideKind()), arg0));
RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
if (r_tmp.NotExactlyEquals(arg0)) {
OpRegCopy(r_tmp, arg0);
}
LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
LoadCurrMethodDirect(TargetReg(kArg2, kRef));
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
RegLocation arg0, RegLocation arg1,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
if (cu_->instruction_set == kArm64 || cu_->instruction_set == kMips64 ||
cu_->instruction_set == kX86_64) {
RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
RegStorage arg1_reg;
if (arg1.fp == arg0.fp) {
arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
} else {
arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
}
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, arg0_reg);
} else {
LoadValueDirectWideFixed(arg0, arg0_reg);
}
if (arg1.wide == 0) {
LoadValueDirectFixed(arg1, arg1_reg);
} else {
LoadValueDirectWideFixed(arg1, arg1_reg);
}
} else {
DCHECK(!cu_->target64);
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
if (arg1.wide == 0) {
// For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
if (cu_->instruction_set == kMips) {
LoadValueDirectFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg1, kNotWide));
} else {
LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kNotWide));
}
} else {
// For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
if (cu_->instruction_set == kMips) {
LoadValueDirectWideFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kWide));
} else {
LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kWide));
}
}
} else {
LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
if (arg1.wide == 0) {
// For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
if (cu_->instruction_set == kMips) {
LoadValueDirectFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kNotWide));
} else {
LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
}
} else {
// For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
if (cu_->instruction_set == kMips) {
LoadValueDirectWideFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kWide));
} else {
LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
}
}
}
}
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
WideKind arg0_kind = arg0.GetWideKind();
WideKind arg1_kind = arg1.GetWideKind();
if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
// Swap kArg0 and kArg1 with kArg2 as temp.
OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
} else {
OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
}
} else {
OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
}
}
void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
RegStorage arg1, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
CopyToArgumentRegs(arg0, arg1);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
RegStorage arg1, int arg2, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
CopyToArgumentRegs(arg0, arg1);
LoadConstant(TargetReg(kArg2, kNotWide), arg2);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0,
RegLocation arg1, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
LoadCurrMethodDirect(TargetReg(kArg2, kRef));
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
LoadCurrMethodDirect(TargetReg(kArg2, kRef));
LoadConstant(TargetReg(kArg1, kNotWide), arg1);
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
RegLocation arg1,
RegLocation arg2, bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U); // The static_cast works around an
// instantiation bug in GCC.
LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
if (arg2.wide == 0) {
LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
} else {
LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
}
LoadConstant(TargetReg(kArg0, kNotWide), arg0);
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
QuickEntrypointEnum trampoline,
RegLocation arg0,
RegLocation arg1,
RegLocation arg2,
bool safepoint_pc) {
RegStorage r_tgt = CallHelperSetup(trampoline);
LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
ClobberCallerSave();
CallHelper(r_tgt, trampoline, safepoint_pc);
}
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform initial
* assignment of promoted arguments.
*
* ArgLocs is an array of location records describing the incoming arguments
* with one location record per word of argument.
*/
// TODO: Support 64-bit argument registers.
void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
/*
* Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
* It will attempt to keep kArg0 live (or copy it to home location
* if promoted).
*/
RegLocation rl_src = rl_method;
rl_src.location = kLocPhysReg;
rl_src.reg = TargetReg(kArg0, kRef);
rl_src.home = false;
MarkLive(rl_src);
StoreValue(rl_method, rl_src);
// If Method* has been promoted, explicitly flush
if (rl_method.location == kLocPhysReg) {
StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
}
if (mir_graph_->GetNumOfInVRs() == 0) {
return;
}
int start_vreg = mir_graph_->GetFirstInVR();
/*
* Copy incoming arguments to their proper home locations.
* NOTE: an older version of dx had an issue in which
* it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. To account for this,
* we only copy to the corresponding promoted physical register
* if it matches the type of the SSA name for the incoming
* argument. It is also possible that long and double arguments
* end up half-promoted. In those cases, we must flush the promoted
* half to memory as well.
