blob: 25ea6941c0534235fbc7abbea57954676513aa35 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_arm.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "arm_lir.h"
#include "base/logging.h"
#include "dex/mir_graph.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "driver/compiler_driver.h"
namespace art {
/* This file contains codegen for the Thumb ISA. */
static int32_t EncodeImmSingle(int32_t value) {
int32_t res;
int32_t bit_a = (value & 0x80000000) >> 31;
int32_t not_bit_b = (value & 0x40000000) >> 30;
int32_t bit_b = (value & 0x20000000) >> 29;
int32_t b_smear = (value & 0x3e000000) >> 25;
int32_t slice = (value & 0x01f80000) >> 19;
int32_t zeroes = (value & 0x0007ffff);
if (zeroes != 0)
return -1;
if (bit_b) {
if ((not_bit_b != 0) || (b_smear != 0x1f))
return -1;
} else {
if ((not_bit_b != 1) || (b_smear != 0x0))
return -1;
}
res = (bit_a << 7) | (bit_b << 6) | slice;
return res;
}
/*
* Determine whether value can be encoded as a Thumb2 floating point
* immediate. If not, return -1. If so return encoded 8-bit value.
*/
static int32_t EncodeImmDouble(int64_t value) {
int32_t res;
int32_t bit_a = (value & INT64_C(0x8000000000000000)) >> 63;
int32_t not_bit_b = (value & INT64_C(0x4000000000000000)) >> 62;
int32_t bit_b = (value & INT64_C(0x2000000000000000)) >> 61;
int32_t b_smear = (value & INT64_C(0x3fc0000000000000)) >> 54;
int32_t slice = (value & INT64_C(0x003f000000000000)) >> 48;
uint64_t zeroes = (value & INT64_C(0x0000ffffffffffff));
if (zeroes != 0ull)
return -1;
if (bit_b) {
if ((not_bit_b != 0) || (b_smear != 0xff))
return -1;
} else {
if ((not_bit_b != 1) || (b_smear != 0x0))
return -1;
}
res = (bit_a << 7) | (bit_b << 6) | slice;
return res;
}
LIR* ArmMir2Lir::LoadFPConstantValue(int r_dest, int value) {
DCHECK(RegStorage::IsSingle(r_dest));
if (value == 0) {
// TODO: we need better info about the target CPU. a vector exclusive or
// would probably be better here if we could rely on its existance.
// Load an immediate +2.0 (which encodes to 0)
NewLIR2(kThumb2Vmovs_IMM8, r_dest, 0);
// +0.0 = +2.0 - +2.0
return NewLIR3(kThumb2Vsubs, r_dest, r_dest, r_dest);
} else {
int encoded_imm = EncodeImmSingle(value);
if (encoded_imm >= 0) {
return NewLIR2(kThumb2Vmovs_IMM8, r_dest, encoded_imm);
}
}
LIR* data_target = ScanLiteralPool(literal_list_, value, 0);
if (data_target == NULL) {
data_target = AddWordData(&literal_list_, value);
}
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
LIR* load_pc_rel = RawLIR(current_dalvik_offset_, kThumb2Vldrs,
r_dest, rs_r15pc.GetReg(), 0, 0, 0, data_target);
AppendLIR(load_pc_rel);
return load_pc_rel;
}
/*
* Determine whether value can be encoded as a Thumb2 modified
* immediate. If not, return -1. If so, return i:imm3:a:bcdefgh form.
*/
int ArmMir2Lir::ModifiedImmediate(uint32_t value) {
uint32_t b0 = value & 0xff;
/* Note: case of value==0 must use 0:000:0:0000000 encoding */
if (value <= 0xFF)
return b0; // 0:000:a:bcdefgh
if (value == ((b0 << 16) | b0))
return (0x1 << 8) | b0; /* 0:001:a:bcdefgh */
if (value == ((b0 << 24) | (b0 << 16) | (b0 << 8) | b0))
return (0x3 << 8) | b0; /* 0:011:a:bcdefgh */
b0 = (value >> 8) & 0xff;
if (value == ((b0 << 24) | (b0 << 8)))
return (0x2 << 8) | b0; /* 0:010:a:bcdefgh */
/* Can we do it with rotation? */
int z_leading = CLZ(value);
int z_trailing = CTZ(value);
/* A run of eight or fewer active bits? */
if ((z_leading + z_trailing) < 24)
return -1; /* No - bail */
/* left-justify the constant, discarding msb (known to be 1) */
value <<= z_leading + 1;
/* Create bcdefgh */
value >>= 25;
/* Put it all together */
return value | ((0x8 + z_leading) << 7); /* [01000..11111]:bcdefgh */
}
bool ArmMir2Lir::InexpensiveConstantInt(int32_t value) {
return (ModifiedImmediate(value) >= 0) || (ModifiedImmediate(~value) >= 0);
}
bool ArmMir2Lir::InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
switch (opcode) {
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
if ((value >> 12) == (value >> 31)) { // Signed 12-bit, RRI12 versions of ADD/SUB.
return true;
}
FALLTHROUGH_INTENDED;
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE:
return (ModifiedImmediate(value) >= 0) || (ModifiedImmediate(-value) >= 0);
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
return true;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
if ((value >> 16) == 0) {
return true; // movw, 16-bit unsigned.
}
FALLTHROUGH_INTENDED;
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::AND_INT_LIT16:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::OR_INT_LIT16:
case Instruction::OR_INT_LIT8:
return (ModifiedImmediate(value) >= 0) || (ModifiedImmediate(~value) >= 0);
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::XOR_INT_LIT16:
case Instruction::XOR_INT_LIT8:
return (ModifiedImmediate(value) >= 0);
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::MUL_INT_LIT8:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::DIV_INT_LIT8:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::REM_INT_LIT8:
case Instruction::REM_INT_LIT16: {
EasyMultiplyOp ops[2];
return GetEasyMultiplyTwoOps(value, ops);
}
default:
return false;
}
}
bool ArmMir2Lir::InexpensiveConstantFloat(int32_t value) {
return EncodeImmSingle(value) >= 0;
}
bool ArmMir2Lir::InexpensiveConstantLong(int64_t value) {
return InexpensiveConstantInt(High32Bits(value)) && InexpensiveConstantInt(Low32Bits(value));
}
bool ArmMir2Lir::InexpensiveConstantDouble(int64_t value) {
return EncodeImmDouble(value) >= 0;
}
/*
* Load a immediate using a shortcut if possible; otherwise
* grab from the per-translation literal pool.
