blob: 62f5b9aa520702db34f8e30c63f961e3cf0ee202 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/arena_containers.h"
#include "bounds_check_elimination.h"
#include "induction_var_range.h"
#include "nodes.h"
namespace art {
class MonotonicValueRange;
/**
* A value bound is represented as a pair of value and constant,
* e.g. array.length - 1.
*/
class ValueBound : public ValueObject {
public:
ValueBound(HInstruction* instruction, int32_t constant) {
if (instruction != nullptr && instruction->IsIntConstant()) {
// Normalize ValueBound with constant instruction.
int32_t instr_const = instruction->AsIntConstant()->GetValue();
if (!WouldAddOverflowOrUnderflow(instr_const, constant)) {
instruction_ = nullptr;
constant_ = instr_const + constant;
return;
}
}
instruction_ = instruction;
constant_ = constant;
}
// Return whether (left + right) overflows or underflows.
static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) {
if (right == 0) {
return false;
}
if ((right > 0) && (left <= INT_MAX - right)) {
// No overflow.
return false;
}
if ((right < 0) && (left >= INT_MIN - right)) {
// No underflow.
return false;
}
return true;
}
static bool IsAddOrSubAConstant(HInstruction* instruction,
HInstruction** left_instruction,
int* right_constant) {
if (instruction->IsAdd() || instruction->IsSub()) {
HBinaryOperation* bin_op = instruction->AsBinaryOperation();
HInstruction* left = bin_op->GetLeft();
HInstruction* right = bin_op->GetRight();
if (right->IsIntConstant()) {
*left_instruction = left;
int32_t c = right->AsIntConstant()->GetValue();
*right_constant = instruction->IsAdd() ? c : -c;
return true;
}
}
*left_instruction = nullptr;
*right_constant = 0;
return false;
}
// Try to detect useful value bound format from an instruction, e.g.
// a constant or array length related value.
static ValueBound DetectValueBoundFromValue(HInstruction* instruction, bool* found) {
DCHECK(instruction != nullptr);
if (instruction->IsIntConstant()) {
*found = true;
return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
}
if (instruction->IsArrayLength()) {
*found = true;
return ValueBound(instruction, 0);
}
// Try to detect (array.length + c) format.
HInstruction *left;
int32_t right;
if (IsAddOrSubAConstant(instruction, &left, &right)) {
if (left->IsArrayLength()) {
*found = true;
return ValueBound(left, right);
}
}
// No useful bound detected.
*found = false;
return ValueBound::Max();
}
HInstruction* GetInstruction() const { return instruction_; }
int32_t GetConstant() const { return constant_; }
bool IsRelatedToArrayLength() const {
// Some bounds are created with HNewArray* as the instruction instead
// of HArrayLength*. They are treated the same.
return (instruction_ != nullptr) &&
(instruction_->IsArrayLength() || instruction_->IsNewArray());
}
bool IsConstant() const {
return instruction_ == nullptr;
}
static ValueBound Min() { return ValueBound(nullptr, INT_MIN); }
static ValueBound Max() { return ValueBound(nullptr, INT_MAX); }
bool Equals(ValueBound bound) const {
return instruction_ == bound.instruction_ && constant_ == bound.constant_;
}
/*
* Hunt "under the hood" of array lengths (leading to array references),
* null checks (also leading to array references), and new arrays
* (leading to the actual length). This makes it more likely related
* instructions become actually comparable.
*/
static HInstruction* HuntForDeclaration(HInstruction* instruction) {
while (instruction->IsArrayLength() ||
instruction->IsNullCheck() ||
instruction->IsNewArray()) {
instruction = instruction->InputAt(0);
}
return instruction;
}
static bool Equal(HInstruction* instruction1, HInstruction* instruction2) {
if (instruction1 == instruction2) {
return true;
}
if (instruction1 == nullptr || instruction2 == nullptr) {
return false;
}
instruction1 = HuntForDeclaration(instruction1);
instruction2 = HuntForDeclaration(instruction2);
return instruction1 == instruction2;
}
// Returns if it's certain this->bound >= `bound`.
bool GreaterThanOrEqualTo(ValueBound bound) const {
if (Equal(instruction_, bound.instruction_)) {
return constant_ >= bound.constant_;
}
// Not comparable. Just return false.
return false;
}
// Returns if it's certain this->bound <= `bound`.
bool LessThanOrEqualTo(ValueBound bound) const {
if (Equal(instruction_, bound.instruction_)) {
return constant_ <= bound.constant_;
}
// Not comparable. Just return false.
return false;
}
// Try to narrow lower bound. Returns the greatest of the two if possible.
// Pick one if they are not comparable.
static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
if (bound1.GreaterThanOrEqualTo(bound2)) {
return bound1;
}
if (bound2.GreaterThanOrEqualTo(bound1)) {
return bound2;
}
// Not comparable. Just pick one. We may lose some info, but that's ok.
// Favor constant as lower bound.
return bound1.IsConstant() ? bound1 : bound2;
}
// Try to narrow upper bound. Returns the lowest of the two if possible.
// Pick one if they are not comparable.
static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
if (bound1.LessThanOrEqualTo(bound2)) {
return bound1;
}
if (bound2.LessThanOrEqualTo(bound1)) {
return bound2;
}
// Not comparable. Just pick one. We may lose some info, but that's ok.
// Favor array length as upper bound.
return bound1.IsRelatedToArrayLength() ? bound1 : bound2;
}
// Add a constant to a ValueBound.
// `overflow` or `underflow` will return whether the resulting bound may
// overflow or underflow an int.
ValueBound Add(int32_t c, bool* overflow, bool* underflow) const {
*overflow = *underflow = false;
if (c == 0) {
return *this;
}
int32_t new_constant;
if (c > 0) {
if (constant_ > INT_MAX - c) {
*overflow = true;
return Max();
}
new_constant = constant_ + c;
// (array.length + non-positive-constant) won't overflow an int.
if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) {
return ValueBound(instruction_, new_constant);
}
// Be conservative.
*overflow = true;
return Max();
} else {
if (constant_ < INT_MIN - c) {
*underflow = true;
return Min();
}
new_constant = constant_ + c;
// Regardless of the value new_constant, (array.length+new_constant) will
// never underflow since array.length is no less than 0.
if (IsConstant() || IsRelatedToArrayLength()) {
return ValueBound(instruction_, new_constant);
}
// Be conservative.
*underflow = true;
return Min();
}
}
private:
HInstruction* instruction_;
int32_t constant_;
};
// Collect array access data for a loop.
// TODO: make it work for multiple arrays inside the loop.
class ArrayAccessInsideLoopFinder : public ValueObject {
public:
explicit ArrayAccessInsideLoopFinder(HInstruction* induction_variable)
: induction_variable_(induction_variable),
found_array_length_(nullptr),
offset_low_(INT_MAX),
offset_high_(INT_MIN) {
Run();
}
HArrayLength* GetFoundArrayLength() const { return found_array_length_; }
bool HasFoundArrayLength() const { return found_array_length_ != nullptr; }
int32_t GetOffsetLow() const { return offset_low_; }
int32_t GetOffsetHigh() const { return offset_high_; }
// Returns if `block` that is in loop_info may exit the loop, unless it's
// the loop header for loop_info.
static bool EarlyExit(HBasicBlock* block, HLoopInformation* loop_info) {
DCHECK(loop_info->Contains(*block));
if (block == loop_info->GetHeader()) {
// Loop header of loop_info. Exiting loop is normal.
return false;
}
for (HBasicBlock* successor : block->GetSuccessors()) {
if (!loop_info->Contains(*successor)) {
// One of the successors exits the loop.
return true;
}
}
return false;
}
static bool DominatesAllBackEdges(HBasicBlock* block, HLoopInformation* loop_info) {
for (HBasicBlock* back_edge : loop_info->GetBackEdges()) {
if (!block->Dominates(back_edge)) {
return false;
}
}
return true;
}
void Run() {
HLoopInformation* loop_info = induction_variable_->GetBlock()->GetLoopInformation();
HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
HBasicBlock* block = it_loop.Current();
DCHECK(block == induction_variable_->GetBlock());
// Skip loop header. Since narrowed value range of a MonotonicValueRange only
// applies to the loop body (after the test at the end of the loop header).
it_loop.Advance();
for (; !it_loop.Done(); it_loop.Advance()) {
block = it_loop.Current();
DCHECK(block->IsInLoop());
if (!DominatesAllBackEdges(block, loop_info)) {
// In order not to trigger deoptimization unnecessarily, make sure
// that all array accesses collected are really executed in the loop.