*/
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
RegLocation* t_loc = nullptr;
EnsureInitializedArgMappingToPhysicalReg();
for (uint32_t i = 0; i < mir_graph_->GetNumOfInVRs(); i += t_loc->wide ? 2 : 1) {
// get reg corresponding to input
RegStorage reg = in_to_reg_storage_mapping_.GetReg(i);
t_loc = &ArgLocs[i];
// If the wide input appeared as single, flush it and go
// as it comes from memory.
if (t_loc->wide && reg.Valid() && !reg.Is64Bit()) {
// The memory already holds the half. Don't do anything.
reg = RegStorage::InvalidReg();
}
if (reg.Valid()) {
// If arriving in register.
// We have already updated the arg location with promoted info
// so we can be based on it.
if (t_loc->location == kLocPhysReg) {
// Just copy it.
if (t_loc->wide) {
OpRegCopyWide(t_loc->reg, reg);
} else {
OpRegCopy(t_loc->reg, reg);
}
} else {
// Needs flush.
int offset = SRegOffset(start_vreg + i);
if (t_loc->ref) {
StoreRefDisp(TargetPtrReg(kSp), offset, reg, kNotVolatile);
} else {
StoreBaseDisp(TargetPtrReg(kSp), offset, reg, t_loc->wide ? k64 : k32, kNotVolatile);
}
}
} else {
// If arriving in frame & promoted.
if (t_loc->location == kLocPhysReg) {
int offset = SRegOffset(start_vreg + i);
if (t_loc->ref) {
LoadRefDisp(TargetPtrReg(kSp), offset, t_loc->reg, kNotVolatile);
} else {
LoadBaseDisp(TargetPtrReg(kSp), offset, t_loc->reg, t_loc->wide ? k64 : k32,
kNotVolatile);
}
}
}
}
}
static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
RegLocation rl_arg = info->args[0];
cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
}
static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
// get this->klass_ [use kArg1, set kArg0]
cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
cg->TargetReg(kArg0, kRef),
kNotVolatile);
cg->MarkPossibleNullPointerException(info->opt_flags);
}
static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const RegStorage* alt_from,
const CompilationUnit* cu, Mir2Lir* cg) {
if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
int32_t offset = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
InstructionSetPointerSize(cu->instruction_set)).Int32Value();
// Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset,
cg->TargetPtrReg(kInvokeTgt));
return true;
}
return false;
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use kLr as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* kArg1 here rather than the standard GenDalvikArgs.
*/
static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
int state, const MethodReference& target_method,
uint32_t method_idx, uintptr_t, uintptr_t,
InvokeType) {
UNUSED(target_method);
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
switch (state) {
case 0:
CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this
break;
case 1:
CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class
// Includes a null-check.
break;
case 2: {
// Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
int32_t offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
method_idx * sizeof(mirror::Class::VTableEntry);
// Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
break;
}
case 3:
if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
break; // kInvokeTgt := kArg0->entrypoint
}
DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
FALLTHROUGH_INTENDED;
default:
return -1;
}
return state + 1;
}
/*
* Emit the next instruction in an invoke interface sequence. This will do a lookup in the
* class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
* more than one interface method map to the same index. Note also that we'll load the first
* argument ("this") into kArg1 here rather than the standard GenDalvikArgs.
*/
static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t, uintptr_t, InvokeType) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
switch (state) {
case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
if (cu->instruction_set == kX86) {
cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
}
break;
case 1:
CommonCallCodeLoadThisIntoArg1(info, cg); // kArg1 := this
break;
case 2:
CommonCallCodeLoadClassIntoArg0(info, cg); // kArg0 := kArg1->class
// Includes a null-check.
break;
case 3: { // Get target method [use kInvokeTgt, set kArg0]
int32_t offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
(method_idx % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
// Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
break;
}
case 4:
if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
break; // kInvokeTgt := kArg0->entrypoint
}
DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
FALLTHROUGH_INTENDED;
default:
return -1;
}
return state + 1;
}
static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
QuickEntrypointEnum trampoline, int state,
const MethodReference& target_method, uint32_t method_idx) {
UNUSED(info, method_idx);
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
/*
* This handles the case in which the base method is not fully
* resolved at compile time, we bail to a runtime helper.