*
* No additional register clobbering operation performed. Use this version when
* 1) r_dest is freshly returned from AllocTemp or
* 2) The codegen is under fixed register usage
*/
LIR* ArmMir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
LIR* res;
int mod_imm;
if (r_dest.IsFloat()) {
return LoadFPConstantValue(r_dest.GetReg(), value);
}
/* See if the value can be constructed cheaply */
if (r_dest.Low8() && (value >= 0) && (value <= 255)) {
return NewLIR2(kThumbMovImm, r_dest.GetReg(), value);
}
/* Check Modified immediate special cases */
mod_imm = ModifiedImmediate(value);
if (mod_imm >= 0) {
res = NewLIR2(kThumb2MovI8M, r_dest.GetReg(), mod_imm);
return res;
}
mod_imm = ModifiedImmediate(~value);
if (mod_imm >= 0) {
res = NewLIR2(kThumb2MvnI8M, r_dest.GetReg(), mod_imm);
return res;
}
/* 16-bit immediate? */
if ((value & 0xffff) == value) {
res = NewLIR2(kThumb2MovImm16, r_dest.GetReg(), value);
return res;
}
/* Do a low/high pair */
res = NewLIR2(kThumb2MovImm16, r_dest.GetReg(), Low16Bits(value));
NewLIR2(kThumb2MovImm16H, r_dest.GetReg(), High16Bits(value));
return res;
}
LIR* ArmMir2Lir::OpUnconditionalBranch(LIR* target) {
LIR* res = NewLIR1(kThumbBUncond, 0 /* offset to be patched during assembly */);
res->target = target;
return res;
}
LIR* ArmMir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
LIR* branch = NewLIR2(kThumbBCond, 0 /* offset to be patched */,
ArmConditionEncoding(cc));
branch->target = target;
return branch;
}
LIR* ArmMir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
ArmOpcode opcode = kThumbBkpt;
switch (op) {
case kOpBlx:
opcode = kThumbBlxR;
break;
case kOpBx:
opcode = kThumbBx;
break;
default:
LOG(FATAL) << "Bad opcode " << op;
}
return NewLIR1(opcode, r_dest_src.GetReg());
}
LIR* ArmMir2Lir::OpRegRegShift(OpKind op, RegStorage r_dest_src1, RegStorage r_src2,
int shift) {
bool thumb_form =
((shift == 0) && r_dest_src1.Low8() && r_src2.Low8());
ArmOpcode opcode = kThumbBkpt;
switch (op) {
case kOpAdc:
opcode = (thumb_form) ? kThumbAdcRR : kThumb2AdcRRR;
break;
case kOpAnd:
opcode = (thumb_form) ? kThumbAndRR : kThumb2AndRRR;
break;
case kOpBic:
opcode = (thumb_form) ? kThumbBicRR : kThumb2BicRRR;
break;
case kOpCmn:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbCmnRR : kThumb2CmnRR;
break;
case kOpCmp:
if (thumb_form)
opcode = kThumbCmpRR;
else if ((shift == 0) && !r_dest_src1.Low8() && !r_src2.Low8())
opcode = kThumbCmpHH;
else if ((shift == 0) && r_dest_src1.Low8())
opcode = kThumbCmpLH;
else if (shift == 0)
opcode = kThumbCmpHL;
else
opcode = kThumb2CmpRR;
break;
case kOpXor:
opcode = (thumb_form) ? kThumbEorRR : kThumb2EorRRR;
break;
case kOpMov:
DCHECK_EQ(shift, 0);
if (r_dest_src1.Low8() && r_src2.Low8())
opcode = kThumbMovRR;
else if (!r_dest_src1.Low8() && !r_src2.Low8())
opcode = kThumbMovRR_H2H;
else if (r_dest_src1.Low8())
opcode = kThumbMovRR_H2L;
else
opcode = kThumbMovRR_L2H;
break;
case kOpMul:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbMul : kThumb2MulRRR;
break;
case kOpMvn:
opcode = (thumb_form) ? kThumbMvn : kThumb2MnvRR;
break;
case kOpNeg:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbNeg : kThumb2NegRR;
break;
case kOpOr:
opcode = (thumb_form) ? kThumbOrr : kThumb2OrrRRR;
break;
case kOpSbc:
opcode = (thumb_form) ? kThumbSbc : kThumb2SbcRRR;
break;
case kOpTst:
opcode = (thumb_form) ? kThumbTst : kThumb2TstRR;
break;
case kOpLsl:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbLslRR : kThumb2LslRRR;
break;
case kOpLsr:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbLsrRR : kThumb2LsrRRR;
break;
case kOpAsr:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbAsrRR : kThumb2AsrRRR;
break;
case kOpRor:
DCHECK_EQ(shift, 0);
opcode = (thumb_form) ? kThumbRorRR : kThumb2RorRRR;
break;
case kOpAdd:
opcode = (thumb_form) ? kThumbAddRRR : kThumb2AddRRR;
break;
case kOpSub:
opcode = (thumb_form) ? kThumbSubRRR : kThumb2SubRRR;
break;
case kOpRev:
DCHECK_EQ(shift, 0);
if (!thumb_form) {
// Binary, but rm is encoded twice.
return NewLIR3(kThumb2RevRR, r_dest_src1.GetReg(), r_src2.GetReg(), r_src2.GetReg());
}
opcode = kThumbRev;
break;
case kOpRevsh:
DCHECK_EQ(shift, 0);
if (!thumb_form) {
// Binary, but rm is encoded twice.