// For array accesses in a branch inside the loop, don't collect the
// access. The bounds check in that branch might not be eliminated.
continue;
}
if (EarlyExit(block, loop_info)) {
// If the loop body can exit loop (like break, return, etc.), it's not guaranteed
// that the loop will loop through the full monotonic value range from
// initial_ to end_. So adding deoptimization might be too aggressive and can
// trigger deoptimization unnecessarily even if the loop won't actually throw
// AIOOBE.
found_array_length_ = nullptr;
return;
}
for (HInstruction* instruction = block->GetFirstInstruction();
instruction != nullptr;
instruction = instruction->GetNext()) {
if (!instruction->IsBoundsCheck()) {
continue;
}
HInstruction* length_value = instruction->InputAt(1);
if (length_value->IsIntConstant()) {
// TODO: may optimize for constant case.
continue;
}
if (length_value->IsPhi()) {
// When adding deoptimizations in outer loops, we might create
// a phi for the array length, and update all uses of the
// length in the loop to that phi. Therefore, inner loops having
// bounds checks on the same array will use that phi.
// TODO: handle these cases.
continue;
}
DCHECK(length_value->IsArrayLength());
HArrayLength* array_length = length_value->AsArrayLength();
HInstruction* array = array_length->InputAt(0);
if (array->IsNullCheck()) {
array = array->AsNullCheck()->InputAt(0);
}
if (loop_info->Contains(*array->GetBlock())) {
// Array is defined inside the loop. Skip.
continue;
}
if (found_array_length_ != nullptr && found_array_length_ != array_length) {
// There is already access for another array recorded for the loop.
// TODO: handle multiple arrays.
continue;
}
HInstruction* index = instruction->AsBoundsCheck()->InputAt(0);
HInstruction* left = index;
int32_t right = 0;
if (left == induction_variable_ ||
(ValueBound::IsAddOrSubAConstant(index, &left, &right) &&
left == induction_variable_)) {
// For patterns like array[i] or array[i + 2].
if (right < offset_low_) {
offset_low_ = right;
}
if (right > offset_high_) {
offset_high_ = right;
}
} else {
// Access not in induction_variable/(induction_variable_ + constant)
// format. Skip.
continue;
}
// Record this array.
found_array_length_ = array_length;
}
}
}
private:
// The instruction that corresponds to a MonotonicValueRange.
HInstruction* induction_variable_;
// The array length of the array that's accessed inside the loop body.
HArrayLength* found_array_length_;
// The lowest and highest constant offsets relative to induction variable
// instruction_ in all array accesses.
// If array access are: array[i-1], array[i], array[i+1],
// offset_low_ is -1 and offset_high is 1.
int32_t offset_low_;
int32_t offset_high_;
DISALLOW_COPY_AND_ASSIGN(ArrayAccessInsideLoopFinder);
};
/**
* Represent a range of lower bound and upper bound, both being inclusive.
* Currently a ValueRange may be generated as a result of the following:
* comparisons related to array bounds, array bounds check, add/sub on top
* of an existing value range, NewArray or a loop phi corresponding to an
* incrementing/decrementing array index (MonotonicValueRange).
*/
class ValueRange : public ArenaObject<kArenaAllocMisc> {
public:
ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper)
: allocator_(allocator), lower_(lower), upper_(upper) {}
virtual ~ValueRange() {}
virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; }
bool IsMonotonicValueRange() {
return AsMonotonicValueRange() != nullptr;
}
ArenaAllocator* GetAllocator() const { return allocator_; }
ValueBound GetLower() const { return lower_; }
ValueBound GetUpper() const { return upper_; }
bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); }
// If it's certain that this value range fits in other_range.
virtual bool FitsIn(ValueRange* other_range) const {
if (other_range == nullptr) {
return true;
}
DCHECK(!other_range->IsMonotonicValueRange());
return lower_.GreaterThanOrEqualTo(other_range->lower_) &&
upper_.LessThanOrEqualTo(other_range->upper_);
}
// Returns the intersection of this and range.
// If it's not possible to do intersection because some
// bounds are not comparable, it's ok to pick either bound.
virtual ValueRange* Narrow(ValueRange* range) {
if (range == nullptr) {
return this;
}
if (range->IsMonotonicValueRange()) {
return this;
}
return new (allocator_) ValueRange(
allocator_,
ValueBound::NarrowLowerBound(lower_, range->lower_),
ValueBound::NarrowUpperBound(upper_, range->upper_));
}
// Shift a range by a constant.
ValueRange* Add(int32_t constant) const {
bool overflow, underflow;
ValueBound lower = lower_.Add(constant, &overflow, &underflow);
if (underflow) {
// Lower bound underflow will wrap around to positive values
// and invalidate the upper bound.
return nullptr;
}
ValueBound upper = upper_.Add(constant, &overflow, &underflow);
if (overflow) {
// Upper bound overflow will wrap around to negative values
// and invalidate the lower bound.
return nullptr;
}
return new (allocator_) ValueRange(allocator_, lower, upper);
}
private:
ArenaAllocator* const allocator_;
const ValueBound lower_; // inclusive
const ValueBound upper_; // inclusive
DISALLOW_COPY_AND_ASSIGN(ValueRange);
};
/**
* A monotonically incrementing/decrementing value range, e.g.
* the variable i in "for (int i=0; i<array.length; i++)".
* Special care needs to be taken to account for overflow/underflow
* of such value ranges.
*/
class MonotonicValueRange : public ValueRange {
public:
MonotonicValueRange(ArenaAllocator* allocator,
HPhi* induction_variable,
HInstruction* initial,
int32_t increment,
ValueBound bound)
// To be conservative, give it full range [INT_MIN, INT_MAX] in case it's
// used as a regular value range, due to possible overflow/underflow.
: ValueRange(allocator, ValueBound::Min(), ValueBound::Max()),
induction_variable_(induction_variable),
initial_(initial),
end_(nullptr),
inclusive_(false),
increment_(increment),
bound_(bound) {}
virtual ~MonotonicValueRange() {}
HInstruction* GetInductionVariable() const { return induction_variable_; }
int32_t GetIncrement() const { return increment_; }
ValueBound GetBound() const { return bound_; }
void SetEnd(HInstruction* end) { end_ = end; }
void SetInclusive(bool inclusive) { inclusive_ = inclusive; }
HBasicBlock* GetLoopHeader() const {
DCHECK(induction_variable_->GetBlock()->IsLoopHeader());
return induction_variable_->GetBlock();
}
MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; }
HBasicBlock* GetLoopHeaderSuccesorInLoop() {
HBasicBlock* header = GetLoopHeader();
HInstruction* instruction = header->GetLastInstruction();
DCHECK(instruction->IsIf());
HIf* h_if = instruction->AsIf();
HLoopInformation* loop_info = header->GetLoopInformation();
bool true_successor_in_loop = loop_info->Contains(*h_if->IfTrueSuccessor());
bool false_successor_in_loop = loop_info->Contains(*h_if->IfFalseSuccessor());
// Just in case it's some strange loop structure.
if (true_successor_in_loop && false_successor_in_loop) {
return nullptr;
}
DCHECK(true_successor_in_loop || false_successor_in_loop);
return false_successor_in_loop ? h_if->IfFalseSuccessor() : h_if->IfTrueSuccessor();
}
// If it's certain that this value range fits in other_range.
bool FitsIn(ValueRange* other_range) const OVERRIDE {
if (other_range == nullptr) {
return true;
}
DCHECK(!other_range->IsMonotonicValueRange());
return false;
}
// Try to narrow this MonotonicValueRange given another range.