*/
if (state == 0) {
if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
// Load trampoline target
int32_t disp;
if (cu->target64) {
disp = GetThreadOffset<8>(trampoline).Int32Value();
} else {
disp = GetThreadOffset<4>(trampoline).Int32Value();
}
cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
}
// Load kArg0 with method index
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
return 1;
}
return -1;
}
static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
int state,
const MethodReference& target_method,
uint32_t, uintptr_t, uintptr_t, InvokeType) {
return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
target_method, 0);
}
static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t, uintptr_t, uintptr_t, InvokeType) {
return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
target_method, 0);
}
static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t, uintptr_t, uintptr_t, InvokeType) {
return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
target_method, 0);
}
static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t, uintptr_t, uintptr_t, InvokeType) {
return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
target_method, 0);
}
static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
CallInfo* info, int state,
const MethodReference& target_method,
uint32_t, uintptr_t, uintptr_t, InvokeType) {
return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
target_method, 0);
}
// Default implementation of implicit null pointer check.
// Overridden by arch specific as necessary.
void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
RegStorage tmp = AllocTemp();
Load32Disp(reg, 0, tmp);
MarkPossibleNullPointerException(opt_flags);
FreeTemp(tmp);
}
/**
* @brief Used to flush promoted registers if they are used as argument
* in an invocation.
* @param info the infromation about arguments for invocation.
* @param start the first argument we should start to look from.
*/
void Mir2Lir::GenDalvikArgsFlushPromoted(CallInfo* info, int start) {
if (cu_->disable_opt & (1 << kPromoteRegs)) {
// This make sense only if promotion is enabled.
return;
}
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
// Scan the rest of the args - if in phys_reg flush to memory
for (size_t next_arg = start; next_arg < info->num_arg_words;) {
RegLocation loc = info->args[next_arg];
if (loc.wide) {
loc = UpdateLocWide(loc);
if (loc.location == kLocPhysReg) {
StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
}
next_arg += 2;
} else {
loc = UpdateLoc(loc);
if (loc.location == kLocPhysReg) {
if (loc.ref) {
StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
} else {
StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
kNotVolatile);
}
}
next_arg++;
}
}
}
/**
* @brief Used to optimize the copying of VRs which are arguments of invocation.
* Please note that you should flush promoted registers first if you copy.
* If implementation does copying it may skip several of the first VRs but must copy
* till the end. Implementation must return the number of skipped VRs
* (it might be all VRs).
* @see GenDalvikArgsFlushPromoted
* @param info the information about arguments for invocation.
* @param first the first argument we should start to look from.
* @param count the number of remaining arguments we can handle.
* @return the number of arguments which we did not handle. Unhandled arguments
* must be attached to the first one.
*/
int Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
// call is pretty expensive, let's use it if count is big.
if (count > 16) {
GenDalvikArgsFlushPromoted(info, first);
int start_offset = SRegOffset(info->args[first].s_reg_low);
int outs_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
count * 4, false);
count = 0;
}
return count;
}
int Mir2Lir::GenDalvikArgs(CallInfo* info, int call_state,
LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
InvokeType type, bool skip_this) {
// If no arguments, just return.
if (info->num_arg_words == 0u)
return call_state;
const size_t start_index = skip_this ? 1 : 0;
// Get architecture dependent mapping between output VRs and physical registers
// basing on shorty of method to call.
InToRegStorageMapping in_to_reg_storage_mapping(arena_);
{
const char* target_shorty = mir_graph_->GetShortyFromMethodReference(target_method);
ShortyIterator shorty_iterator(target_shorty, type == kStatic);
in_to_reg_storage_mapping.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
}
size_t stack_map_start = std::max(in_to_reg_storage_mapping.GetEndMappedIn(), start_index);
if ((stack_map_start < info->num_arg_words) && info->args[stack_map_start].high_word) {
// It is possible that the last mapped reg is 32 bit while arg is 64-bit.
// It will be handled together with low part mapped to register.
stack_map_start++;
}
size_t regs_left_to_pass_via_stack = info->num_arg_words - stack_map_start;
// If it is a range case we can try to copy remaining VRs (not mapped to physical registers)
// using more optimal algorithm.
if (info->is_range && regs_left_to_pass_via_stack > 1) {
regs_left_to_pass_via_stack = GenDalvikArgsBulkCopy(info, stack_map_start,
regs_left_to_pass_via_stack);
}
// Now handle any remaining VRs mapped to stack.
if (in_to_reg_storage_mapping.HasArgumentsOnStack()) {
// Two temps but do not use kArg1, it might be this which we can skip.
// Separate single and wide - it can give some advantage.
