| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "base/arena_containers.h" |
| #include "bounds_check_elimination.h" |
| #include "induction_var_range.h" |
| #include "nodes.h" |
| |
| namespace art { |
| |
| class MonotonicValueRange; |
| |
| /** |
| * A value bound is represented as a pair of value and constant, |
| * e.g. array.length - 1. |
| */ |
| class ValueBound : public ValueObject { |
| public: |
| ValueBound(HInstruction* instruction, int32_t constant) { |
| if (instruction != nullptr && instruction->IsIntConstant()) { |
| // Normalize ValueBound with constant instruction. |
| int32_t instr_const = instruction->AsIntConstant()->GetValue(); |
| if (!WouldAddOverflowOrUnderflow(instr_const, constant)) { |
| instruction_ = nullptr; |
| constant_ = instr_const + constant; |
| return; |
| } |
| } |
| instruction_ = instruction; |
| constant_ = constant; |
| } |
| |
| // Return whether (left + right) overflows or underflows. |
| static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) { |
| if (right == 0) { |
| return false; |
| } |
| if ((right > 0) && (left <= INT_MAX - right)) { |
| // No overflow. |
| return false; |
| } |
| if ((right < 0) && (left >= INT_MIN - right)) { |
| // No underflow. |
| return false; |
| } |
| return true; |
| } |
| |
| static bool IsAddOrSubAConstant(HInstruction* instruction, |
| HInstruction** left_instruction, |
| int* right_constant) { |
| if (instruction->IsAdd() || instruction->IsSub()) { |
| HBinaryOperation* bin_op = instruction->AsBinaryOperation(); |
| HInstruction* left = bin_op->GetLeft(); |
| HInstruction* right = bin_op->GetRight(); |
| if (right->IsIntConstant()) { |
| *left_instruction = left; |
| int32_t c = right->AsIntConstant()->GetValue(); |
| *right_constant = instruction->IsAdd() ? c : -c; |
| return true; |
| } |
| } |
| *left_instruction = nullptr; |
| *right_constant = 0; |
| return false; |
| } |
| |
| // Try to detect useful value bound format from an instruction, e.g. |
| // a constant or array length related value. |
| static ValueBound DetectValueBoundFromValue(HInstruction* instruction, bool* found) { |
| DCHECK(instruction != nullptr); |
| if (instruction->IsIntConstant()) { |
| *found = true; |
| return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); |
| } |
| |
| if (instruction->IsArrayLength()) { |
| *found = true; |
| return ValueBound(instruction, 0); |
| } |
| // Try to detect (array.length + c) format. |
| HInstruction *left; |
| int32_t right; |
| if (IsAddOrSubAConstant(instruction, &left, &right)) { |
| if (left->IsArrayLength()) { |
| *found = true; |
| return ValueBound(left, right); |
| } |
| } |
| |
| // No useful bound detected. |
| *found = false; |
| return ValueBound::Max(); |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| int32_t GetConstant() const { return constant_; } |
| |
| bool IsRelatedToArrayLength() const { |
| // Some bounds are created with HNewArray* as the instruction instead |
| // of HArrayLength*. They are treated the same. |
| return (instruction_ != nullptr) && |
| (instruction_->IsArrayLength() || instruction_->IsNewArray()); |
| } |
| |
| bool IsConstant() const { |
| return instruction_ == nullptr; |
| } |
| |
| static ValueBound Min() { return ValueBound(nullptr, INT_MIN); } |
| static ValueBound Max() { return ValueBound(nullptr, INT_MAX); } |
| |
| bool Equals(ValueBound bound) const { |
| return instruction_ == bound.instruction_ && constant_ == bound.constant_; |
| } |
| |
| /* |
| * Hunt "under the hood" of array lengths (leading to array references), |
| * null checks (also leading to array references), and new arrays |
| * (leading to the actual length). This makes it more likely related |
| * instructions become actually comparable. |
| */ |
| static HInstruction* HuntForDeclaration(HInstruction* instruction) { |
| while (instruction->IsArrayLength() || |
| instruction->IsNullCheck() || |
| instruction->IsNewArray()) { |
| instruction = instruction->InputAt(0); |
| } |
| return instruction; |
| } |
| |
| static bool Equal(HInstruction* instruction1, HInstruction* instruction2) { |
| if (instruction1 == instruction2) { |
| return true; |
| } |
| if (instruction1 == nullptr || instruction2 == nullptr) { |
| return false; |
| } |
| instruction1 = HuntForDeclaration(instruction1); |
| instruction2 = HuntForDeclaration(instruction2); |
| return instruction1 == instruction2; |
| } |
| |
| // Returns if it's certain this->bound >= `bound`. |
| bool GreaterThanOrEqualTo(ValueBound bound) const { |
| if (Equal(instruction_, bound.instruction_)) { |
| return constant_ >= bound.constant_; |
| } |
| // Not comparable. Just return false. |
| return false; |
| } |
| |
| // Returns if it's certain this->bound <= `bound`. |
| bool LessThanOrEqualTo(ValueBound bound) const { |
| if (Equal(instruction_, bound.instruction_)) { |
| return constant_ <= bound.constant_; |
| } |
| // Not comparable. Just return false. |
| return false; |
| } |
| |
| // Try to narrow lower bound. Returns the greatest of the two if possible. |
| // Pick one if they are not comparable. |
| static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { |
| if (bound1.GreaterThanOrEqualTo(bound2)) { |
| return bound1; |
| } |
| if (bound2.GreaterThanOrEqualTo(bound1)) { |
| return bound2; |
| } |
| |
| // Not comparable. Just pick one. We may lose some info, but that's ok. |
| // Favor constant as lower bound. |
| return bound1.IsConstant() ? bound1 : bound2; |
| } |
| |
| // Try to narrow upper bound. Returns the lowest of the two if possible. |
| // Pick one if they are not comparable. |
| static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { |
| if (bound1.LessThanOrEqualTo(bound2)) { |
| return bound1; |
| } |
| if (bound2.LessThanOrEqualTo(bound1)) { |
| return bound2; |
| } |
| |
| // Not comparable. Just pick one. We may lose some info, but that's ok. |
| // Favor array length as upper bound. |
| return bound1.IsRelatedToArrayLength() ? bound1 : bound2; |
| } |
| |
| // Add a constant to a ValueBound. |
| // `overflow` or `underflow` will return whether the resulting bound may |
| // overflow or underflow an int. |
| ValueBound Add(int32_t c, bool* overflow, bool* underflow) const { |
| *overflow = *underflow = false; |
| if (c == 0) { |
| return *this; |
| } |
| |
| int32_t new_constant; |
| if (c > 0) { |
| if (constant_ > INT_MAX - c) { |
| *overflow = true; |
| return Max(); |
| } |
| |
| new_constant = constant_ + c; |
| // (array.length + non-positive-constant) won't overflow an int. |
| if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) { |
| return ValueBound(instruction_, new_constant); |
| } |
| // Be conservative. |
| *overflow = true; |
| return Max(); |
| } else { |
| if (constant_ < INT_MIN - c) { |
| *underflow = true; |
| return Min(); |
| } |
| |
| new_constant = constant_ + c; |
| // Regardless of the value new_constant, (array.length+new_constant) will |
| // never underflow since array.length is no less than 0. |
| if (IsConstant() || IsRelatedToArrayLength()) { |
| return ValueBound(instruction_, new_constant); |
| } |
| // Be conservative. |
| *underflow = true; |
| return Min(); |
| } |
| } |
| |
| private: |
| HInstruction* instruction_; |
| int32_t constant_; |
| }; |
| |
| // Collect array access data for a loop. |
| // TODO: make it work for multiple arrays inside the loop. |
| class ArrayAccessInsideLoopFinder : public ValueObject { |
| public: |
| explicit ArrayAccessInsideLoopFinder(HInstruction* induction_variable) |
| : induction_variable_(induction_variable), |
| found_array_length_(nullptr), |
| offset_low_(INT_MAX), |
| offset_high_(INT_MIN) { |
| Run(); |
| } |
| |
| HArrayLength* GetFoundArrayLength() const { return found_array_length_; } |
| bool HasFoundArrayLength() const { return found_array_length_ != nullptr; } |
| int32_t GetOffsetLow() const { return offset_low_; } |
| int32_t GetOffsetHigh() const { return offset_high_; } |
| |
| // Returns if `block` that is in loop_info may exit the loop, unless it's |
| // the loop header for loop_info. |
| static bool EarlyExit(HBasicBlock* block, HLoopInformation* loop_info) { |
| DCHECK(loop_info->Contains(*block)); |
| if (block == loop_info->GetHeader()) { |
| // Loop header of loop_info. Exiting loop is normal. |
| return false; |
| } |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| if (!loop_info->Contains(*successor)) { |
| // One of the successors exits the loop. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool DominatesAllBackEdges(HBasicBlock* block, HLoopInformation* loop_info) { |
| for (HBasicBlock* back_edge : loop_info->GetBackEdges()) { |
| if (!block->Dominates(back_edge)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void Run() { |