// Ideally it will return a normal ValueRange. But due to
// possible overflow/underflow, that may not be possible.
ValueRange* Narrow(ValueRange* range) OVERRIDE {
if (range == nullptr) {
return this;
}
DCHECK(!range->IsMonotonicValueRange());
if (increment_ > 0) {
// Monotonically increasing.
ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower());
if (!lower.IsConstant() || lower.GetConstant() == INT_MIN) {
// Lower bound isn't useful. Leave it to deoptimization.
return this;
}
// We currently conservatively assume max array length is INT_MAX. If we can
// make assumptions about the max array length, e.g. due to the max heap size,
// divided by the element size (such as 4 bytes for each integer array), we can
// lower this number and rule out some possible overflows.
int32_t max_array_len = INT_MAX;
// max possible integer value of range's upper value.
int32_t upper = INT_MAX;
// Try to lower upper.
ValueBound upper_bound = range->GetUpper();
if (upper_bound.IsConstant()) {
upper = upper_bound.GetConstant();
} else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) {
// Normal case. e.g. <= array.length - 1.
upper = max_array_len + upper_bound.GetConstant();
}
// If we can prove for the last number in sequence of initial_,
// initial_ + increment_, initial_ + 2 x increment_, ...
// that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
// then this MonoticValueRange is narrowed to a normal value range.
// Be conservative first, assume last number in the sequence hits upper.
int32_t last_num_in_sequence = upper;
if (initial_->IsIntConstant()) {
int32_t initial_constant = initial_->AsIntConstant()->GetValue();
if (upper <= initial_constant) {
last_num_in_sequence = upper;
} else {
// Cast to int64_t for the substraction part to avoid int32_t overflow.
last_num_in_sequence = initial_constant +
((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
}
}
if (last_num_in_sequence <= INT_MAX - increment_) {
// No overflow. The sequence will be stopped by the upper bound test as expected.
return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
}
// There might be overflow. Give up narrowing.
return this;
} else {
DCHECK_NE(increment_, 0);
// Monotonically decreasing.
ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper());
if ((!upper.IsConstant() || upper.GetConstant() == INT_MAX) &&
!upper.IsRelatedToArrayLength()) {
// Upper bound isn't useful. Leave it to deoptimization.
return this;
}
// Need to take care of underflow. Try to prove underflow won't happen
// for common cases.
if (range->GetLower().IsConstant()) {
int32_t constant = range->GetLower().GetConstant();
if (constant >= INT_MIN - increment_) {
return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
}
}
// For non-constant lower bound, just assume might be underflow. Give up narrowing.
return this;
}
}
// Try to add HDeoptimize's in the loop pre-header first to narrow this range.
// For example, this loop:
//
// for (int i = start; i < end; i++) {
// array[i - 1] = array[i] + array[i + 1];
// }
//
// will be transformed to:
//
// int array_length_in_loop_body_if_needed;
// if (start >= end) {
// array_length_in_loop_body_if_needed = 0;
// } else {
// if (start < 1) deoptimize();
// if (array == null) deoptimize();
// array_length = array.length;
// if (end > array_length - 1) deoptimize;
// array_length_in_loop_body_if_needed = array_length;
// }
// for (int i = start; i < end; i++) {
// // No more null check and bounds check.
// // array.length value is replaced with array_length_in_loop_body_if_needed
// // in the loop body.
// array[i - 1] = array[i] + array[i + 1];
// }
//
// We basically first go through the loop body and find those array accesses whose
// index is at a constant offset from the induction variable ('i' in the above example),
// and update offset_low and offset_high along the way. We then add the following
// deoptimizations in the loop pre-header (suppose end is not inclusive).
// if (start < -offset_low) deoptimize();
// if (end >= array.length - offset_high) deoptimize();
// It might be necessary to first hoist array.length (and the null check on it) out of
// the loop with another deoptimization.
//
// In order not to trigger deoptimization unnecessarily, we want to make a strong
// guarantee that no deoptimization is triggered if the loop body itself doesn't
// throw AIOOBE. (It's the same as saying if deoptimization is triggered, the loop
// body must throw AIOOBE).
// This is achieved by the following:
// 1) We only process loops that iterate through the full monotonic range from
// initial_ to end_. We do the following checks to make sure that's the case:
// a) The loop doesn't have early exit (via break, return, etc.)
// b) The increment_ is 1/-1. An increment of 2, for example, may skip end_.
// 2) We only collect array accesses of blocks in the loop body that dominate
// all loop back edges, these array accesses are guaranteed to happen
// at each loop iteration.
// With 1) and 2), if the loop body doesn't throw AIOOBE, collected array accesses
// when the induction variable is at initial_ and end_ must be in a legal range.
// Since the added deoptimizations are basically checking the induction variable
// at initial_ and end_ values, no deoptimization will be triggered either.
//
// A special case is the loop body isn't entered at all. In that case, we may still
// add deoptimization due to the analysis described above. In order not to trigger
// deoptimization, we do a test between initial_ and end_ first and skip over
// the added deoptimization.
ValueRange* NarrowWithDeoptimization() {
if (increment_ != 1 && increment_ != -1) {
// In order not to trigger deoptimization unnecessarily, we want to
// make sure the loop iterates through the full range from initial_ to
// end_ so that boundaries are covered by the loop. An increment of 2,
// for example, may skip end_.
return this;
}
if (end_ == nullptr) {
// No full info to add deoptimization.
return this;
}
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader();
if (!initial_->GetBlock()->Dominates(pre_header) ||
!end_->GetBlock()->Dominates(pre_header)) {
// Can't add a check in loop pre-header if the value isn't available there.
return this;
}
ArrayAccessInsideLoopFinder finder(induction_variable_);
if (!finder.HasFoundArrayLength()) {
// No array access was found inside the loop that can benefit
// from deoptimization.
return this;
}
if (!AddDeoptimization(finder)) {
return this;
}
// After added deoptimizations, induction variable fits in
// [-offset_low, array.length-1-offset_high], adjusted with collected offsets.
ValueBound lower = ValueBound(0, -finder.GetOffsetLow());
ValueBound upper = ValueBound(finder.GetFoundArrayLength(), -1 - finder.GetOffsetHigh());
// We've narrowed the range after added deoptimizations.
return new (GetAllocator()) ValueRange(GetAllocator(), lower, upper);
}
// Returns true if adding a (constant >= value) check for deoptimization
// is allowed and will benefit compiled code.
bool CanAddDeoptimizationConstant(HInstruction* value, int32_t constant, bool* is_proven) {
*is_proven = false;
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader();
DCHECK(value->GetBlock()->Dominates(pre_header));
// See if we can prove the relationship first.
if (value->IsIntConstant()) {
if (value->AsIntConstant()->GetValue() >= constant) {
// Already true.
*is_proven = true;
return true;
} else {
// May throw exception. Don't add deoptimization.
// Keep bounds checks in the loops.
return false;
}
}
// Can benefit from deoptimization.
return true;
}
// Try to filter out cases that the loop entry test will never be true.
bool LoopEntryTestUseful() {
if (initial_->IsIntConstant() && end_->IsIntConstant()) {
int32_t initial_val = initial_->AsIntConstant()->GetValue();
int32_t end_val = end_->AsIntConstant()->GetValue();
if (increment_ == 1) {
if (inclusive_) {
return initial_val > end_val;
} else {
return initial_val >= end_val;
}
} else {
DCHECK_EQ(increment_, -1);
if (inclusive_) {
return initial_val < end_val;
} else {
return initial_val <= end_val;
}
}
}
return true;
}
// Returns the block for adding deoptimization.