RegStorage regRef = TargetReg(kArg3, kRef);
RegStorage regSingle = TargetReg(kArg3, kNotWide);
RegStorage regWide = TargetReg(kArg2, kWide);
for (size_t i = start_index; i < stack_map_start + regs_left_to_pass_via_stack; i++) {
RegLocation rl_arg = info->args[i];
rl_arg = UpdateRawLoc(rl_arg);
RegStorage reg = in_to_reg_storage_mapping.GetReg(i);
if (!reg.Valid()) {
int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
{
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (rl_arg.wide) {
if (rl_arg.location == kLocPhysReg) {
StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
} else {
LoadValueDirectWideFixed(rl_arg, regWide);
StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
}
} else {
if (rl_arg.location == kLocPhysReg) {
if (rl_arg.ref) {
StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
} else {
StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
}
} else {
if (rl_arg.ref) {
LoadValueDirectFixed(rl_arg, regRef);
StoreRefDisp(TargetPtrReg(kSp), out_offset, regRef, kNotVolatile);
} else {
LoadValueDirectFixed(rl_arg, regSingle);
StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
}
}
}
}
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
if (rl_arg.wide) {
i++;
}
}
}
// Finish with VRs mapped to physical registers.
for (size_t i = start_index; i < stack_map_start; i++) {
RegLocation rl_arg = info->args[i];
rl_arg = UpdateRawLoc(rl_arg);
RegStorage reg = in_to_reg_storage_mapping.GetReg(i);
if (reg.Valid()) {
if (rl_arg.wide) {
// if reg is not 64-bit (it is half of 64-bit) then handle it separately.
if (!reg.Is64Bit()) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (rl_arg.location == kLocPhysReg) {
int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
// Dump it to memory.
StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
LoadBaseDisp(TargetPtrReg(kSp), out_offset, reg, k32, kNotVolatile);
} else {
int high_offset = StackVisitor::GetOutVROffset(i + 1, cu_->instruction_set);
// First, use target reg for high part.
LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low + 1), reg, k32,
kNotVolatile);
StoreBaseDisp(TargetPtrReg(kSp), high_offset, reg, k32, kNotVolatile);
// Now, use target reg for low part.
LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low), reg, k32, kNotVolatile);
int low_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
// And store it to the expected memory location.
StoreBaseDisp(TargetPtrReg(kSp), low_offset, reg, k32, kNotVolatile);
}
} else {
LoadValueDirectWideFixed(rl_arg, reg);
}
} else {
LoadValueDirectFixed(rl_arg, reg);
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
if (rl_arg.wide) {
i++;
}
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
if (pcrLabel) {
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
*pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
} else {
*pcrLabel = nullptr;
GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
}
}
return call_state;
}
void Mir2Lir::EnsureInitializedArgMappingToPhysicalReg() {
if (!in_to_reg_storage_mapping_.IsInitialized()) {
ShortyIterator shorty_iterator(cu_->shorty, cu_->invoke_type == kStatic);
in_to_reg_storage_mapping_.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
}
}
RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
RegLocation res;
if (info->result.location == kLocInvalid) {
// If result is unused, return a sink target based on type of invoke target.
res = GetReturn(
ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
} else {
res = info->result;
DCHECK_EQ(LocToRegClass(res),
ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
}
return res;
}
RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
RegLocation res;
if (info->result.location == kLocInvalid) {
// If result is unused, return a sink target based on type of invoke target.
res = GetReturnWide(ShortyToRegClass(
mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
} else {
res = info->result;
DCHECK_EQ(LocToRegClass(res),
ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
}
return res;
}
bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
ClassReference ref;
if (!cu_->compiler_driver->CanEmbedReferenceTypeInCode(&ref,
&use_direct_type_ptr, &direct_type_ptr)) {
return false;
}
RegStorage reg_class = TargetReg(kArg1, kRef);
Clobber(reg_class);
LockTemp(reg_class);
if (use_direct_type_ptr) {
LoadConstant(reg_class, direct_type_ptr);
} else {
uint16_t type_idx = ref.first->GetClassDef(ref.second).class_idx_;
LoadClassType(*ref.first, type_idx, kArg1);
}
uint32_t slow_path_flag_offset = cu_->compiler_driver->GetReferenceSlowFlagOffset();
uint32_t disable_flag_offset = cu_->compiler_driver->GetReferenceDisableFlagOffset();
CHECK(slow_path_flag_offset && disable_flag_offset &&
(slow_path_flag_offset != disable_flag_offset));
// intrinsic logic start.