| HLoopInformation* loop_info = induction_variable_->GetBlock()->GetLoopInformation(); |
| HBlocksInLoopReversePostOrderIterator it_loop(*loop_info); |
| HBasicBlock* block = it_loop.Current(); |
| DCHECK(block == induction_variable_->GetBlock()); |
| // Skip loop header. Since narrowed value range of a MonotonicValueRange only |
| // applies to the loop body (after the test at the end of the loop header). |
| it_loop.Advance(); |
| for (; !it_loop.Done(); it_loop.Advance()) { |
| block = it_loop.Current(); |
| DCHECK(block->IsInLoop()); |
| if (!DominatesAllBackEdges(block, loop_info)) { |
| // In order not to trigger deoptimization unnecessarily, make sure |
| // that all array accesses collected are really executed in the loop. |
| // For array accesses in a branch inside the loop, don't collect the |
| // access. The bounds check in that branch might not be eliminated. |
| continue; |
| } |
| if (EarlyExit(block, loop_info)) { |
| // If the loop body can exit loop (like break, return, etc.), it's not guaranteed |
| // that the loop will loop through the full monotonic value range from |
| // initial_ to end_. So adding deoptimization might be too aggressive and can |
| // trigger deoptimization unnecessarily even if the loop won't actually throw |
| // AIOOBE. |
| found_array_length_ = nullptr; |
| return; |
| } |
| for (HInstruction* instruction = block->GetFirstInstruction(); |
| instruction != nullptr; |
| instruction = instruction->GetNext()) { |
| if (!instruction->IsBoundsCheck()) { |
| continue; |
| } |
| |
| HInstruction* length_value = instruction->InputAt(1); |
| if (length_value->IsIntConstant()) { |
| // TODO: may optimize for constant case. |
| continue; |
| } |
| |
| if (length_value->IsPhi()) { |
| // When adding deoptimizations in outer loops, we might create |
| // a phi for the array length, and update all uses of the |
| // length in the loop to that phi. Therefore, inner loops having |
| // bounds checks on the same array will use that phi. |
| // TODO: handle these cases. |
| continue; |
| } |
| |
| DCHECK(length_value->IsArrayLength()); |
| HArrayLength* array_length = length_value->AsArrayLength(); |
| |
| HInstruction* array = array_length->InputAt(0); |
| if (array->IsNullCheck()) { |
| array = array->AsNullCheck()->InputAt(0); |
| } |
| if (loop_info->Contains(*array->GetBlock())) { |
| // Array is defined inside the loop. Skip. |
| continue; |
| } |
| |
| if (found_array_length_ != nullptr && found_array_length_ != array_length) { |
| // There is already access for another array recorded for the loop. |
| // TODO: handle multiple arrays. |
| continue; |
| } |
| |
| HInstruction* index = instruction->AsBoundsCheck()->InputAt(0); |
| HInstruction* left = index; |
| int32_t right = 0; |
| if (left == induction_variable_ || |
| (ValueBound::IsAddOrSubAConstant(index, &left, &right) && |
| left == induction_variable_)) { |
| // For patterns like array[i] or array[i + 2]. |
| if (right < offset_low_) { |
| offset_low_ = right; |
| } |
| if (right > offset_high_) { |
| offset_high_ = right; |
| } |
| } else { |
| // Access not in induction_variable/(induction_variable_ + constant) |
| // format. Skip. |
| continue; |
| } |
| // Record this array. |
| found_array_length_ = array_length; |
| } |
| } |
| } |
| |
| private: |
| // The instruction that corresponds to a MonotonicValueRange. |
| HInstruction* induction_variable_; |
| |
| // The array length of the array that's accessed inside the loop body. |
| HArrayLength* found_array_length_; |
| |
| // The lowest and highest constant offsets relative to induction variable |
| // instruction_ in all array accesses. |
| // If array access are: array[i-1], array[i], array[i+1], |
| // offset_low_ is -1 and offset_high is 1. |
| int32_t offset_low_; |
| int32_t offset_high_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ArrayAccessInsideLoopFinder); |
| }; |
| |
| /** |
| * Represent a range of lower bound and upper bound, both being inclusive. |
| * Currently a ValueRange may be generated as a result of the following: |
| * comparisons related to array bounds, array bounds check, add/sub on top |
| * of an existing value range, NewArray or a loop phi corresponding to an |
| * incrementing/decrementing array index (MonotonicValueRange). |
| */ |
| class ValueRange : public ArenaObject<kArenaAllocMisc> { |
| public: |
| ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper) |
| : allocator_(allocator), lower_(lower), upper_(upper) {} |
| |
| virtual ~ValueRange() {} |
| |
| virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; } |
| bool IsMonotonicValueRange() { |
| return AsMonotonicValueRange() != nullptr; |
| } |
| |
| ArenaAllocator* GetAllocator() const { return allocator_; } |
| ValueBound GetLower() const { return lower_; } |
| ValueBound GetUpper() const { return upper_; } |
| |
| bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); } |
| |
| // If it's certain that this value range fits in other_range. |
| virtual bool FitsIn(ValueRange* other_range) const { |
| if (other_range == nullptr) { |
| return true; |
| } |
| DCHECK(!other_range->IsMonotonicValueRange()); |
| return lower_.GreaterThanOrEqualTo(other_range->lower_) && |
| upper_.LessThanOrEqualTo(other_range->upper_); |
| } |
| |
| // Returns the intersection of this and range. |
| // If it's not possible to do intersection because some |
| // bounds are not comparable, it's ok to pick either bound. |
| virtual ValueRange* Narrow(ValueRange* range) { |
| if (range == nullptr) { |
| return this; |
| } |
| |
| if (range->IsMonotonicValueRange()) { |
| return this; |
| } |
| |
| return new (allocator_) ValueRange( |
| allocator_, |
| ValueBound::NarrowLowerBound(lower_, range->lower_), |
| ValueBound::NarrowUpperBound(upper_, range->upper_)); |
| } |
| |
| // Shift a range by a constant. |
| ValueRange* Add(int32_t constant) const { |
| bool overflow, underflow; |
| ValueBound lower = lower_.Add(constant, &overflow, &underflow); |
| if (underflow) { |
| // Lower bound underflow will wrap around to positive values |
| // and invalidate the upper bound. |
| return nullptr; |
| } |
| ValueBound upper = upper_.Add(constant, &overflow, &underflow); |
| if (overflow) { |
| // Upper bound overflow will wrap around to negative values |
| // and invalidate the lower bound. |
| return nullptr; |
| } |
| return new (allocator_) ValueRange(allocator_, lower, upper); |
| } |
| |
| private: |
| ArenaAllocator* const allocator_; |
| const ValueBound lower_; // inclusive |
| const ValueBound upper_; // inclusive |
| |
| DISALLOW_COPY_AND_ASSIGN(ValueRange); |
| }; |
| |
| /** |
| * A monotonically incrementing/decrementing value range, e.g. |
| * the variable i in "for (int i=0; i<array.length; i++)". |
| * Special care needs to be taken to account for overflow/underflow |
| * of such value ranges. |
| */ |
| class MonotonicValueRange : public ValueRange { |
| public: |
| MonotonicValueRange(ArenaAllocator* allocator, |
| HPhi* induction_variable, |
| HInstruction* initial, |
| int32_t increment, |
| ValueBound bound) |
| // To be conservative, give it full range [INT_MIN, INT_MAX] in case it's |
| // used as a regular value range, due to possible overflow/underflow. |
| : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()), |
| induction_variable_(induction_variable), |
| initial_(initial), |
| end_(nullptr), |
| inclusive_(false), |
| increment_(increment), |
| bound_(bound) {} |
| |
| virtual ~MonotonicValueRange() {} |
| |
| HInstruction* GetInductionVariable() const { return induction_variable_; } |
| int32_t GetIncrement() const { return increment_; } |
| ValueBound GetBound() const { return bound_; } |
| void SetEnd(HInstruction* end) { end_ = end; } |
| void SetInclusive(bool inclusive) { inclusive_ = inclusive; } |
| HBasicBlock* GetLoopHeader() const { |
| DCHECK(induction_variable_->GetBlock()->IsLoopHeader()); |
| return induction_variable_->GetBlock(); |
| } |
| |
| MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; } |
| |
| HBasicBlock* GetLoopHeaderSuccesorInLoop() { |
| HBasicBlock* header = GetLoopHeader(); |
| HInstruction* instruction = header->GetLastInstruction(); |
| DCHECK(instruction->IsIf()); |
| HIf* h_if = instruction->AsIf(); |
| HLoopInformation* loop_info = header->GetLoopInformation(); |
| bool true_successor_in_loop = loop_info->Contains(*h_if->IfTrueSuccessor()); |
| bool false_successor_in_loop = loop_info->Contains(*h_if->IfFalseSuccessor()); |
| |
| // Just in case it's some strange loop structure. |
| if (true_successor_in_loop && false_successor_in_loop) { |
| return nullptr; |
| } |
| DCHECK(true_successor_in_loop || false_successor_in_loop); |
| return false_successor_in_loop ? h_if->IfFalseSuccessor() : h_if->IfTrueSuccessor(); |
