| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_x86.h" |
| |
| #include "art_method.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "constant_area_fixups_x86.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics.h" |
| #include "intrinsics_x86.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "thread.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| #include "utils/x86/assembler_x86.h" |
| #include "utils/x86/managed_register_x86.h" |
| |
| namespace art { |
| |
| namespace x86 { |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr Register kMethodRegisterArgument = EAX; |
| |
| static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI }; |
| |
| static constexpr int kC2ConditionMask = 0x400; |
| |
| static constexpr int kFakeReturnRegister = Register(8); |
| |
| #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> |
| #define QUICK_ENTRY_POINT(x) Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, x)) |
| |
| class NullCheckSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| explicit NullCheckSlowPathX86(HNullCheck* instruction) : instruction_(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; } |
| |
| private: |
| HNullCheck* const instruction_; |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86); |
| }; |
| |
| class DivZeroCheckSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : instruction_(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; } |
| |
| private: |
| HDivZeroCheck* const instruction_; |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86); |
| }; |
| |
| class DivRemMinusOneSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| DivRemMinusOneSlowPathX86(Register reg, bool is_div) : reg_(reg), is_div_(is_div) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| __ Bind(GetEntryLabel()); |
| if (is_div_) { |
| __ negl(reg_); |
| } else { |
| __ movl(reg_, Immediate(0)); |
| } |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; } |
| |
| private: |
| Register reg_; |
| bool is_div_; |
| DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86); |
| }; |
| |
| class BoundsCheckSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : instruction_(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| InvokeRuntimeCallingConvention calling_convention; |
| x86_codegen->EmitParallelMoves( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimInt, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; } |
| |
| private: |
| HBoundsCheck* const instruction_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86); |
| }; |
| |
| class SuspendCheckSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor) |
| : instruction_(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| RestoreLiveRegisters(codegen, instruction_->GetLocations()); |
| if (successor_ == nullptr) { |
| __ jmp(GetReturnLabel()); |
| } else { |
| __ jmp(x86_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; } |
| |
| private: |
| HSuspendCheck* const instruction_; |
| HBasicBlock* const successor_; |
| Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86); |
| }; |
| |
| class LoadStringSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| explicit LoadStringSlowPathX86(HLoadString* instruction) : instruction_(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction_->GetStringIndex())); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; } |
| |
| private: |
| HLoadString* const instruction_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86); |
| }; |
| |
| class LoadClassSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| LoadClassSlowPathX86(HLoadClass* cls, |
| HInstruction* at, |
| uint32_t dex_pc, |
| bool do_clinit) |
| : cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = at_->GetLocations(); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex())); |
| x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) |
| : QUICK_ENTRY_POINT(pInitializeType), |
| at_, dex_pc_, this); |
| |
| // Move the class to the desired location. |
| Location out = locations->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| x86_codegen->Move32(out, Location::RegisterLocation(EAX)); |
| } |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The instruction where this slow path is happening. |
| // (Might be the load class or an initialization check). |
| HInstruction* const at_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86); |
| }; |
| |
| class TypeCheckSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| explicit TypeCheckSlowPathX86(HInstruction* instruction) : instruction_(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) |
| : locations->Out(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| x86_codegen->EmitParallelMoves( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| object_class, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot); |
| |
| if (instruction_->IsInstanceOf()) { |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| } |
| |
| if (instruction_->IsInstanceOf()) { |
| x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; } |
| |
| private: |
| HInstruction* const instruction_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86); |
| }; |
| |
| class DeoptimizationSlowPathX86 : public SlowPathCodeX86 { |
| public: |
| explicit DeoptimizationSlowPathX86(HInstruction* instruction) |
| : instruction_(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| DCHECK(instruction_->IsDeoptimize()); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; } |
| |
| private: |
| HInstruction* const instruction_; |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86); |
| }; |
| |
| #undef __ |
| #define __ down_cast<X86Assembler*>(GetAssembler())-> |
| |
| inline Condition X86SignedCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| case kCondLT: return kLess; |
| case kCondLE: return kLessEqual; |
| case kCondGT: return kGreater; |
| case kCondGE: return kGreaterEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| inline Condition X86UnsignedOrFPCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| case kCondLT: return kBelow; |
| case kCondLE: return kBelowEqual; |
| case kCondGT: return kAbove; |
| case kCondGE: return kAboveEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << Register(reg); |
| } |
| |
| void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << XmmRegister(reg); |
| } |
| |
| size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id)); |
| return kX86WordSize; |
| } |
| |
| size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index)); |
| return kX86WordSize; |
| } |
| |
| size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ movsd(Address(ESP, stack_index), XmmRegister(reg_id)); |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ movsd(XmmRegister(reg_id), Address(ESP, stack_index)); |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| void CodeGeneratorX86::InvokeRuntime(Address entry_point, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(instruction, slow_path); |
| __ fs()->call(entry_point); |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| |
| CodeGeneratorX86::CodeGeneratorX86(HGraph* graph, |
| const X86InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options) |
| : CodeGenerator(graph, |
| kNumberOfCpuRegisters, |
| kNumberOfXmmRegisters, |
| kNumberOfRegisterPairs, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)) |
| | (1 << kFakeReturnRegister), |
| 0, |
| compiler_options), |
| block_labels_(graph->GetArena(), 0), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| isa_features_(isa_features), |
| method_patches_(graph->GetArena()->Adapter()), |
| relative_call_patches_(graph->GetArena()->Adapter()) { |
| // Use a fake return address register to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); |
| } |
| |
| Location CodeGeneratorX86::AllocateFreeRegister(Primitive::Type type) const { |
| switch (type) { |
| case Primitive::kPrimLong: { |
| size_t reg = FindFreeEntry(blocked_register_pairs_, kNumberOfRegisterPairs); |
| X86ManagedRegister pair = |
| X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(reg)); |
| DCHECK(!blocked_core_registers_[pair.AsRegisterPairLow()]); |
| DCHECK(!blocked_core_registers_[pair.AsRegisterPairHigh()]); |
| blocked_core_registers_[pair.AsRegisterPairLow()] = true; |
| blocked_core_registers_[pair.AsRegisterPairHigh()] = true; |
| UpdateBlockedPairRegisters(); |
| return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); |
| } |
| |
| case Primitive::kPrimByte: |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| Register reg = static_cast<Register>( |
| FindFreeEntry(blocked_core_registers_, kNumberOfCpuRegisters)); |
| // Block all register pairs that contain `reg`. |
| for (int i = 0; i < kNumberOfRegisterPairs; i++) { |
| X86ManagedRegister current = |
| X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i)); |
| if (current.AsRegisterPairLow() == reg || current.AsRegisterPairHigh() == reg) { |
| blocked_register_pairs_[i] = true; |
| } |
| } |
| return Location::RegisterLocation(reg); |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| return Location::FpuRegisterLocation( |
| FindFreeEntry(blocked_fpu_registers_, kNumberOfXmmRegisters)); |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| |
| return Location(); |
| } |
| |
| void CodeGeneratorX86::SetupBlockedRegisters(bool is_baseline) const { |
| // Don't allocate the dalvik style register pair passing. |
| blocked_register_pairs_[ECX_EDX] = true; |
| |
| // Stack register is always reserved. |
| blocked_core_registers_[ESP] = true; |
| |
| if (is_baseline) { |
| blocked_core_registers_[EBP] = true; |
| blocked_core_registers_[ESI] = true; |
| blocked_core_registers_[EDI] = true; |
| } |
| |
| UpdateBlockedPairRegisters(); |
| } |
| |
| void CodeGeneratorX86::UpdateBlockedPairRegisters() const { |
| for (int i = 0; i < kNumberOfRegisterPairs; i++) { |
| X86ManagedRegister current = |
| X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i)); |
| if (blocked_core_registers_[current.AsRegisterPairLow()] |
| || blocked_core_registers_[current.AsRegisterPairHigh()]) { |
| blocked_register_pairs_[i] = true; |
| } |
| } |
| } |
| |
| InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen) |
| : HGraphVisitor(graph), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::X86Core(static_cast<int>(reg)); |
| } |
| |
| void CodeGeneratorX86::GenerateFrameEntry() { |
| __ cfi().SetCurrentCFAOffset(kX86WordSize); // return address |
| __ Bind(&frame_entry_label_); |
| bool skip_overflow_check = |
| IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| |
| if (!skip_overflow_check) { |
| __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86)))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (HasEmptyFrame()) { |
| return; |
| } |
| |
| for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ pushl(reg); |
| __ cfi().AdjustCFAOffset(kX86WordSize); |
| __ cfi().RelOffset(DWARFReg(reg), 0); |
| } |
| } |
| |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ subl(ESP, Immediate(adjust)); |
| __ cfi().AdjustCFAOffset(adjust); |
| __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument); |
| } |
| |
| void CodeGeneratorX86::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ addl(ESP, Immediate(adjust)); |
| __ cfi().AdjustCFAOffset(-adjust); |
| |
| for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ popl(reg); |
| __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize)); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| } |
| __ ret(); |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorX86::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| Location CodeGeneratorX86::GetStackLocation(HLoadLocal* load) const { |
| switch (load->GetType()) { |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| return Location::DoubleStackSlot(GetStackSlot(load->GetLocal())); |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimFloat: |
| return Location::StackSlot(GetStackSlot(load->GetLocal())); |
| |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unexpected type " << load->GetType(); |
| UNREACHABLE(); |
| } |
| |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| return Location::RegisterLocation(EAX); |
| |
| case Primitive::kPrimLong: |
| return Location::RegisterPairLocation(EAX, EDX); |
| |
| case Primitive::kPrimVoid: |
| return Location::NoLocation(); |
| |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimFloat: |
| return Location::FpuRegisterLocation(XMM0); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| uint32_t index = gp_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t index = gp_index_; |
| gp_index_ += 2; |
| stack_index_ += 2; |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair( |