return NewLIR3(kThumb2RevshRR, r_dest_src1.GetReg(), r_src2.GetReg(), r_src2.GetReg());
}
opcode = kThumbRevsh;
break;
case kOp2Byte:
DCHECK_EQ(shift, 0);
return NewLIR4(kThumb2Sbfx, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 8);
case kOp2Short:
DCHECK_EQ(shift, 0);
return NewLIR4(kThumb2Sbfx, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 16);
case kOp2Char:
DCHECK_EQ(shift, 0);
return NewLIR4(kThumb2Ubfx, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 16);
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
DCHECK(!IsPseudoLirOp(opcode));
if (EncodingMap[opcode].flags & IS_BINARY_OP) {
return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
} else if (EncodingMap[opcode].flags & IS_TERTIARY_OP) {
if (EncodingMap[opcode].field_loc[2].kind == kFmtShift) {
return NewLIR3(opcode, r_dest_src1.GetReg(), r_src2.GetReg(), shift);
} else {
return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), r_src2.GetReg());
}
} else if (EncodingMap[opcode].flags & IS_QUAD_OP) {
return NewLIR4(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), r_src2.GetReg(), shift);
} else {
LOG(FATAL) << "Unexpected encoding operand count";
return NULL;
}
}
LIR* ArmMir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
return OpRegRegShift(op, r_dest_src1, r_src2, 0);
}
LIR* ArmMir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
UNUSED(r_dest, r_base, offset, move_type);
UNIMPLEMENTED(FATAL);
UNREACHABLE();
}
LIR* ArmMir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
UNUSED(r_base, offset, r_src, move_type);
UNIMPLEMENTED(FATAL);
UNREACHABLE();
}
LIR* ArmMir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
UNUSED(op, cc, r_dest, r_src);
LOG(FATAL) << "Unexpected use of OpCondRegReg for Arm";
UNREACHABLE();
}
LIR* ArmMir2Lir::OpRegRegRegShift(OpKind op, RegStorage r_dest, RegStorage r_src1,
RegStorage r_src2, int shift) {
ArmOpcode opcode = kThumbBkpt;
bool thumb_form = (shift == 0) && r_dest.Low8() && r_src1.Low8() && r_src2.Low8();
switch (op) {
case kOpAdd:
opcode = (thumb_form) ? kThumbAddRRR : kThumb2AddRRR;
break;
case kOpSub:
opcode = (thumb_form) ? kThumbSubRRR : kThumb2SubRRR;
break;
case kOpRsub:
opcode = kThumb2RsubRRR;
break;
case kOpAdc:
opcode = kThumb2AdcRRR;
break;
case kOpAnd:
opcode = kThumb2AndRRR;
break;
case kOpBic:
opcode = kThumb2BicRRR;
break;
case kOpXor:
opcode = kThumb2EorRRR;
break;
case kOpMul:
DCHECK_EQ(shift, 0);
opcode = kThumb2MulRRR;
break;
case kOpDiv:
DCHECK_EQ(shift, 0);
opcode = kThumb2SdivRRR;
break;
case kOpOr:
opcode = kThumb2OrrRRR;
break;
case kOpSbc:
opcode = kThumb2SbcRRR;
break;
case kOpLsl:
DCHECK_EQ(shift, 0);
opcode = kThumb2LslRRR;
break;
case kOpLsr:
DCHECK_EQ(shift, 0);
opcode = kThumb2LsrRRR;
break;
case kOpAsr:
DCHECK_EQ(shift, 0);
opcode = kThumb2AsrRRR;
break;
case kOpRor:
DCHECK_EQ(shift, 0);
opcode = kThumb2RorRRR;
break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
DCHECK(!IsPseudoLirOp(opcode));
if (EncodingMap[opcode].flags & IS_QUAD_OP) {
return NewLIR4(opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg(), shift);
} else {
DCHECK(EncodingMap[opcode].flags & IS_TERTIARY_OP);
return NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg());
}
}
LIR* ArmMir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) {
return OpRegRegRegShift(op, r_dest, r_src1, r_src2, 0);
}
LIR* ArmMir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) {
bool neg = (value < 0);
int32_t abs_value = (neg) ? -value : value;
ArmOpcode opcode = kThumbBkpt;
ArmOpcode alt_opcode = kThumbBkpt;
bool all_low_regs = r_dest.Low8() && r_src1.Low8();
int32_t mod_imm = ModifiedImmediate(value);
switch (op) {
case kOpLsl:
if (all_low_regs)
return NewLIR3(kThumbLslRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
else
return NewLIR3(kThumb2LslRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
case kOpLsr:
if (all_low_regs)
return NewLIR3(kThumbLsrRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
else
return NewLIR3(kThumb2LsrRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
case kOpAsr:
if (all_low_regs)
return NewLIR3(kThumbAsrRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
else
return NewLIR3(kThumb2AsrRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
case kOpRor:
return NewLIR3(kThumb2RorRRI5, r_dest.GetReg(), r_src1.GetReg(), value);
case kOpAdd:
if (r_dest.Low8() && (r_src1 == rs_r13sp) && (value <= 1020) && ((value & 0x3) == 0)) {
return NewLIR3(kThumbAddSpRel, r_dest.GetReg(), r_src1.GetReg(), value >> 2);
} else if (r_dest.Low8() && (r_src1 == rs_r15pc) &&
(value <= 1020) && ((value & 0x3) == 0)) {
return NewLIR3(kThumbAddPcRel, r_dest.GetReg(), r_src1.GetReg(), value >> 2);
}
FALLTHROUGH_INTENDED;
case kOpSub:
if (all_low_regs && ((abs_value & 0x7) == abs_value)) {
if (op == kOpAdd)
opcode = (neg) ? kThumbSubRRI3 : kThumbAddRRI3;
else
opcode = (neg) ? kThumbAddRRI3 : kThumbSubRRI3;
return NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), abs_value);
}
if (mod_imm < 0) {
mod_imm = ModifiedImmediate(-value);
if (mod_imm >= 0) {
op = (op == kOpAdd) ? kOpSub : kOpAdd;
}
}
if (mod_imm < 0 && (abs_value >> 12) == 0) {
// This is deliberately used only if modified immediate encoding is inadequate since
// we sometimes actually use the flags for small values but not necessarily low regs.