RegLocation rl_obj = info->args[0];
rl_obj = LoadValue(rl_obj, kRefReg);
RegStorage reg_slow_path = AllocTemp();
RegStorage reg_disabled = AllocTemp();
LoadBaseDisp(reg_class, slow_path_flag_offset, reg_slow_path, kSignedByte, kNotVolatile);
LoadBaseDisp(reg_class, disable_flag_offset, reg_disabled, kSignedByte, kNotVolatile);
FreeTemp(reg_class);
LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
FreeTemp(reg_disabled);
// if slow path, jump to JNI path target
LIR* slow_path_branch;
if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
// Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
slow_path_branch = OpCondBranch(kCondNe, nullptr);
} else {
// Generate compare and branch.
slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
}
FreeTemp(reg_slow_path);
// slow path not enabled, simply load the referent of the reference object
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
GenNullCheck(rl_obj.reg, info->opt_flags);
LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
kNotVolatile);
MarkPossibleNullPointerException(info->opt_flags);
StoreValue(rl_dest, rl_result);
LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
ClobberCallerSave(); // We must clobber everything because slow path will return here
return true;
}
bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
// Location of reference to data array
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
RegLocation rl_obj = info->args[0];
RegLocation rl_idx = info->args[1];
rl_obj = LoadValue(rl_obj, kRefReg);
rl_idx = LoadValue(rl_idx, kCoreReg);
RegStorage reg_max;
GenNullCheck(rl_obj.reg, info->opt_flags);
bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
LIR* range_check_branch = nullptr;
RegStorage reg_off;
RegStorage reg_ptr;
reg_off = AllocTemp();
reg_ptr = AllocTempRef();
if (range_check) {
reg_max = AllocTemp();
Load32Disp(rl_obj.reg, count_offset, reg_max);
MarkPossibleNullPointerException(info->opt_flags);
}
Load32Disp(rl_obj.reg, offset_offset, reg_off);
MarkPossibleNullPointerException(info->opt_flags);
LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
if (range_check) {
// Set up a slow path to allow retry in case of bounds violation */
OpRegReg(kOpCmp, rl_idx.reg, reg_max);
FreeTemp(reg_max);
range_check_branch = OpCondBranch(kCondUge, nullptr);
}
OpRegImm(kOpAdd, reg_ptr, data_offset);
if (rl_idx.is_const) {
OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
} else {
OpRegReg(kOpAdd, reg_off, rl_idx.reg);
}
FreeTemp(rl_obj.reg);
if (rl_idx.location == kLocPhysReg) {
FreeTemp(rl_idx.reg);
}
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf);
FreeTemp(reg_off);
FreeTemp(reg_ptr);
StoreValue(rl_dest, rl_result);
if (range_check) {
DCHECK(range_check_branch != nullptr);
info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked.
AddIntrinsicSlowPath(info, range_check_branch);
}
return true;
}
// Generates an inlined String.is_empty or String.length.
bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
// dst = src.length();
RegLocation rl_obj = info->args[0];
rl_obj = LoadValue(rl_obj, kRefReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
GenNullCheck(rl_obj.reg, info->opt_flags);
Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
MarkPossibleNullPointerException(info->opt_flags);
if (is_empty) {
// dst = (dst == 0);
if (cu_->instruction_set == kThumb2) {
RegStorage t_reg = AllocTemp();
OpRegReg(kOpNeg, t_reg, rl_result.reg);
OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
} else if (cu_->instruction_set == kArm64) {
OpRegImm(kOpSub, rl_result.reg, 1);
OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
} else {
DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
OpRegImm(kOpSub, rl_result.reg, 1);
OpRegImm(kOpLsr, rl_result.reg, 31);
}
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info); // result reg
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src_i = info->args[0];
RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (IsWide(size)) {
if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
StoreValueWide(rl_dest, rl_result);
return true;
}
RegStorage r_i_low = rl_i.reg.GetLow();
if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
// First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
r_i_low = AllocTemp();
OpRegCopy(r_i_low, rl_i.reg);
}
OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
FreeTemp(r_i_low);
}
StoreValueWide(rl_dest, rl_result);
} else {
DCHECK(size == k32 || size == kSignedHalf);
OpKind op = (size == k32) ? kOpRev : kOpRevsh;
OpRegReg(op, rl_result.reg, rl_i.reg);
StoreValue(rl_dest, rl_result);
}
return true;
}
bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
RegLocation rl_dest = InlineTarget(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src = info->args[0];
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
OpRegReg(kOpXor, rl_result.reg, sign_reg);
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
RegLocation rl_dest = InlineTargetWide(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src = info->args[0];
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
// If on x86 or if we would clobber a register needed later, just copy the source first.
if (cu_->instruction_set != kX86_64 &&
(cu_->instruction_set == kX86 ||
rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
OpRegCopyWide(rl_result.reg, rl_src.reg);
if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
// Reuse source registers to avoid running out of temps.