| calling_convention.GetRegisterPairAt(index)); |
| return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t index = float_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t index = float_index_++; |
| stack_index_ += 2; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| break; |
| } |
| return Location(); |
| } |
| |
| void CodeGeneratorX86::Move32(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegister()) { |
| if (source.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsRegister()) { |
| __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| if (source.IsRegister()) { |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int32_t value = GetInt32ValueOf(constant); |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ pushl(Address(ESP, source.GetStackIndex())); |
| __ popl(Address(ESP, destination.GetStackIndex())); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::Move64(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegisterPair()) { |
| if (source.IsRegisterPair()) { |
| EmitParallelMoves( |
| Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), |
| Primitive::kPrimInt, |
| Location::RegisterLocation(source.AsRegisterPairLow<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), |
| Primitive::kPrimInt); |
| } else if (source.IsFpuRegister()) { |
| LOG(FATAL) << "Unimplemented"; |
| } else { |
| // No conflict possible, so just do the moves. |
| DCHECK(source.IsDoubleStackSlot()); |
| __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); |
| __ movl(destination.AsRegisterPairHigh<Register>(), |
| Address(ESP, source.GetHighStackIndex(kX86WordSize))); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsDoubleStackSlot()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| if (source.IsRegisterPair()) { |
| // No conflict possible, so just do the moves. |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>()); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), |
| source.AsRegisterPairHigh<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int64_t value; |
| if (constant->IsLongConstant()) { |
| value = constant->AsLongConstant()->GetValue(); |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); |
| } |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value))); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value))); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()) << source; |
| EmitParallelMoves( |
| Location::StackSlot(source.GetStackIndex()), |
| Location::StackSlot(destination.GetStackIndex()), |
| Primitive::kPrimInt, |
| Location::StackSlot(source.GetHighStackIndex(kX86WordSize)), |
| Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)), |
| Primitive::kPrimInt); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::Move(HInstruction* instruction, Location location, HInstruction* move_for) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->IsCurrentMethod()) { |
| Move32(location, Location::StackSlot(kCurrentMethodStackOffset)); |
| } else if (locations != nullptr && locations->Out().Equals(location)) { |
| return; |
| } else if (locations != nullptr && locations->Out().IsConstant()) { |
| HConstant* const_to_move = locations->Out().GetConstant(); |
| if (const_to_move->IsIntConstant() || const_to_move->IsNullConstant()) { |
| Immediate imm(GetInt32ValueOf(const_to_move)); |
| if (location.IsRegister()) { |
| __ movl(location.AsRegister<Register>(), imm); |
| } else if (location.IsStackSlot()) { |
| __ movl(Address(ESP, location.GetStackIndex()), imm); |
| } else { |
| DCHECK(location.IsConstant()); |
| DCHECK_EQ(location.GetConstant(), const_to_move); |
| } |
| } else if (const_to_move->IsLongConstant()) { |
| int64_t value = const_to_move->AsLongConstant()->GetValue(); |
| if (location.IsRegisterPair()) { |
| __ movl(location.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ movl(location.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } else if (location.IsDoubleStackSlot()) { |
| __ movl(Address(ESP, location.GetStackIndex()), Immediate(Low32Bits(value))); |
| __ movl(Address(ESP, location.GetHighStackIndex(kX86WordSize)), |
| Immediate(High32Bits(value))); |
| } else { |
| DCHECK(location.IsConstant()); |
| DCHECK_EQ(location.GetConstant(), instruction); |
| } |
| } |
| } else if (instruction->IsTemporary()) { |
| Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); |
| if (temp_location.IsStackSlot()) { |
| Move32(location, temp_location); |
| } else { |
| DCHECK(temp_location.IsDoubleStackSlot()); |
| Move64(location, temp_location); |
| } |
| } else if (instruction->IsLoadLocal()) { |
| int slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal()); |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimFloat: |
| Move32(location, Location::StackSlot(slot)); |
| break; |
| |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| Move64(location, Location::DoubleStackSlot(slot)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented local type " << instruction->GetType(); |
| } |
| } else { |
| DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary()); |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimFloat: |
| Move32(location, locations->Out()); |
| break; |
| |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| Move64(location, locations->Out()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type " << instruction->GetType(); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { |
| __ jmp(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitExit(HExit* exit) { |
| UNUSED(exit); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond, |
| Label* true_label, |
| Label* false_label) { |
| if (cond->IsFPConditionTrueIfNaN()) { |
| __ j(kUnordered, true_label); |
| } else if (cond->IsFPConditionFalseIfNaN()) { |
| __ j(kUnordered, false_label); |
| } |
| __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond, |
| Label* true_label, |
| Label* false_label) { |
| LocationSummary* locations = cond->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| IfCondition if_cond = cond->GetCondition(); |
| |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| IfCondition true_high_cond = if_cond; |
| IfCondition false_high_cond = cond->GetOppositeCondition(); |
| Condition final_condition = X86UnsignedOrFPCondition(if_cond); |
| |
| // Set the conditions for the test, remembering that == needs to be |
| // decided using the low words. |
| switch (if_cond) { |
| case kCondEQ: |
| case kCondNE: |
| // Nothing to do. |
| break; |
| case kCondLT: |
| false_high_cond = kCondGT; |
| break; |
| case kCondLE: |
| true_high_cond = kCondLT; |
| break; |
| case kCondGT: |
| false_high_cond = kCondLT; |
| break; |
| case kCondGE: |
| true_high_cond = kCondGT; |
| break; |
| } |
| |
| if (right.IsConstant()) { |
| int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t val_high = High32Bits(value); |
| int32_t val_low = Low32Bits(value); |
| |
| if (val_high == 0) { |
| __ testl(left_high, left_high); |
| } else { |
| __ cmpl(left_high, Immediate(val_high)); |
| } |
| if (if_cond == kCondNE) { |
| __ j(X86SignedCondition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86SignedCondition(false_high_cond), false_label); |
| } else { |
| __ j(X86SignedCondition(true_high_cond), true_label); |
| __ j(X86SignedCondition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| if (val_low == 0) { |
| __ testl(left_low, left_low); |
| } else { |
| __ cmpl(left_low, Immediate(val_low)); |
| } |
| } else { |
| Register right_high = right.AsRegisterPairHigh<Register>(); |
| Register right_low = right.AsRegisterPairLow<Register>(); |
| |
| __ cmpl(left_high, right_high); |
| if (if_cond == kCondNE) { |
| __ j(X86SignedCondition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86SignedCondition(false_high_cond), false_label); |
| } else { |
| __ j(X86SignedCondition(true_high_cond), true_label); |
| __ j(X86SignedCondition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ cmpl(left_low, right_low); |
| } |
| // The last comparison might be unsigned. |
| __ j(final_condition, true_label); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HIf* if_instr, |
| HCondition* condition, |
| Label* true_target, |
| Label* false_target, |
| Label* always_true_target) { |
| LocationSummary* locations = condition->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| // We don't want true_target as a nullptr. |
| if (true_target == nullptr) { |
| true_target = always_true_target; |
| } |
| bool falls_through = (false_target == nullptr); |
| |
| // FP compares don't like null false_targets. |
| if (false_target == nullptr) { |
| false_target = codegen_->GetLabelOf(if_instr->IfFalseSuccessor()); |
| } |
| |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| switch (type) { |
| case Primitive::kPrimLong: |
| GenerateLongComparesAndJumps(condition, true_target, false_target); |
| break; |
| case Primitive::kPrimFloat: |
| __ ucomiss(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| case Primitive::kPrimDouble: |
| __ ucomisd(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| } |
| |
| if (!falls_through) { |
| __ jmp(false_target); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction, |
| Label* true_target, |
| Label* false_target, |
| Label* always_true_target) { |
| HInstruction* cond = instruction->InputAt(0); |
| if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against 1. |
| int32_t cond_value = cond->AsIntConstant()->GetValue(); |
| if (cond_value == 1) { |
| if (always_true_target != nullptr) { |
| __ jmp(always_true_target); |
| } |
| return; |
| } else { |
| DCHECK_EQ(cond_value, 0); |
| } |
| } else { |
| bool is_materialized = |
| !cond->IsCondition() || cond->AsCondition()->NeedsMaterialization(); |
| // Moves do not affect the eflags register, so if the condition is |
| // evaluated just before the if, we don't need to evaluate it |
| // again. We can't use the eflags on long/FP conditions if they are |
| // materialized due to the complex branching. |
| Primitive::Type type = cond->IsCondition() ? cond->InputAt(0)->GetType() : Primitive::kPrimInt; |
| bool eflags_set = cond->IsCondition() |
| && cond->AsCondition()->IsBeforeWhenDisregardMoves(instruction) |
| && (type != Primitive::kPrimLong && !Primitive::IsFloatingPointType(type)); |
| if (is_materialized) { |
| if (!eflags_set) { |
| // Materialized condition, compare against 0. |
| Location lhs = instruction->GetLocations()->InAt(0); |
| if (lhs.IsRegister()) { |
| __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); |
| } else { |
| __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0)); |
| } |
| __ j(kNotEqual, true_target); |
| } else { |
| __ j(X86SignedCondition(cond->AsCondition()->GetCondition()), true_target); |
| } |
| } else { |
| // Condition has not been materialized, use its inputs as the |
| // comparison and its condition as the branch condition. |
| |
| // Is this a long or FP comparison that has been folded into the HCondition? |
| if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { |
| // Generate the comparison directly. |
| GenerateCompareTestAndBranch(instruction->AsIf(), |
| cond->AsCondition(), |
| true_target, |
| false_target, |
| always_true_target); |
| return; |
| } |
| |
| Location lhs = cond->GetLocations()->InAt(0); |
| Location rhs = cond->GetLocations()->InAt(1); |
| // LHS is guaranteed to be in a register (see |
| // LocationsBuilderX86::VisitCondition). |
| if (rhs.IsRegister()) { |
| __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>()); |
| } else if (rhs.IsConstant()) { |
| int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); |
| if (constant == 0) { |
| __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); |
| } else { |
| __ cmpl(lhs.AsRegister<Register>(), Immediate(constant)); |
| } |
| } else { |
| __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| __ j(X86SignedCondition(cond->AsCondition()->GetCondition()), true_target); |
| } |
| } |
| if (false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(if_instr, LocationSummary::kNoCall); |
| HInstruction* cond = if_instr->InputAt(0); |
| if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) { |
| Label* true_target = codegen_->GetLabelOf(if_instr->IfTrueSuccessor()); |
| Label* false_target = codegen_->GetLabelOf(if_instr->IfFalseSuccessor()); |
| Label* always_true_target = true_target; |
| if (codegen_->GoesToNextBlock(if_instr->GetBlock(), |
| if_instr->IfTrueSuccessor())) { |
| always_true_target = nullptr; |
| } |
| if (codegen_->GoesToNextBlock(if_instr->GetBlock(), |
| if_instr->IfFalseSuccessor())) { |
| false_target = nullptr; |
| } |
| GenerateTestAndBranch(if_instr, true_target, false_target, always_true_target); |