| } |
| |
| // If it's certain that this value range fits in other_range. |
| bool FitsIn(ValueRange* other_range) const OVERRIDE { |
| if (other_range == nullptr) { |
| return true; |
| } |
| DCHECK(!other_range->IsMonotonicValueRange()); |
| return false; |
| } |
| |
| // Try to narrow this MonotonicValueRange given another range. |
| // Ideally it will return a normal ValueRange. But due to |
| // possible overflow/underflow, that may not be possible. |
| ValueRange* Narrow(ValueRange* range) OVERRIDE { |
| if (range == nullptr) { |
| return this; |
| } |
| DCHECK(!range->IsMonotonicValueRange()); |
| |
| if (increment_ > 0) { |
| // Monotonically increasing. |
| ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); |
| if (!lower.IsConstant() || lower.GetConstant() == INT_MIN) { |
| // Lower bound isn't useful. Leave it to deoptimization. |
| return this; |
| } |
| |
| // We currently conservatively assume max array length is INT_MAX. If we can |
| // make assumptions about the max array length, e.g. due to the max heap size, |
| // divided by the element size (such as 4 bytes for each integer array), we can |
| // lower this number and rule out some possible overflows. |
| int32_t max_array_len = INT_MAX; |
| |
| // max possible integer value of range's upper value. |
| int32_t upper = INT_MAX; |
| // Try to lower upper. |
| ValueBound upper_bound = range->GetUpper(); |
| if (upper_bound.IsConstant()) { |
| upper = upper_bound.GetConstant(); |
| } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) { |
| // Normal case. e.g. <= array.length - 1. |
| upper = max_array_len + upper_bound.GetConstant(); |
| } |
| |
| // If we can prove for the last number in sequence of initial_, |
| // initial_ + increment_, initial_ + 2 x increment_, ... |
| // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, |
| // then this MonoticValueRange is narrowed to a normal value range. |
| |
| // Be conservative first, assume last number in the sequence hits upper. |
| int32_t last_num_in_sequence = upper; |
| if (initial_->IsIntConstant()) { |
| int32_t initial_constant = initial_->AsIntConstant()->GetValue(); |
| if (upper <= initial_constant) { |
| last_num_in_sequence = upper; |
| } else { |
| // Cast to int64_t for the substraction part to avoid int32_t overflow. |
| last_num_in_sequence = initial_constant + |
| ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; |
| } |
| } |
| if (last_num_in_sequence <= INT_MAX - increment_) { |
| // No overflow. The sequence will be stopped by the upper bound test as expected. |
| return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); |
| } |
| |
| // There might be overflow. Give up narrowing. |
| return this; |
| } else { |
| DCHECK_NE(increment_, 0); |
| // Monotonically decreasing. |
| ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); |
| if ((!upper.IsConstant() || upper.GetConstant() == INT_MAX) && |
| !upper.IsRelatedToArrayLength()) { |
| // Upper bound isn't useful. Leave it to deoptimization. |
| return this; |
| } |
| |
| // Need to take care of underflow. Try to prove underflow won't happen |
| // for common cases. |
| if (range->GetLower().IsConstant()) { |
| int32_t constant = range->GetLower().GetConstant(); |
| if (constant >= INT_MIN - increment_) { |
| return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); |
| } |
| } |
| |
| // For non-constant lower bound, just assume might be underflow. Give up narrowing. |
| return this; |
| } |
| } |
| |
| // Try to add HDeoptimize's in the loop pre-header first to narrow this range. |
| // For example, this loop: |
| // |
| // for (int i = start; i < end; i++) { |
| // array[i - 1] = array[i] + array[i + 1]; |
| // } |
| // |
| // will be transformed to: |
| // |
| // int array_length_in_loop_body_if_needed; |
| // if (start >= end) { |
| // array_length_in_loop_body_if_needed = 0; |
| // } else { |
| // if (start < 1) deoptimize(); |
| // if (array == null) deoptimize(); |
| // array_length = array.length; |
| // if (end > array_length - 1) deoptimize; |
| // array_length_in_loop_body_if_needed = array_length; |
| // } |
| // for (int i = start; i < end; i++) { |
| // // No more null check and bounds check. |
| // // array.length value is replaced with array_length_in_loop_body_if_needed |
| // // in the loop body. |
| // array[i - 1] = array[i] + array[i + 1]; |
| // } |
| // |
| // We basically first go through the loop body and find those array accesses whose |
| // index is at a constant offset from the induction variable ('i' in the above example), |
| // and update offset_low and offset_high along the way. We then add the following |
| // deoptimizations in the loop pre-header (suppose end is not inclusive). |
| // if (start < -offset_low) deoptimize(); |
| // if (end >= array.length - offset_high) deoptimize(); |
| // It might be necessary to first hoist array.length (and the null check on it) out of |
| // the loop with another deoptimization. |
| // |
| // In order not to trigger deoptimization unnecessarily, we want to make a strong |
| // guarantee that no deoptimization is triggered if the loop body itself doesn't |
| // throw AIOOBE. (It's the same as saying if deoptimization is triggered, the loop |
| // body must throw AIOOBE). |
| // This is achieved by the following: |
| // 1) We only process loops that iterate through the full monotonic range from |
| // initial_ to end_. We do the following checks to make sure that's the case: |
| // a) The loop doesn't have early exit (via break, return, etc.) |
| // b) The increment_ is 1/-1. An increment of 2, for example, may skip end_. |
| // 2) We only collect array accesses of blocks in the loop body that dominate |
| // all loop back edges, these array accesses are guaranteed to happen |
| // at each loop iteration. |
| // With 1) and 2), if the loop body doesn't throw AIOOBE, collected array accesses |
| // when the induction variable is at initial_ and end_ must be in a legal range. |
| // Since the added deoptimizations are basically checking the induction variable |
| // at initial_ and end_ values, no deoptimization will be triggered either. |
| // |
| // A special case is the loop body isn't entered at all. In that case, we may still |
| // add deoptimization due to the analysis described above. In order not to trigger |
| // deoptimization, we do a test between initial_ and end_ first and skip over |
| // the added deoptimization. |
| ValueRange* NarrowWithDeoptimization() { |
| if (increment_ != 1 && increment_ != -1) { |
| // In order not to trigger deoptimization unnecessarily, we want to |
| // make sure the loop iterates through the full range from initial_ to |
| // end_ so that boundaries are covered by the loop. An increment of 2, |
| // for example, may skip end_. |
| return this; |
| } |
| |
| if (end_ == nullptr) { |
| // No full info to add deoptimization. |
| return this; |
| } |
| |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); |
| if (!initial_->GetBlock()->Dominates(pre_header) || |
| !end_->GetBlock()->Dominates(pre_header)) { |
| // Can't add a check in loop pre-header if the value isn't available there. |
| return this; |
| } |
| |
| ArrayAccessInsideLoopFinder finder(induction_variable_); |
| |
| if (!finder.HasFoundArrayLength()) { |
| // No array access was found inside the loop that can benefit |
| // from deoptimization. |
| return this; |
| } |
| |
| if (!AddDeoptimization(finder)) { |
| return this; |
| } |
| |
| // After added deoptimizations, induction variable fits in |
| // [-offset_low, array.length-1-offset_high], adjusted with collected offsets. |
| ValueBound lower = ValueBound(0, -finder.GetOffsetLow()); |
| ValueBound upper = ValueBound(finder.GetFoundArrayLength(), -1 - finder.GetOffsetHigh()); |
| // We've narrowed the range after added deoptimizations. |
| return new (GetAllocator()) ValueRange(GetAllocator(), lower, upper); |
| } |
| |
| // Returns true if adding a (constant >= value) check for deoptimization |
| // is allowed and will benefit compiled code. |
| bool CanAddDeoptimizationConstant(HInstruction* value, int32_t constant, bool* is_proven) { |
| *is_proven = false; |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); |
| DCHECK(value->GetBlock()->Dominates(pre_header)); |
| |
| // See if we can prove the relationship first. |
| if (value->IsIntConstant()) { |
| if (value->AsIntConstant()->GetValue() >= constant) { |
| // Already true. |
| *is_proven = true; |
| return true; |
| } else { |
| // May throw exception. Don't add deoptimization. |
| // Keep bounds checks in the loops. |
| return false; |
| } |
| } |
| // Can benefit from deoptimization. |
| return true; |
| } |
| |