HBasicBlock* TransformLoopForDeoptimizationIfNeeded() {
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader();
// Deoptimization is only added when both initial_ and end_ are defined
// before the loop.
DCHECK(initial_->GetBlock()->Dominates(pre_header));
DCHECK(end_->GetBlock()->Dominates(pre_header));
// If it can be proven the loop body is definitely entered (unless exception
// is thrown in the loop header for which triggering deoptimization is fine),
// there is no need for tranforming the loop. In that case, deoptimization
// will just be added in the loop pre-header.
if (!LoopEntryTestUseful()) {
return pre_header;
}
HGraph* graph = header->GetGraph();
graph->TransformLoopHeaderForBCE(header);
HBasicBlock* new_pre_header = header->GetDominator();
DCHECK(new_pre_header == header->GetLoopInformation()->GetPreHeader());
HBasicBlock* if_block = new_pre_header->GetDominator();
HBasicBlock* dummy_block = if_block->GetSuccessor(0); // True successor.
HBasicBlock* deopt_block = if_block->GetSuccessor(1); // False successor.
dummy_block->AddInstruction(new (graph->GetArena()) HGoto());
deopt_block->AddInstruction(new (graph->GetArena()) HGoto());
new_pre_header->AddInstruction(new (graph->GetArena()) HGoto());
return deopt_block;
}
// Adds a test between initial_ and end_ to see if the loop body is entered.
// If the loop body isn't entered at all, it jumps to the loop pre-header (after
// transformation) to avoid any deoptimization.
void AddLoopBodyEntryTest() {
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader();
HBasicBlock* if_block = pre_header->GetDominator();
HGraph* graph = header->GetGraph();
HCondition* cond;
if (increment_ == 1) {
if (inclusive_) {
cond = new (graph->GetArena()) HGreaterThan(initial_, end_);
} else {
cond = new (graph->GetArena()) HGreaterThanOrEqual(initial_, end_);
}
} else {
DCHECK_EQ(increment_, -1);
if (inclusive_) {
cond = new (graph->GetArena()) HLessThan(initial_, end_);
} else {
cond = new (graph->GetArena()) HLessThanOrEqual(initial_, end_);
}
}
HIf* h_if = new (graph->GetArena()) HIf(cond);
if_block->AddInstruction(cond);
if_block->AddInstruction(h_if);
}
// Adds a check that (value >= constant), and HDeoptimize otherwise.
void AddDeoptimizationConstant(HInstruction* value,
int32_t constant,
HBasicBlock* deopt_block,
bool loop_entry_test_block_added) {
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetDominator();
if (loop_entry_test_block_added) {
DCHECK(deopt_block->GetSuccessor(0) == pre_header);
} else {
DCHECK(deopt_block == pre_header);
}
HGraph* graph = header->GetGraph();
HSuspendCheck* suspend_check = header->GetLoopInformation()->GetSuspendCheck();
if (loop_entry_test_block_added) {
DCHECK_EQ(deopt_block, header->GetDominator()->GetDominator()->GetSuccessor(1));
}
HIntConstant* const_instr = graph->GetIntConstant(constant);
HCondition* cond = new (graph->GetArena()) HLessThan(value, const_instr);
HDeoptimize* deoptimize = new (graph->GetArena())
HDeoptimize(cond, suspend_check->GetDexPc());
deopt_block->InsertInstructionBefore(cond, deopt_block->GetLastInstruction());
deopt_block->InsertInstructionBefore(deoptimize, deopt_block->GetLastInstruction());
deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
suspend_check->GetEnvironment(), header);
}
// Returns true if adding a (value <= array_length + offset) check for deoptimization
// is allowed and will benefit compiled code.
bool CanAddDeoptimizationArrayLength(HInstruction* value,
HArrayLength* array_length,
int32_t offset,
bool* is_proven) {
*is_proven = false;
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetLoopInformation()->GetPreHeader();
DCHECK(value->GetBlock()->Dominates(pre_header));
if (array_length->GetBlock() == header) {
// array_length_in_loop_body_if_needed only has correct value when the loop
// body is entered. We bail out in this case. Usually array_length defined
// in the loop header is already hoisted by licm.
return false;
} else {
// array_length is defined either before the loop header already, or in
// the loop body since it's used in the loop body. If it's defined in the loop body,
// a phi array_length_in_loop_body_if_needed is used to replace it. In that case,
// all the uses of array_length must be dominated by its definition in the loop
// body. array_length_in_loop_body_if_needed is guaranteed to be the same as
// array_length once the loop body is entered so all the uses of the phi will
// use the correct value.
}
if (offset > 0) {
// There might be overflow issue.
// TODO: handle this, possibly with some distance relationship between
// offset_low and offset_high, or using another deoptimization to make
// sure (array_length + offset) doesn't overflow.
return false;
}
// See if we can prove the relationship first.
if (value == array_length) {
if (offset >= 0) {
// Already true.
*is_proven = true;
return true;
} else {
// May throw exception. Don't add deoptimization.
// Keep bounds checks in the loops.
return false;
}
}
// Can benefit from deoptimization.
return true;
}
// Adds a check that (value <= array_length + offset), and HDeoptimize otherwise.
void AddDeoptimizationArrayLength(HInstruction* value,
HArrayLength* array_length,
int32_t offset,
HBasicBlock* deopt_block,
bool loop_entry_test_block_added) {
HBasicBlock* header = induction_variable_->GetBlock();
DCHECK(header->IsLoopHeader());
HBasicBlock* pre_header = header->GetDominator();
if (loop_entry_test_block_added) {
DCHECK(deopt_block->GetSuccessor(0) == pre_header);
} else {
DCHECK(deopt_block == pre_header);
}
HGraph* graph = header->GetGraph();
HSuspendCheck* suspend_check = header->GetLoopInformation()->GetSuspendCheck();
// We may need to hoist null-check and array_length out of loop first.
if (!array_length->GetBlock()->Dominates(deopt_block)) {
// array_length must be defined in the loop body.
DCHECK(header->GetLoopInformation()->Contains(*array_length->GetBlock()));
DCHECK(array_length->GetBlock() != header);
HInstruction* array = array_length->InputAt(0);
HNullCheck* null_check = array->AsNullCheck();
if (null_check != nullptr) {
array = null_check->InputAt(0);
}
// We've already made sure the array is defined before the loop when collecting
// array accesses for the loop.
DCHECK(array->GetBlock()->Dominates(deopt_block));
if (null_check != nullptr && !null_check->GetBlock()->Dominates(deopt_block)) {
// Hoist null check out of loop with a deoptimization.
HNullConstant* null_constant = graph->GetNullConstant();
HCondition* null_check_cond = new (graph->GetArena()) HEqual(array, null_constant);
// TODO: for one dex_pc, share the same deoptimization slow path.
HDeoptimize* null_check_deoptimize = new (graph->GetArena())
HDeoptimize(null_check_cond, suspend_check->GetDexPc());
deopt_block->InsertInstructionBefore(
null_check_cond, deopt_block->GetLastInstruction());
deopt_block->InsertInstructionBefore(
null_check_deoptimize, deopt_block->GetLastInstruction());
// Eliminate null check in the loop.
null_check->ReplaceWith(array);
null_check->GetBlock()->RemoveInstruction(null_check);
null_check_deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
suspend_check->GetEnvironment(), header);
}
HArrayLength* new_array_length = new (graph->GetArena()) HArrayLength(array);
deopt_block->InsertInstructionBefore(new_array_length, deopt_block->GetLastInstruction());
if (loop_entry_test_block_added) {
// Replace array_length defined inside the loop body with a phi
// array_length_in_loop_body_if_needed. This is a synthetic phi so there is
// no vreg number for it.