FreeTemp(rl_src.reg);
}
rl_src = rl_result;
}
// abs(x) = y<=x>>31, (x+y)^y.
RegStorage sign_reg;
if (cu_->instruction_set == kX86_64) {
sign_reg = AllocTempWide();
OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
OpRegReg(kOpXor, rl_result.reg, sign_reg);
} else {
sign_reg = AllocTemp();
OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
}
FreeTemp(sign_reg);
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
// Currently implemented only for ARM64.
UNUSED(info, size);
return false;
}
bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
// Currently implemented only for ARM64.
UNUSED(info, is_min, is_double);
return false;
}
bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
UNUSED(info);
return false;
}
bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
UNUSED(info);
return false;
}
bool Mir2Lir::GenInlinedRint(CallInfo* info) {
UNUSED(info);
return false;
}
bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
UNUSED(info, is_double);
return false;
}
bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
RegLocation rl_dest = InlineTarget(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src = info->args[0];
StoreValue(rl_dest, rl_src);
return true;
}
bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
RegLocation rl_dest = InlineTargetWide(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src = info->args[0];
StoreValueWide(rl_dest, rl_src);
return true;
}
bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
UNUSED(info);
return false;
}
/*
* Fast String.indexOf(I) & (II). Tests for simple case of char <= 0xFFFF,
* otherwise bails to standard library code.
*/
bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
RegLocation rl_obj = info->args[0];
RegLocation rl_char = info->args[1];
if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
// Code point beyond 0xFFFF. Punt to the real String.indexOf().
return false;
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers
RegStorage reg_ptr = TargetReg(kArg0, kRef);
RegStorage reg_char = TargetReg(kArg1, kNotWide);
RegStorage reg_start = TargetReg(kArg2, kNotWide);
LoadValueDirectFixed(rl_obj, reg_ptr);
LoadValueDirectFixed(rl_char, reg_char);
if (zero_based) {
LoadConstant(reg_start, 0);
} else {
RegLocation rl_start = info->args[2]; // 3rd arg only present in III flavor of IndexOf.
LoadValueDirectFixed(rl_start, reg_start);
}
RegStorage r_tgt = LoadHelper(kQuickIndexOf);
GenExplicitNullCheck(reg_ptr, info->opt_flags);
LIR* high_code_point_branch =
rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
// NOTE: not a safepoint
OpReg(kOpBlx, r_tgt);
if (!rl_char.is_const) {
// Add the slow path for code points beyond 0xFFFF.
DCHECK(high_code_point_branch != nullptr);
LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
ClobberCallerSave(); // We must clobber everything because slow path will return here
} else {
DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
DCHECK(high_code_point_branch == nullptr);
}
RegLocation rl_return = GetReturn(kCoreReg);
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_return);
return true;
}
/* Fast string.compareTo(Ljava/lang/string;)I. */
bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers
RegStorage reg_this = TargetReg(kArg0, kRef);
RegStorage reg_cmp = TargetReg(kArg1, kRef);
RegLocation rl_this = info->args[0];
RegLocation rl_cmp = info->args[1];
LoadValueDirectFixed(rl_this, reg_this);
LoadValueDirectFixed(rl_cmp, reg_cmp);
RegStorage r_tgt;
if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
r_tgt = LoadHelper(kQuickStringCompareTo);
} else {
r_tgt = RegStorage::InvalidReg();
}
GenExplicitNullCheck(reg_this, info->opt_flags);
info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
// TUNING: check if rl_cmp.s_reg_low is already null checked
LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
AddIntrinsicSlowPath(info, cmp_null_check_branch);
// NOTE: not a safepoint
CallHelper(r_tgt, kQuickStringCompareTo, false, true);
RegLocation rl_return = GetReturn(kCoreReg);
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_return);
return true;
}
bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
RegLocation rl_dest = InlineTarget(info);
// Early exit if the result is unused.