| } |
| |
| void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| HInstruction* cond = deoptimize->InputAt(0); |
| DCHECK(cond->IsCondition()); |
| if (cond->AsCondition()->NeedsMaterialization()) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) |
| DeoptimizationSlowPathX86(deoptimize); |
| codegen_->AddSlowPath(slow_path); |
| Label* slow_path_entry = slow_path->GetEntryLabel(); |
| GenerateTestAndBranch(deoptimize, slow_path_entry, nullptr, slow_path_entry); |
| } |
| |
| void LocationsBuilderX86::VisitLocal(HLocal* local) { |
| local->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLocal(HLocal* local) { |
| DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock()); |
| } |
| |
| void LocationsBuilderX86::VisitLoadLocal(HLoadLocal* local) { |
| local->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadLocal(HLoadLocal* load) { |
| // Nothing to do, this is driven by the code generator. |
| UNUSED(load); |
| } |
| |
| void LocationsBuilderX86::VisitStoreLocal(HStoreLocal* store) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall); |
| switch (store->InputAt(1)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimFloat: |
| locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal()))); |
| break; |
| |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal()))); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown local type " << store->InputAt(1)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStoreLocal(HStoreLocal* store) { |
| UNUSED(store); |
| } |
| |
| void LocationsBuilderX86::VisitCondition(HCondition* cond) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); |
| // Handle the long/FP comparisons made in instruction simplification. |
| switch (cond->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); |
| if (cond->NeedsMaterialization()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| if (cond->NeedsMaterialization()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| default: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (cond->NeedsMaterialization()) { |
| // We need a byte register. |
| locations->SetOut(Location::RegisterLocation(ECX)); |
| } |
| break; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCondition(HCondition* cond) { |
| if (!cond->NeedsMaterialization()) { |
| return; |
| } |
| |
| LocationSummary* locations = cond->GetLocations(); |
| Location lhs = locations->InAt(0); |
| Location rhs = locations->InAt(1); |
| Register reg = locations->Out().AsRegister<Register>(); |
| Label true_label, false_label; |
| |
| switch (cond->InputAt(0)->GetType()) { |
| default: { |
| // Integer case. |
| |
| // Clear output register: setcc only sets the low byte. |
| __ xorl(reg, reg); |
| |
| if (rhs.IsRegister()) { |
| __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>()); |
| } else if (rhs.IsConstant()) { |
| int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); |
| if (constant == 0) { |
| __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); |
| } else { |
| __ cmpl(lhs.AsRegister<Register>(), Immediate(constant)); |
| } |
| } else { |
| __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| __ setb(X86SignedCondition(cond->GetCondition()), reg); |
| return; |
| } |
| case Primitive::kPrimLong: |
| GenerateLongComparesAndJumps(cond, &true_label, &false_label); |
| break; |
| case Primitive::kPrimFloat: |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| case Primitive::kPrimDouble: |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| } |
| |
| // Convert the jumps into the result. |
| NearLabel done_label; |
| |
| // False case: result = 0. |
| __ Bind(&false_label); |
| __ xorl(reg, reg); |
| __ jmp(&done_label); |
| |
| // True case: result = 1. |
| __ Bind(&true_label); |
| __ movl(reg, Immediate(1)); |
| __ Bind(&done_label); |
| } |
| |
| void LocationsBuilderX86::VisitEqual(HEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitLessThan(HLessThan* comp) { |
| VisitCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) { |
| VisitCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) { |
| VisitCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) { |
| VisitCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| VisitCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant) { |
| // Will be generated at use site. |
| UNUSED(constant); |
| } |
| |
| void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant) { |
| // Will be generated at use site. |
| UNUSED(constant); |
| } |
| |
| void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant) { |
| // Will be generated at use site. |
| UNUSED(constant); |
| } |
| |
| void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant) { |
| // Will be generated at use site. |
| UNUSED(constant); |
| } |
| |
| void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant) { |
| // Will be generated at use site. |
| UNUSED(constant); |
| } |
| |
| void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret) { |
| UNUSED(ret); |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); |
| switch (ret->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| break; |
| |
| case Primitive::kPrimLong: |
| locations->SetInAt( |
| 0, Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt( |
| 0, Location::FpuRegisterLocation(XMM0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) { |
| if (kIsDebugBuild) { |
| switch (ret->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX); |
| break; |
| |
| case Primitive::kPrimLong: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // When we do not run baseline, explicit clinit checks triggered by static |
| // invokes must have been pruned by art::PrepareForRegisterAllocation. |
| DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderX86 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| |
| if (codegen_->IsBaseline()) { |
| // Baseline does not have enough registers if the current method also |
| // needs a register. We therefore do not require a register for it, and let |
| // the code generation of the invoke handle it. |
| LocationSummary* locations = invoke->GetLocations(); |
| Location location = locations->InAt(invoke->GetCurrentMethodInputIndex()); |
| if (location.IsUnallocated() && location.GetPolicy() == Location::kRequiresRegister) { |
| locations->SetInAt(invoke->GetCurrentMethodInputIndex(), Location::NoLocation()); |
| } |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorX86 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // When we do not run baseline, explicit clinit checks triggered by static |
| // invokes must have been pruned by art::PrepareForRegisterAllocation. |
| DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorX86 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| // Add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>(); |
| uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset( |
| invoke->GetImtIndex() % mirror::Class::kImtSize, kX86PointerSize).Uint32Value(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location receiver = locations->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| // Set the hidden argument. |
| __ movl(temp, Immediate(invoke->GetDexMethodIndex())); |
| __ movd(invoke->GetLocations()->GetTemp(1).AsFpuRegister<XmmRegister>(), temp); |
| |
| // temp = object->GetClass(); |
| if (receiver.IsStackSlot()) { |
| __ movl(temp, Address(ESP, receiver.GetStackIndex())); |
| __ movl(temp, Address(temp, class_offset)); |
| } else { |
| __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ movl(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kX86WordSize).Int32Value())); |
| |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| DCHECK(in.IsRegister()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: |
| DCHECK(in.IsRegisterPair()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegisterPairLow<Register>()); |
| // Negation is similar to subtraction from zero. The least |
| // significant byte triggers a borrow when it is different from |
| // zero; to take it into account, add 1 to the most significant |
| // byte if the carry flag (CF) is set to 1 after the first NEGL |
| // operation. |
| __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0)); |
| __ negl(out.AsRegisterPairHigh<Register>()); |
| break; |
| |
| case Primitive::kPrimFloat: { |
| DCHECK(in.Equals(out)); |
| Register constant = locations->GetTemp(0).AsRegister<Register>(); |
| XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| // Implement float negation with an exclusive or with value |
| // 0x80000000 (mask for bit 31, representing the sign of a |
| // single-precision floating-point number). |
| __ movl(constant, Immediate(INT32_C(0x80000000))); |
| __ movd(mask, constant); |
| __ xorps(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DCHECK(in.Equals(out)); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| // Implement double negation with an exclusive or with value |
| // 0x8000000000000000 (mask for bit 63, representing the sign of |
| // a double-precision floating-point number). |
| __ LoadLongConstant(mask, INT64_C(0x8000000000000000)); |
| __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) { |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| |
| // The float-to-long and double-to-long type conversions rely on a |
| // call to the runtime. |
| LocationSummary::CallKind call_kind = |
| ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) |
| && result_type == Primitive::kPrimLong) |
| ? LocationSummary::kCall |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); |
| |
| // The Java language does not allow treating boolean as an integral type but |
| // our bit representation makes it safe. |
| |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0))); |
| // Make the output overlap to please the register allocator. This greatly simplifies |
| // the validation of the linear scan implementation |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `float-to-long' or 'double-to-long' instruction. |
| InvokeRuntimeCallingConvention calling_convention; |
| XmmRegister parameter = calling_convention.GetFpuRegisterAt(0); |
| locations->SetInAt(0, Location::FpuRegisterLocation(parameter)); |
| |
| // The runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-float' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::Any()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-double' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::Any()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| if (in.IsRegister()) { |
| __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| if (in.IsRegister()) { |
| __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>()); |
| } else if (in.IsStackSlot()) { |
| __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| if (in.IsRegisterPair()) { |
| __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.IsConstant()); |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value))); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-int' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| Register output = out.AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // temp = int-to-float(output) |
| __ cvtsi2ss(temp, output); |
| // if input >= temp goto done |
| __ comiss(input, temp); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = float-to-int-truncate(input) |
| __ cvttss2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-int' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| Register output = out.AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // temp = int-to-double(output) |
| __ cvtsi2sd(temp, output); |
| // if input >= temp goto done |
| __ comisd(input, temp); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = double-to-int-truncate(input) |
| __ cvttsd2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX); |
| DCHECK_EQ(in.AsRegister<Register>(), EAX); |
| __ cdq(); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-long' instruction. |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l), |
| conversion, |
| conversion->GetDexPc(), |
| nullptr); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-long' instruction. |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l), |
| conversion, |
| conversion->GetDexPc(), |
| nullptr); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `Process a Dex `int-to-char'' instruction. |
| if (in.IsRegister()) { |
| __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>()); |
| } else if (in.IsStackSlot()) { |
| __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-float' instruction. |
| size_t adjustment = 0; |
| |
| // Create stack space for the call to |
| // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) { |