| // Try to filter out cases that the loop entry test will never be true. |
| bool LoopEntryTestUseful() { |
| if (initial_->IsIntConstant() && end_->IsIntConstant()) { |
| int32_t initial_val = initial_->AsIntConstant()->GetValue(); |
| int32_t end_val = end_->AsIntConstant()->GetValue(); |
| if (increment_ == 1) { |
| if (inclusive_) { |
| return initial_val > end_val; |
| } else { |
| return initial_val >= end_val; |
| } |
| } else { |
| DCHECK_EQ(increment_, -1); |
| if (inclusive_) { |
| return initial_val < end_val; |
| } else { |
| return initial_val <= end_val; |
| } |
| } |
| } |
| return true; |
| } |
| |
| // Returns the block for adding deoptimization. |
| HBasicBlock* TransformLoopForDeoptimizationIfNeeded() { |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); |
| // Deoptimization is only added when both initial_ and end_ are defined |
| // before the loop. |
| DCHECK(initial_->GetBlock()->Dominates(pre_header)); |
| DCHECK(end_->GetBlock()->Dominates(pre_header)); |
| |
| // If it can be proven the loop body is definitely entered (unless exception |
| // is thrown in the loop header for which triggering deoptimization is fine), |
| // there is no need for tranforming the loop. In that case, deoptimization |
| // will just be added in the loop pre-header. |
| if (!LoopEntryTestUseful()) { |
| return pre_header; |
| } |
| |
| HGraph* graph = header->GetGraph(); |
| graph->TransformLoopHeaderForBCE(header); |
| HBasicBlock* new_pre_header = header->GetDominator(); |
| DCHECK(new_pre_header == header->GetLoopInformation()->GetPreHeader()); |
| HBasicBlock* if_block = new_pre_header->GetDominator(); |
| HBasicBlock* dummy_block = if_block->GetSuccessor(0); // True successor. |
| HBasicBlock* deopt_block = if_block->GetSuccessor(1); // False successor. |
| |
| dummy_block->AddInstruction(new (graph->GetArena()) HGoto()); |
| deopt_block->AddInstruction(new (graph->GetArena()) HGoto()); |
| new_pre_header->AddInstruction(new (graph->GetArena()) HGoto()); |
| return deopt_block; |
| } |
| |
| // Adds a test between initial_ and end_ to see if the loop body is entered. |
| // If the loop body isn't entered at all, it jumps to the loop pre-header (after |
| // transformation) to avoid any deoptimization. |
| void AddLoopBodyEntryTest() { |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); |
| HBasicBlock* if_block = pre_header->GetDominator(); |
| HGraph* graph = header->GetGraph(); |
| |
| HCondition* cond; |
| if (increment_ == 1) { |
| if (inclusive_) { |
| cond = new (graph->GetArena()) HGreaterThan(initial_, end_); |
| } else { |
| cond = new (graph->GetArena()) HGreaterThanOrEqual(initial_, end_); |
| } |
| } else { |
| DCHECK_EQ(increment_, -1); |
| if (inclusive_) { |
| cond = new (graph->GetArena()) HLessThan(initial_, end_); |
| } else { |
| cond = new (graph->GetArena()) HLessThanOrEqual(initial_, end_); |
| } |
| } |
| HIf* h_if = new (graph->GetArena()) HIf(cond); |
| if_block->AddInstruction(cond); |
| if_block->AddInstruction(h_if); |
| } |
| |
| // Adds a check that (value >= constant), and HDeoptimize otherwise. |
| void AddDeoptimizationConstant(HInstruction* value, |
| int32_t constant, |
| HBasicBlock* deopt_block, |
| bool loop_entry_test_block_added) { |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetDominator(); |
| if (loop_entry_test_block_added) { |
| DCHECK(deopt_block->GetSuccessor(0) == pre_header); |
| } else { |
| DCHECK(deopt_block == pre_header); |
| } |
| HGraph* graph = header->GetGraph(); |
| HSuspendCheck* suspend_check = header->GetLoopInformation()->GetSuspendCheck(); |
| if (loop_entry_test_block_added) { |
| DCHECK_EQ(deopt_block, header->GetDominator()->GetDominator()->GetSuccessor(1)); |
| } |
| |
| HIntConstant* const_instr = graph->GetIntConstant(constant); |
| HCondition* cond = new (graph->GetArena()) HLessThan(value, const_instr); |
| HDeoptimize* deoptimize = new (graph->GetArena()) |
| HDeoptimize(cond, suspend_check->GetDexPc()); |
| deopt_block->InsertInstructionBefore(cond, deopt_block->GetLastInstruction()); |
| deopt_block->InsertInstructionBefore(deoptimize, deopt_block->GetLastInstruction()); |
| deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( |
| suspend_check->GetEnvironment(), header); |
| } |
| |
| // Returns true if adding a (value <= array_length + offset) check for deoptimization |
| // is allowed and will benefit compiled code. |
| bool CanAddDeoptimizationArrayLength(HInstruction* value, |
| HArrayLength* array_length, |
| int32_t offset, |
| bool* is_proven) { |
| *is_proven = false; |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader(); |
| DCHECK(value->GetBlock()->Dominates(pre_header)); |
| |
| if (array_length->GetBlock() == header) { |
| // array_length_in_loop_body_if_needed only has correct value when the loop |
| // body is entered. We bail out in this case. Usually array_length defined |
| // in the loop header is already hoisted by licm. |
| return false; |
| } else { |
| // array_length is defined either before the loop header already, or in |
| // the loop body since it's used in the loop body. If it's defined in the loop body, |
| // a phi array_length_in_loop_body_if_needed is used to replace it. In that case, |
| // all the uses of array_length must be dominated by its definition in the loop |
| // body. array_length_in_loop_body_if_needed is guaranteed to be the same as |
| // array_length once the loop body is entered so all the uses of the phi will |
| // use the correct value. |
| } |
| |
| if (offset > 0) { |
| // There might be overflow issue. |
| // TODO: handle this, possibly with some distance relationship between |
| // offset_low and offset_high, or using another deoptimization to make |
| // sure (array_length + offset) doesn't overflow. |
| return false; |
| } |
| |
| // See if we can prove the relationship first. |
| if (value == array_length) { |
| if (offset >= 0) { |
| // Already true. |
| *is_proven = true; |
| return true; |
| } else { |
| // May throw exception. Don't add deoptimization. |
| // Keep bounds checks in the loops. |
| return false; |
| } |
| } |
| // Can benefit from deoptimization. |
| return true; |
| } |
| |
| // Adds a check that (value <= array_length + offset), and HDeoptimize otherwise. |
| void AddDeoptimizationArrayLength(HInstruction* value, |
| HArrayLength* array_length, |
| int32_t offset, |
| HBasicBlock* deopt_block, |
| bool loop_entry_test_block_added) { |
| HBasicBlock* header = induction_variable_->GetBlock(); |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetDominator(); |
| if (loop_entry_test_block_added) { |
| DCHECK(deopt_block->GetSuccessor(0) == pre_header); |
| } else { |
| DCHECK(deopt_block == pre_header); |
| } |
| HGraph* graph = header->GetGraph(); |
| HSuspendCheck* suspend_check = header->GetLoopInformation()->GetSuspendCheck(); |
| |
| // We may need to hoist null-check and array_length out of loop first. |
| if (!array_length->GetBlock()->Dominates(deopt_block)) { |
| // array_length must be defined in the loop body. |
| DCHECK(header->GetLoopInformation()->Contains(*array_length->GetBlock())); |
| DCHECK(array_length->GetBlock() != header); |
| |
| HInstruction* array = array_length->InputAt(0); |
| HNullCheck* null_check = array->AsNullCheck(); |
| if (null_check != nullptr) { |
| array = null_check->InputAt(0); |
| } |
| // We've already made sure the array is defined before the loop when collecting |
| // array accesses for the loop. |
| DCHECK(array->GetBlock()->Dominates(deopt_block)); |
| if (null_check != nullptr && !null_check->GetBlock()->Dominates(deopt_block)) { |
| // Hoist null check out of loop with a deoptimization. |
| HNullConstant* null_constant = graph->GetNullConstant(); |
| HCondition* null_check_cond = new (graph->GetArena()) HEqual(array, null_constant); |
| // TODO: for one dex_pc, share the same deoptimization slow path. |
| HDeoptimize* null_check_deoptimize = new (graph->GetArena()) |
| HDeoptimize(null_check_cond, suspend_check->GetDexPc()); |
| deopt_block->InsertInstructionBefore( |
| null_check_cond, deopt_block->GetLastInstruction()); |
| deopt_block->InsertInstructionBefore( |
| null_check_deoptimize, deopt_block->GetLastInstruction()); |
| // Eliminate null check in the loop. |
| null_check->ReplaceWith(array); |
| null_check->GetBlock()->RemoveInstruction(null_check); |
| null_check_deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( |
| suspend_check->GetEnvironment(), header); |
| } |
| |
| HArrayLength* new_array_length = new (graph->GetArena()) HArrayLength(array); |
| deopt_block->InsertInstructionBefore(new_array_length, deopt_block->GetLastInstruction()); |
| |
| if (loop_entry_test_block_added) { |
| // Replace array_length defined inside the loop body with a phi |