HPhi* phi = new (graph->GetArena()) HPhi(
graph->GetArena(), kNoRegNumber, 2, Primitive::kPrimInt);
// Set to 0 if the loop body isn't entered.
phi->SetRawInputAt(0, graph->GetIntConstant(0));
// Set to array.length if the loop body is entered.
phi->SetRawInputAt(1, new_array_length);
pre_header->AddPhi(phi);
array_length->ReplaceWith(phi);
// Make sure phi is only used after the loop body is entered.
if (kIsDebugBuild) {
for (HUseIterator<HInstruction*> it(phi->GetUses());
!it.Done();
it.Advance()) {
HInstruction* user = it.Current()->GetUser();
DCHECK(GetLoopHeaderSuccesorInLoop()->Dominates(user->GetBlock()));
}
}
} else {
array_length->ReplaceWith(new_array_length);
}
array_length->GetBlock()->RemoveInstruction(array_length);
// Use new_array_length for deopt.
array_length = new_array_length;
}
HInstruction* added = array_length;
if (offset != 0) {
HIntConstant* offset_instr = graph->GetIntConstant(offset);
added = new (graph->GetArena()) HAdd(Primitive::kPrimInt, array_length, offset_instr);
deopt_block->InsertInstructionBefore(added, deopt_block->GetLastInstruction());
}
HCondition* cond = new (graph->GetArena()) HGreaterThan(value, added);
HDeoptimize* deopt = new (graph->GetArena()) HDeoptimize(cond, suspend_check->GetDexPc());
deopt_block->InsertInstructionBefore(cond, deopt_block->GetLastInstruction());
deopt_block->InsertInstructionBefore(deopt, deopt_block->GetLastInstruction());
deopt->CopyEnvironmentFromWithLoopPhiAdjustment(suspend_check->GetEnvironment(), header);
}
// Adds deoptimizations in loop pre-header with the collected array access
// data so that value ranges can be established in loop body.
// Returns true if deoptimizations are successfully added, or if it's proven
// it's not necessary.
bool AddDeoptimization(const ArrayAccessInsideLoopFinder& finder) {
int32_t offset_low = finder.GetOffsetLow();
int32_t offset_high = finder.GetOffsetHigh();
HArrayLength* array_length = finder.GetFoundArrayLength();
HBasicBlock* pre_header =
induction_variable_->GetBlock()->GetLoopInformation()->GetPreHeader();
if (!initial_->GetBlock()->Dominates(pre_header) ||
!end_->GetBlock()->Dominates(pre_header)) {
// Can't move initial_ or end_ into pre_header for comparisons.
return false;
}
HBasicBlock* deopt_block;
bool loop_entry_test_block_added = false;
bool is_constant_proven, is_length_proven;
HInstruction* const_comparing_instruction;
int32_t const_compared_to;
HInstruction* array_length_comparing_instruction;
int32_t array_length_offset;
if (increment_ == 1) {
// Increasing from initial_ to end_.
const_comparing_instruction = initial_;
const_compared_to = -offset_low;
array_length_comparing_instruction = end_;
array_length_offset = inclusive_ ? -offset_high - 1 : -offset_high;
} else {
const_comparing_instruction = end_;
const_compared_to = inclusive_ ? -offset_low : -offset_low - 1;
array_length_comparing_instruction = initial_;
array_length_offset = -offset_high - 1;
}
if (CanAddDeoptimizationConstant(const_comparing_instruction,
const_compared_to,
&is_constant_proven) &&
CanAddDeoptimizationArrayLength(array_length_comparing_instruction,
array_length,
array_length_offset,
&is_length_proven)) {
if (!is_constant_proven || !is_length_proven) {
deopt_block = TransformLoopForDeoptimizationIfNeeded();
loop_entry_test_block_added = (deopt_block != pre_header);
if (loop_entry_test_block_added) {
// Loop body may be entered.
AddLoopBodyEntryTest();
}
}
if (!is_constant_proven) {
AddDeoptimizationConstant(const_comparing_instruction,
const_compared_to,
deopt_block,
loop_entry_test_block_added);
}
if (!is_length_proven) {
AddDeoptimizationArrayLength(array_length_comparing_instruction,
array_length,
array_length_offset,
deopt_block,
loop_entry_test_block_added);
}
return true;
}
return false;
}
private:
HPhi* const induction_variable_; // Induction variable for this monotonic value range.
HInstruction* const initial_; // Initial value.
HInstruction* end_; // End value.
bool inclusive_; // Whether end value is inclusive.
const int32_t increment_; // Increment for each loop iteration.
const ValueBound bound_; // Additional value bound info for initial_.
DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
};
class BCEVisitor : public HGraphVisitor {
public:
// The least number of bounds checks that should be eliminated by triggering
// the deoptimization technique.
static constexpr size_t kThresholdForAddingDeoptimize = 2;
// Very large constant index is considered as an anomaly. This is a threshold
// beyond which we don't bother to apply the deoptimization technique since
// it's likely some AIOOBE will be thrown.
static constexpr int32_t kMaxConstantForAddingDeoptimize = INT_MAX - 1024 * 1024;
// Added blocks for loop body entry test.
bool IsAddedBlock(HBasicBlock* block) const {
return block->GetBlockId() >= initial_block_size_;
}
BCEVisitor(HGraph* graph, HInductionVarAnalysis* induction_analysis)
: HGraphVisitor(graph),
maps_(graph->GetBlocks().size()),
need_to_revisit_block_(false),
initial_block_size_(graph->GetBlocks().size()),
induction_range_(induction_analysis) {}
void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
DCHECK(!IsAddedBlock(block));
first_constant_index_bounds_check_map_.clear();
HGraphVisitor::VisitBasicBlock(block);
if (need_to_revisit_block_) {
AddComparesWithDeoptimization(block);
need_to_revisit_block_ = false;
first_constant_index_bounds_check_map_.clear();
GetValueRangeMap(block)->clear();
HGraphVisitor::VisitBasicBlock(block);
}
}
private:
// Return the map of proven value ranges at the beginning of a basic block.
ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
if (IsAddedBlock(basic_block)) {
// Added blocks don't keep value ranges.
return nullptr;
}
int block_id = basic_block->GetBlockId();
if (maps_.at(block_id) == nullptr) {
std::unique_ptr<ArenaSafeMap<int, ValueRange*>> map(
new ArenaSafeMap<int, ValueRange*>(
std::less<int>(), GetGraph()->GetArena()->Adapter()));
maps_.at(block_id) = std::move(map);
}
return maps_.at(block_id).get();
}
// Traverse up the dominator tree to look for value range info.
ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
while (basic_block != nullptr) {
ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
if (map != nullptr) {
if (map->find(instruction->GetId()) != map->end()) {
return map->Get(instruction->GetId());
}
} else {
DCHECK(IsAddedBlock(basic_block));
}
basic_block = basic_block->GetDominator();
}
// Didn't find any.
return nullptr;
}
// Return the range resulting from induction variable analysis of "instruction" when the value
// is used from "context", for example, an index used from a bounds-check inside a loop body.
ValueRange* LookupInductionRange(HInstruction* context, HInstruction* instruction) {
InductionVarRange::Value v1 = induction_range_.GetMinInduction(context, instruction);
InductionVarRange::Value v2 = induction_range_.GetMaxInduction(context, instruction);
if ((v1.a_constant == 0 || v1.a_constant == 1) && v1.b_constant != INT_MIN &&
(v2.a_constant == 0 || v2.a_constant == 1) && v2.b_constant != INT_MAX) {
DCHECK(v1.a_constant == 1 || v1.instruction == nullptr);
DCHECK(v2.a_constant == 1 || v2.instruction == nullptr);
ValueBound low = ValueBound(v1.instruction, v1.b_constant);
ValueBound up = ValueBound(v2.instruction, v2.b_constant);
return new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), low, up);
}
// Didn't find anything useful.
return nullptr;
}
// Narrow the value range of `instruction` at the end of `basic_block` with `range`,
// and push the narrowed value range to `successor`.