if (rl_dest.orig_sreg < 0) {
return true;
}
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
if (Is64BitInstructionSet(cu_->instruction_set)) {
LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
kNotVolatile);
} else {
Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
bool is_long, bool is_volatile) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg
RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, LocToRegClass(rl_dest), true);
if (is_long) {
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
|| cu_->instruction_set == kArm64) {
LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
} else {
RegStorage rl_temp_offset = AllocTemp();
OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
FreeTemp(rl_temp_offset);
}
} else {
if (rl_result.ref) {
LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
} else {
LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
}
}
if (is_volatile) {
GenMemBarrier(kLoadAny);
}
if (is_long) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
return true;
}
bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
bool is_object, bool is_volatile, bool is_ordered) {
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
// TODO: add Mips and Mips64 implementations.
return false;
}
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
RegLocation rl_src_value = info->args[4]; // value to store
if (is_volatile || is_ordered) {
GenMemBarrier(kAnyStore);
}
RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
RegLocation rl_value;
if (is_long) {
rl_value = LoadValueWide(rl_src_value, kCoreReg);
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
|| cu_->instruction_set == kArm64) {
StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
} else {
RegStorage rl_temp_offset = AllocTemp();
OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
FreeTemp(rl_temp_offset);
}
} else {
rl_value = LoadValue(rl_src_value, LocToRegClass(rl_src_value));
if (rl_value.ref) {
StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
} else {
StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
}
}
// Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
FreeTemp(rl_offset.reg);
if (is_volatile) {
// Prevent reordering with a subsequent volatile load.
// May also be needed to address store atomicity issues.
GenMemBarrier(kAnyAny);
}
if (is_object) {
MarkGCCard(0, rl_value.reg, rl_object.reg);
}
return true;
}
void Mir2Lir::GenInvoke(CallInfo* info) {
DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
if (mir_graph_->GetMethodLoweringInfo(info->mir).IsIntrinsic()) {
const DexFile* dex_file = info->method_ref.dex_file;
auto* inliner = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(dex_file);
if (inliner->GenIntrinsic(this, info)) {
return;
}
}
GenInvokeNoInline(info);
}
void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
int call_state = 0;
LIR* null_ck;
LIR** p_null_ck = nullptr;
NextCallInsn next_call_insn;
FlushAllRegs(); /* Everything to home location */
// Explicit register usage
LockCallTemps();
const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
info->type = method_info.GetSharpType();
bool fast_path = method_info.FastPath();
bool skip_this;
if (info->type == kInterface) {
next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
skip_this = fast_path;
} else if (info->type == kDirect) {
if (fast_path) {
p_null_ck = &null_ck;
}
next_call_insn = fast_path ? GetNextSDCallInsn() : NextDirectCallInsnSP;
skip_this = false;
} else if (info->type == kStatic) {
next_call_insn = fast_path ? GetNextSDCallInsn() : NextStaticCallInsnSP;
skip_this = false;
} else if (info->type == kSuper) {
DCHECK(!fast_path); // Fast path is a direct call.
next_call_insn = NextSuperCallInsnSP;
skip_this = false;
} else {
DCHECK_EQ(info->type, kVirtual);
next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
skip_this = fast_path;
}
MethodReference target_method = method_info.GetTargetMethod();
call_state = GenDalvikArgs(info, call_state, p_null_ck,
next_call_insn, target_method, method_info.VTableIndex(),
method_info.DirectCode(), method_info.DirectMethod(),
original_type, skip_this);
// Finish up any of the call sequence not interleaved in arg loading
while (call_state >= 0) {
call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
method_info.DirectCode(), method_info.DirectMethod(),
original_type);
}
LIR* call_insn = GenCallInsn(method_info);
MarkSafepointPC(call_insn);
FreeCallTemps();
if (info->result.location != kLocInvalid) {
// We have a following MOVE_RESULT - do it now.
if (info->result.wide) {
RegLocation ret_loc = GetReturnWide(LocToRegClass(info->result));
StoreValueWide(info->result, ret_loc);
} else {
RegLocation ret_loc = GetReturn(LocToRegClass(info->result));
StoreValue(info->result, ret_loc);
}
}
}
} // namespace art