blob: 486e904bd1c2669599786ffd3c9729eb89b15b61 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <limits.h>
#include "induction_var_range.h"
namespace art {
static bool IsValidConstant32(int32_t c) {
return INT_MIN < c && c < INT_MAX;
}
static bool IsValidConstant64(int64_t c) {
return INT_MIN < c && c < INT_MAX;
}
/** Returns true if 32-bit addition can be done safely (and is not an unknown range). */
static bool IsSafeAdd(int32_t c1, int32_t c2) {
if (IsValidConstant32(c1) && IsValidConstant32(c2)) {
return IsValidConstant64(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
}
return false;
}
/** Returns true if 32-bit subtraction can be done safely (and is not an unknown range). */
static bool IsSafeSub(int32_t c1, int32_t c2) {
if (IsValidConstant32(c1) && IsValidConstant32(c2)) {
return IsValidConstant64(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
}
return false;
}
/** Returns true if 32-bit multiplication can be done safely (and is not an unknown range). */
static bool IsSafeMul(int32_t c1, int32_t c2) {
if (IsValidConstant32(c1) && IsValidConstant32(c2)) {
return IsValidConstant64(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
}
return false;
}
/** Returns true if 32-bit division can be done safely (and is not an unknown range). */
static bool IsSafeDiv(int32_t c1, int32_t c2) {
if (IsValidConstant32(c1) && IsValidConstant32(c2) && c2 != 0) {
return IsValidConstant64(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
}
return false;
}
/** Returns true for 32/64-bit integral constant within known range. */
static bool IsIntAndGet(HInstruction* instruction, int32_t* value) {
if (instruction->IsIntConstant()) {
const int32_t c = instruction->AsIntConstant()->GetValue();
if (IsValidConstant32(c)) {
*value = c;
return true;
}
} else if (instruction->IsLongConstant()) {
const int64_t c = instruction->AsLongConstant()->GetValue();
if (IsValidConstant64(c)) {
*value = c;
return true;
}
}
return false;
}
//
// Public class methods.
//
InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
: induction_analysis_(induction_analysis) {
}
InductionVarRange::Value InductionVarRange::GetMinInduction(HInstruction* context,
HInstruction* instruction) {
HLoopInformation* loop = context->GetBlock()->GetLoopInformation();
if (loop != nullptr && induction_analysis_ != nullptr) {
return GetMin(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context));
}
return Value(INT_MIN);
}
InductionVarRange::Value InductionVarRange::GetMaxInduction(HInstruction* context,
HInstruction* instruction) {
HLoopInformation* loop = context->GetBlock()->GetLoopInformation();
if (loop != nullptr && induction_analysis_ != nullptr) {
return GetMax(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context));
}
return Value(INT_MAX);
}
//
// Private class methods.
//
HInductionVarAnalysis::InductionInfo* InductionVarRange::GetTripCount(HLoopInformation* loop,
HInstruction* context) {
// The trip-count expression is only valid when the top-test is taken at least once,
// that means, when the analyzed context appears outside the loop header itself.
// Early-exit loops are okay, since in those cases, the trip-count is conservative.
if (context->GetBlock() != loop->GetHeader()) {
HInductionVarAnalysis::InductionInfo* trip =
induction_analysis_->LookupInfo(loop, loop->GetHeader()->GetLastInstruction());
if (trip != nullptr) {
// Wrap the trip-count representation in its own unusual NOP node, so that range analysis
// is able to determine the [0, TC - 1] interval without having to construct constants.
return induction_analysis_->CreateInvariantOp(HInductionVarAnalysis::kNop, trip, trip);
}
}
return nullptr;
}
InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction,
HInductionVarAnalysis::InductionInfo* trip,
int32_t fail_value) {
// Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes
// more likely range analysis will compare the same instructions as terminal nodes.