void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
HBasicBlock* successor, ValueRange* range) {
ValueRange* existing_range = LookupValueRange(instruction, basic_block);
if (existing_range == nullptr) {
if (range != nullptr) {
GetValueRangeMap(successor)->Overwrite(instruction->GetId(), range);
}
return;
}
if (existing_range->IsMonotonicValueRange()) {
DCHECK(instruction->IsLoopHeaderPhi());
// Make sure the comparison is in the loop header so each increment is
// checked with a comparison.
if (instruction->GetBlock() != basic_block) {
return;
}
}
ValueRange* narrowed_range = existing_range->Narrow(range);
GetValueRangeMap(successor)->Overwrite(instruction->GetId(), narrowed_range);
}
// Special case that we may simultaneously narrow two MonotonicValueRange's to
// regular value ranges.
void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction,
HInstruction* left,
HInstruction* right,
IfCondition cond,
MonotonicValueRange* left_range,
MonotonicValueRange* right_range) {
DCHECK(left->IsLoopHeaderPhi());
DCHECK(right->IsLoopHeaderPhi());
if (instruction->GetBlock() != left->GetBlock()) {
// Comparison needs to be in loop header to make sure it's done after each
// increment/decrement.
return;
}
// Handle common cases which also don't have overflow/underflow concerns.
if (left_range->GetIncrement() == 1 &&
left_range->GetBound().IsConstant() &&
right_range->GetIncrement() == -1 &&
right_range->GetBound().IsRelatedToArrayLength() &&
right_range->GetBound().GetConstant() < 0) {
HBasicBlock* successor = nullptr;
int32_t left_compensation = 0;
int32_t right_compensation = 0;
if (cond == kCondLT) {
left_compensation = -1;
right_compensation = 1;
successor = instruction->IfTrueSuccessor();
} else if (cond == kCondLE) {
successor = instruction->IfTrueSuccessor();
} else if (cond == kCondGT) {
successor = instruction->IfFalseSuccessor();
} else if (cond == kCondGE) {
left_compensation = -1;
right_compensation = 1;
successor = instruction->IfFalseSuccessor();
} else {
// We don't handle '=='/'!=' test in case left and right can cross and
// miss each other.
return;
}
if (successor != nullptr) {
bool overflow;
bool underflow;
ValueRange* new_left_range = new (GetGraph()->GetArena()) ValueRange(
GetGraph()->GetArena(),
left_range->GetBound(),
right_range->GetBound().Add(left_compensation, &overflow, &underflow));
if (!overflow && !underflow) {
ApplyRangeFromComparison(left, instruction->GetBlock(), successor,
new_left_range);
}
ValueRange* new_right_range = new (GetGraph()->GetArena()) ValueRange(
GetGraph()->GetArena(),
left_range->GetBound().Add(right_compensation, &overflow, &underflow),
right_range->GetBound());
if (!overflow && !underflow) {
ApplyRangeFromComparison(right, instruction->GetBlock(), successor,
new_right_range);
}
}
}
}
// Handle "if (left cmp_cond right)".
void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
HBasicBlock* block = instruction->GetBlock();
HBasicBlock* true_successor = instruction->IfTrueSuccessor();
// There should be no critical edge at this point.
DCHECK_EQ(true_successor->GetPredecessors().size(), 1u);
HBasicBlock* false_successor = instruction->IfFalseSuccessor();
// There should be no critical edge at this point.
DCHECK_EQ(false_successor->GetPredecessors().size(), 1u);
ValueRange* left_range = LookupValueRange(left, block);
MonotonicValueRange* left_monotonic_range = nullptr;
if (left_range != nullptr) {
left_monotonic_range = left_range->AsMonotonicValueRange();
if (left_monotonic_range != nullptr) {
HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader();
if (instruction->GetBlock() != loop_head) {
// For monotonic value range, don't handle `instruction`
// if it's not defined in the loop header.
return;
}
}
}
bool found;
ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found);
// Each comparison can establish a lower bound and an upper bound
// for the left hand side.
ValueBound lower = bound;
ValueBound upper = bound;
if (!found) {
// No constant or array.length+c format bound found.
// For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
ValueRange* right_range = LookupValueRange(right, block);
if (right_range != nullptr) {
if (right_range->IsMonotonicValueRange()) {
if (left_range != nullptr && left_range->IsMonotonicValueRange()) {
HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond,
left_range->AsMonotonicValueRange(),
right_range->AsMonotonicValueRange());
return;
}
}
lower = right_range->GetLower();
upper = right_range->GetUpper();
} else {
lower = ValueBound::Min();
upper = ValueBound::Max();
}
}
bool overflow, underflow;
if (cond == kCondLT || cond == kCondLE) {
if (left_monotonic_range != nullptr) {
// Update the info for monotonic value range.
if (left_monotonic_range->GetInductionVariable() == left &&
left_monotonic_range->GetIncrement() < 0 &&
block == left_monotonic_range->GetLoopHeader() &&
instruction->IfFalseSuccessor()->GetLoopInformation() == block->GetLoopInformation()) {
left_monotonic_range->SetEnd(right);
left_monotonic_range->SetInclusive(cond == kCondLT);
}
}
if (!upper.Equals(ValueBound::Max())) {
int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive
ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
if (overflow || underflow) {
return;
}
ValueRange* new_range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
ApplyRangeFromComparison(left, block, true_successor, new_range);
}
// array.length as a lower bound isn't considered useful.
if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive
ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
if (overflow || underflow) {
return;
}
ValueRange* new_range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
ApplyRangeFromComparison(left, block, false_successor, new_range);
}
} else if (cond == kCondGT || cond == kCondGE) {
if (left_monotonic_range != nullptr) {
// Update the info for monotonic value range.
if (left_monotonic_range->GetInductionVariable() == left &&
left_monotonic_range->GetIncrement() > 0 &&
block == left_monotonic_range->GetLoopHeader() &&
instruction->IfFalseSuccessor()->GetLoopInformation() == block->GetLoopInformation()) {
left_monotonic_range->SetEnd(right);
left_monotonic_range->SetInclusive(cond == kCondGT);
}
}
// array.length as a lower bound isn't considered useful.
if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive
ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
if (overflow || underflow) {
return;
}
ValueRange* new_range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
ApplyRangeFromComparison(left, block, true_successor, new_range);
}
if (!upper.Equals(ValueBound::Max())) {
int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive
ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
if (overflow || underflow) {
return;
}
ValueRange* new_range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
ApplyRangeFromComparison(left, block, false_successor, new_range);
}
}
}
void VisitBoundsCheck(HBoundsCheck* bounds_check) {
HBasicBlock* block = bounds_check->GetBlock();
HInstruction* index = bounds_check->InputAt(0);
HInstruction* array_length = bounds_check->InputAt(1);
DCHECK(array_length->IsIntConstant() ||
array_length->IsArrayLength() ||
array_length->IsPhi());
if (array_length->IsPhi()) {
// Input 1 of the phi contains the real array.length once the loop body is
// entered. That value will be used for bound analysis. The graph is still
// strictly in SSA form.
array_length = array_length->AsPhi()->InputAt(1)->AsArrayLength();
}
if (!index->IsIntConstant()) {
ValueBound lower = ValueBound(nullptr, 0); // constant 0
ValueBound upper = ValueBound(array_length, -1); // array_length - 1
ValueRange array_range(GetGraph()->GetArena(), lower, upper);
// Try range obtained by local analysis.
ValueRange* index_range = LookupValueRange(index, block);
if (index_range != nullptr && index_range->FitsIn(&array_range)) {
ReplaceBoundsCheck(bounds_check, index);
return;
}
// Try range obtained by induction variable analysis.
index_range = LookupInductionRange(bounds_check, index);
if (index_range != nullptr && index_range->FitsIn(&array_range)) {
ReplaceBoundsCheck(bounds_check, index);
return;
}
} else {
int32_t constant = index->AsIntConstant()->GetValue();
if (constant < 0) {
// Will always throw exception.
return;
}
if (array_length->IsIntConstant()) {
if (constant < array_length->AsIntConstant()->GetValue()) {
ReplaceBoundsCheck(bounds_check, index);
}
return;
}
DCHECK(array_length->IsArrayLength());
ValueRange* existing_range = LookupValueRange(array_length, block);
if (existing_range != nullptr) {
ValueBound lower = existing_range->GetLower();
DCHECK(lower.IsConstant());
if (constant < lower.GetConstant()) {
ReplaceBoundsCheck(bounds_check, index);
return;
} else {
// Existing range isn't strong enough to eliminate the bounds check.