if (op == kOpAdd)
opcode = (neg) ? kThumb2SubRRI12 : kThumb2AddRRI12;
else
opcode = (neg) ? kThumb2AddRRI12 : kThumb2SubRRI12;
return NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), abs_value);
}
if (op == kOpSub) {
opcode = kThumb2SubRRI8M;
alt_opcode = kThumb2SubRRR;
} else {
opcode = kThumb2AddRRI8M;
alt_opcode = kThumb2AddRRR;
}
break;
case kOpRsub:
opcode = kThumb2RsubRRI8M;
alt_opcode = kThumb2RsubRRR;
break;
case kOpAdc:
opcode = kThumb2AdcRRI8M;
alt_opcode = kThumb2AdcRRR;
break;
case kOpSbc:
opcode = kThumb2SbcRRI8M;
alt_opcode = kThumb2SbcRRR;
break;
case kOpOr:
opcode = kThumb2OrrRRI8M;
alt_opcode = kThumb2OrrRRR;
if (mod_imm < 0) {
mod_imm = ModifiedImmediate(~value);
if (mod_imm >= 0) {
opcode = kThumb2OrnRRI8M;
}
}
break;
case kOpAnd:
if (mod_imm < 0) {
mod_imm = ModifiedImmediate(~value);
if (mod_imm >= 0) {
return NewLIR3(kThumb2BicRRI8M, r_dest.GetReg(), r_src1.GetReg(), mod_imm);
}
}
opcode = kThumb2AndRRI8M;
alt_opcode = kThumb2AndRRR;
break;
case kOpXor:
opcode = kThumb2EorRRI8M;
alt_opcode = kThumb2EorRRR;
break;
case kOpMul:
// TUNING: power of 2, shift & add
mod_imm = -1;
alt_opcode = kThumb2MulRRR;
break;
case kOpCmp: {
LIR* res;
if (mod_imm >= 0) {
res = NewLIR2(kThumb2CmpRI8M, r_src1.GetReg(), mod_imm);
} else {
mod_imm = ModifiedImmediate(-value);
if (mod_imm >= 0) {
res = NewLIR2(kThumb2CmnRI8M, r_src1.GetReg(), mod_imm);
} else {
RegStorage r_tmp = AllocTemp();
res = LoadConstant(r_tmp, value);
OpRegReg(kOpCmp, r_src1, r_tmp);
FreeTemp(r_tmp);
}
}
return res;
}
default:
LOG(FATAL) << "Bad opcode: " << op;
}
if (mod_imm >= 0) {
return NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), mod_imm);
} else {
RegStorage r_scratch = AllocTemp();
LoadConstant(r_scratch, value);
LIR* res;
if (EncodingMap[alt_opcode].flags & IS_QUAD_OP)
res = NewLIR4(alt_opcode, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg(), 0);
else
res = NewLIR3(alt_opcode, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg());
FreeTemp(r_scratch);
return res;
}
}
/* Handle Thumb-only variants here - otherwise punt to OpRegRegImm */
LIR* ArmMir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
bool neg = (value < 0);
int32_t abs_value = (neg) ? -value : value;
bool short_form = (((abs_value & 0xff) == abs_value) && r_dest_src1.Low8());
ArmOpcode opcode = kThumbBkpt;
switch (op) {
case kOpAdd:
if (!neg && (r_dest_src1 == rs_r13sp) && (value <= 508)) { /* sp */
DCHECK_EQ((value & 0x3), 0);
return NewLIR1(kThumbAddSpI7, value >> 2);
} else if (short_form) {
opcode = (neg) ? kThumbSubRI8 : kThumbAddRI8;
}
break;
case kOpSub:
if (!neg && (r_dest_src1 == rs_r13sp) && (value <= 508)) { /* sp */
DCHECK_EQ((value & 0x3), 0);
return NewLIR1(kThumbSubSpI7, value >> 2);
} else if (short_form) {
opcode = (neg) ? kThumbAddRI8 : kThumbSubRI8;
}
break;
case kOpCmp:
if (!neg && short_form) {
opcode = kThumbCmpRI8;
} else {
short_form = false;
}
break;
default:
/* Punt to OpRegRegImm - if bad case catch it there */
short_form = false;
break;
}
if (short_form) {
return NewLIR2(opcode, r_dest_src1.GetReg(), abs_value);
} else {
return OpRegRegImm(op, r_dest_src1, r_dest_src1, value);
}
}
LIR* ArmMir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
LIR* res = NULL;
int32_t val_lo = Low32Bits(value);
int32_t val_hi = High32Bits(value);
if (r_dest.IsFloat()) {
DCHECK(!r_dest.IsPair());
if ((val_lo == 0) && (val_hi == 0)) {
// TODO: we need better info about the target CPU. a vector exclusive or
// would probably be better here if we could rely on its existance.
// Load an immediate +2.0 (which encodes to 0)
NewLIR2(kThumb2Vmovd_IMM8, r_dest.GetReg(), 0);
// +0.0 = +2.0 - +2.0
res = NewLIR3(kThumb2Vsubd, r_dest.GetReg(), r_dest.GetReg(), r_dest.GetReg());
} else {
int encoded_imm = EncodeImmDouble(value);
if (encoded_imm >= 0) {
res = NewLIR2(kThumb2Vmovd_IMM8, r_dest.GetReg(), encoded_imm);
}
}
} else {
// NOTE: Arm32 assumption here.
DCHECK(r_dest.IsPair());
if ((InexpensiveConstantInt(val_lo) && (InexpensiveConstantInt(val_hi)))) {
res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
}
}
if (res == NULL) {
// No short form - load from the literal pool.
LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
if (data_target == NULL) {
data_target = AddWideData(&literal_list_, val_lo, val_hi);
}
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
if (r_dest.IsFloat()) {
res = RawLIR(current_dalvik_offset_, kThumb2Vldrd,
r_dest.GetReg(), rs_r15pc.GetReg(), 0, 0, 0, data_target);
} else {
DCHECK(r_dest.IsPair());
res = RawLIR(current_dalvik_offset_, kThumb2LdrdPcRel8,
r_dest.GetLowReg(), r_dest.GetHighReg(), rs_r15pc.GetReg(), 0, 0, data_target);
}
AppendLIR(res);
}
return res;
}
int ArmMir2Lir::EncodeShift(int code, int amount) {
return ((amount & 0x1f) << 2) | code;
}
LIR* ArmMir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
int scale, OpSize size) {
bool all_low_regs = r_base.Low8() && r_index.Low8() && r_dest.Low8();
LIR* load;
ArmOpcode opcode = kThumbBkpt;
bool thumb_form = (all_low_regs && (scale == 0));
RegStorage reg_ptr;
if (r_dest.IsFloat()) {
if (r_dest.IsSingle()) {
DCHECK((size == k32) || (size == kSingle) || (size == kReference));
opcode = kThumb2Vldrs;
size = kSingle;
} else {
DCHECK(r_dest.IsDouble());
DCHECK((size == k64) || (size == kDouble));
opcode = kThumb2Vldrd;
size = kDouble;
}
} else {
if (size == kSingle)
size = k32;
}
switch (size) {
case kDouble: // fall-through
// Intentional fall-though.
case kSingle:
reg_ptr = AllocTemp();
if (scale) {
NewLIR4(kThumb2AddRRR, reg_ptr.GetReg(), r_base.GetReg(), r_index.GetReg(),
EncodeShift(kArmLsl, scale));
} else {
OpRegRegReg(kOpAdd, reg_ptr, r_base, r_index);
}
load = NewLIR3(opcode, r_dest.GetReg(), reg_ptr.GetReg(), 0);
FreeTemp(reg_ptr);
return load;
case k32:
// Intentional fall-though.
case kReference:
opcode = (thumb_form) ? kThumbLdrRRR : kThumb2LdrRRR;
break;
case kUnsignedHalf:
opcode = (thumb_form) ? kThumbLdrhRRR : kThumb2LdrhRRR;
break;
case kSignedHalf:
opcode = (thumb_form) ? kThumbLdrshRRR : kThumb2LdrshRRR;
break;
case kUnsignedByte:
opcode = (thumb_form) ? kThumbLdrbRRR : kThumb2LdrbRRR;
break;
case kSignedByte:
opcode = (thumb_form) ? kThumbLdrsbRRR : kThumb2LdrsbRRR;
break;
default:
LOG(FATAL) << "Bad size: " << size;
}
if (thumb_form)
load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg());
else
load = NewLIR4(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale);
return load;
}
LIR* ArmMir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
int scale, OpSize size) {
bool all_low_regs = r_base.Low8() && r_index.Low8() && r_src.Low8();
LIR* store = NULL;
ArmOpcode opcode = kThumbBkpt;
bool thumb_form = (all_low_regs && (scale == 0));
RegStorage reg_ptr;
if (r_src.IsFloat()) {
if (r_src.IsSingle()) {
DCHECK((size == k32) || (size == kSingle) || (size == kReference));
opcode = kThumb2Vstrs;
size = kSingle;
} else {
DCHECK(r_src.IsDouble());
DCHECK((size == k64) || (size == kDouble));
DCHECK_EQ((r_src.GetReg() & 0x1), 0);
opcode = kThumb2Vstrd;
size = kDouble;
}
} else {
if (size == kSingle)
size = k32;
}
switch (size) {
case kDouble: // fall-through
// Intentional fall-though.
case kSingle:
reg_ptr = AllocTemp();
if (scale) {
NewLIR4(kThumb2AddRRR, reg_ptr.GetReg(), r_base.GetReg(), r_index.GetReg(),
EncodeShift(kArmLsl, scale));
} else {
OpRegRegReg(kOpAdd, reg_ptr, r_base, r_index);
}
store = NewLIR3(opcode, r_src.GetReg(), reg_ptr.GetReg(), 0);
FreeTemp(reg_ptr);
return store;
case k32:
// Intentional fall-though.
case kReference:
opcode = (thumb_form) ? kThumbStrRRR : kThumb2StrRRR;
break;
case kUnsignedHalf:
// Intentional fall-though.
case kSignedHalf:
opcode = (thumb_form) ? kThumbStrhRRR : kThumb2StrhRRR;
break;
case kUnsignedByte:
// Intentional fall-though.
case kSignedByte:
opcode = (thumb_form) ? kThumbStrbRRR : kThumb2StrbRRR;
break;
default:
LOG(FATAL) << "Bad size: " << size;
}
if (thumb_form)
store = NewLIR3(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg());
else
store = NewLIR4(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg(), scale);
return store;
}
// Helper function for LoadBaseDispBody()/StoreBaseDispBody().
LIR* ArmMir2Lir::LoadStoreUsingInsnWithOffsetImm8Shl2(ArmOpcode opcode, RegStorage r_base,
int displacement, RegStorage r_src_dest,
RegStorage r_work) {
DCHECK_EQ(displacement & 3, 0);
constexpr int kOffsetMask = 0xff << 2;
int encoded_disp = (displacement & kOffsetMask) >> 2; // Within range of the instruction.
RegStorage r_ptr = r_base;
if ((displacement & ~kOffsetMask) != 0) {
r_ptr = r_work.Valid() ? r_work : AllocTemp();
// Add displacement & ~kOffsetMask to base, it's a single instruction for up to +-256KiB.