int32_t value;
if (IsIntAndGet(instruction, &value)) {
return Value(value);
} else if (instruction->IsAdd()) {
if (IsIntAndGet(instruction->InputAt(0), &value)) {
return AddValue(Value(value),
GetFetch(instruction->InputAt(1), trip, fail_value), fail_value);
} else if (IsIntAndGet(instruction->InputAt(1), &value)) {
return AddValue(GetFetch(instruction->InputAt(0), trip, fail_value),
Value(value), fail_value);
}
} else if (fail_value < 0) {
// Special case: within the loop-body, minimum of trip-count is 1.
if (trip != nullptr && instruction == trip->op_b->fetch) {
return Value(1);
}
}
return Value(instruction, 1, 0);
}
InductionVarRange::Value InductionVarRange::GetMin(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip) {
if (info != nullptr) {
switch (info->induction_class) {
case HInductionVarAnalysis::kInvariant:
// Invariants.
switch (info->operation) {
case HInductionVarAnalysis::kNop: // normalized: 0
DCHECK_EQ(info->op_a, info->op_b);
return Value(0);
case HInductionVarAnalysis::kAdd:
return AddValue(GetMin(info->op_a, trip), GetMin(info->op_b, trip), INT_MIN);
case HInductionVarAnalysis::kSub: // second max!
return SubValue(GetMin(info->op_a, trip), GetMax(info->op_b, trip), INT_MIN);
case HInductionVarAnalysis::kNeg: // second max!
return SubValue(Value(0), GetMax(info->op_b, trip), INT_MIN);
case HInductionVarAnalysis::kMul:
return GetMul(info->op_a, info->op_b, trip, INT_MIN);
case HInductionVarAnalysis::kDiv:
return GetDiv(info->op_a, info->op_b, trip, INT_MIN);
case HInductionVarAnalysis::kFetch:
return GetFetch(info->fetch, trip, INT_MIN);
}
break;
case HInductionVarAnalysis::kLinear:
// Minimum over linear induction a * i + b, for normalized 0 <= i < TC.
return AddValue(GetMul(info->op_a, trip, trip, INT_MIN),
GetMin(info->op_b, trip), INT_MIN);
case HInductionVarAnalysis::kWrapAround:
case HInductionVarAnalysis::kPeriodic:
// Minimum over all values in the wrap-around/periodic.
return MinValue(GetMin(info->op_a, trip), GetMin(info->op_b, trip));
}
}
return Value(INT_MIN);
}
InductionVarRange::Value InductionVarRange::GetMax(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip) {
if (info != nullptr) {
switch (info->induction_class) {
case HInductionVarAnalysis::kInvariant:
// Invariants.
switch (info->operation) {
case HInductionVarAnalysis::kNop: // normalized: TC - 1
DCHECK_EQ(info->op_a, info->op_b);
return SubValue(GetMax(info->op_b, trip), Value(1), INT_MAX);
case HInductionVarAnalysis::kAdd:
return AddValue(GetMax(info->op_a, trip), GetMax(info->op_b, trip), INT_MAX);
case HInductionVarAnalysis::kSub: // second min!
return SubValue(GetMax(info->op_a, trip), GetMin(info->op_b, trip), INT_MAX);
case HInductionVarAnalysis::kNeg: // second min!
return SubValue(Value(0), GetMin(info->op_b, trip), INT_MAX);
case HInductionVarAnalysis::kMul:
return GetMul(info->op_a, info->op_b, trip, INT_MAX);
case HInductionVarAnalysis::kDiv:
return GetDiv(info->op_a, info->op_b, trip, INT_MAX);
case HInductionVarAnalysis::kFetch:
return GetFetch(info->fetch, trip, INT_MAX);
}
break;
case HInductionVarAnalysis::kLinear:
// Maximum over linear induction a * i + b, for normalized 0 <= i < TC.
return AddValue(GetMul(info->op_a, trip, trip, INT_MAX),
GetMax(info->op_b, trip), INT_MAX);
case HInductionVarAnalysis::kWrapAround:
case HInductionVarAnalysis::kPeriodic:
// Maximum over all values in the wrap-around/periodic.