| adjustment = Primitive::ComponentSize(Primitive::kPrimLong); |
| __ subl(ESP, Immediate(adjustment)); |
| } |
| |
| // Load the value to the FP stack, using temporaries if needed. |
| PushOntoFPStack(in, 0, adjustment, false, true); |
| |
| if (out.IsStackSlot()) { |
| __ fstps(Address(ESP, out.GetStackIndex() + adjustment)); |
| } else { |
| __ fstps(Address(ESP, 0)); |
| Location stack_temp = Location::StackSlot(0); |
| codegen_->Move32(out, stack_temp); |
| } |
| |
| // Remove the temporary stack space we allocated. |
| if (adjustment != 0) { |
| __ addl(ESP, Immediate(adjustment)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-double' instruction. |
| size_t adjustment = 0; |
| |
| // Create stack space for the call to |
| // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) { |
| adjustment = Primitive::ComponentSize(Primitive::kPrimLong); |
| __ subl(ESP, Immediate(adjustment)); |
| } |
| |
| // Load the value to the FP stack, using temporaries if needed. |
| PushOntoFPStack(in, 0, adjustment, false, true); |
| |
| if (out.IsDoubleStackSlot()) { |
| __ fstpl(Address(ESP, out.GetStackIndex() + adjustment)); |
| } else { |
| __ fstpl(Address(ESP, 0)); |
| Location stack_temp = Location::DoubleStackSlot(0); |
| codegen_->Move64(out, stack_temp); |
| } |
| |
| // Remove the temporary stack space we allocated. |
| if (adjustment != 0) { |
| __ addl(ESP, Immediate(adjustment)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitAdd(HAdd* add) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| break; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) { |
| LocationSummary* locations = add->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), first.AsRegister<Register>()); |
| } else { |
| __ leal(out.AsRegister<Register>(), Address( |
| first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0)); |
| } |
| } else if (second.IsConstant()) { |
| int32_t value = second.GetConstant()->AsIntConstant()->GetValue(); |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), Immediate(value)); |
| } else { |
| __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value)); |
| } |
| } else { |
| DCHECK(first.Equals(locations->Out())); |
| __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsRegisterPair()) { |
| __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (second.IsDoubleStackSlot()) { |
| __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ adcl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitSub(HSub* sub) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSub(HSub* sub) { |
| LocationSummary* locations = sub->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| __ subl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (second.IsConstant()) { |
| __ subl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsRegisterPair()) { |
| __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (second.IsDoubleStackSlot()) { |
| __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (mul->InputAt(1)->IsIntConstant()) { |
| // Can use 3 operand multiply. |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| break; |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Needed for imul on 32bits with 64bits output. |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMul(HMul* mul) { |
| LocationSummary* locations = mul->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| // The constant may have ended up in a register, so test explicitly to avoid |
| // problems where the output may not be the same as the first operand. |
| if (mul->InputAt(1)->IsIntConstant()) { |
| Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); |
| __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm); |
| } else if (second.IsRegister()) { |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| |
| case Primitive::kPrimLong: { |
| Register in1_hi = first.AsRegisterPairHigh<Register>(); |
| Register in1_lo = first.AsRegisterPairLow<Register>(); |
| Register eax = locations->GetTemp(0).AsRegister<Register>(); |
| Register edx = locations->GetTemp(1).AsRegister<Register>(); |
| |
| DCHECK_EQ(EAX, eax); |
| DCHECK_EQ(EDX, edx); |
| |
| // input: in1 - 64 bits, in2 - 64 bits. |
| // output: in1 |
| // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo |
| // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] |
| // parts: in1.lo = (in1.lo * in2.lo)[31:0] |
| if (second.IsConstant()) { |
| DCHECK(second.GetConstant()->IsLongConstant()); |
| |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| |
| __ movl(eax, high); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, low); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in2_lo to eax to prepare for double precision |
| __ movl(eax, low); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in1_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } else if (second.IsRegisterPair()) { |
| Register in2_hi = second.AsRegisterPairHigh<Register>(); |
| Register in2_lo = second.AsRegisterPairLow<Register>(); |
| |
| __ movl(eax, in2_hi); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, in2_lo); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in1_lo to eax to prepare for double precision |
| __ movl(eax, in1_lo); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in2_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()) << second; |
| Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize)); |
| Address in2_lo(ESP, second.GetStackIndex()); |
| |
| __ movl(eax, in2_hi); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, in2_lo); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in1_lo to eax to prepare for double precision |
| __ movl(eax, in1_lo); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in2_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| DCHECK(first.Equals(locations->Out())); |
| if (second.IsFpuRegister()) { |
| __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DCHECK(first.Equals(locations->Out())); |
| if (second.IsFpuRegister()) { |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::PushOntoFPStack(Location source, |
| uint32_t temp_offset, |
| uint32_t stack_adjustment, |
| bool is_fp, |
| bool is_wide) { |
| if (source.IsStackSlot()) { |
| DCHECK(!is_wide); |
| if (is_fp) { |
| __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } else { |
| __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| DCHECK(is_wide); |
| if (is_fp) { |
| __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } else { |
| __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } |
| } else { |
| // Write the value to the temporary location on the stack and load to FP stack. |
| if (!is_wide) { |
| Location stack_temp = Location::StackSlot(temp_offset); |
| codegen_->Move32(stack_temp, source); |
| if (is_fp) { |
| __ flds(Address(ESP, temp_offset)); |
| } else { |
| __ filds(Address(ESP, temp_offset)); |
| } |
| } else { |
| Location stack_temp = Location::DoubleStackSlot(temp_offset); |
| codegen_->Move64(stack_temp, source); |
| if (is_fp) { |
| __ fldl(Address(ESP, temp_offset)); |
| } else { |
| __ fildl(Address(ESP, temp_offset)); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) { |
| Primitive::Type type = rem->GetResultType(); |
| bool is_float = type == Primitive::kPrimFloat; |
| size_t elem_size = Primitive::ComponentSize(type); |
| LocationSummary* locations = rem->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| // Create stack space for 2 elements. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| __ subl(ESP, Immediate(2 * elem_size)); |
| |
| // Load the values to the FP stack in reverse order, using temporaries if needed. |
| const bool is_wide = !is_float; |
| PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide); |
| PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide); |
| |
| // Loop doing FPREM until we stabilize. |
| NearLabel retry; |
| __ Bind(&retry); |
| __ fprem(); |
| |
| // Move FP status to AX. |
| __ fstsw(); |
| |
| // And see if the argument reduction is complete. This is signaled by the |
| // C2 FPU flag bit set to 0. |
| __ andl(EAX, Immediate(kC2ConditionMask)); |
| __ j(kNotEqual, &retry); |
| |
| // We have settled on the final value. Retrieve it into an XMM register. |
| // Store FP top of stack to real stack. |
| if (is_float) { |
| __ fsts(Address(ESP, 0)); |
| } else { |
| __ fstl(Address(ESP, 0)); |
| } |
| |
| // Pop the 2 items from the FP stack. |
| __ fucompp(); |
| |
| // Load the value from the stack into an XMM register. |
| DCHECK(out.IsFpuRegister()) << out; |
| if (is_float) { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } else { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } |
| |
| // And remove the temporary stack space we allocated. |
| __ addl(ESP, Immediate(2 * elem_size)); |
| } |
| |
| |
| void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| DCHECK(locations->InAt(1).IsConstant()); |
| DCHECK(locations->InAt(1).GetConstant()->IsIntConstant()); |
| |
| Register out_register = locations->Out().AsRegister<Register>(); |
| Register input_register = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ xorl(out_register, out_register); |
| } else { |
| __ movl(out_register, input_register); |
| if (imm == -1) { |
| __ negl(out_register); |
| } |
| } |
| } |
| |
| |
| void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| Register out_register = locations->Out().AsRegister<Register>(); |
| Register input_register = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| DCHECK(IsPowerOfTwo(std::abs(imm))); |
| Register num = locations->GetTemp(0).AsRegister<Register>(); |
| |
| __ leal(num, Address(input_register, std::abs(imm) - 1)); |
| __ testl(input_register, input_register); |
| __ cmovl(kGreaterEqual, num, input_register); |
| int shift = CTZ(imm); |
| __ sarl(num, Immediate(shift)); |
| |
| if (imm < 0) { |
| __ negl(num); |
| } |
| |
| __ movl(out_register, num); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| Register eax = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Register num; |
| Register edx; |
| |
| if (instruction->IsDiv()) { |
| edx = locations->GetTemp(0).AsRegister<Register>(); |
| num = locations->GetTemp(1).AsRegister<Register>(); |
| } else { |
| edx = locations->Out().AsRegister<Register>(); |
| num = locations->GetTemp(0).AsRegister<Register>(); |
| } |
| |
| DCHECK_EQ(EAX, eax); |
| DCHECK_EQ(EDX, edx); |
| if (instruction->IsDiv()) { |
| DCHECK_EQ(EAX, out); |
| } else { |
| DCHECK_EQ(EDX, out); |
| } |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); |
| |
| NearLabel ndiv; |
| NearLabel end; |
| // If numerator is 0, the result is 0, no computation needed. |
| __ testl(eax, eax); |
| __ j(kNotEqual, &ndiv); |
| |
| __ xorl(out, out); |
| __ jmp(&end); |
| |
| __ Bind(&ndiv); |
| |
| // Save the numerator. |
| __ movl(num, eax); |
| |
| // EAX = magic |
| __ movl(eax, Immediate(magic)); |
| |
| // EDX:EAX = magic * numerator |
| __ imull(num); |
| |
| if (imm > 0 && magic < 0) { |
| // EDX += num |
| __ addl(edx, num); |
| } else if (imm < 0 && magic > 0) { |
| __ subl(edx, num); |
| } |
| |
| // Shift if needed. |
| if (shift != 0) { |
| __ sarl(edx, Immediate(shift)); |
| } |
| |
| // EDX += 1 if EDX < 0 |
| __ movl(eax, edx); |
| __ shrl(edx, Immediate(31)); |
| __ addl(edx, eax); |
| |
| if (instruction->IsRem()) { |
| __ movl(eax, num); |
| __ imull(edx, Immediate(imm)); |
| __ subl(eax, edx); |
| __ movl(edx, eax); |
| } else { |
| __ movl(eax, edx); |
| } |
| __ Bind(&end); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| bool is_div = instruction->IsDiv(); |
| |
| switch (instruction->GetResultType()) { |
| case Primitive::kPrimInt: { |
| DCHECK_EQ(EAX, first.AsRegister<Register>()); |
| DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>()); |
| |
| if (instruction->InputAt(1)->IsIntConstant()) { |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| |
| if (imm == 0) { |
| // Do not generate anything for 0. DivZeroCheck would forbid any generated code. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (is_div && IsPowerOfTwo(std::abs(imm))) { |
| DivByPowerOfTwo(instruction->AsDiv()); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| SlowPathCodeX86* slow_path = |
| new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(out.AsRegister<Register>(), |
| is_div); |
| codegen_->AddSlowPath(slow_path); |
| |
| Register second_reg = second.AsRegister<Register>(); |
| // 0x80000000/-1 triggers an arithmetic exception! |
| // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so |
| // it's safe to just use negl instead of more complex comparisons. |
| |
| __ cmpl(second_reg, Immediate(-1)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // edx:eax <- sign-extended of eax |