OpRegRegImm(kOpAdd, r_ptr, r_base, displacement & ~kOffsetMask);
}
LIR* lir = nullptr;
if (!r_src_dest.IsPair()) {
lir = NewLIR3(opcode, r_src_dest.GetReg(), r_ptr.GetReg(), encoded_disp);
} else {
lir = NewLIR4(opcode, r_src_dest.GetLowReg(), r_src_dest.GetHighReg(), r_ptr.GetReg(),
encoded_disp);
}
if ((displacement & ~kOffsetMask) != 0 && !r_work.Valid()) {
FreeTemp(r_ptr);
}
return lir;
}
/*
* Load value from base + displacement. Optionally perform null check
* on base (which must have an associated s_reg and MIR). If not
* performing null check, incoming MIR can be null.
*/
LIR* ArmMir2Lir::LoadBaseDispBody(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size) {
LIR* load = nullptr;
ArmOpcode opcode16 = kThumbBkpt; // 16-bit Thumb opcode.
ArmOpcode opcode32 = kThumbBkpt; // 32-bit Thumb2 opcode.
bool short_form = false;
bool all_low = r_dest.Is32Bit() && r_base.Low8() && r_dest.Low8();
int scale = 0; // Used for opcode16 and some indexed loads.
bool already_generated = false;
switch (size) {
case kDouble:
// Intentional fall-though.
case k64:
if (r_dest.IsFloat()) {
DCHECK(!r_dest.IsPair());
load = LoadStoreUsingInsnWithOffsetImm8Shl2(kThumb2Vldrd, r_base, displacement, r_dest);
} else {
DCHECK(r_dest.IsPair());
// Use the r_dest.GetLow() for the temporary pointer if needed.
load = LoadStoreUsingInsnWithOffsetImm8Shl2(kThumb2LdrdI8, r_base, displacement, r_dest,
r_dest.GetLow());
}
already_generated = true;
break;
case kSingle:
// Intentional fall-though.
case k32:
// Intentional fall-though.
case kReference:
if (r_dest.IsFloat()) {
DCHECK(r_dest.IsSingle());
load = LoadStoreUsingInsnWithOffsetImm8Shl2(kThumb2Vldrs, r_base, displacement, r_dest);
already_generated = true;
break;
}
DCHECK_EQ((displacement & 0x3), 0);
scale = 2;
if (r_dest.Low8() && (r_base == rs_rARM_PC) && (displacement <= 1020) &&
(displacement >= 0)) {
short_form = true;
opcode16 = kThumbLdrPcRel;
} else if (r_dest.Low8() && (r_base == rs_rARM_SP) && (displacement <= 1020) &&
(displacement >= 0)) {
short_form = true;
opcode16 = kThumbLdrSpRel;
} else {
short_form = all_low && (displacement >> (5 + scale)) == 0;
opcode16 = kThumbLdrRRI5;
opcode32 = kThumb2LdrRRI12;
}
break;
case kUnsignedHalf:
DCHECK_EQ((displacement & 0x1), 0);
scale = 1;
short_form = all_low && (displacement >> (5 + scale)) == 0;
opcode16 = kThumbLdrhRRI5;
opcode32 = kThumb2LdrhRRI12;
break;
case kSignedHalf:
DCHECK_EQ((displacement & 0x1), 0);
scale = 1;
DCHECK_EQ(opcode16, kThumbBkpt); // Not available.
opcode32 = kThumb2LdrshRRI12;
break;
case kUnsignedByte:
DCHECK_EQ(scale, 0); // Keep scale = 0.
short_form = all_low && (displacement >> (5 + scale)) == 0;
opcode16 = kThumbLdrbRRI5;
opcode32 = kThumb2LdrbRRI12;
break;
case kSignedByte:
DCHECK_EQ(scale, 0); // Keep scale = 0.
DCHECK_EQ(opcode16, kThumbBkpt); // Not available.
opcode32 = kThumb2LdrsbRRI12;
break;
default:
LOG(FATAL) << "Bad size: " << size;
}
if (!already_generated) {
if (short_form) {
load = NewLIR3(opcode16, r_dest.GetReg(), r_base.GetReg(), displacement >> scale);
} else if ((displacement >> 12) == 0) { // Thumb2 form.
load = NewLIR3(opcode32, r_dest.GetReg(), r_base.GetReg(), displacement);
} else if (!InexpensiveConstantInt(displacement >> scale, Instruction::CONST) &&
InexpensiveConstantInt(displacement & ~0x00000fff, Instruction::ADD_INT)) {
// In this case, using LoadIndexed would emit 3 insns (movw+movt+ldr) but we can
// actually do it in two because we know that the kOpAdd is a single insn. On the
// other hand, we introduce an extra dependency, so this is not necessarily faster.
if (opcode16 != kThumbBkpt && r_dest.Low8() &&
InexpensiveConstantInt(displacement & ~(0x1f << scale), Instruction::ADD_INT)) {
// We can use the 16-bit Thumb opcode for the load.
OpRegRegImm(kOpAdd, r_dest, r_base, displacement & ~(0x1f << scale));
load = NewLIR3(opcode16, r_dest.GetReg(), r_dest.GetReg(), (displacement >> scale) & 0x1f);
} else {
DCHECK_NE(opcode32, kThumbBkpt);
OpRegRegImm(kOpAdd, r_dest, r_base, displacement & ~0x00000fff);
load = NewLIR3(opcode32, r_dest.GetReg(), r_dest.GetReg(), displacement & 0x00000fff);
}
} else {
if (!InexpensiveConstantInt(displacement >> scale, Instruction::CONST) ||
(scale != 0 && InexpensiveConstantInt(displacement, Instruction::CONST))) {
scale = 0; // Prefer unscaled indexing if the same number of insns.
}
RegStorage reg_offset = AllocTemp();
LoadConstant(reg_offset, displacement >> scale);
DCHECK(!r_dest.IsFloat());
load = LoadBaseIndexed(r_base, reg_offset, r_dest, scale, size);
FreeTemp(reg_offset);
}
}
// TODO: in future may need to differentiate Dalvik accesses w/ spills
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, rs_rARM_SP);
AnnotateDalvikRegAccess(load, displacement >> 2, true /* is_load */, r_dest.Is64Bit());
}
return load;
}
LIR* ArmMir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size, VolatileKind is_volatile) {
// TODO: base this on target.
if (size == kWord) {
size = k32;
}
LIR* load;
if (is_volatile == kVolatile && (size == k64 || size == kDouble) &&
!cu_->compiler_driver->GetInstructionSetFeatures()->
AsArmInstructionSetFeatures()->HasAtomicLdrdAndStrd()) {
// Only 64-bit load needs special handling.