// Fall through to update the array_length range with info from this
// bounds check.
}
}
if (first_constant_index_bounds_check_map_.find(array_length->GetId()) ==
first_constant_index_bounds_check_map_.end()) {
// Remember the first bounds check against array_length of a constant index.
// That bounds check instruction has an associated HEnvironment where we
// may add an HDeoptimize to eliminate bounds checks of constant indices
// against array_length.
first_constant_index_bounds_check_map_.Put(array_length->GetId(), bounds_check);
} else {
// We've seen it at least twice. It's beneficial to introduce a compare with
// deoptimization fallback to eliminate the bounds checks.
need_to_revisit_block_ = true;
}
// Once we have an array access like 'array[5] = 1', we record array.length >= 6.
// We currently don't do it for non-constant index since a valid array[i] can't prove
// a valid array[i-1] yet due to the lower bound side.
if (constant == INT_MAX) {
// INT_MAX as an index will definitely throw AIOOBE.
return;
}
ValueBound lower = ValueBound(nullptr, constant + 1);
ValueBound upper = ValueBound::Max();
ValueRange* range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), lower, upper);
GetValueRangeMap(block)->Overwrite(array_length->GetId(), range);
}
}
void ReplaceBoundsCheck(HInstruction* bounds_check, HInstruction* index) {
bounds_check->ReplaceWith(index);
bounds_check->GetBlock()->RemoveInstruction(bounds_check);
}
static bool HasSameInputAtBackEdges(HPhi* phi) {
DCHECK(phi->IsLoopHeaderPhi());
// Start with input 1. Input 0 is from the incoming block.
HInstruction* input1 = phi->InputAt(1);
DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
*phi->GetBlock()->GetPredecessor(1)));
for (size_t i = 2, e = phi->InputCount(); i < e; ++i) {
DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
*phi->GetBlock()->GetPredecessor(i)));
if (input1 != phi->InputAt(i)) {
return false;
}
}
return true;
}
void VisitPhi(HPhi* phi) {
if (phi->IsLoopHeaderPhi()
&& (phi->GetType() == Primitive::kPrimInt)
&& HasSameInputAtBackEdges(phi)) {
HInstruction* instruction = phi->InputAt(1);
HInstruction *left;
int32_t increment;
if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) {
if (left == phi) {
HInstruction* initial_value = phi->InputAt(0);
ValueRange* range = nullptr;
if (increment == 0) {
// Add constant 0. It's really a fixed value.
range = new (GetGraph()->GetArena()) ValueRange(
GetGraph()->GetArena(),
ValueBound(initial_value, 0),
ValueBound(initial_value, 0));
} else {
// Monotonically increasing/decreasing.
bool found;
ValueBound bound = ValueBound::DetectValueBoundFromValue(
initial_value, &found);
if (!found) {
// No constant or array.length+c bound found.
// For i=j, we can still use j's upper bound as i's upper bound.
// Same for lower.
ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock());
if (initial_range != nullptr) {
bound = increment > 0 ? initial_range->GetLower() :
initial_range->GetUpper();
} else {
bound = increment > 0 ? ValueBound::Min() : ValueBound::Max();
}
}
range = new (GetGraph()->GetArena()) MonotonicValueRange(
GetGraph()->GetArena(),
phi,
initial_value,
increment,
bound);
}
GetValueRangeMap(phi->GetBlock())->Overwrite(phi->GetId(), range);
}
}
}
}
void VisitIf(HIf* instruction) {
if (instruction->InputAt(0)->IsCondition()) {
HCondition* cond = instruction->InputAt(0)->AsCondition();
IfCondition cmp = cond->GetCondition();
if (cmp == kCondGT || cmp == kCondGE ||
cmp == kCondLT || cmp == kCondLE) {
HInstruction* left = cond->GetLeft();
HInstruction* right = cond->GetRight();
HandleIf(instruction, left, right, cmp);
HBasicBlock* block = instruction->GetBlock();
ValueRange* left_range = LookupValueRange(left, block);
if (left_range == nullptr) {
return;
}
if (left_range->IsMonotonicValueRange() &&
block == left_range->AsMonotonicValueRange()->GetLoopHeader()) {
// The comparison is for an induction variable in the loop header.
DCHECK(left == left_range->AsMonotonicValueRange()->GetInductionVariable());
HBasicBlock* loop_body_successor =
left_range->AsMonotonicValueRange()->GetLoopHeaderSuccesorInLoop();
if (loop_body_successor == nullptr) {
// In case it's some strange loop structure.
return;
}
ValueRange* new_left_range = LookupValueRange(left, loop_body_successor);
if ((new_left_range == left_range) ||
// Range narrowed with deoptimization is usually more useful than
// a constant range.
new_left_range->IsConstantValueRange()) {
// We are not successful in narrowing the monotonic value range to
// a regular value range. Try using deoptimization.
new_left_range = left_range->AsMonotonicValueRange()->
NarrowWithDeoptimization();
if (new_left_range != left_range) {
GetValueRangeMap(loop_body_successor)->Overwrite(left->GetId(), new_left_range);
}
}
}
}
}
}
void VisitAdd(HAdd* add) {
HInstruction* right = add->GetRight();
if (right->IsIntConstant()) {
ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
if (left_range == nullptr) {
return;
}
ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
if (range != nullptr) {
GetValueRangeMap(add->GetBlock())->Overwrite(add->GetId(), range);
}
}
}
void VisitSub(HSub* sub) {
HInstruction* left = sub->GetLeft();
HInstruction* right = sub->GetRight();
if (right->IsIntConstant()) {
ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
if (left_range == nullptr) {
return;
}
ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
if (range != nullptr) {
GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range);
return;
}
}
// Here we are interested in the typical triangular case of nested loops,
// such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
// is the index for outer loop. In this case, we know j is bounded by array.length-1.
// Try to handle (array.length - i) or (array.length + c - i) format.
HInstruction* left_of_left; // left input of left.
int32_t right_const = 0;
if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) {
left = left_of_left;
}
// The value of left input of the sub equals (left + right_const).
if (left->IsArrayLength()) {
HInstruction* array_length = left->AsArrayLength();
ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
if (right_range != nullptr) {
ValueBound lower = right_range->GetLower();
ValueBound upper = right_range->GetUpper();
if (lower.IsConstant() && upper.IsRelatedToArrayLength()) {
HInstruction* upper_inst = upper.GetInstruction();
// Make sure it's the same array.
if (ValueBound::Equal(array_length, upper_inst)) {
int32_t c0 = right_const;
int32_t c1 = lower.GetConstant();
int32_t c2 = upper.GetConstant();
// (array.length + c0 - v) where v is in [c1, array.length + c2]
// gets [c0 - c2, array.length + c0 - c1] as its value range.
if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) &&
!ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) {
if ((c0 - c1) <= 0) {
// array.length + (c0 - c1) won't overflow/underflow.
ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
GetGraph()->GetArena(),
ValueBound(nullptr, right_const - upper.GetConstant()),
ValueBound(array_length, right_const - lower.GetConstant()));
GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range);
}
}
}
}
}
}
}
void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr());
HInstruction* right = instruction->GetRight();
int32_t right_const;
if (right->IsIntConstant()) {
right_const = right->AsIntConstant()->GetValue();
// Detect division by two or more.
if ((instruction->IsDiv() && right_const <= 1) ||
(instruction->IsShr() && right_const < 1) ||
(instruction->IsUShr() && right_const < 1)) {
return;
}
} else {
return;
}
// Try to handle array.length/2 or (array.length-1)/2 format.