| __ cdq(); |
| // eax = quotient, edx = remainder |
| __ idivl(second_reg); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>()); |
| |
| if (is_div) { |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| } else { |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitDiv(HDiv* div) { |
| LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong) |
| ? LocationSummary::kCall |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Intel uses edx:eax as the dividend. |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as |
| // output and request another temp. |
| if (div->InputAt(1)->IsIntConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // Runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) { |
| LocationSummary* locations = div->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(div); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(!const_area->NeedsMaterialization()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| |
| LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong) |
| ? LocationSummary::kCall |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RegisterLocation(EDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as |
| // output and request another temp. |
| if (rem->InputAt(1)->IsIntConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // Runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| } |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimFloat: { |
| locations->SetInAt(0, Location::Any()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(rem); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| GenerateRemFP(rem); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| switch (instruction->GetType()) { |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::Any()); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| if (!instruction->IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); |
| } |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(0); |
| |
| switch (instruction->GetType()) { |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| if (value.IsRegister()) { |
| __ testl(value.AsRegister<Register>(), value.AsRegister<Register>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else if (value.IsStackSlot()) { |
| __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (value.IsRegisterPair()) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegisterPairLow<Register>()); |
| __ orl(temp, value.AsRegisterPairHigh<Register>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType(); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| // Can't have Location::Any() and output SameAsFirstInput() |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL or a constant. |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected op type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = op->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: { |
| DCHECK(first.IsRegister()); |
| Register first_reg = first.AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(ECX, second_reg); |
| if (op->IsShl()) { |
| __ shll(first_reg, second_reg); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, second_reg); |
| } else { |
| __ shrl(first_reg, second_reg); |
| } |
| } else { |
| int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftValue; |
| if (shift == 0) { |
| return; |
| } |
| Immediate imm(shift); |
| if (op->IsShl()) { |
| __ shll(first_reg, imm); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, imm); |
| } else { |
| __ shrl(first_reg, imm); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(ECX, second_reg); |
| if (op->IsShl()) { |
| GenerateShlLong(first, second_reg); |
| } else if (op->IsShr()) { |
| GenerateShrLong(first, second_reg); |
| } else { |
| GenerateUShrLong(first, second_reg); |
| } |
| } else { |
| // Shift by a constant. |
| int shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftValue; |
| // Nothing to do if the shift is 0, as the input is already the output. |
| if (shift != 0) { |
| if (op->IsShl()) { |
| GenerateShlLong(first, shift); |
| } else if (op->IsShr()) { |
| GenerateShrLong(first, shift); |
| } else { |
| GenerateUShrLong(first, shift); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected op type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 1) { |
| // This is just an addition. |
| __ addl(low, low); |
| __ adcl(high, high); |
| } else if (shift == 32) { |
| // Shift by 32 is easy. High gets low, and low gets 0. |
| codegen_->EmitParallelMoves( |
| loc.ToLow(), |
| loc.ToHigh(), |
| Primitive::kPrimInt, |
| Location::ConstantLocation(GetGraph()->GetIntConstant(0)), |
| loc.ToLow(), |
| Primitive::kPrimInt); |
| } else if (shift > 32) { |
| // Low part becomes 0. High part is low part << (shift-32). |
| __ movl(high, low); |
| __ shll(high, Immediate(shift - 32)); |
| __ xorl(low, low); |
| } else { |
| // Between 1 and 31. |
| __ shld(high, low, Immediate(shift)); |
| __ shll(low, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter); |
| __ shll(loc.AsRegisterPairLow<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>()); |
| __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0)); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 32) { |
| // Need to copy the sign. |
| DCHECK_NE(low, high); |
| __ movl(low, high); |
| __ sarl(high, Immediate(31)); |
| } else if (shift > 32) { |
| DCHECK_NE(low, high); |
| // High part becomes sign. Low part is shifted by shift - 32. |
| __ movl(low, high); |
| __ sarl(high, Immediate(31)); |
| __ sarl(low, Immediate(shift - 32)); |
| } else { |
| // Between 1 and 31. |
| __ shrd(low, high, Immediate(shift)); |
| __ sarl(high, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); |
| __ sarl(loc.AsRegisterPairHigh<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); |
| __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31)); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 32) { |
| // Shift by 32 is easy. Low gets high, and high gets 0. |
| codegen_->EmitParallelMoves( |
| loc.ToHigh(), |
| loc.ToLow(), |
| Primitive::kPrimInt, |
| Location::ConstantLocation(GetGraph()->GetIntConstant(0)), |
| loc.ToHigh(), |
| Primitive::kPrimInt); |
| } else if (shift > 32) { |
| // Low part is high >> (shift - 32). High part becomes 0. |
| __ movl(low, high); |
| __ shrl(low, Immediate(shift - 32)); |
| __ xorl(high, high); |
| } else { |
| // Between 1 and 31. |
| __ shrd(low, high, Immediate(shift)); |
| __ shrl(high, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); |
| __ shrl(loc.AsRegisterPairHigh<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); |
| __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0)); |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderX86::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderX86::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) { |
| InvokeRuntimeCallingConvention calling_convention; |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex())); |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| codegen_->InvokeRuntime( |
| Address::Absolute(GetThreadOffset<kX86WordSize>(instruction->GetEntrypoint())), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) { |
| InvokeRuntimeCallingConvention calling_convention; |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex())); |
| |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| codegen_->InvokeRuntime( |
| Address::Absolute(GetThreadOffset<kX86WordSize>(instruction->GetEntrypoint())), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderX86::VisitNot(HNot* not_) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNot(HNot* not_) { |
| LocationSummary* locations = not_->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| DCHECK(in.Equals(out)); |
| switch (not_->GetResultType()) { |
| case Primitive::kPrimInt: |
| __ notl(out.AsRegister<Register>()); |
| break; |
| |
| case Primitive::kPrimLong: |
| __ notl(out.AsRegisterPairLow<Register>()); |
| __ notl(out.AsRegisterPairHigh<Register>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = bool_not->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| DCHECK(in.Equals(out)); |
| __ xorl(out.AsRegister<Register>(), Immediate(1)); |
| } |
| |
| void LocationsBuilderX86::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = compare->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| NearLabel less, greater, done; |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: { |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| int32_t val_low = 0; |
| int32_t val_high = 0; |
| bool right_is_const = false; |
| |
| if (right.IsConstant()) { |
| DCHECK(right.GetConstant()->IsLongConstant()); |
| right_is_const = true; |
| int64_t val = right.GetConstant()->AsLongConstant()->GetValue(); |
| val_low = Low32Bits(val); |
| val_high = High32Bits(val); |
| } |
| |
| if (right.IsRegisterPair()) { |
| __ cmpl(left_high, right.AsRegisterPairHigh<Register>()); |
| } else if (right.IsDoubleStackSlot()) { |
| __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(right_is_const) << right; |
| if (val_high == 0) { |
| __ testl(left_high, left_high); |
| } else { |
| __ cmpl(left_high, Immediate(val_high)); |
| } |
| } |
| __ j(kLess, &less); // Signed compare. |
| __ j(kGreater, &greater); // Signed compare. |
| if (right.IsRegisterPair()) { |
| __ cmpl(left_low, right.AsRegisterPairLow<Register>()); |
| } else if (right.IsDoubleStackSlot()) { |
| __ cmpl(left_low, Address(ESP, right.GetStackIndex())); |
| } else { |
| DCHECK(right_is_const) << right; |
| if (val_low == 0) { |
| __ testl(left_low, left_low); |
| } else { |
| __ cmpl(left_low, Immediate(val_low)); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| __ ucomiss(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| __ ucomisd(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| __ movl(out, Immediate(0)); |
| __ j(kEqual, &done); |
| __ j(kBelow, &less); // kBelow is for CF (unsigned & floats). |
| |
| __ Bind(&greater); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| |
| __ Bind(&less); |
| __ movl(out, Immediate(-1)); |
| |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) { |
| /* |
| * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. |
| * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. |
| * For those cases, all we need to ensure is that there is a scheduling barrier in place. |
| */ |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: { |
| __ mfence(); |
| break; |
| } |
| case MemBarrierKind::kAnyStore: |
| case MemBarrierKind::kLoadAny: |
| case MemBarrierKind::kStoreStore: { |
| // nop |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| } |
| } |
| |
| |
| void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: |
| // temp = thread->string_init_entrypoint |
| __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: |
| __ movl(temp.AsRegister<Register>(), Immediate(0)); // Placeholder. |
| method_patches_.emplace_back(invoke->GetTargetMethod()); |
| __ Bind(&method_patches_.back().label); // Bind the label at the end of the "movl" insn. |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: |
| // TODO: Implement this type. For the moment, we fall back to kDexCacheViaMethod. |
| FALLTHROUGH_INTENDED; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { |
| Location current_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodInputIndex()); |
| Register method_reg; |
| Register reg = temp.AsRegister<Register>(); |
| if (current_method.IsRegister()) { |
| method_reg = current_method.AsRegister<Register>(); |
| } else { |
| DCHECK(IsBaseline() || invoke->GetLocations()->Intrinsified()); |
| DCHECK(!current_method.IsValid()); |
| method_reg = reg; |
| __ movl(reg, Address(ESP, kCurrentMethodStackOffset)); |
| } |
| // temp = temp->dex_cache_resolved_methods_; |
| __ movl(reg, Address(method_reg, |
| ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value())); |
| // temp = temp[index_in_cache] |
| uint32_t index_in_cache = invoke->GetTargetMethod().dex_method_index; |
| __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache))); |
| break; |
| } |
| } |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ call(GetFrameEntryLabel()); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: { |
| relative_call_patches_.emplace_back(invoke->GetTargetMethod()); |
| Label* label = &relative_call_patches_.back().label; |
| __ call(label); // Bind to the patch label, override at link time. |
| __ Bind(label); // Bind the label at the end of the "call" insn. |
| break; |
| } |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: |
| // For direct code, we actually prefer to call via the code pointer from ArtMethod*. |