| // array_length_in_loop_body_if_needed. This is a synthetic phi so there is |
| // no vreg number for it. |
| HPhi* phi = new (graph->GetArena()) HPhi( |
| graph->GetArena(), kNoRegNumber, 2, Primitive::kPrimInt); |
| // Set to 0 if the loop body isn't entered. |
| phi->SetRawInputAt(0, graph->GetIntConstant(0)); |
| // Set to array.length if the loop body is entered. |
| phi->SetRawInputAt(1, new_array_length); |
| pre_header->AddPhi(phi); |
| array_length->ReplaceWith(phi); |
| // Make sure phi is only used after the loop body is entered. |
| if (kIsDebugBuild) { |
| for (HUseIterator<HInstruction*> it(phi->GetUses()); |
| !it.Done(); |
| it.Advance()) { |
| HInstruction* user = it.Current()->GetUser(); |
| DCHECK(GetLoopHeaderSuccesorInLoop()->Dominates(user->GetBlock())); |
| } |
| } |
| } else { |
| array_length->ReplaceWith(new_array_length); |
| } |
| |
| array_length->GetBlock()->RemoveInstruction(array_length); |
| // Use new_array_length for deopt. |
| array_length = new_array_length; |
| } |
| |
| HInstruction* added = array_length; |
| if (offset != 0) { |
| HIntConstant* offset_instr = graph->GetIntConstant(offset); |
| added = new (graph->GetArena()) HAdd(Primitive::kPrimInt, array_length, offset_instr); |
| deopt_block->InsertInstructionBefore(added, deopt_block->GetLastInstruction()); |
| } |
| HCondition* cond = new (graph->GetArena()) HGreaterThan(value, added); |
| HDeoptimize* deopt = new (graph->GetArena()) HDeoptimize(cond, suspend_check->GetDexPc()); |
| deopt_block->InsertInstructionBefore(cond, deopt_block->GetLastInstruction()); |
| deopt_block->InsertInstructionBefore(deopt, deopt_block->GetLastInstruction()); |
| deopt->CopyEnvironmentFromWithLoopPhiAdjustment(suspend_check->GetEnvironment(), header); |
| } |
| |
| // Adds deoptimizations in loop pre-header with the collected array access |
| // data so that value ranges can be established in loop body. |
| // Returns true if deoptimizations are successfully added, or if it's proven |
| // it's not necessary. |
| bool AddDeoptimization(const ArrayAccessInsideLoopFinder& finder) { |
| int32_t offset_low = finder.GetOffsetLow(); |
| int32_t offset_high = finder.GetOffsetHigh(); |
| HArrayLength* array_length = finder.GetFoundArrayLength(); |
| |
| HBasicBlock* pre_header = |
| induction_variable_->GetBlock()->GetLoopInformation()->GetPreHeader(); |
| if (!initial_->GetBlock()->Dominates(pre_header) || |
| !end_->GetBlock()->Dominates(pre_header)) { |
| // Can't move initial_ or end_ into pre_header for comparisons. |
| return false; |
| } |
| |
| HBasicBlock* deopt_block; |
| bool loop_entry_test_block_added = false; |
| bool is_constant_proven, is_length_proven; |
| |
| HInstruction* const_comparing_instruction; |
| int32_t const_compared_to; |
| HInstruction* array_length_comparing_instruction; |
| int32_t array_length_offset; |
| if (increment_ == 1) { |
| // Increasing from initial_ to end_. |
| const_comparing_instruction = initial_; |
| const_compared_to = -offset_low; |
| array_length_comparing_instruction = end_; |
| array_length_offset = inclusive_ ? -offset_high - 1 : -offset_high; |
| } else { |
| const_comparing_instruction = end_; |
| const_compared_to = inclusive_ ? -offset_low : -offset_low - 1; |
| array_length_comparing_instruction = initial_; |
| array_length_offset = -offset_high - 1; |
| } |
| |
| if (CanAddDeoptimizationConstant(const_comparing_instruction, |
| const_compared_to, |
| &is_constant_proven) && |
| CanAddDeoptimizationArrayLength(array_length_comparing_instruction, |
| array_length, |
| array_length_offset, |
| &is_length_proven)) { |
| if (!is_constant_proven || !is_length_proven) { |
| deopt_block = TransformLoopForDeoptimizationIfNeeded(); |
| loop_entry_test_block_added = (deopt_block != pre_header); |
| if (loop_entry_test_block_added) { |
| // Loop body may be entered. |
| AddLoopBodyEntryTest(); |
| } |
| } |
| if (!is_constant_proven) { |
| AddDeoptimizationConstant(const_comparing_instruction, |
| const_compared_to, |
| deopt_block, |
| loop_entry_test_block_added); |
| } |
| if (!is_length_proven) { |
| AddDeoptimizationArrayLength(array_length_comparing_instruction, |
| array_length, |
| array_length_offset, |
| deopt_block, |
| loop_entry_test_block_added); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| private: |
| HPhi* const induction_variable_; // Induction variable for this monotonic value range. |
| HInstruction* const initial_; // Initial value. |
| HInstruction* end_; // End value. |
| bool inclusive_; // Whether end value is inclusive. |
| const int32_t increment_; // Increment for each loop iteration. |
| const ValueBound bound_; // Additional value bound info for initial_. |
| |
| DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); |
| }; |
| |
| class BCEVisitor : public HGraphVisitor { |
| public: |
| // The least number of bounds checks that should be eliminated by triggering |
| // the deoptimization technique. |
| static constexpr size_t kThresholdForAddingDeoptimize = 2; |
| |
| // Very large constant index is considered as an anomaly. This is a threshold |
| // beyond which we don't bother to apply the deoptimization technique since |
| // it's likely some AIOOBE will be thrown. |
| static constexpr int32_t kMaxConstantForAddingDeoptimize = INT_MAX - 1024 * 1024; |
| |
| // Added blocks for loop body entry test. |
| bool IsAddedBlock(HBasicBlock* block) const { |
| return block->GetBlockId() >= initial_block_size_; |
| } |
| |
| BCEVisitor(HGraph* graph, HInductionVarAnalysis* induction_analysis) |
| : HGraphVisitor(graph), |
| maps_(graph->GetBlocks().size()), |
| need_to_revisit_block_(false), |
| initial_block_size_(graph->GetBlocks().size()), |
| induction_range_(induction_analysis) {} |
| |
| void VisitBasicBlock(HBasicBlock* block) OVERRIDE { |
| DCHECK(!IsAddedBlock(block)); |
| first_constant_index_bounds_check_map_.clear(); |
| HGraphVisitor::VisitBasicBlock(block); |
| if (need_to_revisit_block_) { |
| AddComparesWithDeoptimization(block); |
| need_to_revisit_block_ = false; |
| first_constant_index_bounds_check_map_.clear(); |
| GetValueRangeMap(block)->clear(); |
| HGraphVisitor::VisitBasicBlock(block); |
| } |
| } |
| |
| private: |
| // Return the map of proven value ranges at the beginning of a basic block. |
| ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) { |
| if (IsAddedBlock(basic_block)) { |
| // Added blocks don't keep value ranges. |
| return nullptr; |
| } |
| int block_id = basic_block->GetBlockId(); |
| if (maps_.at(block_id) == nullptr) { |
| std::unique_ptr<ArenaSafeMap<int, ValueRange*>> map( |
| new ArenaSafeMap<int, ValueRange*>( |
| std::less<int>(), GetGraph()->GetArena()->Adapter())); |
| maps_.at(block_id) = std::move(map); |
| } |
| return maps_.at(block_id).get(); |
| } |
| |
| // Traverse up the dominator tree to look for value range info. |
| ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { |
| while (basic_block != nullptr) { |
| ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block); |
| if (map != nullptr) { |
| if (map->find(instruction->GetId()) != map->end()) { |
| return map->Get(instruction->GetId()); |
| } |
| } else { |
| DCHECK(IsAddedBlock(basic_block)); |
| } |
| basic_block = basic_block->GetDominator(); |
| } |
| // Didn't find any. |
| return nullptr; |
| } |
| |
| // Return the range resulting from induction variable analysis of "instruction" when the value |
| // is used from "context", for example, an index used from a bounds-check inside a loop body. |
| ValueRange* LookupInductionRange(HInstruction* context, HInstruction* instruction) { |
| InductionVarRange::Value v1 = induction_range_.GetMinInduction(context, instruction); |
| InductionVarRange::Value v2 = induction_range_.GetMaxInduction(context, instruction); |
| if ((v1.a_constant == 0 || v1.a_constant == 1) && v1.b_constant != INT_MIN && |
| (v2.a_constant == 0 || v2.a_constant == 1) && v2.b_constant != INT_MAX) { |
| DCHECK(v1.a_constant == 1 || v1.instruction == nullptr); |
| DCHECK(v2.a_constant == 1 || v2.instruction == nullptr); |
| ValueBound low = ValueBound(v1.instruction, v1.b_constant); |
| ValueBound up = ValueBound(v2.instruction, v2.b_constant); |
| return new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), low, up); |
| } |
| // Didn't find anything useful. |
| return nullptr; |
| } |
| |
| // Narrow the value range of `instruction` at the end of `basic_block` with `range`, |
| // and push the narrowed value range to `successor`. |
| void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, |
| HBasicBlock* successor, ValueRange* range) { |
| ValueRange* existing_range = LookupValueRange(instruction, basic_block); |
| if (existing_range == nullptr) { |