HInstruction* left = instruction->GetLeft();
HInstruction* left_of_left; // left input of left.
int32_t c = 0;
if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) {
left = left_of_left;
}
// The value of left input of instruction equals (left + c).
// (array_length + 1) or smaller divided by two or more
// always generate a value in [INT_MIN, array_length].
// This is true even if array_length is INT_MAX.
if (left->IsArrayLength() && c <= 1) {
if (instruction->IsUShr() && c < 0) {
// Make sure for unsigned shift, left side is not negative.
// e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger
// than array_length.
return;
}
ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
GetGraph()->GetArena(),
ValueBound(nullptr, INT_MIN),
ValueBound(left, 0));
GetValueRangeMap(instruction->GetBlock())->Overwrite(instruction->GetId(), range);
}
}
void VisitDiv(HDiv* div) {
FindAndHandlePartialArrayLength(div);
}
void VisitShr(HShr* shr) {
FindAndHandlePartialArrayLength(shr);
}
void VisitUShr(HUShr* ushr) {
FindAndHandlePartialArrayLength(ushr);
}
void VisitAnd(HAnd* instruction) {
if (instruction->GetRight()->IsIntConstant()) {
int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue();
if (constant > 0) {
// constant serves as a mask so any number masked with it
// gets a [0, constant] value range.
ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
GetGraph()->GetArena(),
ValueBound(nullptr, 0),
ValueBound(nullptr, constant));
GetValueRangeMap(instruction->GetBlock())->Overwrite(instruction->GetId(), range);
}
}
}
void VisitNewArray(HNewArray* new_array) {
HInstruction* len = new_array->InputAt(0);
if (!len->IsIntConstant()) {
HInstruction *left;
int32_t right_const;
if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) {
// (left + right_const) is used as size to new the array.
// We record "-right_const <= left <= new_array - right_const";
ValueBound lower = ValueBound(nullptr, -right_const);
// We use new_array for the bound instead of new_array.length,
// which isn't available as an instruction yet. new_array will
// be treated the same as new_array.length when it's used in a ValueBound.
ValueBound upper = ValueBound(new_array, -right_const);
ValueRange* range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), lower, upper);
ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock());
if (existing_range != nullptr) {
range = existing_range->Narrow(range);
}
GetValueRangeMap(new_array->GetBlock())->Overwrite(left->GetId(), range);
}
}
}
void VisitDeoptimize(HDeoptimize* deoptimize) {
// Right now it's only HLessThanOrEqual.
DCHECK(deoptimize->InputAt(0)->IsLessThanOrEqual());
HLessThanOrEqual* less_than_or_equal = deoptimize->InputAt(0)->AsLessThanOrEqual();
HInstruction* instruction = less_than_or_equal->InputAt(0);
if (instruction->IsArrayLength()) {
HInstruction* constant = less_than_or_equal->InputAt(1);
DCHECK(constant->IsIntConstant());
DCHECK(constant->AsIntConstant()->GetValue() <= kMaxConstantForAddingDeoptimize);
ValueBound lower = ValueBound(nullptr, constant->AsIntConstant()->GetValue() + 1);
ValueRange* range = new (GetGraph()->GetArena())
ValueRange(GetGraph()->GetArena(), lower, ValueBound::Max());
GetValueRangeMap(deoptimize->GetBlock())->Overwrite(instruction->GetId(), range);
}
}
void AddCompareWithDeoptimization(HInstruction* array_length,
HIntConstant* const_instr,
HBasicBlock* block) {
DCHECK(array_length->IsArrayLength());
ValueRange* range = LookupValueRange(array_length, block);
ValueBound lower_bound = range->GetLower();
DCHECK(lower_bound.IsConstant());
DCHECK(const_instr->GetValue() <= kMaxConstantForAddingDeoptimize);
// Note that the lower bound of the array length may have been refined
// through other instructions (such as `HNewArray(length - 4)`).
DCHECK_LE(const_instr->GetValue() + 1, lower_bound.GetConstant());
// If array_length is less than lower_const, deoptimize.
HBoundsCheck* bounds_check = first_constant_index_bounds_check_map_.Get(
array_length->GetId())->AsBoundsCheck();
HCondition* cond = new (GetGraph()->GetArena()) HLessThanOrEqual(array_length, const_instr);
HDeoptimize* deoptimize = new (GetGraph()->GetArena())
HDeoptimize(cond, bounds_check->GetDexPc());
block->InsertInstructionBefore(cond, bounds_check);
block->InsertInstructionBefore(deoptimize, bounds_check);
deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment());
}
void AddComparesWithDeoptimization(HBasicBlock* block) {
for (ArenaSafeMap<int, HBoundsCheck*>::iterator it =
first_constant_index_bounds_check_map_.begin();
it != first_constant_index_bounds_check_map_.end();
++it) {
HBoundsCheck* bounds_check = it->second;
HInstruction* array_length = bounds_check->InputAt(1);
if (!array_length->IsArrayLength()) {
// Prior deoptimizations may have changed the array length to a phi.
// TODO(mingyao): propagate the range to the phi?
DCHECK(array_length->IsPhi()) << array_length->DebugName();
continue;
}
HIntConstant* lower_bound_const_instr = nullptr;
int32_t lower_bound_const = INT_MIN;
size_t counter = 0;
// Count the constant indexing for which bounds checks haven't
// been removed yet.
for (HUseIterator<HInstruction*> it2(array_length->GetUses());
!it2.Done();
it2.Advance()) {
HInstruction* user = it2.Current()->GetUser();
if (user->GetBlock() == block &&
user->IsBoundsCheck() &&
user->AsBoundsCheck()->InputAt(0)->IsIntConstant()) {
DCHECK_EQ(array_length, user->AsBoundsCheck()->InputAt(1));
HIntConstant* const_instr = user->AsBoundsCheck()->InputAt(0)->AsIntConstant();
if (const_instr->GetValue() > lower_bound_const) {
lower_bound_const = const_instr->GetValue();
lower_bound_const_instr = const_instr;
}
counter++;
}
}
if (counter >= kThresholdForAddingDeoptimize &&
lower_bound_const_instr->GetValue() <= kMaxConstantForAddingDeoptimize) {
AddCompareWithDeoptimization(array_length, lower_bound_const_instr, block);
}
}
}
std::vector<std::unique_ptr<ArenaSafeMap<int, ValueRange*>>> maps_;
// Map an HArrayLength instruction's id to the first HBoundsCheck instruction in
// a block that checks a constant index against that HArrayLength.
SafeMap<int, HBoundsCheck*> first_constant_index_bounds_check_map_;
// For the block, there is at least one HArrayLength instruction for which there
// is more than one bounds check instruction with constant indexing. And it's
// beneficial to add a compare instruction that has deoptimization fallback and
// eliminate those bounds checks.
bool need_to_revisit_block_;
// Initial number of blocks.
uint32_t initial_block_size_;
// Range analysis based on induction variables.
InductionVarRange induction_range_;
DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
};
void BoundsCheckElimination::Run() {
if (!graph_->HasBoundsChecks()) {
return;
}
BCEVisitor visitor(graph_, induction_analysis_);
// Reverse post order guarantees a node's dominators are visited first.
// We want to visit in the dominator-based order since if a value is known to
// be bounded by a range at one instruction, it must be true that all uses of
// that value dominated by that instruction fits in that range. Range of that
// value can be narrowed further down in the dominator tree.
//
// TODO: only visit blocks that dominate some array accesses.
HBasicBlock* last_visited_block = nullptr;
for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
HBasicBlock* current = it.Current();
if (current == last_visited_block) {
// We may insert blocks into the reverse post order list when processing
// a loop header. Don't process it again.
DCHECK(current->IsLoopHeader());
continue;
}
if (visitor.IsAddedBlock(current)) {
// Skip added blocks. Their effects are already taken care of.
continue;
}
visitor.VisitBasicBlock(current);
last_visited_block = current;
}
}
} // namespace art