| // (Though the direct CALL ptr16:32 is available for consideration). |
| FALLTHROUGH_INTENDED; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // (callee_method + offset_of_quick_compiled_code)() |
| __ call(Address(callee_method.AsRegister<Register>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kX86WordSize).Int32Value())); |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { |
| Register temp = temp_in.AsRegister<Register>(); |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kX86PointerSize).Uint32Value(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location receiver = locations->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| // temp = object->GetClass(); |
| DCHECK(receiver.IsRegister()); |
| __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetMethodAt(method_offset); |
| __ movl(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address( |
| temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value())); |
| } |
| |
| void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| linker_patches->reserve(method_patches_.size() + relative_call_patches_.size()); |
| for (const MethodPatchInfo<Label>& info : method_patches_) { |
| // The label points to the end of the "movl" insn but the literal offset for method |
| // patch x86 needs to point to the embedded constant which occupies the last 4 bytes. |
| uint32_t literal_offset = info.label.Position() - 4; |
| linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset, |
| info.target_method.dex_file, |
| info.target_method.dex_method_index)); |
| } |
| for (const MethodPatchInfo<Label>& info : relative_call_patches_) { |
| // The label points to the end of the "call" insn but the literal offset for method |
| // patch x86 needs to point to the embedded constant which occupies the last 4 bytes. |
| uint32_t literal_offset = info.label.Position() - 4; |
| linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset, |
| info.target_method.dex_file, |
| info.target_method.dex_method_index)); |
| } |
| } |
| |
| void CodeGeneratorX86::MarkGCCard(Register temp, |
| Register card, |
| Register object, |
| Register value, |
| bool value_can_be_null) { |
| NearLabel is_null; |
| if (value_can_be_null) { |
| __ testl(value, value); |
| __ j(kEqual, &is_null); |
| } |
| __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value())); |
| __ movl(temp, object); |
| __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift)); |
| __ movb(Address(temp, card, TIMES_1, 0), |
| X86ManagedRegister::FromCpuRegister(card).AsByteRegister()); |
| if (value_can_be_null) { |
| __ Bind(&is_null); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps in case of long: we don't want the low move to overwrite |
| // the object's location. |
| locations->SetOut(Location::RequiresRegister(), |
| (instruction->GetType() == Primitive::kPrimLong) ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| |
| if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) { |
| // Long values can be loaded atomically into an XMM using movsd. |
| // So we use an XMM register as a temp to achieve atomicity (first load the temp into the XMM |
| // and then copy the XMM into the output 32bits at a time). |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = locations->InAt(0).AsRegister<Register>(); |
| Location out = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: { |
| __ movzxb(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimByte: { |
| __ movsxb(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimShort: { |
| __ movsxw(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimChar: { |
| __ movzxw(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| __ movl(out.AsRegister<Register>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (is_volatile) { |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| __ movsd(temp, Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movd(out.AsRegisterPairLow<Register>(), temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(out.AsRegisterPairHigh<Register>(), temp); |
| } else { |
| DCHECK_NE(base, out.AsRegisterPairLow<Register>()); |
| __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| // Longs are handled in the switch. |
| if (field_type != Primitive::kPrimLong) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| |
| if (field_type == Primitive::kPrimNot) { |
| __ MaybeUnpoisonHeapReference(out.AsRegister<Register>()); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| bool is_byte_type = (field_type == Primitive::kPrimBoolean) |
| || (field_type == Primitive::kPrimByte); |
| |
| // The register allocator does not support multiple |
| // inputs that die at entry with one in a specific register. |
| if (is_byte_type) { |
| // Ensure the value is in a byte register. |
| locations->SetInAt(1, Location::RegisterLocation(EAX)); |
| } else if (Primitive::IsFloatingPointType(field_type)) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| // Ensure the card is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } else if (is_volatile && (field_type == Primitive::kPrimLong)) { |
| // 64bits value can be atomically written to an address with movsd and an XMM register. |
| // We need two XMM registers because there's no easier way to (bit) copy a register pair |
| // into a single XMM register (we copy each pair part into the XMMs and then interleave them). |
| // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the |
| // isolated cases when we need this it isn't worth adding the extra complexity. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = locations->InAt(0).AsRegister<Register>(); |
| Location value = locations->InAt(1); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| __ movb(Address(base, offset), value.AsRegister<ByteRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| __ movw(Address(base, offset), value.AsRegister<Register>()); |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as the reference does not |
| // need poisoning. |
| DCHECK_EQ(field_type, Primitive::kPrimNot); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset), temp); |
| } else { |
| __ movl(Address(base, offset), value.AsRegister<Register>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (is_volatile) { |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, value.AsRegisterPairLow<Register>()); |
| __ movd(temp2, value.AsRegisterPairHigh<Register>()); |
| __ punpckldq(temp1, temp2); |
| __ movsd(Address(base, offset), temp1); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else { |
| __ movl(Address(base, offset), value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| // Longs are handled in the switch. |
| if (field_type != Primitive::kPrimLong) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (needs_write_barrier) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| Location loc = codegen_->IsImplicitNullCheckAllowed(instruction) |
| ? Location::RequiresRegister() |
| : Location::Any(); |
| locations->SetInAt(0, loc); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (codegen_->CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ testl(EAX, Address(obj.AsRegister<Register>(), 0)); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| if (obj.IsRegister()) { |
| __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>()); |
| } else if (obj.IsStackSlot()) { |
| __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0)); |
| } else { |
| DCHECK(obj.IsConstant()) << obj; |
| DCHECK(obj.GetConstant()->IsNullConstant()); |
| __ jmp(slow_path->GetEntryLabel()); |
| return; |
| } |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) { |
| if (codegen_->IsImplicitNullCheckAllowed(instruction)) { |
| GenerateImplicitNullCheck(instruction); |
| } else { |
| GenerateExplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in case of long: we don't want the low move to overwrite |
| // the array's location. |
| locations->SetOut(Location::RequiresRegister(), |
| (instruction->GetType() == Primitive::kPrimLong) ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| |
| Primitive::Type type = instruction->GetType(); |
| switch (type) { |
| case Primitive::kPrimBoolean: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| Register out = locations->Out().AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movzxb(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); |
| } else { |
| __ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimByte: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value(); |
| Register out = locations->Out().AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movsxb(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); |
| } else { |
| __ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimShort: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value(); |
| Register out = locations->Out().AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movsxw(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); |
| } else { |
| __ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimChar: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| Register out = locations->Out().AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movzxw(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); |
| } else { |
| __ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Register out = locations->Out().AsRegister<Register>(); |
| if (index.IsConstant()) { |
| __ movl(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); |
| } else { |
| __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| Location out = locations->Out(); |
| DCHECK_NE(obj, out.AsRegisterPairLow<Register>()); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ movl(out.AsRegisterPairLow<Register>(), Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(out.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize)); |
| } else { |
| __ movl(out.AsRegisterPairLow<Register>(), |
| Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(out.AsRegisterPairHigh<Register>(), |
| Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| if (index.IsConstant()) { |
| __ movss(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); |
| } else { |
| __ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| if (index.IsConstant()) { |
| __ movsd(out, Address(obj, |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); |
| } else { |
| __ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (type != Primitive::kPrimLong) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (type == Primitive::kPrimNot) { |
| Register out = locations->Out().AsRegister<Register>(); |
| __ MaybeUnpoisonHeapReference(out); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) { |
| // This location builder might end up asking to up to four registers, which is |
| // not currently possible for baseline. The situation in which we need four |
| // registers cannot be met by baseline though, because it has not run any |
| // optimization. |
| |
| Primitive::Type value_type = instruction->GetComponentType(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| bool needs_runtime_call = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall); |
| |
| if (needs_runtime_call) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| } else { |
| bool is_byte_type = (value_type == Primitive::kPrimBoolean) |
| || (value_type == Primitive::kPrimByte); |
| // We need the inputs to be different than the output in case of long operation. |
| // In case of a byte operation, the register allocator does not support multiple |
| // inputs that die at entry with one in a specific register. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (is_byte_type) { |
| // Ensure the value is in a byte register. |
| locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2))); |
| } else if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); |
| } |
| if (needs_write_barrier) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| // Ensure the card is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location value = locations->InAt(2); |
| Primitive::Type value_type = instruction->GetComponentType(); |
| bool needs_runtime_call = locations->WillCall(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| switch (value_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; |
| if (value.IsRegister()) { |
| __ movb(Address(obj, offset), value.AsRegister<ByteRegister>()); |
| } else { |
| __ movb(Address(obj, offset), |
| Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } else { |
| if (value.IsRegister()) { |
| __ movb(Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset), |
| value.AsRegister<ByteRegister>()); |
| } else { |
| __ movb(Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset), |
| Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; |
| if (value.IsRegister()) { |
| __ movw(Address(obj, offset), value.AsRegister<Register>()); |
| } else { |
| __ movw(Address(obj, offset), |
| Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } else { |
| if (value.IsRegister()) { |
| __ movw(Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset), |
| value.AsRegister<Register>()); |
| } else { |
| __ movw(Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset), |
| Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| if (!needs_runtime_call) { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| if (value.IsRegister()) { |
| if (kPoisonHeapReferences && value_type == Primitive::kPrimNot) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(obj, offset), temp); |
| } else { |
| __ movl(Address(obj, offset), value.AsRegister<Register>()); |
| } |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| // `value_type == Primitive::kPrimNot` implies `v == 0`. |
| DCHECK((value_type != Primitive::kPrimNot) || (v == 0)); |
| // Note: if heap poisoning is enabled, no need to poison |
| // (negate) `v` if it is a reference, as it would be null. |
| __ movl(Address(obj, offset), Immediate(v)); |
| } |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| if (value.IsRegister()) { |
| if (kPoisonHeapReferences && value_type == Primitive::kPrimNot) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset), temp); |
| } else { |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset), |
| value.AsRegister<Register>()); |
| } |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| // `value_type == Primitive::kPrimNot` implies `v == 0`. |
| DCHECK((value_type != Primitive::kPrimNot) || (v == 0)); |
| // Note: if heap poisoning is enabled, no need to poison |
| // (negate) `v` if it is a reference, as it would be null. |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset), Immediate(v)); |
| } |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| |
| if (needs_write_barrier) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard( |
| temp, card, obj, value.AsRegister<Register>(), instruction->GetValueCanBeNull()); |
| } |
| } else { |
| DCHECK_EQ(value_type, Primitive::kPrimNot); |
| DCHECK(!codegen_->IsLeafMethod()); |
| // Note: if heap poisoning is enabled, pAputObject takes cares |
| // of poisoning the reference. |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| if (value.IsRegisterPair()) { |
| __ movl(Address(obj, offset), value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(obj, offset + kX86WordSize), value.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(Address(obj, offset), Immediate(Low32Bits(val))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(obj, offset + kX86WordSize), Immediate(High32Bits(val))); |
| } |
| } else { |
| if (value.IsRegisterPair()) { |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset), |
| value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize), |
| value.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset), |
| Immediate(Low32Bits(val))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize), |
| Immediate(High32Bits(val))); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| DCHECK(value.IsFpuRegister()); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ movss(Address(obj, offset), value.AsFpuRegister<XmmRegister>()); |
| } else { |
| __ movss(Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset), |
| value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| DCHECK(value.IsFpuRegister()); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ movsd(Address(obj, offset), value.AsFpuRegister<XmmRegister>()); |
| } else { |
| __ movsd(Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset), |
| value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = mirror::Array::LengthOffset().Uint32Value(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| __ movl(out, Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (instruction->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| SlowPathCodeX86* slow_path = |
| new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); |
| if (index_loc.IsConstant()) { |
| // BCE will remove the bounds check if we are guarenteed to pass. |
| int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| if (index < 0 || index >= length) { |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| } else { |
| // Some optimization after BCE may have generated this, and we should not |
| // generate a bounds check if it is a valid range. |
| } |
| return; |
| } |
| |
| // We have to reverse the jump condition because the length is the constant. |
| Register index_reg = index_loc.AsRegister<Register>(); |
| __ cmpl(index_reg, Immediate(length)); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kAboveEqual, slow_path->GetEntryLabel()); |
| } else { |
| Register length = length_loc.AsRegister<Register>(); |
| if (index_loc.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| __ cmpl(length, Immediate(value)); |
| } else { |
| __ cmpl(length, index_loc.AsRegister<Register>()); |
| } |
| codegen_->AddSlowPath(slow_path); |
| __ j(kBelowEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitTemporary(HTemporary* temp) { |
| temp->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTemporary(HTemporary* temp) { |
| // Nothing to do, this is driven by the code generator. |
| UNUSED(temp); |
| } |
| |
| void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction) { |
| UNUSED(instruction); |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) { |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathX86* slow_path = |
| down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ fs()->cmpw(Address::Absolute( |
| Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()), Immediate(0)); |
| if (successor == nullptr) { |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ j(kEqual, codegen_->GetLabelOf(successor)); |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| |
| X86Assembler* ParallelMoveResolverX86::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, src + stack_offset)); |
| __ movl(Address(ESP, dst + stack_offset), temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, src + stack_offset)); |
| __ movl(Address(ESP, dst + stack_offset), temp_reg); |
| __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize)); |
| __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::EmitMove(size_t index) { |
| MoveOperands* move = moves_.Get(index); |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsStackSlot()) { |
| __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } |
| } else if (source.IsStackSlot()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); |
| } else if (destination.IsFpuRegister()) { |
| __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex()); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| if (destination.IsFpuRegister()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex()); |
| } |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsIntConstant() || constant->IsNullConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(constant); |
| if (destination.IsRegister()) { |
| if (value == 0) { |
| __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>()); |
| } else { |
| __ movl(destination.AsRegister<Register>(), Immediate(value)); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); |
| } |
| } else if (constant->IsFloatConstant()) { |
| float fp_value = constant->AsFloatConstant()->GetValue(); |
| int32_t value = bit_cast<int32_t, float>(fp_value); |
| Immediate imm(value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (value == 0) { |
| // Easy handling of 0.0. |
| __ xorps(dest, dest); |
| } else { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp = static_cast<Register>(ensure_scratch.GetRegister()); |
| __ movl(temp, Immediate(value)); |
| __ movd(dest, temp); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), imm); |
| } |
| } else if (constant->IsLongConstant()) { |
| int64_t value = constant->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| if (destination.IsDoubleStackSlot()) { |
| __ movl(Address(ESP, destination.GetStackIndex()), low); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); |
| } else { |
| __ movl(destination.AsRegisterPairLow<Register>(), low); |
| __ movl(destination.AsRegisterPairHigh<Register>(), high); |
| } |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| double dbl_value = constant->AsDoubleConstant()->GetValue(); |
| int64_t value = bit_cast<int64_t, double>(dbl_value); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (value == 0) { |
| // Easy handling of 0.0. |
| __ xorpd(dest, dest); |
| } else { |
| __ pushl(high); |
| __ pushl(low); |
| __ movsd(dest, Address(ESP, 0)); |
| __ addl(ESP, Immediate(8)); |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), low); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); |
| } |
| } |
| } else { |
| LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source; |
| } |
| } |
| |
| void ParallelMoveResolverX86::Exchange(Register reg, int mem) { |
| Register suggested_scratch = reg == EAX ? EBX : EAX; |
| ScratchRegisterScope ensure_scratch( |
| this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset)); |
| __ movl(Address(ESP, mem + stack_offset), reg); |
| __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, mem + stack_offset)); |
| __ movss(Address(ESP, mem + stack_offset), reg); |
| __ movd(reg, temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::Exchange(int mem1, int mem2) { |
| ScratchRegisterScope ensure_scratch1( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX; |
| ScratchRegisterScope ensure_scratch2( |
| this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0; |
| stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0; |
| __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset)); |
| __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset)); |
| __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister())); |
| __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86::EmitSwap(size_t index) { |
| MoveOperands* move = moves_.Get(index); |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister() && destination.IsRegister()) { |
| // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary. |
| DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>()); |
| __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsRegister() && destination.IsStackSlot()) { |
| Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsRegister()) { |
| Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsStackSlot()) { |
| Exchange(destination.GetStackIndex(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { |
| // Use XOR Swap algorithm to avoid a temporary. |
| DCHECK_NE(source.reg(), destination.reg()); |
| __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); |
| __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsFpuRegister() && destination.IsStackSlot()) { |
| Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); |
| } else if (destination.IsFpuRegister() && source.IsStackSlot()) { |
| Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { |
| // Take advantage of the 16 bytes in the XMM register. |
| XmmRegister reg = source.AsFpuRegister<XmmRegister>(); |
| Address stack(ESP, destination.GetStackIndex()); |
| // Load the double into the high doubleword. |
| __ movhpd(reg, stack); |
| |
| // Store the low double into the destination. |
| __ movsd(stack, reg); |
| |
| // Move the high double to the low double. |
| __ psrldq(reg, Immediate(8)); |
| } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) { |
| // Take advantage of the 16 bytes in the XMM register. |
| XmmRegister reg = destination.AsFpuRegister<XmmRegister>(); |
| Address stack(ESP, source.GetStackIndex()); |
| // Load the double into the high doubleword. |
| __ movhpd(reg, stack); |
| |
| // Store the low double into the destination. |
| __ movsd(stack, reg); |
| |
| // Move the high double to the low double. |
| __ psrldq(reg, Immediate(8)); |
| } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) { |
| Exchange(destination.GetStackIndex(), source.GetStackIndex()); |
| Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize)); |
| } else { |
| LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination; |
| } |
| } |
| |
| void ParallelMoveResolverX86::SpillScratch(int reg) { |
| __ pushl(static_cast<Register>(reg)); |
| } |
| |
| void ParallelMoveResolverX86::RestoreScratch(int reg) { |
| __ popl(static_cast<Register>(reg)); |
| } |
| |
| void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) { |