| if (range != nullptr) { |
| GetValueRangeMap(successor)->Overwrite(instruction->GetId(), range); |
| } |
| return; |
| } |
| if (existing_range->IsMonotonicValueRange()) { |
| DCHECK(instruction->IsLoopHeaderPhi()); |
| // Make sure the comparison is in the loop header so each increment is |
| // checked with a comparison. |
| if (instruction->GetBlock() != basic_block) { |
| return; |
| } |
| } |
| ValueRange* narrowed_range = existing_range->Narrow(range); |
| GetValueRangeMap(successor)->Overwrite(instruction->GetId(), narrowed_range); |
| } |
| |
| // Special case that we may simultaneously narrow two MonotonicValueRange's to |
| // regular value ranges. |
| void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction, |
| HInstruction* left, |
| HInstruction* right, |
| IfCondition cond, |
| MonotonicValueRange* left_range, |
| MonotonicValueRange* right_range) { |
| DCHECK(left->IsLoopHeaderPhi()); |
| DCHECK(right->IsLoopHeaderPhi()); |
| if (instruction->GetBlock() != left->GetBlock()) { |
| // Comparison needs to be in loop header to make sure it's done after each |
| // increment/decrement. |
| return; |
| } |
| |
| // Handle common cases which also don't have overflow/underflow concerns. |
| if (left_range->GetIncrement() == 1 && |
| left_range->GetBound().IsConstant() && |
| right_range->GetIncrement() == -1 && |
| right_range->GetBound().IsRelatedToArrayLength() && |
| right_range->GetBound().GetConstant() < 0) { |
| HBasicBlock* successor = nullptr; |
| int32_t left_compensation = 0; |
| int32_t right_compensation = 0; |
| if (cond == kCondLT) { |
| left_compensation = -1; |
| right_compensation = 1; |
| successor = instruction->IfTrueSuccessor(); |
| } else if (cond == kCondLE) { |
| successor = instruction->IfTrueSuccessor(); |
| } else if (cond == kCondGT) { |
| successor = instruction->IfFalseSuccessor(); |
| } else if (cond == kCondGE) { |
| left_compensation = -1; |
| right_compensation = 1; |
| successor = instruction->IfFalseSuccessor(); |
| } else { |
| // We don't handle '=='/'!=' test in case left and right can cross and |
| // miss each other. |
| return; |
| } |
| |
| if (successor != nullptr) { |
| bool overflow; |
| bool underflow; |
| ValueRange* new_left_range = new (GetGraph()->GetArena()) ValueRange( |
| GetGraph()->GetArena(), |
| left_range->GetBound(), |
| right_range->GetBound().Add(left_compensation, &overflow, &underflow)); |
| if (!overflow && !underflow) { |
| ApplyRangeFromComparison(left, instruction->GetBlock(), successor, |
| new_left_range); |
| } |
| |
| ValueRange* new_right_range = new (GetGraph()->GetArena()) ValueRange( |
| GetGraph()->GetArena(), |
| left_range->GetBound().Add(right_compensation, &overflow, &underflow), |
| right_range->GetBound()); |
| if (!overflow && !underflow) { |
| ApplyRangeFromComparison(right, instruction->GetBlock(), successor, |
| new_right_range); |
| } |
| } |
| } |
| } |
| |
| // Handle "if (left cmp_cond right)". |
| void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { |
| HBasicBlock* block = instruction->GetBlock(); |
| |
| HBasicBlock* true_successor = instruction->IfTrueSuccessor(); |
| // There should be no critical edge at this point. |
| DCHECK_EQ(true_successor->GetPredecessors().size(), 1u); |
| |
| HBasicBlock* false_successor = instruction->IfFalseSuccessor(); |
| // There should be no critical edge at this point. |
| DCHECK_EQ(false_successor->GetPredecessors().size(), 1u); |
| |
| ValueRange* left_range = LookupValueRange(left, block); |
| MonotonicValueRange* left_monotonic_range = nullptr; |
| if (left_range != nullptr) { |
| left_monotonic_range = left_range->AsMonotonicValueRange(); |
| if (left_monotonic_range != nullptr) { |
| HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader(); |
| if (instruction->GetBlock() != loop_head) { |
| // For monotonic value range, don't handle `instruction` |
| // if it's not defined in the loop header. |
| return; |
| } |
| } |
| } |
| |
| bool found; |
| ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); |
| // Each comparison can establish a lower bound and an upper bound |
| // for the left hand side. |
| ValueBound lower = bound; |
| ValueBound upper = bound; |
| if (!found) { |
| // No constant or array.length+c format bound found. |
| // For i<j, we can still use j's upper bound as i's upper bound. Same for lower. |
| ValueRange* right_range = LookupValueRange(right, block); |
| if (right_range != nullptr) { |
| if (right_range->IsMonotonicValueRange()) { |
| if (left_range != nullptr && left_range->IsMonotonicValueRange()) { |
| HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond, |
| left_range->AsMonotonicValueRange(), |
| right_range->AsMonotonicValueRange()); |
| return; |
| } |
| } |
| lower = right_range->GetLower(); |
| upper = right_range->GetUpper(); |
| } else { |
| lower = ValueBound::Min(); |
| upper = ValueBound::Max(); |
| } |
| } |
| |
| bool overflow, underflow; |
| if (cond == kCondLT || cond == kCondLE) { |
| if (left_monotonic_range != nullptr) { |
| // Update the info for monotonic value range. |
| if (left_monotonic_range->GetInductionVariable() == left && |
| left_monotonic_range->GetIncrement() < 0 && |
| block == left_monotonic_range->GetLoopHeader() && |
| instruction->IfFalseSuccessor()->GetLoopInformation() == block->GetLoopInformation()) { |
| left_monotonic_range->SetEnd(right); |
| left_monotonic_range->SetInclusive(cond == kCondLT); |
| } |
| } |
| |
| if (!upper.Equals(ValueBound::Max())) { |
| int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive |
| ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); |
| ApplyRangeFromComparison(left, block, true_successor, new_range); |
| } |
| |
| // array.length as a lower bound isn't considered useful. |
| if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { |
| int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive |
| ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); |
| ApplyRangeFromComparison(left, block, false_successor, new_range); |
| } |
| } else if (cond == kCondGT || cond == kCondGE) { |
| if (left_monotonic_range != nullptr) { |
| // Update the info for monotonic value range. |
| if (left_monotonic_range->GetInductionVariable() == left && |
| left_monotonic_range->GetIncrement() > 0 && |
| block == left_monotonic_range->GetLoopHeader() && |
| instruction->IfFalseSuccessor()->GetLoopInformation() == block->GetLoopInformation()) { |
| left_monotonic_range->SetEnd(right); |
| left_monotonic_range->SetInclusive(cond == kCondGT); |
| } |
| } |
| |
| // array.length as a lower bound isn't considered useful. |
| if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { |
| int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive |
| ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); |
| ApplyRangeFromComparison(left, block, true_successor, new_range); |
| } |
| |
| if (!upper.Equals(ValueBound::Max())) { |
| int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive |
| ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); |
| ApplyRangeFromComparison(left, block, false_successor, new_range); |
| } |
| } |
| } |
| |
| void VisitBoundsCheck(HBoundsCheck* bounds_check) { |
| HBasicBlock* block = bounds_check->GetBlock(); |
| HInstruction* index = bounds_check->InputAt(0); |
| HInstruction* array_length = bounds_check->InputAt(1); |
| DCHECK(array_length->IsIntConstant() || |
| array_length->IsArrayLength() || |
| array_length->IsPhi()); |
| |
| if (array_length->IsPhi()) { |
| // Input 1 of the phi contains the real array.length once the loop body is |
| // entered. That value will be used for bound analysis. The graph is still |
| // strictly in SSA form. |
| array_length = array_length->AsPhi()->InputAt(1)->AsArrayLength(); |
| } |
| |
| if (!index->IsIntConstant()) { |
| ValueBound lower = ValueBound(nullptr, 0); // constant 0 |
| ValueBound upper = ValueBound(array_length, -1); // array_length - 1 |
| ValueRange array_range(GetGraph()->GetArena(), lower, upper); |
| // Try range obtained by local analysis. |
| ValueRange* index_range = LookupValueRange(index, block); |
| if (index_range != nullptr && index_range->FitsIn(&array_range)) { |
| ReplaceBoundsCheck(bounds_check, index); |
| return; |
| } |
| // Try range obtained by induction variable analysis. |
| index_range = LookupInductionRange(bounds_check, index); |
| if (index_range != nullptr && index_range->FitsIn(&array_range)) { |
| ReplaceBoundsCheck(bounds_check, index); |
| return; |
| } |
| } else { |
| int32_t constant = index->AsIntConstant()->GetValue(); |
| if (constant < 0) { |
| // Will always throw exception. |
| return; |
| } |
| if (array_length->IsIntConstant()) { |
| if (constant < array_length->AsIntConstant()->GetValue()) { |