// If the cpu supports LPAE, aligned LDRD is atomic - fall through to LoadBaseDisp().
DCHECK(!r_dest.IsFloat()); // See RegClassForFieldLoadSave().
// Use LDREXD for the atomic load. (Expect displacement > 0, don't optimize for == 0.)
RegStorage r_ptr = AllocTemp();
OpRegRegImm(kOpAdd, r_ptr, r_base, displacement);
load = NewLIR3(kThumb2Ldrexd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_ptr.GetReg());
FreeTemp(r_ptr);
} else {
load = LoadBaseDispBody(r_base, displacement, r_dest, size);
}
if (UNLIKELY(is_volatile == kVolatile)) {
GenMemBarrier(kLoadAny);
}
return load;
}
LIR* ArmMir2Lir::StoreBaseDispBody(RegStorage r_base, int displacement, RegStorage r_src,
OpSize size) {
LIR* store = nullptr;
ArmOpcode opcode16 = kThumbBkpt; // 16-bit Thumb opcode.
ArmOpcode opcode32 = kThumbBkpt; // 32-bit Thumb2 opcode.
bool short_form = false;
bool all_low = r_src.Is32Bit() && r_base.Low8() && r_src.Low8();
int scale = 0; // Used for opcode16 and some indexed loads.
bool already_generated = false;
switch (size) {
case kDouble:
// Intentional fall-though.
case k64:
if (r_src.IsFloat()) {
// Note: If the register is retrieved by register allocator, it should never be a pair.
// But some functions in mir2lir assume 64-bit registers are 32-bit register pairs.
// TODO: Rework Mir2Lir::LoadArg() and Mir2Lir::LoadArgDirect().
if (r_src.IsPair()) {
r_src = As64BitFloatReg(r_src);
}
DCHECK(!r_src.IsPair());
store = LoadStoreUsingInsnWithOffsetImm8Shl2(kThumb2Vstrd, r_base, displacement, r_src);
} else {
DCHECK(r_src.IsPair());
store = LoadStoreUsingInsnWithOffsetImm8Shl2(kThumb2StrdI8, r_base, displacement, r_src);
}
already_generated = true;
break;
case kSingle:
// Intentional fall-through.
case k32:
// Intentional fall-through.
case kReference:
if (r_src.IsFloat()) {
DCHECK(r_src.IsSingle());
store = LoadStoreUsingInsnWithOffsetImm8Shl2(kThumb2Vstrs, r_base, displacement, r_src);
already_generated = true;
break;
}
DCHECK_EQ((displacement & 0x3), 0);
scale = 2;
if (r_src.Low8() && (r_base == rs_r13sp) && (displacement <= 1020) && (displacement >= 0)) {
short_form = true;
opcode16 = kThumbStrSpRel;
} else {
short_form = all_low && (displacement >> (5 + scale)) == 0;
opcode16 = kThumbStrRRI5;
opcode32 = kThumb2StrRRI12;
}
break;
case kUnsignedHalf:
case kSignedHalf:
DCHECK_EQ((displacement & 0x1), 0);
scale = 1;
short_form = all_low && (displacement >> (5 + scale)) == 0;
opcode16 = kThumbStrhRRI5;
opcode32 = kThumb2StrhRRI12;
break;
case kUnsignedByte:
case kSignedByte:
DCHECK_EQ(scale, 0); // Keep scale = 0.
short_form = all_low && (displacement >> (5 + scale)) == 0;
opcode16 = kThumbStrbRRI5;
opcode32 = kThumb2StrbRRI12;
break;
default:
LOG(FATAL) << "Bad size: " << size;
}
if (!already_generated) {
if (short_form) {
store = NewLIR3(opcode16, r_src.GetReg(), r_base.GetReg(), displacement >> scale);
} else if ((displacement >> 12) == 0) {
store = NewLIR3(opcode32, r_src.GetReg(), r_base.GetReg(), displacement);
} else if (!InexpensiveConstantInt(displacement >> scale, Instruction::CONST) &&
InexpensiveConstantInt(displacement & ~0x00000fff, Instruction::ADD_INT)) {
// In this case, using StoreIndexed would emit 3 insns (movw+movt+str) but we can
// actually do it in two because we know that the kOpAdd is a single insn. On the
// other hand, we introduce an extra dependency, so this is not necessarily faster.
RegStorage r_scratch = AllocTemp();
if (opcode16 != kThumbBkpt && r_src.Low8() && r_scratch.Low8() &&
InexpensiveConstantInt(displacement & ~(0x1f << scale), Instruction::ADD_INT)) {
// We can use the 16-bit Thumb opcode for the load.
OpRegRegImm(kOpAdd, r_scratch, r_base, displacement & ~(0x1f << scale));
store = NewLIR3(opcode16, r_src.GetReg(), r_scratch.GetReg(),
(displacement >> scale) & 0x1f);
} else {
DCHECK_NE(opcode32, kThumbBkpt);
OpRegRegImm(kOpAdd, r_scratch, r_base, displacement & ~0x00000fff);
store = NewLIR3(opcode32, r_src.GetReg(), r_scratch.GetReg(), displacement & 0x00000fff);
}
FreeTemp(r_scratch);
} else {
if (!InexpensiveConstantInt(displacement >> scale, Instruction::CONST) ||
(scale != 0 && InexpensiveConstantInt(displacement, Instruction::CONST))) {
scale = 0; // Prefer unscaled indexing if the same number of insns.