| LocationSummary::CallKind call_kind = cls->CanCallRuntime() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) { |
| LocationSummary* locations = cls->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| if (cls->IsReferrersClass()) { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| __ movl(out, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); |
| } else { |
| DCHECK(cls->CanCallRuntime()); |
| __ movl(out, Address( |
| current_method, ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value())); |
| __ movl(out, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()))); |
| // TODO: We will need a read barrier here. |
| |
| SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( |
| cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); |
| codegen_->AddSlowPath(slow_path); |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class to not be null. |
| SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( |
| check->GetLoadClass(), check, check->GetDexPc(), true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<Register>()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateClassInitializationCheck( |
| SlowPathCodeX86* slow_path, Register class_reg) { |
| __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()), |
| Immediate(mirror::Class::kStatusInitialized)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| // No need for memory fence, thanks to the X86 memory model. |
| } |
| |
| void LocationsBuilderX86::VisitLoadString(HLoadString* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) { |
| SlowPathCodeX86* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = load->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| __ movl(out, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); |
| __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value())); |
| __ movl(out, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex()))); |
| // TODO: We will need a read barrier here. |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| static Address GetExceptionTlsAddress() { |
| return Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value()); |
| } |
| |
| void LocationsBuilderX86::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) { |
| __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderX86::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ fs()->movl(GetExceptionTlsAddress(), Immediate(0)); |
| } |
| |
| void LocationsBuilderX86::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = instruction->IsClassFinal() |
| ? LocationSummary::kNoCall |
| : LocationSummary::kCallOnSlowPath; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| // Note that TypeCheckSlowPathX86 uses this register too. |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Register out = locations->Out().AsRegister<Register>(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| NearLabel done, zero; |
| SlowPathCodeX86* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &zero); |
| } |
| // Compare the class of `obj` with `cls`. |
| __ movl(out, Address(obj, class_offset)); |
| __ MaybeUnpoisonHeapReference(out); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| |
| if (instruction->IsClassFinal()) { |
| // Classes must be equal for the instanceof to succeed. |
| __ j(kNotEqual, &zero); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| } else { |
| // If the classes are not equal, we go into a slow path. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| } |
| |
| if (instruction->MustDoNullCheck() || instruction->IsClassFinal()) { |
| __ Bind(&zero); |
| __ movl(out, Immediate(0)); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| // Note that TypeCheckSlowPathX86 uses this register too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| SlowPathCodeX86* slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, slow_path->GetExitLabel()); |
| } |
| // Compare the class of `obj` with `cls`. |
| __ movl(temp, Address(obj, class_offset)); |
| __ MaybeUnpoisonHeapReference(temp); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| // The checkcast succeeds if the classes are equal (fast path). |
| // Otherwise, we need to go into the slow path to check the types. |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject) |
| : QUICK_ENTRY_POINT(pUnlockObject), |
| instruction, |
| instruction->GetDexPc(), |
| nullptr); |
| } |
| |
| void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } |
| |
| void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| if (second.IsRegister()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } |
| } else if (second.IsConstant()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } else { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| if (second.IsRegisterPair()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } |
| } else if (second.IsDoubleStackSlot()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ andl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ orl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ xorl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| if (instruction->IsAnd()) { |
| if (low_value == 0) { |
| __ xorl(first_low, first_low); |
| } else if (low_value != -1) { |
| __ andl(first_low, low); |
| } |
| if (high_value == 0) { |
| __ xorl(first_high, first_high); |
| } else if (high_value != -1) { |
| __ andl(first_high, high); |
| } |
| } else if (instruction->IsOr()) { |
| if (low_value != 0) { |
| __ orl(first_low, low); |
| } |
| if (high_value != 0) { |
| __ orl(first_high, high); |
| } |
| } else { |
| DCHECK(instruction->IsXor()); |
| if (low_value != 0) { |
| __ xorl(first_low, low); |
| } |
| if (high_value != 0) { |
| __ xorl(first_high, high); |
| } |
| } |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::VisitBoundType(HBoundType* instruction) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| UNUSED(instruction); |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| UNUSED(instruction); |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderX86::VisitFakeString(HFakeString* instruction) { |
| DCHECK(codegen_->IsBaseline()); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(GetGraph()->GetNullConstant())); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitFakeString(HFakeString* instruction ATTRIBUTE_UNUSED) { |
| DCHECK(codegen_->IsBaseline()); |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress( |
| HX86ComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress( |
| HX86ComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = insn->GetLocations(); |
| Register reg = locations->Out().AsRegister<Register>(); |
| |
| // Generate call to next instruction. |
| Label next_instruction; |
| __ call(&next_instruction); |
| __ Bind(&next_instruction); |
| |
| // Remember this offset for later use with constant area. |
| codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize()); |
| |
| // Grab the return address off the stack. |
| __ popl(reg); |
| } |
| |
| void LocationsBuilderX86::VisitX86LoadFromConstantTable( |
| HX86LoadFromConstantTable* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant())); |
| |
| // If we don't need to be materialized, we only need the inputs to be set. |
| if (!insn->NeedsMaterialization()) { |
| return; |
| } |
| |
| switch (insn->GetType()) { |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimInt: |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) { |
| if (!insn->NeedsMaterialization()) { |
| return; |
| } |
| |
| LocationSummary* locations = insn->GetLocations(); |
| Location out = locations->Out(); |
| Register const_area = locations->InAt(0).AsRegister<Register>(); |
| HConstant *value = insn->GetConstant(); |
| |
| switch (insn->GetType()) { |
| case Primitive::kPrimFloat: |
| __ movss(out.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area)); |
| break; |
| |
| case Primitive::kPrimDouble: |
| __ movsd(out.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area)); |
| break; |
| |
| case Primitive::kPrimInt: |
| __ movl(out.AsRegister<Register>(), |
| codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); |
| } |
| } |
| |
| void CodeGeneratorX86::Finalize(CodeAllocator* allocator) { |
| // Generate the constant area if needed. |
| X86Assembler* assembler = GetAssembler(); |
| if (!assembler->IsConstantAreaEmpty()) { |
| // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 |
| // byte values. |
| assembler->Align(4, 0); |
| constant_area_start_ = assembler->CodeSize(); |
| assembler->AddConstantArea(); |
| } |
| |
| // And finish up. |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| /** |
| * Class to handle late fixup of offsets into constant area. |
| */ |
| class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocMisc> { |
| public: |
| RIPFixup(const CodeGeneratorX86& codegen, int offset) |
| : codegen_(codegen), offset_into_constant_area_(offset) {} |
| |
| private: |
| void Process(const MemoryRegion& region, int pos) OVERRIDE { |
| // Patch the correct offset for the instruction. The place to patch is the |
| // last 4 bytes of the instruction. |
| // The value to patch is the distance from the offset in the constant area |
| // from the address computed by the HX86ComputeBaseMethodAddress instruction. |
| int32_t constant_offset = codegen_.ConstantAreaStart() + offset_into_constant_area_; |
| int32_t relative_position = constant_offset - codegen_.GetMethodAddressOffset();; |
| |
| // Patch in the right value. |
| region.StoreUnaligned<int32_t>(pos - 4, relative_position); |
| } |
| |
| const CodeGeneratorX86& codegen_; |
| |
| // Location in constant area that the fixup refers to. |
| int offset_into_constant_area_; |
| }; |
| |
| Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v)); |
| return Address(reg, kDummy32BitOffset, fixup); |
| } |
| |
| /** |
| * Finds instructions that need the constant area base as an input. |
| */ |
| class ConstantHandlerVisitor : public HGraphVisitor { |
| public: |
| explicit ConstantHandlerVisitor(HGraph* graph) : HGraphVisitor(graph), base_(nullptr) {} |
| |
| private: |
| void VisitAdd(HAdd* add) OVERRIDE { |
| BinaryFP(add); |
| } |
| |
| void VisitSub(HSub* sub) OVERRIDE { |
| BinaryFP(sub); |
| } |
| |
| void VisitMul(HMul* mul) OVERRIDE { |
| BinaryFP(mul); |
| } |
| |
| void VisitDiv(HDiv* div) OVERRIDE { |
| BinaryFP(div); |
| } |
| |
| void VisitReturn(HReturn* ret) OVERRIDE { |
| HConstant* value = ret->InputAt(0)->AsConstant(); |
| if ((value != nullptr && Primitive::IsFloatingPointType(value->GetType()))) { |
| ReplaceInput(ret, value, 0, true); |
| } |
| } |
| |
| void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void VisitInvokeInterface(HInvokeInterface* invoke) OVERRIDE { |
| HandleInvoke(invoke); |
| } |
| |
| void BinaryFP(HBinaryOperation* bin) { |
| HConstant* rhs = bin->InputAt(1)->AsConstant(); |
| if (rhs != nullptr && Primitive::IsFloatingPointType(bin->GetResultType())) { |
| ReplaceInput(bin, rhs, 1, false); |
| } |
| } |
| |
| void InitializeConstantAreaPointer(HInstruction* user) { |
| // Ensure we only initialize the pointer once. |
| if (base_ != nullptr) { |
| return; |
| } |
| |
| HGraph* graph = GetGraph(); |
| HBasicBlock* entry = graph->GetEntryBlock(); |
| base_ = new (graph->GetArena()) HX86ComputeBaseMethodAddress(); |
| HInstruction* insert_pos = (user->GetBlock() == entry) ? user : entry->GetLastInstruction(); |
| entry->InsertInstructionBefore(base_, insert_pos); |
| DCHECK(base_ != nullptr); |
| } |
| |
| void ReplaceInput(HInstruction* insn, HConstant* value, int input_index, bool materialize) { |
| InitializeConstantAreaPointer(insn); |
| HGraph* graph = GetGraph(); |
| HBasicBlock* block = insn->GetBlock(); |
| HX86LoadFromConstantTable* load_constant = |
| new (graph->GetArena()) HX86LoadFromConstantTable(base_, value, materialize); |
| block->InsertInstructionBefore(load_constant, insn); |
| insn->ReplaceInput(load_constant, input_index); |
| } |
| |
| void HandleInvoke(HInvoke* invoke) { |
| // Ensure that we can load FP arguments from the constant area. |
| for (size_t i = 0, e = invoke->InputCount(); i < e; i++) { |
| HConstant* input = invoke->InputAt(i)->AsConstant(); |
| if (input != nullptr && Primitive::IsFloatingPointType(input->GetType())) { |
| ReplaceInput(invoke, input, i, true); |
| } |
| } |
| } |
| |
| // The generated HX86ComputeBaseMethodAddress in the entry block needed as an |
| // input to the HX86LoadFromConstantTable instructions. |
| HX86ComputeBaseMethodAddress* base_; |
| }; |
| |
| void ConstantAreaFixups::Run() { |
| ConstantHandlerVisitor visitor(graph_); |
| visitor.VisitInsertionOrder(); |
| } |
| |
| #undef __ |
| |
| } // namespace x86 |
| } // namespace art |