| ReplaceBoundsCheck(bounds_check, index); |
| } |
| return; |
| } |
| |
| DCHECK(array_length->IsArrayLength()); |
| ValueRange* existing_range = LookupValueRange(array_length, block); |
| if (existing_range != nullptr) { |
| ValueBound lower = existing_range->GetLower(); |
| DCHECK(lower.IsConstant()); |
| if (constant < lower.GetConstant()) { |
| ReplaceBoundsCheck(bounds_check, index); |
| return; |
| } else { |
| // Existing range isn't strong enough to eliminate the bounds check. |
| // Fall through to update the array_length range with info from this |
| // bounds check. |
| } |
| } |
| |
| if (first_constant_index_bounds_check_map_.find(array_length->GetId()) == |
| first_constant_index_bounds_check_map_.end()) { |
| // Remember the first bounds check against array_length of a constant index. |
| // That bounds check instruction has an associated HEnvironment where we |
| // may add an HDeoptimize to eliminate bounds checks of constant indices |
| // against array_length. |
| first_constant_index_bounds_check_map_.Put(array_length->GetId(), bounds_check); |
| } else { |
| // We've seen it at least twice. It's beneficial to introduce a compare with |
| // deoptimization fallback to eliminate the bounds checks. |
| need_to_revisit_block_ = true; |
| } |
| |
| // Once we have an array access like 'array[5] = 1', we record array.length >= 6. |
| // We currently don't do it for non-constant index since a valid array[i] can't prove |
| // a valid array[i-1] yet due to the lower bound side. |
| if (constant == INT_MAX) { |
| // INT_MAX as an index will definitely throw AIOOBE. |
| return; |
| } |
| ValueBound lower = ValueBound(nullptr, constant + 1); |
| ValueBound upper = ValueBound::Max(); |
| ValueRange* range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), lower, upper); |
| GetValueRangeMap(block)->Overwrite(array_length->GetId(), range); |
| } |
| } |
| |
| void ReplaceBoundsCheck(HInstruction* bounds_check, HInstruction* index) { |
| bounds_check->ReplaceWith(index); |
| bounds_check->GetBlock()->RemoveInstruction(bounds_check); |
| } |
| |
| static bool HasSameInputAtBackEdges(HPhi* phi) { |
| DCHECK(phi->IsLoopHeaderPhi()); |
| // Start with input 1. Input 0 is from the incoming block. |
| HInstruction* input1 = phi->InputAt(1); |
| DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( |
| *phi->GetBlock()->GetPredecessor(1))); |
| for (size_t i = 2, e = phi->InputCount(); i < e; ++i) { |
| DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( |
| *phi->GetBlock()->GetPredecessor(i))); |
| if (input1 != phi->InputAt(i)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void VisitPhi(HPhi* phi) { |
| if (phi->IsLoopHeaderPhi() |
| && (phi->GetType() == Primitive::kPrimInt) |
| && HasSameInputAtBackEdges(phi)) { |
| HInstruction* instruction = phi->InputAt(1); |
| HInstruction *left; |
| int32_t increment; |
| if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) { |
| if (left == phi) { |
| HInstruction* initial_value = phi->InputAt(0); |
| ValueRange* range = nullptr; |
| if (increment == 0) { |
| // Add constant 0. It's really a fixed value. |
| range = new (GetGraph()->GetArena()) ValueRange( |
| GetGraph()->GetArena(), |
| ValueBound(initial_value, 0), |
| ValueBound(initial_value, 0)); |
| } else { |
| // Monotonically increasing/decreasing. |
| bool found; |
| ValueBound bound = ValueBound::DetectValueBoundFromValue( |
| initial_value, &found); |
| if (!found) { |
| // No constant or array.length+c bound found. |
| // For i=j, we can still use j's upper bound as i's upper bound. |
| // Same for lower. |
| ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); |
| if (initial_range != nullptr) { |
| bound = increment > 0 ? initial_range->GetLower() : |
| initial_range->GetUpper(); |
| } else { |
| bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); |
| } |
| } |
| range = new (GetGraph()->GetArena()) MonotonicValueRange( |
| GetGraph()->GetArena(), |
| phi, |
| initial_value, |
| increment, |
| bound); |
| } |
| GetValueRangeMap(phi->GetBlock())->Overwrite(phi->GetId(), range); |
| } |
| } |
| } |
| } |
| |
| void VisitIf(HIf* instruction) { |
| if (instruction->InputAt(0)->IsCondition()) { |
| HCondition* cond = instruction->InputAt(0)->AsCondition(); |
| IfCondition cmp = cond->GetCondition(); |
| if (cmp == kCondGT || cmp == kCondGE || |
| cmp == kCondLT || cmp == kCondLE) { |
| HInstruction* left = cond->GetLeft(); |
| HInstruction* right = cond->GetRight(); |
| HandleIf(instruction, left, right, cmp); |
| |
| HBasicBlock* block = instruction->GetBlock(); |
| ValueRange* left_range = LookupValueRange(left, block); |
| if (left_range == nullptr) { |
| return; |
| } |
| |
| if (left_range->IsMonotonicValueRange() && |
| block == left_range->AsMonotonicValueRange()->GetLoopHeader()) { |
| // The comparison is for an induction variable in the loop header. |
| DCHECK(left == left_range->AsMonotonicValueRange()->GetInductionVariable()); |
| HBasicBlock* loop_body_successor = |
| left_range->AsMonotonicValueRange()->GetLoopHeaderSuccesorInLoop(); |
| if (loop_body_successor == nullptr) { |
| // In case it's some strange loop structure. |
| return; |
| } |
| ValueRange* new_left_range = LookupValueRange(left, loop_body_successor); |
| if ((new_left_range == left_range) || |
| // Range narrowed with deoptimization is usually more useful than |
| // a constant range. |
| new_left_range->IsConstantValueRange()) { |
| // We are not successful in narrowing the monotonic value range to |
| // a regular value range. Try using deoptimization. |
| new_left_range = left_range->AsMonotonicValueRange()-> |
| NarrowWithDeoptimization(); |
| if (new_left_range != left_range) { |
| GetValueRangeMap(loop_body_successor)->Overwrite(left->GetId(), new_left_range); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void VisitAdd(HAdd* add) { |
| HInstruction* right = add->GetRight(); |
| if (right->IsIntConstant()) { |
| ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); |
| if (left_range == nullptr) { |
| return; |
| } |
| ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); |
| if (range != nullptr) { |
| GetValueRangeMap(add->GetBlock())->Overwrite(add->GetId(), range); |
| } |
| } |
| } |
| |
| void VisitSub(HSub* sub) { |
| HInstruction* left = sub->GetLeft(); |
| HInstruction* right = sub->GetRight(); |
| if (right->IsIntConstant()) { |
| ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); |
| if (left_range == nullptr) { |
| return; |
| } |
| ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); |
| if (range != nullptr) { |
| GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range); |
| return; |
| } |
| } |
| |
| // Here we are interested in the typical triangular case of nested loops, |
| // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i |
| // is the index for outer loop. In this case, we know j is bounded by array.length-1. |
| |
| // Try to handle (array.length - i) or (array.length + c - i) format. |
| HInstruction* left_of_left; // left input of left. |
| int32_t right_const = 0; |
| if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) { |
| left = left_of_left; |
| } |
| // The value of left input of the sub equals (left + right_const). |
| |
| if (left->IsArrayLength()) { |
| HInstruction* array_length = left->AsArrayLength(); |
| ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); |
| if (right_range != nullptr) { |
| ValueBound lower = right_range->GetLower(); |
| ValueBound upper = right_range->GetUpper(); |
| if (lower.IsConstant() && upper.IsRelatedToArrayLength()) { |
| HInstruction* upper_inst = upper.GetInstruction(); |
| // Make sure it's the same array. |
| if (ValueBound::Equal(array_length, upper_inst)) { |
| int32_t c0 = right_const; |
| int32_t c1 = lower.GetConstant(); |
| int32_t c2 = upper.GetConstant(); |
| // (array.length + c0 - v) where v is in [c1, array.length + c2] |
| // gets [c0 - c2, array.length + c0 - c1] as its value range. |
| if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) && |
| !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) { |
| if ((c0 - c1) <= 0) { |
| // array.length + (c0 - c1) won't overflow/underflow. |
| ValueRange* range = new (GetGraph()->GetArena()) ValueRange( |
| GetGraph()->GetArena(), |
| ValueBound(nullptr, right_const - upper.GetConstant()), |
| ValueBound(array_length, right_const - lower.GetConstant())); |
| GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr()); |
| HInstruction* right = instruction->GetRight(); |
| int32_t right_const; |
| if (right->IsIntConstant()) { |
| right_const = right->AsIntConstant()->GetValue(); |
| // Detect division by two or more. |
| if ((instruction->IsDiv() && right_const <= 1) || |
| (instruction->IsShr() && right_const < 1) || |