}
RegStorage r_scratch = AllocTemp();
LoadConstant(r_scratch, displacement >> scale);
DCHECK(!r_src.IsFloat());
store = StoreBaseIndexed(r_base, r_scratch, r_src, scale, size);
FreeTemp(r_scratch);
}
}
// TODO: In future, may need to differentiate Dalvik & spill accesses
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, rs_rARM_SP);
AnnotateDalvikRegAccess(store, displacement >> 2, false /* is_load */, r_src.Is64Bit());
}
return store;
}
LIR* ArmMir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
OpSize size, VolatileKind is_volatile) {
if (UNLIKELY(is_volatile == kVolatile)) {
// Ensure that prior accesses become visible to other threads first.
GenMemBarrier(kAnyStore);
}
LIR* null_ck_insn;
if (is_volatile == kVolatile && (size == k64 || size == kDouble) &&
!cu_->compiler_driver->GetInstructionSetFeatures()->
AsArmInstructionSetFeatures()->HasAtomicLdrdAndStrd()) {
// Only 64-bit store needs special handling.
// If the cpu supports LPAE, aligned STRD is atomic - fall through to StoreBaseDisp().
// Use STREXD for the atomic store. (Expect displacement > 0, don't optimize for == 0.)
DCHECK(!r_src.IsFloat()); // See RegClassForFieldLoadSave().
RegStorage r_ptr = AllocTemp();
OpRegRegImm(kOpAdd, r_ptr, r_base, displacement);
LIR* fail_target = NewLIR0(kPseudoTargetLabel);
// We have only 5 temporary registers available and if r_base, r_src and r_ptr already
// take 4, we can't directly allocate 2 more for LDREXD temps. In that case clobber r_ptr
// in LDREXD and recalculate it from r_base.
RegStorage r_temp = AllocTemp();
RegStorage r_temp_high = AllocTemp(false); // We may not have another temp.
if (r_temp_high.Valid()) {
null_ck_insn = NewLIR3(kThumb2Ldrexd, r_temp.GetReg(), r_temp_high.GetReg(), r_ptr.GetReg());
FreeTemp(r_temp_high);
FreeTemp(r_temp);
} else {
// If we don't have another temp, clobber r_ptr in LDREXD and reload it.
null_ck_insn = NewLIR3(kThumb2Ldrexd, r_temp.GetReg(), r_ptr.GetReg(), r_ptr.GetReg());
FreeTemp(r_temp); // May need the temp for kOpAdd.
OpRegRegImm(kOpAdd, r_ptr, r_base, displacement);
}
NewLIR4(kThumb2Strexd, r_temp.GetReg(), r_src.GetLowReg(), r_src.GetHighReg(), r_ptr.GetReg());
OpCmpImmBranch(kCondNe, r_temp, 0, fail_target);
FreeTemp(r_ptr);
} else {
// TODO: base this on target.
if (size == kWord) {
size = k32;
}
null_ck_insn = StoreBaseDispBody(r_base, displacement, r_src, size);
}
if (UNLIKELY(is_volatile == kVolatile)) {
// Preserve order with respect to any subsequent volatile loads.
// We need StoreLoad, but that generally requires the most expensive barrier.
GenMemBarrier(kAnyAny);
}
return null_ck_insn;
}
LIR* ArmMir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
int opcode;
DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
if (r_dest.IsDouble()) {
opcode = kThumb2Vmovd;
} else {
if (r_dest.IsSingle()) {
opcode = r_src.IsSingle() ? kThumb2Vmovs : kThumb2Fmsr;
} else {
DCHECK(r_src.IsSingle());
opcode = kThumb2Fmrs;
}
}
LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
res->flags.is_nop = true;
}
return res;
}
LIR* ArmMir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
UNUSED(op, r_base, disp);
LOG(FATAL) << "Unexpected use of OpMem for Arm";
UNREACHABLE();
}
LIR* ArmMir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
UNUSED(trampoline); // The address of the trampoline is already loaded into r_tgt.
return OpReg(op, r_tgt);
}
size_t ArmMir2Lir::GetInstructionOffset(LIR* lir) {
uint64_t check_flags = GetTargetInstFlags(lir->opcode);
DCHECK((check_flags & IS_LOAD) || (check_flags & IS_STORE));
size_t offset = (check_flags & IS_TERTIARY_OP) ? lir->operands[2] : 0;
if (check_flags & SCALED_OFFSET_X2) {
offset = offset * 2;
} else if (check_flags & SCALED_OFFSET_X4) {
offset = offset * 4;
}
return offset;
}
void ArmMir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) {
// Start with the default counts.
Mir2Lir::CountRefs(core_counts, fp_counts, num_regs);
if (pc_rel_temp_ != nullptr) {
// Now, if the dex cache array base temp is used only once outside any loops (weight = 1),
// avoid the promotion, otherwise boost the weight by factor 3 because the full PC-relative
// load sequence is 4 instructions long and by promoting the PC base we save up to 3
// instructions per use.
int p_map_idx = SRegToPMap(pc_rel_temp_->s_reg_low);
if (core_counts[p_map_idx].count == 1) {
core_counts[p_map_idx].count = 0;
} else {
core_counts[p_map_idx].count *= 3;
}
}
}
void ArmMir2Lir::DoPromotion() {
if (CanUseOpPcRelDexCacheArrayLoad()) {
pc_rel_temp_ = mir_graph_->GetNewCompilerTemp(kCompilerTempBackend, false);
}
Mir2Lir::DoPromotion();
if (pc_rel_temp_ != nullptr) {
// Now, if the dex cache array base temp is promoted, remember the register but
// always remove the temp's stack location to avoid unnecessarily bloating the stack.
dex_cache_arrays_base_reg_ = mir_graph_->reg_location_[pc_rel_temp_->s_reg_low].reg;
DCHECK(!dex_cache_arrays_base_reg_.Valid() || !dex_cache_arrays_base_reg_.IsFloat());
mir_graph_->RemoveLastCompilerTemp(kCompilerTempBackend, false, pc_rel_temp_);
pc_rel_temp_ = nullptr;
}
}
} // namespace art