return MaxValue(GetMax(info->op_a, trip), GetMax(info->op_b, trip));
}
}
return Value(INT_MAX);
}
InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2,
HInductionVarAnalysis::InductionInfo* trip,
int32_t fail_value) {
Value v1_min = GetMin(info1, trip);
Value v1_max = GetMax(info1, trip);
Value v2_min = GetMin(info2, trip);
Value v2_max = GetMax(info2, trip);
if (v1_min.a_constant == 0 && v1_min.b_constant >= 0) {
// Positive range vs. positive or negative range.
if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return (fail_value < 0) ? MulValue(v1_min, v2_min, fail_value)
: MulValue(v1_max, v2_max, fail_value);
} else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return (fail_value < 0) ? MulValue(v1_max, v2_min, fail_value)
: MulValue(v1_min, v2_max, fail_value);
}
} else if (v1_min.a_constant == 0 && v1_min.b_constant <= 0) {
// Negative range vs. positive or negative range.
if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return (fail_value < 0) ? MulValue(v1_min, v2_max, fail_value)
: MulValue(v1_max, v2_min, fail_value);
} else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return (fail_value < 0) ? MulValue(v1_max, v2_max, fail_value)
: MulValue(v1_min, v2_min, fail_value);
}
}
return Value(fail_value);
}
InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2,
HInductionVarAnalysis::InductionInfo* trip,
int32_t fail_value) {
Value v1_min = GetMin(info1, trip);
Value v1_max = GetMax(info1, trip);
Value v2_min = GetMin(info2, trip);
Value v2_max = GetMax(info2, trip);
if (v1_min.a_constant == 0 && v1_min.b_constant >= 0) {
// Positive range vs. positive or negative range.
if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return (fail_value < 0) ? DivValue(v1_min, v2_max, fail_value)
: DivValue(v1_max, v2_min, fail_value);
} else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return (fail_value < 0) ? DivValue(v1_max, v2_max, fail_value)
: DivValue(v1_min, v2_min, fail_value);
}
} else if (v1_min.a_constant == 0 && v1_min.b_constant <= 0) {
// Negative range vs. positive or negative range.
if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) {
return (fail_value < 0) ? DivValue(v1_min, v2_min, fail_value)
: DivValue(v1_max, v2_max, fail_value);
} else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) {
return (fail_value < 0) ? DivValue(v1_max, v2_min, fail_value)
: DivValue(v1_min, v2_max, fail_value);
}
}
return Value(fail_value);
}
InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2, int32_t fail_value) {
if (IsSafeAdd(v1.b_constant, v2.b_constant)) {
const int32_t b = v1.b_constant + v2.b_constant;
if (v1.a_constant == 0) {
return Value(v2.instruction, v2.a_constant, b);
} else if (v2.a_constant == 0) {
return Value(v1.instruction, v1.a_constant, b);
} else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
}
}
return Value(fail_value);
}
InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2, int32_t fail_value) {
if (IsSafeSub(v1.b_constant, v2.b_constant)) {
const int32_t b = v1.b_constant - v2.b_constant;
if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
return Value(v2.instruction, -v2.a_constant, b);
} else if (v2.a_constant == 0) {
return Value(v1.instruction, v1.a_constant, b);
} else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
}
}
return Value(fail_value);
}
InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2, int32_t fail_value) {
if (v1.a_constant == 0) {
if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
}
} else if (v2.a_constant == 0) {
if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
}
}
return Value(fail_value);
}
InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2, int32_t fail_value) {
if (v1.a_constant == 0 && v2.a_constant == 0) {
if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
return Value(v1.b_constant / v2.b_constant);
}
}
return Value(fail_value);
}
InductionVarRange::Value InductionVarRange::MinValue(Value v1, Value v2) {
if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
return Value(v1.instruction, v1.a_constant, std::min(v1.b_constant, v2.b_constant));
}
return Value(INT_MIN);
}
InductionVarRange::Value InductionVarRange::MaxValue(Value v1, Value v2) {
if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
return Value(v1.instruction, v1.a_constant, std::max(v1.b_constant, v2.b_constant));
}
return Value(INT_MAX);
}
} // namespace art