| (instruction->IsUShr() && right_const < 1)) { |
| return; |
| } |
| } else { |
| return; |
| } |
| |
| // Try to handle array.length/2 or (array.length-1)/2 format. |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* left_of_left; // left input of left. |
| int32_t c = 0; |
| if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) { |
| left = left_of_left; |
| } |
| // The value of left input of instruction equals (left + c). |
| |
| // (array_length + 1) or smaller divided by two or more |
| // always generate a value in [INT_MIN, array_length]. |
| // This is true even if array_length is INT_MAX. |
| if (left->IsArrayLength() && c <= 1) { |
| if (instruction->IsUShr() && c < 0) { |
| // Make sure for unsigned shift, left side is not negative. |
| // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger |
| // than array_length. |
| return; |
| } |
| ValueRange* range = new (GetGraph()->GetArena()) ValueRange( |
| GetGraph()->GetArena(), |
| ValueBound(nullptr, INT_MIN), |
| ValueBound(left, 0)); |
| GetValueRangeMap(instruction->GetBlock())->Overwrite(instruction->GetId(), range); |
| } |
| } |
| |
| void VisitDiv(HDiv* div) { |
| FindAndHandlePartialArrayLength(div); |
| } |
| |
| void VisitShr(HShr* shr) { |
| FindAndHandlePartialArrayLength(shr); |
| } |
| |
| void VisitUShr(HUShr* ushr) { |
| FindAndHandlePartialArrayLength(ushr); |
| } |
| |
| void VisitAnd(HAnd* instruction) { |
| if (instruction->GetRight()->IsIntConstant()) { |
| int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue(); |
| if (constant > 0) { |
| // constant serves as a mask so any number masked with it |
| // gets a [0, constant] value range. |
| ValueRange* range = new (GetGraph()->GetArena()) ValueRange( |
| GetGraph()->GetArena(), |
| ValueBound(nullptr, 0), |
| ValueBound(nullptr, constant)); |
| GetValueRangeMap(instruction->GetBlock())->Overwrite(instruction->GetId(), range); |
| } |
| } |
| } |
| |
| void VisitNewArray(HNewArray* new_array) { |
| HInstruction* len = new_array->InputAt(0); |
| if (!len->IsIntConstant()) { |
| HInstruction *left; |
| int32_t right_const; |
| if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) { |
| // (left + right_const) is used as size to new the array. |
| // We record "-right_const <= left <= new_array - right_const"; |
| ValueBound lower = ValueBound(nullptr, -right_const); |
| // We use new_array for the bound instead of new_array.length, |
| // which isn't available as an instruction yet. new_array will |
| // be treated the same as new_array.length when it's used in a ValueBound. |
| ValueBound upper = ValueBound(new_array, -right_const); |
| ValueRange* range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), lower, upper); |
| ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock()); |
| if (existing_range != nullptr) { |
| range = existing_range->Narrow(range); |
| } |
| GetValueRangeMap(new_array->GetBlock())->Overwrite(left->GetId(), range); |
| } |
| } |
| } |
| |
| void VisitDeoptimize(HDeoptimize* deoptimize) { |
| // Right now it's only HLessThanOrEqual. |
| DCHECK(deoptimize->InputAt(0)->IsLessThanOrEqual()); |
| HLessThanOrEqual* less_than_or_equal = deoptimize->InputAt(0)->AsLessThanOrEqual(); |
| HInstruction* instruction = less_than_or_equal->InputAt(0); |
| if (instruction->IsArrayLength()) { |
| HInstruction* constant = less_than_or_equal->InputAt(1); |
| DCHECK(constant->IsIntConstant()); |
| DCHECK(constant->AsIntConstant()->GetValue() <= kMaxConstantForAddingDeoptimize); |
| ValueBound lower = ValueBound(nullptr, constant->AsIntConstant()->GetValue() + 1); |
| ValueRange* range = new (GetGraph()->GetArena()) |
| ValueRange(GetGraph()->GetArena(), lower, ValueBound::Max()); |
| GetValueRangeMap(deoptimize->GetBlock())->Overwrite(instruction->GetId(), range); |
| } |
| } |
| |
| void AddCompareWithDeoptimization(HInstruction* array_length, |
| HIntConstant* const_instr, |
| HBasicBlock* block) { |
| DCHECK(array_length->IsArrayLength()); |
| ValueRange* range = LookupValueRange(array_length, block); |
| ValueBound lower_bound = range->GetLower(); |
| DCHECK(lower_bound.IsConstant()); |
| DCHECK(const_instr->GetValue() <= kMaxConstantForAddingDeoptimize); |
| // Note that the lower bound of the array length may have been refined |
| // through other instructions (such as `HNewArray(length - 4)`). |
| DCHECK_LE(const_instr->GetValue() + 1, lower_bound.GetConstant()); |
| |
| // If array_length is less than lower_const, deoptimize. |
| HBoundsCheck* bounds_check = first_constant_index_bounds_check_map_.Get( |
| array_length->GetId())->AsBoundsCheck(); |
| HCondition* cond = new (GetGraph()->GetArena()) HLessThanOrEqual(array_length, const_instr); |
| HDeoptimize* deoptimize = new (GetGraph()->GetArena()) |
| HDeoptimize(cond, bounds_check->GetDexPc()); |
| block->InsertInstructionBefore(cond, bounds_check); |
| block->InsertInstructionBefore(deoptimize, bounds_check); |
| deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment()); |
| } |
| |
| void AddComparesWithDeoptimization(HBasicBlock* block) { |
| for (ArenaSafeMap<int, HBoundsCheck*>::iterator it = |
| first_constant_index_bounds_check_map_.begin(); |
| it != first_constant_index_bounds_check_map_.end(); |
| ++it) { |
| HBoundsCheck* bounds_check = it->second; |
| HInstruction* array_length = bounds_check->InputAt(1); |
| if (!array_length->IsArrayLength()) { |
| // Prior deoptimizations may have changed the array length to a phi. |
| // TODO(mingyao): propagate the range to the phi? |
| DCHECK(array_length->IsPhi()) << array_length->DebugName(); |
| continue; |
| } |
| HIntConstant* lower_bound_const_instr = nullptr; |
| int32_t lower_bound_const = INT_MIN; |
| size_t counter = 0; |
| // Count the constant indexing for which bounds checks haven't |
| // been removed yet. |
| for (HUseIterator<HInstruction*> it2(array_length->GetUses()); |
| !it2.Done(); |
| it2.Advance()) { |
| HInstruction* user = it2.Current()->GetUser(); |
| if (user->GetBlock() == block && |
| user->IsBoundsCheck() && |
| user->AsBoundsCheck()->InputAt(0)->IsIntConstant()) { |
| DCHECK_EQ(array_length, user->AsBoundsCheck()->InputAt(1)); |
| HIntConstant* const_instr = user->AsBoundsCheck()->InputAt(0)->AsIntConstant(); |
| if (const_instr->GetValue() > lower_bound_const) { |
| lower_bound_const = const_instr->GetValue(); |
| lower_bound_const_instr = const_instr; |
| } |
| counter++; |
| } |
| } |
| if (counter >= kThresholdForAddingDeoptimize && |
| lower_bound_const_instr->GetValue() <= kMaxConstantForAddingDeoptimize) { |
| AddCompareWithDeoptimization(array_length, lower_bound_const_instr, block); |
| } |
| } |
| } |
| |
| std::vector<std::unique_ptr<ArenaSafeMap<int, ValueRange*>>> maps_; |
| |
| // Map an HArrayLength instruction's id to the first HBoundsCheck instruction in |
| // a block that checks a constant index against that HArrayLength. |
| SafeMap<int, HBoundsCheck*> first_constant_index_bounds_check_map_; |
| |
| // For the block, there is at least one HArrayLength instruction for which there |
| // is more than one bounds check instruction with constant indexing. And it's |
| // beneficial to add a compare instruction that has deoptimization fallback and |
| // eliminate those bounds checks. |
| bool need_to_revisit_block_; |
| |
| // Initial number of blocks. |
| uint32_t initial_block_size_; |
| |
| // Range analysis based on induction variables. |
| InductionVarRange induction_range_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BCEVisitor); |
| }; |
| |
| void BoundsCheckElimination::Run() { |
| if (!graph_->HasBoundsChecks()) { |
| return; |
| } |
| |
| BCEVisitor visitor(graph_, induction_analysis_); |
| // Reverse post order guarantees a node's dominators are visited first. |
| // We want to visit in the dominator-based order since if a value is known to |
| // be bounded by a range at one instruction, it must be true that all uses of |
| // that value dominated by that instruction fits in that range. Range of that |
| // value can be narrowed further down in the dominator tree. |
| // |
| // TODO: only visit blocks that dominate some array accesses. |
| HBasicBlock* last_visited_block = nullptr; |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* current = it.Current(); |
| if (current == last_visited_block) { |
| // We may insert blocks into the reverse post order list when processing |
| // a loop header. Don't process it again. |
| DCHECK(current->IsLoopHeader()); |
| continue; |
| } |
| if (visitor.IsAddedBlock(current)) { |
| // Skip added blocks. Their effects are already taken care of. |
| continue; |
| } |
| visitor.VisitBasicBlock(current); |
| last_visited_block = current; |
| } |
| } |
| |
| } // namespace art |